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Abstract

This paper presents our approach to the Ameri-
casNLP 2024 Shared Task 2 as the JAJ (/dæz/)
team. The task aimed at creating educational
materials for indigenous languages, and we fo-
cused on Maya and Bribri. Given the unique
linguistic features and challenges of these lan-
guages, and the limited size of the training
datasets, we developed a hybrid methodol-
ogy combining rule-based NLP methods with
prompt-based techniques. This approach lever-
ages the meta-linguistic capabilities of large
language models, enabling us to blend broad,
language-agnostic processing with customized
solutions. Our approach lays a foundational
framework that can be expanded to other in-
digenous languages languages in future work.

1 Introduction

In recent years, there has been a surge of interest
in developing natural language processing (NLP)
technologies for low-resource languages. This is
motivated by the desire to preserve cultural heritage
and foster linguistic diversity.

Among 7,000 living languages on Earth, 42%
of languages are in danger of disappearing, ac-
cording to Ethnologue1. In the Americas, there
are approximately 1,200 languages (Hammarström
et al., 2024), and about 70% of them are classi-
fied as endangered or already extinct by the United
Nations Educational, Scientific and Cultural Or-
ganization (UNESCO) (Moseley and Alexandre,
2010). The endangered languages are losing their
vitality, and intergenerational transmission is barely
occurring or not occurring at all, which suggests
these languages are at a high risk of becoming
extinct in the near future, along with the the cul-
tural legacy residing within. While many commu-
nities are engaged in revitalization endeavors, such
as developing educational resources for language

1https://www.ethnologue.com/insights/how-many-
languages-endangered/

preservation, these initiatives are confronted with
significant challenges in terms of cost and time in-
vestment. NLP can be one way of ameliorating the
situation.

The AmericasNLP 2024 Shared Task 2 is specifi-
cally aimed at creating educational materials for in-
digenous languages in the Americas, such as Maya,
Guarani, and Bribri (Chiruzzo et al., 2024). These
languages each have their own unique linguistic
features and challenges, offering a rich opportunity
for the application of innovative NLP techniques.

In this shared task, we are given a dataset with
base sentences and the grammatical changes ex-
pected to be applied to each base sentence. Based
on this information, we will train a system that
can transform the base sentences according to the
indicated changes.

Base sentence: Ye’ shka’ (Bribri for “I walked”)
Expected change: Polarity: Negative
Target sentence: Ye’ kë shkane (Bribri for “I didn’t walk”)

We participated in this task with the goal of de-
veloping a method that effectively handles the lin-
guistic complexities of these languages. Our hy-
brid methodology combines rule-based NLP meth-
ods with prompt-based techniques, making use of
the meta-linguistic capabilities of large language
models (LLMs). This approach enabled us to
blend broad, language-agnostic processing with
customized solutions that address each language’s
unique needs.

Maya largely does not conjugate verbs based on
grammatical tense; instead, it uses aspectual mark-
ing to express time-related information. The abun-
dance of apparently simple examples with only a
single change, presented an interesting challenge.
Rather than using all the available examples, we
experimented with selection methods to find the
most syntactically similar example sentences.

Bribri, on the other hand, had a much more com-
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plicated system of verb conjugation. Using more
examples was not as effective as a separate system
to handle the intricate verb morphology. This as-
pect of Bribri posed a substantial challenge, further
complicated by variations in notation and spelling
observed across different educational resources.

While our system addresses specific linguistic
features of Maya and Bribri, we encountered time
constraints that limited our ability to apply similar
dedicated modifications to Guarani. Consequently,
Guarani was processed using the base system, with-
out the benefit of language-specific adaptations.
Recognizing the unique linguistic structure and cul-
tural significance of Guarani, we are committed to
expanding our system in the future to include tai-
lored strategies that cater specifically to its needs,
enhancing the model’s overall effectiveness.

