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Abstract
In this paper, we present the four systems
developed by the Meenzer team from JGU
for the AmericasNLP 2024 shared task on
the creation of educational materials for In-
digenous languages. The task involves accu-
rately applying specific grammatical modifica-
tions to given source sentences across three
low-resource Indigenous languages: Bribri,
Guarani, and Maya. We train two types of
model architectures: finetuning a sequence-to-
sequence pointer-generator LSTM and finetun-
ing the Mixtral 8x7B model by incorporating
in-context examples into the training phase.
System 1, an ensemble combining finetuned
LSTMs, finetuned Mixtral models, and GPT-
4, achieves the best performance on Guarani.
Meanwhile, system 4, another ensemble con-
sisting solely of fine-tuned Mixtral models, out-
performs all other teams on Maya and secures
the second place overall. Additionally, we con-
duct an ablation study to understand the perfor-
mance of our system 4.1

1 Introduction

Natural language processing (NLP) serves as a
valuable educational tool for facilitating the learn-
ing of (endangered) languages. One effective
method for generating learning material involves a
system automatically transforming sentences based
on specific properties. Subsequently, language
learners are tasked with replicating the transfor-
mation, thus reinforcing their understanding of the
language structure. The AmericasNLP 2024 shared
task on the creation of educational materials for In-
digenous languages (ST 2) (Chiruzzo et al., 2024)
focuses on creating such material for three low-
resource Indigenous languages: Bribri, Guarani,
and Maya. Participants are tasked with applying
a specific grammatical property to a given source
sentence and producing the accurate modification.

1The code is available at https://github.com/
MinhDucBui/SharedTaskAmericasNLP2024.

Figure 1: A Bribri sample from the shared task.

Our systems (which we submitted under the
name "Meenzer Team") are ensembles composed
of a range of models: finetuned character-level
pointer-generator LSTMs (See et al., 2017), fine-
tuned Mixtral 8x7B large language models (LLMs)
(Jiang et al., 2024) via training on in-context exam-
ples, and GPT-4 (OpenAI, 2023). The main metric
of the shared task is accuracy. We outperform all
teams on Guarani by employing an ensemble across
all models. Additionally, our ensemble of finetuned
Mixtral models achieves the highest performance
on Maya and reaches the second place overall.

The remainder of this paper is organized as fol-
lows: Section 2 details the task at hand and intro-
duces the provided data. Following that, Section
3 dives into the details of our four system submis-
sions. Section 4 presents the outcomes observed
on both the development and test sets of the shared
task. Lastly, an ablation study on our best perform-
ing system is provided in Section 5.

2 Task and Data

2.1 Task

In the context of this shared task, a source sentence
is accompanied by a designated change feature,
which the system is tasked with applying, see Fig-
ure 1. These features include modifications related
to grammar, such as negation, and each sample
can entail multiple concatenated grammatical alter-
ations. While the shared task bears resemblance
to morphological inflection shared tasks (Cotterell
et al., 2016), where the goal is to modify a single
word, our scenario necessitates adjustments to the
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Train Dev Test

Bribri 310 213 481
Guarani 179 80 365
Maya 595 150 311

Table 1: Dataset sizes for each language and split.

entire sentence to accurately represent a specified
property.

2.2 Data
The dataset encompasses three Indigenous lan-
guages: Bribri, Guarani, and Maya.2 For each
language, a training and a development set are
provided. Additionally, the input side of the test
set is given and used to submit predictions for the
shared task’s final evaluation. Within the training
set, Bribri comprises 28 unique features, resulting
in 135 distinctive combinations; Guarani encom-
passes 19 unique features, forming 21 combina-
tions; and Maya has 33 unique features, yielding
52 combinations. A summary of the sample distri-
bution per language and split is presented in Table
1.

3 Meenzer Team’s System

Our systems consist of ensembles comprising var-
ious models, including finetuned character-level
pointer-generator LSTMs, finetuned Mixtral 8x7B
LLMs utilizing in-context finetuning, and GPT-4.

3.1 Pointer-Generator LSTM
Our first model group is a character-level sequence-
to-sequence LSTM architecture, featuring an
LSTM encoder and decoder equipped with an at-
tention mechanism, alongside a pointer-generator
(Bahdanau et al., 2015; See et al., 2017). The
pointer-generator allows the LSTM to both copy
words through pointing and generate characters
from a predefined vocabulary (Vinyals et al., 2015).

