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Abstract
This paper presents the system description of
the NordicsAlps team for the AmericasNLP
2024 Machine Translation Shared Task 1. We
investigate the effect of tokenization on trans-
lation quality by exploring two different tok-
enization schemes: byte-level and redundancy-
driven tokenization. We submitted three runs
per language pair. The redundancy-driven to-
kenization ranked first among all submissions,
scoring the highest average chrF2++, chrF, and
BLEU metrics (averaged across all languages).
These findings demonstrate the importance of
carefully tailoring the tokenization strategies
of machine translation systems, particularly in
resource-constrained scenarios.

1 Introduction

The participation of the NordicsAlps team in the
AmericasNLP 2024 Machine Translation Shared
Task builds directly on the previous contributions
by the Helsinki team. The main goal of the shared
task, as in the previous editions, is to build ma-
chine translation (MT) systems capable of translat-
ing Spanish into eleven American languages. With
limited training data, the MT solutions need to
leverage cross-lingual transfer and data-efficient
approaches to achieve a good level of performance
on the translation tasks. Previous contributions of
the Helsinki team performed cross-lingual transfer
by pre-training a Spanish-English model, and trans-
ferring the knowledge learned to the language pairs
of the task, i.e., Spanish-TARGET (any of the eleven
indigenous target languages), by continued train-
ing. The previous Helsinki submissions primarily
focused on increasing the data size by collecting
additional sources and applying data augmentation
techniques, but data efficiency was not directly ad-
dressed. Our submission builds on the previous
findings and focuses on the data efficiency aspect
of the challenge.

†Authors of equal contribution

The core idea behind our proposal is that both
cross-lingual transfer and data efficiency can be
improved by optimizing the vocabulary size, which
can be controlled by means of tokenization. Fol-
lowing the current understanding about the role of
tokenization in machine translation (Section 2), we
aim at small vocabularies (short tokens). We ex-
plore two options: (1) byte-level tokenization and
(2) redundancy-driven subword-level tokenization,
and compare them with the SentencePiece tokeniza-
tion used in De Gibert et al. (2023). We submit
three runs for each language pair. Among these
runs, the redundancy-driven tokenization scheme
gives the best scores on all language pairs. Further-
more, it ranks first among all submissions to the
shared task in terms of average chrF++, chrF, and
BLEU.

2 Related Work

2.1 Machine translation for indigenous
languages of the Americas

As pointed out by Mager et al. (2018), despite
the fact that there are millions of people in the
Americas who identify as indigenous, there is a
distinct lack of language technology for the hun-
dreds of indigenous languages spoken in the Ameri-
cas. Machine translation systems have the potential
to aid in equality of access to information, edu-
cational technology, and language revitalization
efforts for indigenous communities (Mager et al.,
2018, 2023; Ebrahimi et al., 2023). However, build-
ing such systems for languages that are often rela-
tively low-resourced presents a number of potential
challenges, as delimited in a survey of the field
by Haddow et al. (2022). These challenges can
include the lack of reliable language identification
tools to aid in data collection, a scarcity of paral-
lel data sets, and non-standardized orthographies.
Mager et al. (2018) also note that indigenous Amer-
ican languages are very typologically diverse, yet
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many are understudied from a linguistic standpoint
compared to languages more commonly treated in
NLP. This limits the opportunity to experiment with
machine translation models informed by linguistic
knowledge (i.e., via token annotations), which is
an area that generally lacks study in low-resource
machine translation settings according to Haddow
et al. (2022).

Now in its fourth year, the AmericasNLP shared
task has become a lively forum for progressing in
machine translation for indigenous languages in
the Americas. Previous submissions to the 2021
and 2023 shared tasks have taken a variety of cre-
ative steps to work around the challenges com-
mon in low-resourced language machine transla-
tion. Among other things, this has included experi-
menting with fine-tuning pre-trained machine trans-
lation models; data mining and filtering; exploiting
monolingual language data to synthesize or back-
translate more parallel data; multilingual trans-
lation models; knowledge distillation; in-context
learning with GPT models; and model ensembling
(Mager et al., 2021; Ebrahimi et al., 2023). Im-
portantly, previous challenges have included qual-
itative analysis of some of the submitted transla-
tion systems. Indeed, other researchers have high-
lighted that community involvement is a key part of
developing NLP tools that have a positive impact
for indigenous communities and their languages
(Mager et al., 2023; Zhang et al., 2022).