2 Prior Work

Our approach is inspired by previous work on
Rosetta Stone puzzles (Bozhanov and Derzhanski,
2013). These puzzles are carefully designed to
encourage solvers to deduce implicit linguistic fea-
tures from a low-resource language, relying solely
on a limited set of bilingual sentence pairs, one of
which is a low-resource language with uncommon
linguistic features. Leveraging the inferred linguis-
tic patterns, solvers are tasked with translating new
sentences in both directions, which is in essence a
few-shot translation task.

Şahin et al. (2020) explored the resolution of
Rosetta Stone problems using a range of algo-
rithms, from random word selection to transformer-
based language models. Sung et al. (2024) con-
ducted similar experiments, specifically focusing
on assessing the metalinguistic awareness of pre-
trained language models. Their findings not only
underscored the limitations of various algorithms
in tasks requiring linguistic inference skills but also
outlined directions for advancing machines’ com-
prehension of human language.

Recent advancements in the application of LLMs
to Rosetta Stone puzzles have shown encouraging
outcomes, demonstrating the potential of LLMs to
extract and apply linguistic knowledge from lim-
ited data (Vamvas, 2022; Chi et al., 2024). This
research supports the feasibility of our approach,
suggesting that LLMs can adeptly adapt to the in-
tricacies of low-resource languages by leveraging
their inherent capabilities in pattern recognition
and language comprehension.

Another relevant research area is the Machine
Translation from One Book (MTOB) task (Tanzer
et al., 2024). In this task, models are trained to
translate between English and Kalamang using
only a single Kalamang textbook. LLMs seem
to be breaking into this space as well, as shown
by Gemini 1.5l’s state-of-the-art performance on
this task. The MTOB task is particularly pertinent
to our work because it demonstrates the potential
of machine learning models to operate effectively
even with severely limited datasets, mirroring the
conditions we faced in the shared task (Pichai and
Hassabis, 2024).

3 Method

3.1 Preparing the Examples

Due to the limited dataset size, ensuring the quality
and consistency of data was paramount. We imple-
mented several preprocessing steps to optimize the
training data:

Duplicate Removal and Capitalization: We re-
moved duplicate entries where the source and
change tags were identical and standardized capi-
talization across the dataset to ensure uniformity.
This reduced the number of example sentences in
Maya from 594 to 584, but didn’t affect Bribri or
Guarani.

Tag Collapsing: Through detailed analysis of
the training data, we identified and merged change
tags that consistently appeared together, reducing
redundancy. For example for changes that included
both ASPECT and TENSE in Maya, we removed
the TENSE tags as they did not appear to change
the Target sentence.

Sub-step Expansion: We split some com-
plex changes into simpler, sequential sub-steps.
For instance, a change tagged as TYPE:NEG,
SUBTYPE:INT was decomposed into two stages:
first applying TYPE:NEG to reach an intermediary
form, followed by SUBTYPE:INT to achieve the fi-
nal state. This added 12 new cases to Maya and 6
new cases to Bribri.

Backward Labeling: When feasible, we gener-
ated additional training cases by labeling from the
target back to the source, effectively doubling the
data for those instances. The total number of ex-
amples used were 1199 for Maya (up from 594),
329 for Bribri (up from 309), and the 178 Guarani
examples remained unchanged.
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Independence Analysis: By consulting
language-specific textbooks and analyzing the
training data, we identified which changes were
independent and which were interdependent,
enabling more precise modeling of language rules.

3.2 Base System
Our base system is designed to leverage the ca-
pabilities of large language models by prompting
them with relevant example cases. The system’s
operation during inference takes the same form, re-
gardless of language, with some language specific
modifications at key points.

Initially we simply included all available exam-
ples with the same change as the test case. How-
ever, we quickly found that not all test case changes
were represented in the training data, particularly
those with compound changes. To address this,
we implemented a language-specific strategy for
decomposing and processing the changes:

Maya: Changes that commonly occurred to-
gether (e.g., ASPECT:BEG, TENSE:PAS_SIM) were
collapsed into a single step (ASPECT:BEG). The re-
maining changes were then split and processed
sequentially in the order: STATUS → PERSON →
ASPECT → TYPE → SUBTYPE.

