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Abstract

This paper presents our submission to the
AmericasNLP 2024 Shared Task on the Cre-
ation of Educational Materials for Indigenous
Languages. We frame this task as one of mor-
phological inflection generation, treating each
sentence as a single word. We investigate and
compare two distinct approaches: fine-tuning
neural encoder-decoder models such as NLLB-
200, and in-context learning with proprietary
large language models (LLMs). Our findings
demonstrate that for this task, no one approach
is perfect. Anthropic’s Claude 3 Opus, when
supplied with grammatical description entries,
achieves the highest performance on Bribri
among the evaluated models. This outcome cor-
roborates and extends previous research explor-
ing the efficacy of in-context learning in low-
resource settings. For Maya, fine-tuning NLLB-
200-3.3B using StemCorrupt augmented data
yielded the best performance.

1 Introduction

The AmericasNLP 2024 Shared Task on the Cre-
ation of Educational Materials for Indigenous Lan-
guages (Chiruzzo et al., 2024) focuses on the chal-
lenge of clause-level morphosyntactic alternation
for low-resource indigenous languages of the Amer-
icas. The objective of this task is to develop a
system capable of applying a set of grammatical at-
tributes to a given source sentence, thereby generat-
ing a target sentence with the desired changes. The
motivation behind this task lies in the potential for
such systems to aid in the preservation and revital-
ization of endangered languages (Anastasopoulos
and Neubig, 2019).

This task involves three indigenous languages
of the Americas: Bribri, Guaraní, and Maya. Two
examples are provided below:

Example 1.1. Bribri
Source sentence: Ye'shka' (“I walked”)
Attributes: TYPE:NEG (negative polarity)

Target sentence: Ye'kë shkàne (“I didn’t walk”)

Example 1.2. Maya
Source sentence: Táan in xíimbal tu jáal já’

(“I’m walking on the beach”)
Attributes: TYPE:NEG (negative polarity)
Target sentence: Ma’ táan in xíimbal tu jáal ja’i’

(“I’m not walking on the beach”)

We frame this task as one of morphological in-
flection generation, treating each sentence as a sin-
gle word. Our objective is thus twofold: to de-
velop a system that performs sentence-level mor-
phological inflection for low-resource indigenous
languages of the Americas, and to provide insight
into what techniques are effective for future prac-
titioners who attempt this task. In pursuit of this
goal, we compare the performance of two distinct
approaches: fine-tuning pre-trained transformer
models and leveraging LLMs through in-context
learning. By evaluating these two approaches, we
aim to contribute to the understanding of effec-
tive strategies for addressing the unique challenges
posed by low-resource languages in tasks such as
morphosyntactic alternation.

2 Background

This task is unique, as previous literature has ex-
plored morphological inflection generation on the
word level rather than on the sentence level (Nico-
lai et al., 2023). Further, this task is challenging for
two reasons:

1. Data scarcity: low-resource indigenous lan-
guages, by definition, have limited available
data for training and evaluating machine learn-
ing models (Liu and Dorr, 2024). The scarcity
of parallel corpora, annotated texts, and lin-
guistic resources poses significant obstacles
in developing robust morphological inflection
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systems (Moeller, 2021). This scarcity is com-
pounded by the novel nature of this task as
prior literature is scarce.

2. Unusual linguistic properties: Indigenous lan-
guages of the Americas exhibit a wide range
of linguistic properties that diverge from those
of well-studied languages like English or
Spanish. These languages often feature in-
tricate morphological, phonological, and or-
thographic systems (Dagostino et al., 2024).
They may be polysynthetic and adhere to ir-
regular morphological paradigms. Such lin-
guistic properties can make it challenging to
model computationally, especially in the con-
text of limited training data.

Prior results have demonstrated the effectiveness
of transformer-based models (Vaswani et al., 2023)
on the word-level inflection task (Anastasopoulos
and Neubig, 2019). Building upon this success, we
evaluate the performance of fine-tuned transformer
models on the sentence-level task, exploring their
ability to capture and generate morphological in-
flections in context.

In an effort to extend the available data, we
search for external sentence-level parallel corpora
aligned with the task format. However, our search
yields no suitable resources. While it may be
possible to preprocess and adapt data from other
formats in a separate pre-training stage, this ap-
proach is complex and may require a significant
time investment for developing custom preprocess-
ing pipelines, which is not possible in our study,
given the short time-frame of this shared task.