2.2 Subword segmentation in MT
With the introduction of subword tokenization to
MT (Sennrich et al., 2016), the size of the vocabu-
lary has become a hyper-parameter, which is most
commonly set in an arbitrary way. For instance,
the size of 32k is a frequent choice for multilingual
MT at the moment. The vocabulary size can, in
principle, be optimized for the task (Kudo, 2018),
but this is hard to do in the framework of trans-
fer learning because the vocabulary of pre-trained
models is fixed and hard to map onto a different
one for the end task. This is an important obstacle
to improving cross-lingual transfer in general (Rust
et al., 2021). Byte Pair Encoding (BPE) drop-out
(Provilkov et al., 2020) is a popular general method
of regularizing the vocabulary, which is suitable for
transfer learning.

In search of a more principled approach to set-
ting the vocabulary size, Mielke et al. (2019) find
that the size of 0.4 × the initial (word-level) size
results in the lowest negative log likelihood of a

language model across multiple languages. The
size of 32k appears the best when translating from
German to English with a large training set. Oth-
erwise, 2k seems to work best for varied data sizes
and directions (Gowda and May, 2020). Defin-
ing linguistically motivated subword units is a cri-
terion proposed by Ataman and Federico (2018).
This method can help with a particular language
(e.g. Turkish), but it depends on external language-
specific knowledge. Using more linguistically
driven algorithms is found to improve downstream
performance on various tasks (Bostrom and Dur-
rett, 2020; Park et al., 2021), but the improvements
are surprisingly small and not very consistent. As a
matter of fact, replacing standard BPE tokens with
randomly selected ones gives almost the same MT
scores (Saleva and Lignos, 2023).

Byte-level tokenization is an attempt to over-
come the arbitrariness of the vocabulary size param-
eter and other limitations of subword tokenization
(Shapiro and Duh, 2018). Instead of representing
the text using subwords, the content is mapped to
bytes using the Unicode Transformation Format
8-bit (UTF-8) encoding. This strategy removes
the need for initial text processing by reducing all
texts to a small vocabulary of only 256 byte types.
This level of tokenization is similar to the character-
level (bytes roughly encode Unicode characters),
which looked promising with RNN models (Lee
et al., 2017). However, later experiments yielded
mixed results. Shaham and Levy (2021) trained
models that operate on byte sequences, outperform-
ing the subword-based models in bilingual trans-
lation. These findings were also confirmed in a
many-to-one multilingual setup and for endangered
languages (Zhang and Xu, 2022). On the other
hand, Libovický et al. (2022) find that subword to-
kenization is still better. More generally, byte-level
tokenization can improve the performance on vari-
ous tasks in low-resource languages (Clark et al.,
2022; Xue et al., 2022), but its use in high-resource
settings is still questionable. Since the data sets in
this shared tasks are relatively small, we explore the
use of small byte- and subword-level vocabularies.

3 Data

Following De Gibert et al. (2023), we train multilin-
gual one-to-many models that translate from Span-
ish to the eleven indigenous target languages and
and include English as an additional high-resource
target language.
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Spanish–English Data We use Spanish–English
parallel data from a subset of the sources men-
tioned in De Gibert et al. (2023): Europarl, Glob-
alVoices, NewsCommentary, TedTalks, and Tatoeba
collected from OPUS (Tiedemann, 2012). In con-
trast to De Gibert et al. (2023) and due to time
constraints, we do not include Bibles nor OpenSub-
titles. Validation data for pre-training comes from
the Spanish–English WMT-News corpus.

The Spanish–English parallel data underwent
cleaning with OpusFilter (Aulamo et al., 2020),
as described in De Gibert et al. (2023). Namely,
this consisted in deduplication and a set of filters
based on length difference, script identification and
language identification.

Spanish–Indigenous Language Data Our mod-
els include all eleven indigenous American lan-
guages for which data was provided in the shared
task: Asháninka (cni), Aymara (aym), Bribri (bzd),
Chatino (ctp), Guarani (gn), Hñähñu (oto), Nahu-
atl (nah), Quechua (quy), Raramuri (tar), Shipibo-
Konibo (shp), and Wixarika (hch).