Bribri: Changes that typically co-occurred (e.g.,
ABSNUM:PL, PERSON:3_PL) were combined into
a single change (PERSON:3_PL). PERSON is then
processed separately from the other changes.

Guarani: Changes are applied consecutively in
the case of compound changes.

When a test case has a compound change,
it is passed to the language specific function
that determines which changes should be applied
and if they can be applied together or sequen-
tially. In the case of sequential changes, the
system will reprompt the model with the modi-
fied output from the previous step until all spec-
ified changes are implemented. For instance,
a Bribri case with the change TENSE:PRF_REC,
ASPECT:PFV, ABSNUM:PL, PERSON:3_PL will un-
dergo two rounds of processing, each focusing on
one specific change. First the tense will be changed
to recent perfect, then the result of that will be
changed to 3rd person plural.

3.3 POS Tagging
A key component of our system is the application
of custom, simplified part of speech (POS) taggers

tailored to each target language. These taggers are
primarily dictionary-based and are used to supple-
ment the example sentences being passed to the
LLM by explaining better the grammatical role of
the words of the provided examples. The POS tag-
ger for Maya focuses predominantly on function
words, as these play a crucial role in understanding
the grammatical structure of sentences. We didn’t
use a full dictionary for Maya, but made sure to
have coverage of aspect markers such as táan and
pronouns such as in or teen (Bolles and Bolles,
1996). Additionally our tagger is designed to rec-
ognize and handle known suffixes such as e’ex. For
Bribri, we developed a POS tagger using a compre-
hensive dictionary of Bribri words from Professor
Haakon S. Krohn’s website2 (Krohn, 2023).

3.4 The Prompt
The prompt was adapted from the one Vamvas
(2022) used for the Rosetta Stone Puzzles. It inte-
grates the retrieved examples with part of speech
tags, as well as some language specific hints.

Here is a full example from Maya:

System message:
You are a helpful assistant with a strong background
in linguistics.

User message:
This is a linguistic puzzle. Below are example sen-
tences in a foreign language and sets of changes
to apply to them.The examples are followed by the
problem sentence and desired change.Your task is to
look closely at the example sentences and to change
the sentence correctly.

Example 1:
Sentence: Tin kaxtik a najil
((Tin, PRON:TA:1_S) (kaxtik, ::) (a, PRON:A:2_X)
(najil, ::))
Change(s): PERSON:3_PL, ASPECT:PRG
Answer: Táan u kaxtiko’ob a naajil
((Táan, PART:ASP:) (u, PRON:A:3_X) (kaxtiko’ob,
:kaxtik:3_P) (a, PRON:A:2_X) (naajil, ::))

Example 2-5

Here is the problem. Answer first, then explain your
reasoning.
Sentence: Tin wilaj u sáastal tin kaajal ((Tin,
PRON:TA:1_S) (wilaj, ::) (u, PRON:A:3_X)
(sáastal, ::) (tin, PRON:TA:1_S) (kaajal, ::))
Change(s): PERSON:3_PL
Hint:

3.5 Generation and Postprocessing
We tested generation on the develop-
ment set using gpt-3.5-turbo-0125,

2https://www.haakonkrohn.com/bribri/index.html
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gpt-4-0125-preview (OpenAI et al., 2024),
and Mixtral-8x7B-Instruct-v0.1 (Jiang et al.,
2024). For the GPT models, we used temperature
of 0. For Mixtral we used a greedy search.

While the generation can be stopped after
“\n\n”, we found that not setting the stop allowed
the model to generate an explanation of the change.
This was useful for interpretability, and we were
able to spot some issues during development this
way.