To address the challenge of limited data re-
sources, we opt for data augmentation using Stem-
Corrupt (Anastasopoulos and Neubig, 2019), gener-
ating synthetic instances based on the existing data.
StemCorrupt is a data augmentation technique cre-
ated for generating additional instances for the
word-level inflection task. The use of StemCor-
rupt is motivated by the availability of pre-existing
code and the relative simplicity of this technique,
which allow us to quickly run data augmentation
and focus our efforts on other aspects of the task.

The limited supervised data challenge also
prompts us to explore the use of proprietary large
language models (LLMs). These models have
the capability to process long context windows
of arbitrary text as input and do not require fine-
tuning, making them a promising alternative for

low-resource settings where extensive task-specific
data is unavailable.

Recent advancements have demonstrated that by
scaling training compute and corpus size, LLMs
may excel in tasks for they which they are not
explicitly trained (Wei et al., 2022). Studies explor-
ing the use in-context learning with LLMs on low-
resource machine translation have shown promis-
ing results (Tanzer et al., 2024). More recent work
in the area suggests that when paired with appro-
priate language resources, LLMs can even surpass
human baselines in translation quality (Reid et al.,
2024). These findings highlight the potential of
in-context learning in LLMs for addressing the
challenges posed by low-resource languages and
the importance of incorporating relevant linguistic
knowledge to maximize their performance.

3 Data

For fine-tuning, we use the provided training
dataset1 and an augmented dataset that we create
by applying StemCorrupt to the provided training
dataset. For in-context learning, we experiment
with the inclusion of a grammatical description in
the prompt. Previous work investigating the use of
proprietary LLMs on low resource languages has
shown that, when combined with grammatical de-
scriptions, these models obtain strong performance
on tasks such as machine translation (Tanzer et al.,
2024). We hypothesize that using grammatical
descriptions in an in-context learning setting can
improve performance on this task as well.

3.1 Training Data

The training set provided by the organizers contains
1199 training instances. These instances consist
of 594 Maya instances, 427 Bribri instances, and
178 Guarani instances. This dataset is somewhat
imbalanced, with Guarani comprising only 14.8%
of all training instances.

Each instance contains a set of change tags,
i.e., morphosyntactic attributes that act as func-
tors (such as TYPE:NEG to indicate negation of
sentence polarity). Across all languages, there are
77 unique change tags. These follow a long-tailed
distribution: some tags are shared across languages
while others are unique to a particular language.
Refer to the Appendix A for an exhaustive distribu-
tion of change tags.

1https://github.com/AmericasNLP/americasnlp2024
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3.2 Data Augmentation
We perform data augmentation to generate 1000
additional instances for each language. Prior litera-
ture has demonstrated the efficacy of StemCorrupt
for improving the performance of language models
on word-level inflection tasks (Samir and Silfver-
berg, 2023). We explore the effect of StemCorrupt
on this task at the sentence level.

3.3 Utilizing Grammatical Descriptions
We encounter two challenges to using published
grammatical descriptions of these three languages:

1. Grammatical descriptions are difficult to find,
and the orthographies used in them vary.
Many of the resources that do exist were pub-
lished in the 1960-80s or earlier and are only
accessible online as PDF images of printed
text or in digital formats that do not translate
easily into correct Unicode characters.2 We
narrow our search to resources that use En-
glish as the analysis language which limit our
choices further since other descriptions seem
to be available in Spanish. Finally, we search
for grammatical descriptions with interlinear
glossed text (e.g. Umaña et al. (1998)) in order
to provide information similar to the change
tokens provided in the shared task data.

2. The length of data passed into an LLM is lim-
ited by its context window, establishing a hard
limit on how much data (in particular, excerpts
from the published resources) can be passed
into the model. Even within this hard limit,
particularly long input sequences can degrade
performance (Li et al., 2024).

We employ the following grammatical descrip-
tions, focusing on passages that contained interlin-
ear glossed texts:

1. Bribri - Dickeman-Datz (1985) and Jara
(1995)

2. Guarani - Estigarribia (2020)

We are unable to find a suitable grammatical
description for the Yucatec Maya language that
matched the orthography used in this task.