We used all Spanish–indigenous language train-
ing and development data provided by the Shared
Task organizers (Ortega et al., 2020; Cushimari-
ano Romano and Sebastián Q., 2008; Mihas, 2011;
Tiedemann, 2012; Feldman and Coto-Solano, 2020;
Agić and Vulić, 2019; Montoya et al., 2019; Galar-
reta et al., 2017). Whenever available, we also
included the extra and synthetic datasets provided
by the Shared Task organizers (De Gibert et al.,
2023).

The data used for this year’s submissions differ
from those described in De Gibert et al. (2023)
in two crucial aspects. First, we did not include
Bible data, since Bibles did not improve translation
quality in earlier editions (Vázquez et al., 2021) and
were not part of the organizer-provided datasets.
Second, due to time constraints, we did not apply
any filtering or cleaning to the parallel data.

No preprocessing has been applied to the byte-
level models. Some general preprocessing was
carried out on the Spanish–indigenous language
data for the BPE-based models. This consisted
in whitespace normalization, Unicode character
normalization, and separation of punctuation from
words. Separation of punctuation from words was
done using the Moses tokenizer as well as hand-
crafted rules to prevent tokenization at apostrophes
that actually represented glottal stops. As docu-
mented in Vázquez et al. (2021), we also applied

some spelling normalization scripts to the data for
Wixarika and Raramuri.

Since all our models are multilingual models
with several target languages, we include a target
language tag at the beginning of the source sen-
tence. We did not use the additional variant and
quality tags proposed by De Gibert et al. (2023),
and opted for simply relying on the target language
for the tags.

3.1 Post-processing

The output produced by the MT models is post-
processed by removing subword segmentation
marks (if applicable), removing <unk> tokens, and
detokenizing with the Moses detokenizer (with
Spanish settings).

After inspecting the translations of the develop-
ment sets, we also apply some language specific
post-processing rules:

• For Aymara, Bribri and Raramuri, we nor-
malize apostrophes and remove whitespaces
surrounding them.

• For Guarani and Hñähñu, we apply the
normalization functions of De Gibert et al.
(2023)1, complemented with some additional
diacritic replacements.

• For Wixarika, we observed that the + sign
was not properly detokenized; however, we
could not find a simple post-processing rou-
tine to properly attach this symbol to preced-
ing and/or following tokens.

4 Methods

Our subword-level settings follow previous model
architectures and training regimes closely with a
few updates. The main difference here is the tok-
enization. In the byte-level settings, we work with
different architectures.

4.1 Subword-level Models

U-SP As a baseline, we segmented all data with
the subword tokenizer provided by De Gibert et al.
(2023). This tokenizer was trained jointly on all
source and target languages with the Unigram
model implemented in the SentencePiece toolkit,
using a vocabulary size of 32k tokens.

1See https://github.com/Helsinki-NLP/
americasnlp2023-st/blob/main/create_opusfilter_
config.py
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In preliminary experiments, we found that using
joint or separate token embeddings did not make
a significant impact, and neither did subword sam-
pling. We report results on the model that most
closely resembles the other subword setting (BPE-
MR), namely with separate embeddings and with-
out subword sampling.

BPE-MR The principle of BPE-MR is to use
text redundancy as a criterion for the vocabulary
size. We look for the vocabulary that approximately
minimizes text redundancy (hence MR). This goal
is inspired by connecting several observations from
previous work.

The first relevant point is that, given a fixed vo-
cabulary size, data compression efficiency of a tok-
enization algorithm has an impact on machine trans-
lation. That is, the tokenization that minimizes the
length of the sentence gives the best BLEU score
(Gallé, 2019). This finding is recently replicated
by Zouhar et al. (2023) using Rényi entropy as the
measure of compression efficiency. While these
findings do not suggest a preferred vocabulary size,
we note that the overall best scores are obtained
with smaller vocabularies, in the range around 2k,
already observed by Gowda and May (2020).