For postprocessing, the preamble (Answer:) and
POS tags are stripped from the first line. Mixtral is
less consistent with the answers, so we wrote some
rule based processing to find potential answers in
quotes.

Here is an example output from GPT-4:

Answer: Tu yilo’ob u sáastal tu kaajalo’ob
((Tu, PRON:TA:3_X) (yilo’ob, :yil:3_P) (u,
PRON:A:3_X) (sáastal, ::) (tu, PRON:TA:3_X)
(kaajalo’ob, :kaajal:3_P))

Explanation:
The task involves changing the sentence from first
person singular to third person plural. To do this,
we follow the patterns observed in the examples.
1. Pronoun Change: In all examples, the first
person singular pronoun “Tin” changes to the third
person plural pronoun. In Examples 2 and 5, “Tin”
changes to “Tu” for third person plural. Therefore,
both instances of “Tin” in the problem sentence are
changed to “Tu”.
2. Verb and Action Word Changes: In the exam-
ples, verbs and action words that are in first person
singular form are changed to their third person plu-
ral forms by adding an “o’ob” suffix or changing
the suffix to match third person plural conventions.
This is seen in Example 5 with “wilaj” changing to
“yilo’ob” and “kaajali”’ changing to “kaajalo’obi”’.
Since “kaajali”’ is not present in the problem sen-
tence, but “kaajal” is, we apply a similar transfor-
mation to “kaajal”, changing it to “kaajalo’ob”. The
word “wilaj” similarly changes to “yilo’ob” follow-
ing the pattern from Example 5.
3. Maintaining Unchanged Parts: Elements that
do not pertain to person, such as “u sáastal” (indicat-
ing possession or association with “sáasta”), remain
unchanged in the transformation, as seen across all
examples.
By applying these rules derived from the examples,
we correctly transform the problem sentence to third
person plural as requested.

3.6 Maya Adaptations

Initially, our system used all available examples for
each change, but we refined our example selection
process for Maya, where certain changes could
return over 100 relevant examples.

We conducted experiments on the development
set to find the optimal number of examples. These

System Accuracy BLEU ChrF
5 examples 20.81 50.72 78.60
+ selected 47.56 72.39 89.36
+ POS Tags 56.38 78.26 91.33
All matches 56.38 77.63 91.30

Table 1: Different types of example retrieval on the
Maya development set

experiments varied the number of examples from
one to ten per test case. The results indicated that
selecting five examples struck the best balance be-
tween performance and cost-efficiency.

The selection of these five examples was based
primarily on syntactic relevance rather than seman-
tic similarity or word form matching. By compar-
ing the POS tagged source sentences of the exam-
ples with that of the input, we were able to identify
examples that shared similar syntactic structures.
This approach ensured that the examples used were
not structurally analogous, enhancing the effective-
ness of the model’s performance.

For example if the input sentence is Ma’ ta jutaj
a najili’, an example sentence Ta manaj a najil
overlaps significantly in word form, but the first
sentence is a negative sentence, while the second
is affirmative. This means they will react to the
next change slightly differently. Instead, we match
Ma’ ta jutaj a najili’ with Ma’ tin wa’alik u k’aaba’
which is structurally similar, despite less character-
level overlap.

This method reduced computational costs by ap-
proximately 75% across the full test set, achieving
comparable results to using the full example set,
as shown in Table 1. Using five carefully selected
examples with POS tags not only matches the per-
formance of using all examples on the development
set, but also achieves substantial cost savings, fur-
ther justifying our approach.

3.7 Bribri Adaptations
Managing the complexity of Bribri verb conjuga-
tion, especially for irregular verbs, necessitated in-
novative methods to enhance translation accuracy.
An initial experiment used an oracle verb conjuga-
tion hint, which leveraged correct verb forms from
target sentences in the development set, to evaluate
potential performance enhancements. This experi-
ment led to a substantial increase in accuracy from
15% to 65%, signifying the crucial role of accurate
verb conjugation in model performance.