2For example, the scans of these typewritten Peace
Corps language learning lessons: https://www.livelingua.
com/project/peace-corps/guarani or this image of a
Bribri grammatical description: http://journals.uvic.
ca/index.php/WPLC/article/view/5054/1954

3.4 Data Processing
Since curated data is provided by the shared task
organizers, minimal preprocessing is required. The
Bribri data needs some additional preparation. For
Maya and Guarani, no preprocessing is done.

For the Bribri language, training instances are
provided in both the data/ and pilotdata/ directories.
We concatenate the training sets and development
sets across data/ and pilotdata/.

The Bribri data/ directory contains the straight
apostrophe (') character while the pilotdata/ direc-
tory contains the right single quotation mark (’).
We replace each instance of the right single quota-
tion mark in the Bribri pilot training data with the
straight apostrophe.

4 Experiments

We perform four experiments and compare the re-
sults:

1. Fine-tuning the pre-trained encoder-decoder
models

2. Fine-tuning the pre-trained encoder-decoder
models with data augmentation

3. In-context learning on proprietary LLMs

4. In-context learning on proprietary LLMs with
a grammatical description

4.1 Experiment Setup
We apply two classes of experimental setups: fine-
tuning and in-context learning. Fine-tuning adapts
a pre-trained model to predict the target column one
instance at a time. In-context learning includes the
full training set and instances from the validation
set in the prompt of an LLM, predicting multiple
targets per inference run.

Both setups have strengths and weaknesses. In-
context learning is constrained by a fixed context
window but can work on arbitrary forms of task
information such as grammatical descriptions. In
contrast, fine-tuning allows the model’s parame-
ters to be updated on an arbitrarily large training
dataset but requires task-specific parallel data that
is challenging to find for low-resource languages.

4.1.1 Fine-Tuning
For each training instance, we concatenate the
source sentence with the change tags. A separator
token is used to delimit the end of the source sen-
tence and the start of the change token. A model
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Model Bribri Guarani Maya
Baseline
(Kann and Schütze, 2016) 5.66 22.78 26.17
BART Family
BART-Large 7.11 2.53 44.96
MBART-50 12.89 0.00 9.39
T5-FLAN Family
FLAN-T5-XL 1.33 0.00 2.01
NLLB-200 Family
NLLB-200-distilled-600M 19.55 21.51 49.66
NLLB-200-distilled-600M (+ StemCorrupt) 20.00 16.45 58.39
NLLB-200-3.3B 24.88 16.45 53.02
NLLB-200-3.3B (+ StemCorrupt) 28.44 21.51 52.35
In-Context Learning
Claude 3 Opus 30.53 18.99 54.36
Claude 3 Opus (+ grammatical description) 36.73 17.72 N/A
Gemini 1.5 Pro 8.41 N/A 44.97
Gemini 1.5 Pro (+ grammatical description) 12.21 N/A N/A

Table 1: Dev set accuracy score for all fine-tuned models. Bold means best performing model for that language. It
is worth noting that for Maya, we are not able to find grammatical descriptions that matched the orthography of the
task. As for Gemini 1.5 Pro, we suspect there may be an issue with the tokenizer for Guarani as the model would
generate few predictions before failing.

is trained for each language as opposed to creat-
ing a single multi-lingual inflection model, since
we find the former results in better performance
over the latter. We run our experiments on a single
A100 GPU using a batch size of 64. We follow
the same evaluation scheme proposed by the orga-
nizers using accuracy, chrF, and BLEU (Popović,
2015; Papineni et al., 2002).

4.1.2 In-Context Learning
For each in-context learning experiment, the LLM
is provided the following:

1. The training set, with IDs replaced by the row
number

2. The development set with changes removed

3. A relevant prompt (refer to the Appendix A
for exact prompts used)

4.2 Fine-Tuning Pre-Trained
Encoder-Decoder Models

We fine-tune a variety of encoder-decoder model
families. Different variants of BART are used such
as mBART to evaluate the effect of multi-lingual
pre-training on this task (Lewis et al., 2019; Liu
et al., 2020). The FLAN-T5 series of models are
also evaluated as these models incorporate a unique

pre-training process that is promising in terms of
boosting model performance (Chung et al., 2022).
The last family of models examined is the NLLB-
200 family of models for their strong performance
on low-resource translation (Team et al., 2022).
We experiment with the 600M and 3.3B parameter
version of each model. Although the NLLB-200
also includes a Mixture of Experts (MoE) model
that may outperform the other versions, this model
is not investigated due to its prohibitive size (54B
parameters, which exceeds the memory capacity of
an A100 GPU).