The second relevant point is that monolingual
BPE models maximally compress a corpus af-
ter carrying out just 200–350 merges (Gutierrez-
Vasques et al., 2021). Since each BPE merge adds
exactly one new member to the vocabulary, the
maximal compression happens with the vocabulary
size of several hundreds (number of BPE merges
+ the set of characters). This compression is mea-
sured by information theoretic redundancy of a
given corpus, and was shown to hold across a di-
verse sample of languages.

The third relevant point is that Shannon entropy
converges to a similar value across different lan-
guages when the redundancy is maximized making
different languages in some sense more similar
(Gutierrez-Vasques et al., 2021). More compatible
embedding spaces across languages coincide with
identical vocabulary sizes (Maronikolakis et al.,
2021), at least in alphabetic scripts, although the
size itself does not seem to impact the performance
on the zero-shot XNLI task.

We thus train a BPE subword tokenizer2 to carry
out 300 merges for each language. Note that this is
far fewer merges than what is typical when using
BPE for training subword tokenizers. For English

2https://github.com/rsennrich/subword-nmt

and Spanish, the tokenizers were trained on the
parallel Spanish-English training data. For the in-
digenous languages, we trained each tokenizer on
the given language’s training and development data,
as well as the extra files where available. We did
not use any provided synthetic data while training
the tokenizers. Subword tokenization models for
the indigenous languages were trained on prepro-
cessed data. We then applied the trained subword
tokenization models to their respective language’s
train, development, extra, and synthetic data, and
added the tokenized extra and synthetic data to the
train set.

For the indigenous languages, we experimented
with an early stop criteria to determine exactly how
many merges to train the tokenization models for.
This consisted in iteratively training 350 tokeniza-
tion models for each language to carry out 1 to 350
merges on the corpora. After applying each model,
we determined the difference in the frequency of
the vocabulary items merged by BPE at the given
merge and the prior merge. Based off of previ-
ous unpublished experiments with smaller datasets,
we stop training BPE models when seven models
occurred where the difference in merged-item fre-
quency was extremely low (i.e., -1 or 0). However,
for all of the indigenous languages used here, the
early stop criterion was never met in the first 350
merges. Therefore, we trained all models to carry
out 300 merges, and will conduct further research
on finding the ideal stopping point in the future.

Model Architecture and Training Regime All
MT models use the Transformer architecture
(Vaswani et al., 2017) with mostly the same hyper-
parameters as Model B of De Gibert et al. (2023).3

The models are trained with OpenNMT-py 3.4.3
(Klein et al., 2020).

The training takes place in two phases. In phase
1, the model is trained on 89% of Spanish–English
data and 1% of data coming from each of the eleven
indigenous languages. In phase 2, the proportion
of Spanish–English data is reduced to 50%, with
the other half sampled to equal amounts from the
eleven indigenous languages. We did not include
a third phase of language-specific fine-tuning this
year.

We train the first phase for 100k steps and pick
the best intermediate savepoint according to the

3Notable differences include the use of separate source and
target token embeddings, and of the ALiBi position encodings
(Press et al., 2021).
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Model Source vocab. Target vocab.

U-SP 21 511 25 949
BPE-MR 1 215 5 896
Byte-SESD, Byte-SEMD 256 256

Table 1: Vocabulary sizes of the different MT models.
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Figure 1: Development chrF++ scores (averaged over
all 11 development sets) during phase 2 training of
subword-level models.

English validation set. Depending on the model,
this occurred after 96k or 100k steps. We initialize
phase 2 with this savepoint and continue training
until 200k steps, saving intermediate checkpoints
every 2k steps. We then pick the most promising
savepoint for each language based on the chrF++
score of the development set.

We train two models, one with a baseline Sen-
tencePiece tokenizer, and one with the proposed
BPE-MR approach. They are described in detail
below.

4.2 Byte-Level Models

For our byte-level models, we experiment with dif-
ferent architectures within a one-to-many setup.
We define the following two variants: the first vari-
ant is the single encoder multiple decoder setup
(Byte-SEMD) which involves one encoder for
Spanish and one language-specific decoder for each
target language. The second variant is a single en-
coder single decoder (Byte-SESD) setup compris-
ing one encoder for Spanish and one decoder that is
shared by all target languages. The model employs
language tokens as a guide to generate text in the
target language. We proceed with the same train-
ing regiment as before, by pre-training a model on
English-Spanish data, and using the weights of the
model to initialize the encoder and decoders in the
proposed setups.