Motivated by the success of the oracle hint, we
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System Accuracy BLEU ChrF
Examples 14.62 43.69 64.61
+ VERB form hint 46.70 64.84 79.85
+ MODE hints 47.17 67.01 80.75

Table 2: Ablation results for the hint categories on the
Bribri development set

developed a rule-based verb conjugator, employ-
ing a comprehensive database of verb conjugations
sourced from Jara Murillo (2018)3. In this system,
verbs identified by our POS tagger are looked up in
the database to ascertain the correct conjugational
form based on the grammatical context. For in-
stance, in the sentence Ye’ tö i kötwa with changes
TYPE:NEG, TENSE:FUT_CER, ASPECT:IPFV, the
verb kötwa is located by the POS tagger and looked
up in the verb conjugation database. It’s found to
be the perfect remote form of ujtökwa. The con-
jugator transforms the verb into ujtèpawa for the
negative certain future tense. This transformation is
then included as a hint in the model’s prompt:“The
correct form of kötwa is likely ujtèpawa.”

These enhancements, particularly the integration
of verb conjugation hints, have markedly improved
our system’s performance, as detailed in the abla-
tion study results in Table 2. While the rule-based
conjugator does not replicate the perfect accuracy
of the oracle hint, it significantly contributes to the
overall effectiveness of the system in managing
Bribri’s complex verb conjugations.

3.8 Additional hints

Drawing from the Machine Translation from One
Book (MTOB) task, we supplemented our ap-
proach with grammatical hints taken from text-
books. For each language, we incorporated short
summaries of grammatical rules related to the
changes from language textbooks. While time
constraints limited the coverage of all possible
changes, the preliminary results from these hints
were promising and represent a straightforward av-
enue for further improvement.

4 Results

Our systems for Maya and Bribri improved on
the baselines provided by the task organizers by
considerable amounts. In particular, our system’s
Bribri accuracy was over six times higher than the

3https://www.lenguabribri.com/gramática-de-la-lengua-
bribri

Data Accuracy BLEU ChrF
Maya dev 56.38 78.26 91.33
Maya test 54.17 71.72 82.78
Baseline 25.81 53.69 80.23
Bribri dev 47.17 67.01 80.75
Bribri test 53.55 78.41 91.53
Baseline 8.75 22.11 52.73
Guarani dev 41.77 55.81 86.12
Guarani test 36.81 48.29 84.12
Baseline 14.84 25.03 76.10

Table 3: The results of the submitted system on the
development and test sets.

edit-tree based baseline. This is likely due to the
challenges of complex verb conjugation using an
edit-tree approach. The complete results can be
seen in Table 3.

As indicated in Tables 1, Maya became more
resource efficient with example selection and POS
tagging. Bribri performance saw the largest boost
from verb hints and moderate improvements from
mode hints, as shown in Table 2.

Our Bribri system was the best performing in the
competition. Our Maya system came a close third.
Due to this, and despite regrettably not submitting
Guarani results, our contribution was ranked first
overall. We submitted Guarani after the deadline,
and report the results of all three languages on the
development and test sets compared to the baseline
in Table 3.

5 Discussion

We submitted our results using GPT-4 for system
prompting due to its superior performance on the
development set. Table 4 details the performance
across different LLMs, noting that while Mixtral
scored more competitively with GPT 3.5 for Maya,
it was outperformed by both GPT models in the
other languages.