4.3 Fine-Tuning Pre-Trained
Encoder-Decoder Models with Data
Augmentation

StemCorrupt is used to generate 1000 instances for
each language. Only NLLB-200 3.3B is trained
using the augmented StemCorrupt data as this is
the best performing model found during fine-tuning
on non-augmented data.

4.4 In-Context Learning on Proprietary
LLMs

We evaluate two proprietary LLMs:

1. Gemini 1.5 Pro. This model is selected for its
long context window and strong performance
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Model Window Size Strategy
Gemini 1.5 Pro 1 Million All
Claude 3 Opus 200k Relevant

Table 2: Context window size for each model and docu-
ment strategy used.

on in-context low-resource machine transla-
tion (Reid et al., 2024)

2. Claude 3 Opus. This model is selected as the
current state of the art in proprietary LLMs
(Anthropic, 2024).

We briefly evaluate GPT-4 Turbo but encounter
significant challenges (OpenAI et al., 2024). The
model produces outputs of unacceptably low qual-
ity, rendering them effectively unusable. Addition-
ally, GPT-4 Turbo proves unstable, consistently
failing to fully process the full test dataset.

4.5 In-Context Learning on Proprietary
LLMs with a Grammatical Description

Each LLM evaluated by our team is constrained
by a different context window length, which af-
fects the strategy used for passing in the grammati-
cal description. Our team relies on two strategies:
passing all grammar resources to the model and
passing the most relevant grammar resources to the
model. The most relevant grammar resource for
each language is determined by hand, with the most
frequent change tokens for each language guid-
ing this search. The selected section for each lan-
guage describes the language’s morphology, verbal
agreement system, and syntax of various sentence
types including affirmative statements, negation,
and questions.

5 Results

5.1 Dev Set Results

Table 1 shows the results of our fine-tuned models
and in-context learning experiments on the dev set.
For all languages except for Guarani, we are able to
exceed the baseline performance significantly. For
Bribri, in-context learning combined with a gram-
matical description is the highest performing tech-
nique with an accuracy of 36.73% over the base-
line of 5.66%. For Maya, fine-tuned NLLB-200-
distilled-600M with StemCorrupt augmented data
is the best technique with an accuracy of 58.39%
over the baseline of 26.17%.

Model Bribri Guarani Maya
Baseline 8.75 14.84 25.81
Submission 1
NLLB-200-3.3B 9.79 0.00 37.42
Submission 2
Claude 3 Opus 26.88 0.00 33.23

Table 3: Test set accuracy score for all fine-tuned mod-
els. Bold means best performing model for that lan-
guage.

There are unique trends that can be observed
from the results of our system runs on the dev set.
As anticipated, Guarani proves challenging to im-
prove upon due to particularly limited data. Even
when data augmentation techniques are applied,
results of neural techniques are still below that of
the statistical-backed baseline. This result reaf-
firms the findings of prior literature in terms of the
weaknesses of neural techniques under sparse data
conditions. Furthermore, this result hints at mor-
phological or linguistic complexities in Guarani
that make this task challenging.

Comparing fine-tuning and in-context learning,
no technique was optimal across all languages.
This result affirms two ideas: fine-tuning models
is still relevant in the age of LLMs, and LLMs em-
powered with language resources are a viable ap-
proach for this task. For Bribri, fine-tuned models–
even with data-augmentation–are not able to match
the best performing in-context learning LLM.

5.2 Test Set Results
Table 3 details the test results for our submissions.
Our model’s performance on the test set exhibits
an unexpected discrepancy compared to its perfor-
mance on the dev set. Both of our best systems
for the dev set underperform significantly when
evaluated on the test set. Compared to the dev set,
the accuracy on the test set is 20% lower for Maya
and 10% lower for Bribri. This significant drop in
performance warrants further investigation to iden-
tify potential causes, such as differences in domain,
style, or linguistic properties between the dev and
test sets.

Despite this unexpected discrepancy, it is worth
noting that our team achieved the second best sys-
tem submission for Bribri. Without access to the
target column of the test set, the exact reason re-
mains unclear. With such a limited number of train-
ing instances, both the in-context learning and fine-
tuned model may not have enough examples to
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generalize to different data distributions. Due to
weak performance of our system runs applied to
the dev set (and our misunderstanding that only
above-baseline runs are submissible), our team has
no submitted Guarani results for the test set.

