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Abstract

This paper presents DC_DMV’s submission to
the AmericasNLP 2024 Shared Task 1: Ma-
chine Translation Systems for Indigenous Lan-
guages. Our submission consists of two multi-
lingual approaches to building machine trans-
lation systems from Spanish to eleven Indige-
nous languages: fine-tuning the 600M distilled
variant of NLLB-200, and an experiment in
training from scratch a neural network using
the Mamba State Space Modeling architecture.
We achieve the best results on the test set for
a total of 4 of the language pairs between two
checkpoints by fine-tuning NLLB-200, and out-
perform the baseline score on the test set for 2
languages.

1 Introduction

The 2024 AmericasNLP Shared Task on machine
translation (MT) for Indigenous languages consists
of developing an MT system (or systems) for the
purpose of translating Spanish to 11 Indigenous
languages of the Americas: Aymara (aym), Bribri
(bzd), Asháninka (cni), Chatino (ctp), Guaraní (gn),
Wixarika (hch), Nahuatl (nah), Hñähñu/Otomí
(oto), Quechua (quy), Shipibo-Konibo (shp), and
Rarámuri (tar). We take two approaches in parallel,
namely finetuning NLLB-200 (Team et al., 2022)
and training a Mamba architecture-based neural
network (Gu and Dao, 2023) from scratch.1

2 Data

2.1 Data Sources

We utilize data from a number of sources, namely
the training and development sets provided by the
task organizers, data gathered as part of last year’s
HelsinkiNLP submission (De Gibert et al., 2023),

*Both authors contributed equally to this work.
1Code for both of our models is available here: https:

//github.com/tomlup/americasnlp-2024-st1-dc_dmv

parallel data from Tatoeba2 released under a CC-
BY 2.0 FR., and pivot translations generated from
non-Spanish-to-target language parallel data from
the Tatoeba Translation Challenge (Tiedemann,
2020). We include additional data to try to com-
pensate for the sparseness of data available in the
target languages more generally.

Organizer-provided Data Training and devel-
opment data for the 11 target languages included
in the shared task were released by task organiz-
ers3. The provided data includes data explicitly de-
noted as the training set, supplemental translation
data from Spanish, and supplemental translation
data from English. An overview of the organizer-
provided data we used can be found in Table 1.

HelsinkiNLP Data collected for the 2023
HelsinkiNLP submission to the shared task
(De Gibert et al., 2023) was also provided by the
task organizers. This data is sourced from the
OPUS corpus collection (Tiedemann, 2012), the
FLORES-200 corpus (Team et al., 2022), the JHU
Bible corpus (McCarthy et al., 2020), and various
other texts spanning legal, educational, and news
domains.

Tatoeba Translation Challenge Spanish-to-
target-language parallel data is available from
the Tatoeba website2 for Guarani, Nahuatl, and
Quechua.

Pivot Translations The Tatoeba Translation
Challenge (Tiedemann, 2020) provides non-
Spanish parallel data for Guarani, Nahuatl, and
Quechua. We utilize machine translation sys-
tems to construct additional parallel language data.
Data in English, Esperanto, French, German, He-
brew, Japanese, Macedonian, Polish, Russian, and
Ukrainian was translated using bilingual Opus-MT

2Tatoeba website.
3AmericasNLP 2024 Shared Task GitHub
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Target Language Data Source(s)
aym Global Voices (Tiedemann, 2012)
bzd (Feldman and Coto-Solano, 2020)
cni AshanikaMT (Ortega et al., 2020; Cushimariano Romano and Sebastián Q., 2008;

Mihas, 2011)
ctp https://scholarworks.iu.edu/dspace/handle/2022/21028
gn (Chiruzzo et al., 2020)
hch (Mager et al., 2018)
nah Axolotl (Gutierrez-Vasques et al., 2016)
oto https://tsunkua.elotl.mx/about/
quy JW300 (Agić and Vulić, 2019), Global Voices (Tiedemann, 2012)
shp (Montoya et al., 2019), (Galarreta et al., 2017), https://www.sil.org/

resources/archives/30143
tar (Brambila, 1976)

Table 1: Sources of data provided by task organizers.

systems (Tiedemann and Thottingal, 2020). Data
in Chinese, Javanese, and Portuguese was trans-
lated into Spanish using NLLB-200 (Team et al.,
2022). Additionally, English-Indigenous language
data that was provided as supplemental data by task
organizers were also translated using Opus-MT. We
make use of pivot translations only in the Mamba
model.