In contrast to the typical sequence-to-sequence
LSTM models, we use a separate LSTM encoder to
encode the provided change features. For a detailed
explanation of the sequence-to-sequence LSTM,
we refer to Bahdanau et al. (2015). Furthermore,
we deploy a pointer generator with a character-level
vocabulary: At timestep t, given the attention distri-
bution at over the characters in the source sequence,
the decoder state st and the context vector h∗t , the

2https://github.com/AmericasNLP/
americasnlp2024/tree/master/ST2_
EducationalMaterials/data

Figure 2: An example of a 1-shot prompt for a sample,
with [LANGUAGE] being replaced by the specific lan-
guage under consideration. During training, we predict
and compute the loss based on the [TARGETsample] se-
quence. However, during testing, [TARGETsample] is left
blank and must be predicted.

generation probability pgen ∈ [0, 1] is determined
as:

pgen = σ(wT
h∗h∗t + wT

s st + wT
x x+ bptr)

where vectors wt
h∗ , ws, wx and the scalar bptr are

all learnable parameters, while σ represents the sig-
moid function. The probability pgen serves as a soft
switch, enabling the model to decide whether to
generate a character from the vocabulary or to copy
a character from the source sequence by sampling
from the attention distribution at:

P (w) = pgenPvocab(w) + (1− pgen)
∑

i:wi=w

ati,

where Pvocab(w) represents the probability distribu-
tion across all characters in the vocabulary, while
P (w) additionally adds all characters present in the
source sequence.

Training We adopt a two-step training approach
for our model: Initially, we train a model on the
combined training sets of all three languages for
100 epochs, incorporating early stopping. Addition-
ally, we employ hyperparameter tuning through
100 trials; see Appendix A.1. Subsequently, in
preparation for our ensemble approach, we select
the top 10 models and conduct further finetuning
on each model using the dataset of the target lan-
guage. This process is repeated independently for
all three languages. Each change feature is as-
signed a distinct feature token, and we include
language tags for each individual dataset, treating
them as a change feature.

196

https://github.com/AmericasNLP/americasnlp2024/tree/master/ST2_EducationalMaterials/data
https://github.com/AmericasNLP/americasnlp2024/tree/master/ST2_EducationalMaterials/data
https://github.com/AmericasNLP/americasnlp2024/tree/master/ST2_EducationalMaterials/data


Bribri Guarani Maya Avg.
Acc. BLEU ChrF Acc. BLEU ChrF Acc. BLEU ChrF Acc.

Dev Set

(1) LSTMs+Mixtrals+GPT4s 30.19 51.96 67.60 53.16 61.98 88.53 70.46 85.14 93.75 51.27
(2) LSTMs+Mixtrals 30.19 51.96 67.60 49.36 58.09 86.33 70.46 85.14 93.75 50.00
(3) LSTMs 24.10 50.30 61.47 41.77 43.28 77.65 70.47 85.13 93.59 45.45
(4) Mixtrals 22.17 47.28 66.80 44.30 54.78 84.60 61.74 80.67 91.60 42.74

Test Set

(1) LSTMs+Mixtrals+GPT4s 17.50 44.20 70.09 34.62 49.60 84.93 38.39 66.81 83.70 30.17
(2) LSTMs+Mixtrals 17.50 44.20 70.09 23.08 35.95 79.71 38.39 66.81 83.70 26.32
(3) LSTMs 8.54 32.50 61.24 12.64 20.01 71.61 27.74 58.59 79.29 16.31
(4) Mixtrals 19.38 46.93 73.02 23.90 36.94 79.48 53.87 77.68 90.94 32.38

Table 2: Our results on the development set (upper part) and the official results on the test set (lower part).

3.2 Mixtral 8x7B (Instruct)

Our second model is the Mixtral 8x7B (Instruct),3

a LLM finetuned on instructional data (Jiang et al.,
2024).