6 Future Work

Much future work remains. Our search for lan-
guage resources reveals a wide variety of language
resources of varying types and orthographies. A fu-
ture area of research is an exploration of the effect
of different orthographies on the LLM performance
in an in-context learning setting.

Additionally, a significant advantage of in-
context learning is the reduction of restrictions on
data types that can be utilized by the model. Ex-
ploring the effect of different resource types, such
as dictionaries and learning worksheets, would be
valuable. A historic bottleneck for the translation or
inflection of low-resource languages has been data,
specifically gold-standard data that adheres to a
specialized format. By leveraging in-context learn-
ing, the variety of usable data is greatly increased
and can offer opportunities for further exploration.

StemCorrupt has shown promise for sentence-
level inflection despite initially being developed
for word-level inflection. Exploring the feasibility
of extending this technique to other languages is a
worthwhile future endeavor.

7 Conclusion

In this paper, we present the systems submitted
by our team for the AmericasNLP 2024 Shared
Task on the Creation of Educational Materials for
Indigenous Languages. We find that while LLMs–
through in-context learning–exhibit impressive ca-
pabilities, fine-tuning still has a role to play in the
modern NLP space. Moreover, we reaffirm the re-
sults of prior literature regarding the promise of
LLMs when applied to low-resource languages us-
ing in-context learning. Additional work must be
done to explore the abilities of such systems, but
initial results point to promising potential for the
task of morphosyntactic alternation. Our work also
extends prior literature on StemCorrupt and demon-
strates potential applications for the technique on
sentence-level inflection generation.

Limitations

The main limitation of our work is selecting only
grammatical descriptions published in English.

More grammatical descriptions are available in
Spanish.

References
Antonios Anastasopoulos and Graham Neubig. 2019.

Pushing the limits of low-resource morphological in-
flection. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
984–996, Hong Kong, China. Association for Com-
putational Linguistics.

Anthropic. 2024. The claude 3 model family: Opus,
sonnet, haiku.

Luis Chiruzzo, Pavel Denisov, Samuel Canul Yah,
Lorena Hau Ucán, Marvin Agüero-Torales, Aldo
Alvarez, Silvia Fernandez Sabido, Alejandro
Molina Villegas, Abteen Ebrahimi, Robert Pugh, Ar-
turo Oncevay, Shruti Rijhwani, Rolando Coto-Solano,
Katharina von der Wense, and Manuel Mager. 2024.
Findings of the AmericasNLP 2024 shared task on
the creation of educational materials for indigenous
languages. In Proceedings of the 4th Workshop on
Natural Language Processing for Indigenous Lan-
guages of the Americas (AmericasNLP). Association
for Computational Linguistics.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
bert Webson, Shixiang Shane Gu, Zhuyun Dai,
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdh-
ery, Alex Castro-Ros, Marie Pellat, Kevin Robinson,
Dasha Valter, Sharan Narang, Gaurav Mishra, Adams
Yu, Vincent Zhao, Yanping Huang, Andrew Dai,
Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Ja-
cob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le,
and Jason Wei. 2022. Scaling instruction-finetuned
language models. Preprint, arXiv:2210.11416.

Carmen Dagostino, Marianne Mithun, and Keren Rice,
editors. 2024. The Languages and Linguistics of
Indigenous North America. De Gruyter Mouton,
Berlin, Boston.

Margaret Dickeman-Datz. 1985. Transitivity in indefi-
nite voice in bribri. International journal of Ameri-
can linguistics, 51(4):388–390.

Bruno Estigarribia. 2020. A Grammar of Paraguayan
Guarani. UCL Press.

Carla Victoria Jara. 1995. Text and context of the Suwo’:
Bribri oral tradition. Louisiana State University and
Agricultural & Mechanical College.

Katharina Kann and Hinrich Schütze. 2016. Single-
model encoder-decoder with explicit morphological
representation for reinflection. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages

184

https://doi.org/10.18653/v1/D19-1091
https://doi.org/10.18653/v1/D19-1091
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2210.11416
https://doi.org/doi:10.1515/9783110712742
https://doi.org/doi:10.1515/9783110712742
http://www.jstor.org/stable/j.ctv13xpscn
http://www.jstor.org/stable/j.ctv13xpscn
https://doi.org/10.18653/v1/P16-2090
https://doi.org/10.18653/v1/P16-2090
https://doi.org/10.18653/v1/P16-2090


555–560, Berlin, Germany. Association for Compu-
tational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
Preprint, arXiv:1910.13461.