2.2 Data Organization

For the purposes of training, we organize our col-
lected data into three stages. Stage 1 includes all
synthetic parallel texts created by means of pivot
translation and synthetic data provided by task or-
ganizers. Stage 2 includes the supplemental data
sourced from the 2023 HelsinkiNLP submission,
as well as other Spanish-source supplemental data
provided by task organizers. Stage 3 includes train-
ing data provided by the shared task organizers.

2.3 Duplicate Filtering

After all training data was organized into stages, all
data for each target language was then filtered to
remove duplicates using OpusFilter (Aulamo et al.,
2020). The pipeline for filtering was as follows:
All duplicates within Stage 3 data were removed.
Then, all duplicates within Stage 2 and overlap
with Stage 3 were removed from Stage 2. Finally,
all duplicates within Stage 1 and any overlap with
Stage 2 and Stage 3 were removed from Stage 1.
The total number of training examples from each
stage is shown in Table 2.

Language Stage 1 Stage 2 Stage 3
aym 16,338 17,679 6,453
bzd 0 0 7,303
cni 13,018 0 3,860
ctp 2,762 2,246 357
gn 617,894 42,184 14,500
hch 505 2,628 6,587
nah 9,279 2,493 15,450
oto 0 9,012 4,531
quy 64,337 16,112 119,471
shp 23,125 16,719 14,511
tar 0 2,254 14,658

Total 747,258 110,787 207,681

Table 2: Overview of data organization by number of
examples.

3 Methods

3.1 Finetuning NLLB-200

Our first method involves fine-tuning the NLLB-
200 model (Team et al., 2022). We use the distilled
600M parameter variant, and leave all parameters
trainable. We motivate this decision as follows.
Given that we are tokenizing previously unseen
languages using an already-trained tokenizer, the
distribution and linear ordering of tokens in our
fine-tuning data will differ vastly from the distribu-
tion and linear ordering in the languages previously
seen by the model. As such, it is sensible to re-
train the entire model, including the embeddings,
to model this very different distribution. To that
end, we introduce additional language tokens for
the eight target languages in the shared task not
already represented in the model (all except for Ay-
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mara, Guarani, and Quechua), which are randomly
initialized.

We finetune on padded mini-batches of size 4
with a maximum sequence length of 384, in which
all 4 training examples in a given batch have the
same target language. However, batches from all 11
target languages are shuffled together. We optimize
using AdamW, with a learning rate of 1 · 10−5 and
a weight decay of 1 · 10−4.

With regard to training stages, we do not use
the Stage 1 data to fine-tune NLLB. The number
of epochs through each stage for each of our fine-
tuned NLLB models are presented in Table 3.

The generation process for producing transla-
tions for evaluation uses a maximum sequence
length of 384 and beam search with 4 beams and
early stopping.

3.2 Mamba State Space Model

Our second method involves training a neural net-
work using repeating multiple Mamba architecture
layers and a language model head. We submit re-
sults for a model containing 3 Mamba layers and
a final linear layer with 256 dimensions, and a vo-
cabulary of 16,000 subword tokens trained on all
data using SentencePiece (Kudo and Richardson,
2018) using a unigram language model algorithm
(Kudo, 2018).

For the purposes of training our Mamba model,
we modify our training data by appending a target
language token to the beginning of each source sen-
tence. We additionally append a start of sentence
token and end of sentence token to the start and
end of each sentence, respectively.

We train our model on padded mini-batches of
size 128 with a maximum sequence length of 512.
Each mini-batch contains shuffled data taken from
all languages and all data used for training during
an epoch. We optimize the model using AdamW
using a learning rate of 1 · 10−3 and a weight de-
cay of 1 · 10−4. The model is trained for 5 epochs
through all data (Stage 1, Stage 2, and Stage 3),
followed by an additional 25 epochs on combined
Stage 2 and Stage 3 data. We motivate our deci-
sion to include Stage 1 data only in early training
by our belief that our synthetic pivot translations
are noisier than original Spanish-source translation
data, but find it important to train our model on a
wide range of data early on. In this regard, we view
our later stages of training on Stage 2 and Stage 3
data as tuning our model on higher quality data.