Architecture The Mixtral 8x7B model is a
sparse mixture of experts language model (Shazeer
et al., 2017), employing the same decoder-only
transformer architecture as Mistral 7B (Jiang et al.,
2023). However, it distinguishes itself by having
each layer composed of 8 feedforward blocks, re-
ferred to as experts. At every token and layer, a
router network selects two experts, which may vary
at each timestep, to process the current state and
combines their outputs. Consequently, while each
token theoretically has access to 47B parameters,
only 13B active parameters are utilized during in-
ference. We leverage the instruction-tuned version.

Training We employ, what Li et al. (2023) call,
supervised in-context learning (SICL), which dif-
fers itself from conventional in-context learning
(ICL) by integrating in-context examples directly
into the training phase (Min et al., 2022; Chen et al.,
2022). We concatenate the task instruction, labeled
in-context examples, and the target sequence to
predict. Subsequently, we finetune the model to
predict the target sequence, see Figure 2 for an
example. In contrast, ICL generate predictions
without adjusting model parameters.

To enhance both training and inference effi-
ciency, we implement 4-bit quantization with
LoRA (Dettmers et al., 2023). We train multiple
LoRA adapters by varying the number of exam-
ples per prompt (k) and the number of epochs (m).
Specifically, we experiment with k = 5, 10, 20 and

3Model taken from https://huggingface.co/
mistralai/Mixtral-8x7B-Instruct-v0.1

m = 10, 20, resulting in a total of 6 models per lan-
guage. Each LoRA adapter, applied onto the query
and value projection matrices in the self-attention
module, possesses a rank of 8. For each sample,
examples are selected based on their overlap with
the same or similar changes, with the top-k most
similar examples chosen. Additionally, the order of
the top-k examples is randomized for each epoch.
We employ a learning rate of 1e-4 alongside a co-
sine learning rate scheduler, with a weight decay
of 0.1.

3.3 GPT-4

In addition to Mixtral 8x7B, we incorporate GPT-
4 using ICL. GPT-4, another LLM, is configured
with k = 20 examples. We maintain consistency
in example selection and prompt style with Mixtral
8x7B (Instruct). Specifically, we leverage the gpt-
4-turbo-2024-04-09 version of GPT-4.

3.4 Ensembling Strategy

Our four final systems consist of different ensem-
bles constructed from the previously mentioned
models, leveraging majority voting to reach a final
decision, with the best-performing model on the
development set breaking ties. To introduce more
diversity for the LLMs, we generate two inference
prompts: While one prompt organizes the top-k
examples in ascending order, the other arranges
them in descending order. Consequently, for each
language, we have 10 LSTM, 12 Mixtral, and 2
GPT-4 predictions. For each system, we choose
the best combination of models by evaluating their
performance on the development set.

System 1 This system incorporates predictions
from the LSTM, Mixtral 8x7B, and GPT-4 models.
It is denoted by (1) LSTMs+Mixtrals+GPT4s.
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System 2 This system comprises predictions
from the LSTM and Mixtral 8x7B models, labeled
as (2) LSTMs+Mixtrals.

System 3 This system solely relies on predictions
from the LSTM models, identified as (3) LSTMs.

System 4 This system only considers the Mixtral
models and is denoted by (4) Mixtrals.

4 Results

The primary metric for evaluating the shared task
performance is accuracy (acc.), supplemented by
BLEU (Papineni et al., 2002) and ChrF (Popović,
2015) as additional metrics. We present the results
for the development set and test set in Table 2.

4.1 Development Set Results
The ensemble of all models demonstrates the
highest performance, achieving an average ac-
curacy of 51.24 and attaining the top scores
across all languages. Notably, the only differ-
ence between (1) LSTMs+Mixtrals+GPT4s and
(2) LSTMs+Mixtrals is in the Guarani language,
where the addition of ChatGPT improves perfor-
mance. When considering only LSTM models, we
still achieve an average accuracy of 45.45, com-
pared to 42.74 for Mixtral models.

4.2 Test Set Results
On the test set, we observe a significant differ-
ence from the reported development set results.
The Mixtral ensemble performs best, achieving
an accuracy of 32.38, approximately 10 points
lower than its development set performance. Sur-
prisingly, the LSTM ensemble performs notably
worse, with an average accuracy of only 16.31.
This decline in performance cascades through all
other ensembles incorporating LSTM models: (2)
LSTMs+Mixtrals achieves an average accuracy of
26.32, while (1) LSTMs+Mixtrals+GPT4s reaches
an average of 30.17.