5.1 Error Analysis

5.1.1 Maya
The errors in Maya predominantly stem from in-
consistencies in the example data and the complex
syntactic structures that require deeper linguistic in-
sights beyond mere pattern matching. For instance,
the development set case Te’exe’ ti’ kajakbale’ex tu
yotoche’ (TYPE:NEG) changes to Ma’ kajakbale’ex
tu wotochi’, contrasting with a similar training ex-
ample Leti’obe’ ti’ u taalo’obi’ (TYPE:NEG) that
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Lang System Acc. BLEU ChrF
Mixtral 44.97 69.19 83.52

Maya GPT-3.5 42.28 67.84 86.04
GPT-4 56.38 78.26 91.33
Mixtral 34.43 42.86 72.06

Bribri GPT-3.5 40.57 61.15 77.04
GPT-4 47.17 67.01 80.75
Mixtral 12.66 20.95 69.84

Guarani GPT-3.5 36.71 51.38 83.35
GPT-4 41.77 55.81 86.12

Table 4: The results on the development set for the
different LLMs.

becomes Leti’obe’ ma’ ti’ u taalo’obi’, where
Leti’obe and ti’ are retained. These inconsistencies,
including the absence of examples for changes like
tu yotoche’ to tu wotochi’, contribute to over 50%
of the errors.

Additionally, positioning of wáaj in interroga-
tive sentences varied without clear rules, leading
to misplacement about 25% of the time. These id-
iosyncratic cases highlight the need for more robust
language-specific rules in our system.

The remaining errors involved rule misappli-
cation, such as overuse of the suffix -o’ob, and
spelling mistakes like failing to correctly modify
tu wotoch to tu yotoch.

5.1.2 Bribri
For Bribri, verb conjugation continues to be a ma-
jor issue, accounting for 57% of the errors. These
range from minor issues like incorrect accent place-
ment (e.g., sùr instead of súr) to significant errors
such as incorrect verb forms (e.g., kötwa instead
of ujtèkèulur). Another 19% of errors were due to
omissions, where words present in the reference
were missing in the hypothesis (e.g., Ppö instead
of I ppö).

Less frequently, errors involved extraneous
words in the hypothesis, making up 9% of the total
errors (e.g., Ye’ wa stsa’ instead of Ye’ stsa’). In-
correct pronoun use accounted for 8% of the errors,
and the remaining 6% were due to words appearing
out of order (e.g., Kë ie’ stsö instead of Ie’ kë stsö).

5.1.3 Guarani
For Guarani, although no language-specific opti-
mizations were implemented, the error analysis
indicates that the majority of the issues are related
to verb conjugation. Specifically, incorrect verb
forms account for 75% of the errors observed. This

suggests that developing a system similar to the
rule-based verb conjugator used for Bribri, which
provides hints based on accurate verb conjugation,
could be highly beneficial in improving the accu-
racy for Guarani. Implementing such a system
could significantly reduce errors and enhance the
model’s overall performance for this language.

6 Conclusion

Supplementing the capabilities of LLMs, such as
GPT-4, by incorporating simple rule-based natu-
ral language processing techniques, our approach
to the AmericasNLP 2024 Shared Task 2 has laid
a foundational framework that can be expanded
in future work to include other low-resource lan-
guages, contributing to the creation of educational
materials for indigenous languages.

Particularly effective were the custom verb con-
jugation hints for Bribri, which markedly improved
accuracy. This approach underscores the ongoing
need for focused linguistic tools tailored to the spe-
cific structural complexities of each language.

Throughout the project, we encountered sev-
eral challenges, including inconsistencies in the
training data and the complex nature of indige-
nous language structures that often deviate sig-
nificantly from those of more widely studied lan-
guages. These issues underscore the importance of
developing tailored NLP tools that can adapt to the
idiosyncrasies of any given language.

Looking ahead, we aim to extend our method-
ology to include Guarani more comprehensively,
enhance our rule-based systems for better accuracy,
and further explore the potential of LLMs in pro-
cessing linguistically diverse and low-resource lan-
guages. This work not only contributes to the field
of computational linguistics by providing valuable
insights into the treatment of indigenous languages
but also plays a crucial role in the preservation and
revitalization of these vital cultural heritages.

By continuing to refine our approaches and ex-
pand our linguistic coverage, we hope to contribute
to a more inclusive and equitable representation of
languages in the digital age, ensuring that technol-
ogy serves as a bridge rather than a barrier in the
education and preservation of linguistic diversity.
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