4 Results

We present our results in Tables 5 and 6, along-
side results for the two baseline systems. The re-
ported scores are calculated using the chrF++ met-
ric (Popović, 2017), as stipulated by the shared
task.

Our NLLB+FT(v2) model beats both baseline
systems on the development set for Aymara and
Quechua, and both baseline systems on the test set
for Quechua and Rarámuri. Additionally, several
of our models beat at least one baseline system on
the development set for Bribri, Nahuatl, Quechua,
and Shipibo-Konibo.

Of all submissions this year, our NLLB+FT(v2)
model achieves the best result for Aymara, Shipibo-
Konibo, and Rarámuri, and our NLLB+FT(v4)
model achieves the best result for Bribri, as eval-
uated on the test set. Our NLLB+FT(v2) and
NLLB+FT(v4) models achieve average chrF++
scores across all languages of 22.17 and 23.32 re-
spectively, with NLLB+FT(v4) representing the
second best overall submission.

Interestingly, while our models did not achieve
the best result on the test set for Asháninka,
Hñähñu, and Quechua as measured by the offi-
cial metric, at least one of our NLLB+FT models
outperformed the best submission in BLEU score
(Post, 2018). We report these scores in Table 4.

Our Mamba model shows poor performance at
the stage in training at time of submission. How-
ever, we believe much of this to be due to un-
dertraining given that our model is trained from
scratch. With this in mind, we believe continued
training may lead to success of our Mamba model,
and plan to continue experiments with this archi-
tecture.

5 Conclusion

In this paper, we presented our submission to the
AmericasNLP 2024 shared task on machine transla-
tion systems for Indigenous languages. Our submis-
sions included six versions of a fine-tuned 600M
parameter distilled variant of NLLB-200, and one
Mamba-based model trained from scratch. We
trained all of our models on multilingual data to
translate from Spanish to 11 target Indigenous lan-
guages. We achieve the best chrF++ scores on
4 languages with our fine-tuned NLLB-200 mod-
els, improving upon the baseline systems for two
languages and setting a new highest score for Rará-
muri. Additionally, we find our Mamba-based
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Version # Epochs Stage 2 # Epochs Stage 3 # Epochs Addl. Stage 2 # Epochs Addl. Stage 3
v1 3 10 0 10
v2 3 10 3 0
v3 3 10 3 3
v4 3 10 3 4
v5 3 10 0 6
v6 3 10 3 8

Table 3: Our six fine-tuned NLLB submissions differ solely in the number of epochs through each fine-tuning stage.
All models were trained for 3 epochs on the Stage 2 data (# Epochs Stage 2), followed by 10 epochs on the stage 3
data (# Epochs Stage 3). We then experiment with training the models on the Stage 2 data again (# Epochs Addtl.
Stage 2), on the Stage 3 data again (# Epochs Addtl. Stage 2), or both. The order in which this process occurs is
laid out left-to-right in the table. For instance, NLLB+FT(v6) was trained, in order, for 3 epochs through Stage 2,
followed by 10 epochs through Stage 3, followed by 3 more epochs through stage 2, and finally 8 epochs through
Stage 3.

Language v1 v2 v3 v4 v5 v6
cni 3.56 3.52* 3.56* 3.51* 3.41* 3.49*
oto 1.55* 1.46* 1.66 1.49* 1.52* 1.36
quy 4.01 5.41 4.13 4.32 3.91 4.05

Table 4: BLEU scores for our six NLLB+FT submissions for the languages on which we achieve a higher BLEU
score than the winning submission. The highest score for each language is bolded. All other results that achieve
a higher BLEU score than the submission with the highest chrF++ score for that language are denoted with an
asterisk.

model to perform poorly given its training, but plan
to continue training and experimentation with this
architecture.

Limitations

Due to dialectal and orthographic variation of the
Indigenous languages included in this shared task,
it is unclear how our systems would perform on
language data that spans such variation not repre-
sented in the task data. For example, the provided
data for Quechua belongs to the Quechua Ayacu-
cho variant of the Southern Quechua dialect4. It is
unclear how performance would vary for different
varieties of Quechua.

Ethics Statement

To our knowledge, our work on this project adheres
to the principles set forth in Schwartz, 2022.

Acknowledgements
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coverage parallel corpus for low-resource languages.
In Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 3204–
3210, Florence, Italy. Association for Computational
Linguistics.