For all models, we use a total of 6 transformer
layers for the encoder and 6 layers for the decoder

Language Savepoint Before After

aym Aymara 124k 33.35 33.42
bzd Bribri 176k 23.01 22.99
cni Asháninka 196k 24.48
ctp Chatino 200k 38.34
gn Guarani 194k 31.90 34.61
hch Wikarika 142k 26.97
nah Nahuatl 152k 25.39
oto Hñähñu 130k 11.86 12.75
quy Quechua 164k 31.76
shp Shipibo-Konibo 164k 27.51
tar Raramuri 142k 15.76 15.76

Table 2: Development set chrF++ scores of the BPE-
MR model, before and after language-specific post-
processing. No post-processing was applied to six lan-
guages. The table also shows the savepoints that yielded
the reported scores. These savepoints were used for test
set translation.

with 8 attention heads, 512 hidden units and the
feed-forward dimension of 2048. We follow the ar-
chitecture of Shaham and Levy (2021) by replacing
the dense trainable embedding matrix of the embed-
dingless models with a fixed one-hot encoding of
the vocabulary. We use relative position encoding
(Shaw et al., 2018) as the limit of the sequences
supported by the framework is 5000 (lower than
the largest byte sequence in the training data). We
use the MAMMOTH toolkit (Mickus et al., 2024)
as a basis for our implementation, since it is specif-
ically designed for modular sequence-to-sequence
model training, which allows to produce the dif-
ferent sharing patterns desired in this study. The
models underwent training for 1.5 days, with an
early stopping criterion in place. However, we ob-
served that they were undertrained at the time of
submission: the loss continued to decrease, and the
early stopping mechanism had not yet been trig-
gered. Consequently, we chose the most recent
checkpoint for the submission. This issue rises due
to the sequence length of such models that requires
a larger batch size compared to the other variants
as well as a longer training budget.

5 Results

The different tokenization strategies resulted in dif-
ferent vocabulary sizes of the MT models, as can
be seen in Table 1.

5.1 Subword-level Model Evaluation
Figure 1 shows the evolution of the development
chrF++ scores during the second phase of training.
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Model aym bzd cni ctp gn hch nah oto quy shp tar Average

1 – BPE-MR [2] 29.39 [4] 23.32 [1] 23.20 [1] 37.38 [5] 36.23 [1] 27.64 [1] 22.87 [1] 12.98 [11] 32.98 [2] 27.04 [5] 14.57 [1] 26.15
2 – Byte-SEMD [8] 26.37 [8] 17.23 [9] 15.45 [2] 23.64 [10] 32.32 [9] 23.47 [8] 20.77 [7] 11.63 [14] 28.81 [10] 22.20 [9] 10.53 [8] 21.13
3 – Byte-SESD [12] 15.77 [12] 12.24 [10] 15.23 [11] 12.96 [17] 14.80 [12] 15.97 [13] 14.57 [9] 11.22 [16] 25.15 [12] 21.28 [8] 12.63 [12] 15.62

Best competitor [1] 30.97 [1] 23.47 [2] 22.98 [3] 20.70 [1] 38.93 [2] 26.46 [2] 21.71 [2] 12.63 [1] 38.21 [1] 29.37 [1] 17.03 [2] 23.32

Table 3: Official chrF++ scores on the test sets. Rankings are displayed in brackets.

We observe that the training curves are relatively
flat, which suggests that phase 2 training can be
limited to a few thousand steps without significant
impact on translation performance.

The BPE-MR model clearly outperform the U-
SP model. Moreover, the training scores of the
U-SP model fluctuate much more. In particular, the
U-SP model shows occasional language-specific
“breakdowns”, but recovers quickly from them. For
example, the chrF++ scores for Guarani vary be-
tween 27.97 (100k), 3.66 (102k), and 28.17 (104k).
We currently do not have an explanation why such
breakdowns occur, and why they only occur for
some of the languages.