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue,
and Wenhu Chen. 2024. Long-context llms
struggle with long in-context learning. Preprint,
arXiv:2404.02060.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising pre-
training for neural machine translation. Preprint,
arXiv:2001.08210.

Zoey Liu and Bonnie J. Dorr. 2024. The Effect of
Data Partitioning Strategy on Model Generalizability:
A Case Study of Morphological Segmentation. In
Annual Conference of the North American Chapter
of the Association for Computational Linguistics.

Sarah Moeller. 2021. Computational morphology for
language documentation and description. Colorado
Research in Linguistics, 25.

Garrett Nicolai, Eleanor Chodroff, Frederic Mailhot,
and Çağrı Çöltekin, editors. 2023. Proceedings of the
20th SIGMORPHON workshop on Computational
Research in Phonetics, Phonology, and Morphology.
Association for Computational Linguistics, Toronto,
Canada.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir-
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro,
Christopher Berner, Lenny Bogdonoff, Oleg Boiko,
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button,
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany
Carey, Chelsea Carlson, Rory Carmichael, Brooke
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben
Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai,
Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti,
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Ful-
ford, Leo Gao, Elie Georges, Christian Gibson, Vik
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-
Lopes, Jonathan Gordon, Morgan Grafstein, Scott
Gray, Ryan Greene, Joshua Gross, Shixiang Shane
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,
Yuchen He, Mike Heaton, Johannes Heidecke, Chris

Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain,
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee-
woo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim,
Christina Kim, Yongjik Kim, Jan Hendrik Kirch-
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,
Łukasz Kondraciuk, Andrew Kondrich, Aris Kon-
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan
Leike, Jade Leung, Daniel Levy, Chak Ming Li,
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,
Anna Makanju, Kim Malfacini, Sam Manning, Todor
Markov, Yaniv Markovski, Bianca Martin, Katie
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer
McKinney, Christine McLeavey, Paul McMillan,
Jake McNeil, David Medina, Aalok Mehta, Jacob
Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex
Paino, Joe Palermo, Ashley Pantuliano, Giambat-
tista Parascandolo, Joel Parish, Emy Parparita, Alex
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-
man, Filipe de Avila Belbute Peres, Michael Petrov,
Henrique Ponde de Oliveira Pinto, Michael, Poko-
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow-
ell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,
Cameron Raymond, Francis Real, Kendra Rimbach,
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar,
Girish Sastry, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin
Sokolowsky, Yang Song, Natalie Staudacher, Fe-
lipe Petroski Such, Natalie Summers, Ilya Sutskever,
Jie Tang, Nikolas Tezak, Madeleine B. Thompson,
Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Fe-
lipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang,
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,
Clemens Winter, Samuel Wolrich, Hannah Wong,
Lauren Workman, Sherwin Wu, Jeff Wu, Michael
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim-
ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Bar-
ret Zoph. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-

185

https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/2404.02060
https://arxiv.org/abs/2404.02060
https://arxiv.org/abs/2001.08210
https://arxiv.org/abs/2001.08210
https://arxiv.org/abs/2404.09371
https://arxiv.org/abs/2404.09371
https://arxiv.org/abs/2404.09371
https://doi.org/10.33011/cril.v25i.1051
https://doi.org/10.33011/cril.v25i.1051
https://aclanthology.org/2023.sigmorphon-1.0
https://aclanthology.org/2023.sigmorphon-1.0
https://aclanthology.org/2023.sigmorphon-1.0
https://arxiv.org/abs/2303.08774
https://doi.org/10.3115/1073083.1073135


ation of machine translation. In Proceedings of the
40th Annual Meeting on Association for Computa-
tional Linguistics, ACL ’02, page 311–318, USA.
Association for Computational Linguistics.
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A Appendix

A.1 Proprietary LLM Prompts
The same prompt is used for all LLMs tested.
The below screenshots are taken from Anthropic’s
claude.ai interface.

A.1.1 Without grammatical description

A.1.2 With grammatical description
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Figure 1: Distribution of change tags for each language.
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