Mikko Aulamo, Sami Virpioja, and Jörg Tiedemann.
2020. OpusFilter: A configurable parallel corpus
filtering toolbox. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 150–156,
Online. Association for Computational Linguistics.

David Brambila. 1976. Diccionario raramuri – castel-
lano (tarahumara).

Luis Chiruzzo, Pedro Amarilla, Adolfo Ríos, and
Gustavo Giménez Lugo. 2020. Development of a
Guarani - Spanish parallel corpus. In Proceedings
of the Twelfth Language Resources and Evaluation
Conference, pages 2629–2633, Marseille, France. Eu-
ropean Language Resources Association.

Rubén Cushimariano Romano and Richer C. Se-
bastián Q. 2008. Ñaantsipeta asháninkaki bi-
rakochaki. diccionario asháninka-castellano. ver-
sión preliminar. http://www.lengamer.org/
publicaciones/diccionarios/.

Ona De Gibert, Raúl Vázquez, Mikko Aulamo, Yves
Scherrer, Sami Virpioja, and Jörg Tiedemann. 2023.
Four Approaches to Low-Resource Multilingual
NMT: The Helsinki Submission to the AmericasNLP
2023 Shared Task. In Proceedings of the Workshop
on Natural Language Processing for Indigenous Lan-
guages of the Americas (AmericasNLP), pages 177–
191, Toronto, Canada. Association for Computational
Linguistics.

Isaac Feldman and Rolando Coto-Solano. 2020. Neu-
ral machine translation models with back-translation
for the extremely low-resource indigenous language
Bribri. In Proceedings of the 28th International Con-
ference on Computational Linguistics, pages 3965–
3976, Barcelona, Spain (Online). International Com-
mittee on Computational Linguistics.

Ana-Paula Galarreta, Andrés Melgar, and Arturo On-
cevay. 2017. Corpus creation and initial SMT ex-
periments between Spanish and Shipibo-konibo. In
Proceedings of the International Conference Recent
Advances in Natural Language Processing, RANLP
2017, pages 238–244, Varna, Bulgaria. INCOMA
Ltd.

Albert Gu and Tri Dao. 2023. Mamba: Linear-Time Se-
quence Modeling with Selective State Spaces. arXiv
preprint. ArXiv:2312.00752 [cs].

Ximena Gutierrez-Vasques, Gerardo Sierra, and
Isaac Hernandez Pompa. 2016. Axolotl: a web
accessible parallel corpus for Spanish-Nahuatl. In
Proceedings of the Tenth International Conference

on Language Resources and Evaluation (LREC’16),
pages 4210–4214, Portorož, Slovenia. European Lan-
guage Resources Association (ELRA).

Taku Kudo. 2018. Subword Regularization: Im-
proving Neural Network Translation Models with
Multiple Subword Candidates. arXiv preprint.
ArXiv:1804.10959 [cs].

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Manuel Mager, Carrillo Dionico, and Ivan Meza. 2018.
The wixarika-spanish parallel corpus.

Arya D. McCarthy, Rachel Wicks, Dylan Lewis, Aaron
Mueller, Winston Wu, Oliver Adams, Garrett Nicolai,
Matt Post, and David Yarowsky. 2020. The Johns
Hopkins University Bible corpus: 1600+ tongues
for typological exploration. In Proceedings of the
Twelfth Language Resources and Evaluation Confer-
ence, pages 2884–2892, Marseille, France. European
Language Resources Association.

Elena Mihas. 2011. Añaani katonkosatzi parenini, El id-
ioma del alto Perené. Milwaukee, WI: Clarks Graph-
ics.

Héctor Erasmo Gómez Montoya, Kervy Dante Rivas
Rojas, and Arturo Oncevay. 2019. A continuous
improvement framework of machine translation for
Shipibo-konibo. In Proceedings of the 2nd Workshop
on Technologies for MT of Low Resource Languages,
pages 17–23, Dublin, Ireland. European Association
for Machine Translation.

John Ortega, Richard Alexander Castro-Mamani, and
Jaime Rafael Montoya Samame. 2020. Overcoming
resistance: The normalization of an Amazonian tribal
language. In Proceedings of the 3rd Workshop on
Technologies for MT of Low Resource Languages,
pages 1–13, Suzhou, China. Association for Compu-
tational Linguistics.
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