On the basis of these observations, we decided
not to submit the U-SP model. Table 2 shows the
selected checkpoints per language and the corre-
sponding development set chrF++ scores of the
BPE-MR model. It also shows that language-
specific post-processing (see Section 3.1) had a
considerable impact on our Guarani and Hñähñu
results.

5.2 Test results

We submitted three runs to the shared task: (1)
BPE-MR, (2) Byte-SEMD, and (3) Byte-SESD.
Table 3 reports the official results on the test set.
Our BPE-MR submission was ranked first for 5
out of 11 languages and second for 2 additional
languages. For Bribri, Asháninka, Hñähñu and
Quechua, it was an extremely close competition:
the first 6, 7, 6 and 4 submissions respectively are
only within one chrF++ point. For all but Quechua,
our BPE-MR submission is among these best sub-
missions. In terms of average chrF++, chrF, and
BLEU, the submitted BPE-MR model ranks first
among all submissions to the shared task.

As mentioned previously, we notice that the byte-
level models are undertrained at the time of the
submission, due to the sequence length of such
models that requires a larger batch size compared
to the other variants, and a longer training budget.

6 Conclusions

This paper presents the NordicAlps submissions to
the AmericasNLP 2024 machine translation shared
task. Our contribution focuses on data efficiency,
and in particular on optimizing subword-level to-
kenization. We trained four systems: a baseline
system with a previously trained SentencePiece to-
kenizer (U-SP), a subword-level system based on
the proposed minimized text redundancy BPE ap-
proach (BPE-MR), and two byte-level systems dif-
fering in their decoder architectures (Byte-SEMD
with language-specific decoders and Byte-SESD
with a single shared decoder). We did not submit
the U-SP system.

The BPE-MR system reached the first rank in
terms of average scores across all languages. It
reached a top-five ranking for all languages except
Quechua. The Byte-SEMD and Byte-SESD sys-
tems performed less well, but this is most likely
due to undertraining.
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Jindřich Libovický, Helmut Schmid, and Alexander
Fraser. 2022. Why don’t people use character-level
machine translation? In Findings of the Associa-
tion for Computational Linguistics: ACL 2022, pages
2470–2485, Dublin, Ireland. Association for Compu-
tational Linguistics.

Manuel Mager, Ximena Gutierrez-Vasques, Gerardo
Sierra, and Ivan Meza-Ruiz. 2018. Challenges of
language technologies for the indigenous languages
of the Americas. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 55–69, Santa Fe, New Mexico, USA. Associa-
tion for Computational Linguistics.

Manuel Mager, Elisabeth Mager, Katharina Kann, and
Ngoc Thang Vu. 2023. Ethical considerations for
machine translation of indigenous languages: Giv-
ing a voice to the speakers. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
4871–4897, Toronto, Canada. Association for Com-
putational Linguistics.

156

https://doi.org/10.18653/v1/2020.findings-emnlp.414
https://doi.org/10.18653/v1/2020.findings-emnlp.414
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.1162/tacl_a_00448
http://www.lengamer.org/publicaciones/diccionarios/
http://www.lengamer.org/publicaciones/diccionarios/
https://doi.org/10.18653/v1/2023.americasnlp-1.20
https://doi.org/10.18653/v1/2023.americasnlp-1.20
https://doi.org/10.18653/v1/2023.americasnlp-1.20
https://doi.org/10.18653/v1/2023.americasnlp-1.23
https://doi.org/10.18653/v1/2023.americasnlp-1.23
https://doi.org/10.18653/v1/2023.americasnlp-1.23
https://doi.org/10.18653/v1/2020.coling-main.351
https://doi.org/10.18653/v1/2020.coling-main.351
https://doi.org/10.18653/v1/2020.coling-main.351
https://doi.org/10.18653/v1/2020.coling-main.351
https://doi.org/10.26615/978-954-452-049-6_033
https://doi.org/10.26615/978-954-452-049-6_033
https://doi.org/10.18653/v1/D19-1141
https://doi.org/10.18653/v1/D19-1141
https://doi.org/10.18653/v1/2020.findings-emnlp.352
https://doi.org/10.18653/v1/2020.findings-emnlp.352
https://doi.org/10.18653/v1/2020.findings-emnlp.352
https://doi.org/10.18653/v1/2021.eacl-main.302
https://doi.org/10.18653/v1/2021.eacl-main.302
https://doi.org/10.1162/coli_a_00446
https://aclanthology.org/2020.amta-research.9
https://aclanthology.org/2020.amta-research.9
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.1162/tacl_a_00067
https://doi.org/10.1162/tacl_a_00067
https://doi.org/10.18653/v1/2022.findings-acl.194
https://doi.org/10.18653/v1/2022.findings-acl.194
https://aclanthology.org/C18-1006
https://aclanthology.org/C18-1006
https://aclanthology.org/C18-1006
https://doi.org/10.18653/v1/2023.acl-long.268
https://doi.org/10.18653/v1/2023.acl-long.268
https://doi.org/10.18653/v1/2023.acl-long.268