Nevertheless, our (1) system achieves the high-
est performance on Guarani among all shared task
systems, while (4) Mixtrals attains the highest
accuracy on Maya (tied with another team). Over-
all, our (4) Mixtrals system secures second place
among all systems based on average accuracy.

Development & Test Set Discrepancy The
LSTMs, constructed at the character-level and
trained from scratch with a limited training set,
might encounter numerous unknown characters.

Bribri Guarani Maya Avg.

Ensemble vs. (Best) Single Model

Mixtral (Single) 17.45 40.50 57.71 38.55
Mixtrals (Ensemble) 22.17 44.30 61.74 42.74

ICL vs. SICL

Mixtral (ICL) 7.08 18.99 35.57 20.55
Mixtral (SICL) 14.15 36.7 57.71 36.19

Random Prompt Order

Mixtral (Fix) 8.49 35.44 54.36 32.76
Mixtral (Random) 14.15 36.70 57.71 36.19

Table 3: Ablation study on the development set for (4)
Mixtrals, our best system.

Analyzing the case-sensitive character overlap be-
tween the language specific training, development,
and test sets reveals a substantial disparity. For
instance, in the case of Bribri, we observe that,
while 21% of samples in the development set con-
tain unseen characters, this figure rises to 65.4% in
the test set. Similarly, for Guarani, the proportion
increases from 11.4% in the development set to
22.3% in the test set. Conversely, for Maya, while
there are no unseen characters in the development
set, they account for 15.5% of samples in the test
set.

5 Ablation Study

In this section, we conduct a brief ablation study on
our best-performing system, (4) Mixtrals. The
results on the development set are presented in
Table 3.

Ensemble vs. (Best) Single Model We demon-
strate that assembling the Mixtral models into
an ensemble boost performance by approximately
4.19 average accuracy points compared to the sin-
gle best Mixtral model.

ICL vs. SICL For this and the following compar-
ison, we fix the number of examples to k = 20 and
epochs to m = 10. We observe that ICL, which
does not adjust parameters, demonstrates an aver-
age accuracy of only 20.55, a notable 15.64 lower
than SICL.

Random Order per Epoch: Finally, we investi-
gate the impact of randomly varying the order of
the k examples in the prompt per epoch on per-
formance. We find that maintaining a fixed order
(consistent during inference) leads to decreased
performance across all languages, with an average
accuracy decrease of 3.43.
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6 Conclusion

We presented the systems of the Meenzer Team
by JGU for the AmericasNLP 2024 shared task on
the creation of educational resources. We trained
character-level pointer-generator LSTMs as well
as Mixtral 8x7B models finetuned through SICL.
In addition, we used GPT-4 models via in-context
learning. We secured second place with an en-
semble of the finetuned Mixtral 8x7B models and
reached the highest accuracy on Maya. Addi-
tionally, we achieved the highest performance on
Guarani using an ensemble of LSTM, Mixtral, and
GPT-4 models.
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Hyperparameter values

Optimization

Batch size {2, 4, . . . , 128}
Learning rate [1e−5, 0.01]
β1 [.8, .999]
β2 [.98, .999]
Label smoothing [0, .2]
Scheduler {reduceonplateau, warmupinvsqrt, (none)}
Warmup samples∗ {0, 10, . . . , 1000}
Factor∗ [.1, .9]
Min. learning rate∗ [1e−7, .001]
Learning rate patience∗ {1, 2, . . . , 5}

Architectural

Embedding Size {16, 32, . . . , 512}
Hidden layer size {64, 128, . . . , 2048}
Encoder & Decoder layers {1, 2}
Feature Attention heads {1, 2}
Dropout [0, .5]

Table 4: LSTM hyperparameter space. Continuous distributions are denoted by intervals [. . . ], while discrete ones
show step sizes 1, 2, . . . , max. We uniformly sample from these, except for the learning rate, which follows a log
uniform distribution. Hyperparameters and the distributions we sample from. ∗ marks conditional hyperparameters,
relevant only with chosen schedulers.

A Appendix

A.1 Hyperparameter Grid
We report in Table 4 the hyperparameter grid for
our LSTMs.
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