Manuel Mager, Arturo Oncevay, Abteen Ebrahimi, John
Ortega, Annette Rios, Angela Fan, Ximena Gutierrez-
Vasques, Luis Chiruzzo, Gustavo Giménez-Lugo, Ri-
cardo Ramos, Ivan Vladimir Meza Ruiz, Rolando
Coto-Solano, Alexis Palmer, Elisabeth Mager-Hois,
Vishrav Chaudhary, Graham Neubig, Ngoc Thang Vu,
and Katharina Kann. 2021. Findings of the Ameri-
casNLP 2021 shared task on open machine transla-
tion for indigenous languages of the Americas. In
Proceedings of the First Workshop on Natural Lan-
guage Processing for Indigenous Languages of the
Americas, pages 202–217, Online. Association for
Computational Linguistics.

Antonis Maronikolakis, Philipp Dufter, and Hinrich
Schütze. 2021. Wine is not v i n. on the compatibility
of tokenizations across languages. In Findings of the
Association for Computational Linguistics: EMNLP
2021, pages 2382–2399, Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Timothee Mickus, Stig-Arne Grönroos, Joseph At-
tieh, Michele Boggia, Ona De Gibert, Shaoxiong
Ji, Niki Andreas Loppi, Alessandro Raganato, Raúl
Vázquez, and Jörg Tiedemann. 2024. MAMMOTH:
Massively multilingual modular open translation @
Helsinki. In Proceedings of the 18th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: System Demonstrations, pages
127–136, St. Julians, Malta. Association for Compu-
tational Linguistics.

Sabrina J. Mielke, Ryan Cotterell, Kyle Gorman, Brian
Roark, and Jason Eisner. 2019. What kind of lan-
guage is hard to language-model? In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4975–4989, Florence,
Italy. Association for Computational Linguistics.

Elena Mihas. 2011. Añaani katonkosatzi parenini, El id-
ioma del alto Perené. Milwaukee, WI: Clarks Graph-
ics.

Héctor Erasmo Gómez Montoya, Kervy Dante Rivas
Rojas, and Arturo Oncevay. 2019. A continuous
improvement framework of machine translation for
Shipibo-Konibo. In Proceedings of the 2nd Work-
shop on Technologies for MT of Low Resource Lan-
guages, pages 17–23, Dublin, Ireland. European As-
sociation for Machine Translation.

John Ortega, Richard Alexander Castro-Mamani, and
Jaime Rafael Montoya Samame. 2020. Overcoming
resistance: The normalization of an Amazonian tribal
language. In Proceedings of the 3rd Workshop on
Technologies for MT of Low Resource Languages,
pages 1–13, Suzhou, China. Association for Compu-
tational Linguistics.

Hyunji Hayley Park, Katherine J. Zhang, Coleman Ha-
ley, Kenneth Steimel, Han Liu, and Lane Schwartz.
2021. Morphology matters: A multilingual language
modeling analysis. Transactions of the Association
for Computational Linguistics, 9:261–276.

Ofir Press, Noah A. Smith, and Mike Lewis. 2021. Train
short, test long: Attention with linear biases enables
input length extrapolation. CoRR, abs/2108.12409.

Ivan Provilkov, Dmitrii Emelianenko, and Elena Voita.
2020. BPE-dropout: Simple and effective subword
regularization. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1882–1892, Online. Association for
Computational Linguistics.

Phillip Rust, Jonas Pfeiffer, Ivan Vulić, Sebastian Ruder,
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