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Abstract

This paper describes the University of Edin-
burgh’s submission to the AmericasNLP 2024
shared task on the translation of Spanish into 11
indigenous American languages. We explore
the ability of multilingual Large Language
Models (LLMs) to model low-resource lan-
guages by continued pre-training with LoRA,
and conduct instruction fine-tuning using a va-
riety of datasets, demonstrating that this im-
proves LLM performance. Furthermore, we
demonstrate the efficacy of checkpoint averag-
ing alongside decoding techniques like beam
search and sampling, resulting in further im-
provements. We participate in all 11 transla-
tion directions. Our models are released here:
https://tinyurl.com/edi-amnlp24

1 Introduction

We participated in AmericasNLP 2024’s shared
task on machine translation (MT). It requires par-
ticipants to translate from Spanish to 11 indige-
nous American languages: Aymara (aym), Bribri
(bzd), Ashaninka (cni), Chatino (ctp), Guarani
(gn), Huichol (hch), Nahuatl (nhe), Otomi (ote),
Quechua (quy), Shipibo-Konibo (shp) and Tarahu-
mara (tar). We adopted multilingual large lan-
guage models (LLMs) and our workflow consists
of data curation, continued pre-training, instruc-
tion tuning, and several decoding techniques. We
submitted to all 11 translation directions.

We study and report the feasibility of using
LLMs for very low-resource machine translation
tasks. LLMs have recently been the focus of re-
cent research interest, and in machine translation,
they have demonstrated competitive or better per-
formance against traditional neural MT systems
in high-resource languages (Hendy et al., 2023;
Robinson et al., 2023; Iyer et al., 2023; Alves et al.,
2024). Nonetheless, research has shown that these

*denotes equal contribution

models struggle in low-resource settings if used
off-the-shelf (Robinson et al., 2023), and there has
been limited exploration of adapting LLMs to ex-
tremely low-resource MT. Existing approaches rely
on massively multilingual dictionaries (Lu et al.,
2023) or a series of complex grammatical and lin-
guistic tools (Zhang et al., 2024). Despite their
effectiveness, a pitfall of these approaches is that it
can be hard to scale them up to build multilingual,
low-resource LLMs. Moreover, it is unclear how
the (scarce) monolingual and parallel data available
for these languages can be effectively utilised, and
how recent developments in MT of high-resource
languages (Xu et al., 2024; Alves et al., 2024) scale
to very low-resource settings.

This work attempts to take a step towards answer-
ing these questions. We build multilingual LLMs
for these indigenous American languages by fine-
tuning Llama-2 7B (Touvron et al., 2023), Mistral
7B (Jiang et al., 2023) and MaLA-500 (Lin et al.,
2024). We explore continued pre-training with
LoRA on various monolingual and parallel data
sources. We then conduct instruction tuning using
a variety of tasks and language pairs, and show
this contributes to performance improvements in
MT. We end this work by demonstrating how famil-
iar techniques such as checkpoint averaging, beam
search, and sampling help boost LLM performance
for low-resourced translation as well.

2 Data

2.1 Monolingual data

We summarize statistics of the monolingual data
used in our experiments in Table 1. We curate this
data from various sources:

MADLAD-400 (Kudugunta et al., 2024): This
is a manually audited general domain dataset
sourced from Common Crawl, spanning 419 lan-
guages. Given this corpus has many dialects among
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the American languages of interest, we create a dic-
tionary1 mapping each language to the ISO 639-3
codes of all its dialects, and download all of them.
We remark on various strategies we tried for han-
dling dialects in Section 3.1. We sample 150000
sentences from the English and Spanish splits to
maintain comparable data quantities.

Glot500 (ImaniGooghari et al., 2023): This
dataset belongs to multiple domains, covers 500
languages and spans multiple licences. We down-
loaded the publicly available version of this dataset
from Hugging Face, for the languages of interest to
us, and concatenated the train, dev, and test splits
for these languages. We handled dialects similar to
the MADLAD-400 corpus.

Wikipedia: We download Wikipedia dumps
for the languages of interest and parse them with
WikiExtractor (Attardi, 2015) for downstream use.

Helsinki’23 datasets (De Gibert et al., 2023):
We reuse the monolingual data extracted by the
winning team from the AmericasNLP 2023 Shared
Task, University of Helsinki. We separate out
the Bibles, UDHR, Wikipedia, and Miscellaneous
(Misc) domains.

OCR data: In the pursuit of additional data, we
utilized alternative external resources. We manu-
ally extracted2 various text resources (summarised
in Table 9 and classified them into groups and lan-
guages. The extracted files were converted to PDF
format. Each page of the file was transformed
into PNG format and upscaled to a resolution of
600 DPI. Our approach employed ocrmac3(based
on the Apple Vision Framework) for OCR. The
methodology focused solely on bounding box text
spans, without the application of sentence or para-
graph restoration. We summarize statistics of the
OCR data in Tables 3, 8, 9.

2.2 Instruction Tuning data
Inspired from Alves et al. (2024), we try to make
our instruction tuning dataset as diverse as possi-
ble, and observe that multi-task instruction tuning
yields performance gains on the singular task of
Machine Translation as well. We summarize the

1https://tinyurl.com/uedin-dialectsdict
2We are not speakers of any indigenous languages in this

shared task.
3https://github.com/straussmaximilian/ocrmac

v0.1.6 with parameters: recognition_level="accurate",
language_preference=["es-ES", "en-US", "ru-RU", "fr-FR",
"de-DE"]

statistics of our instruction tuning dataset in Table
4, and detail our sources as follows:

Aya (Singh et al., 2024): We use the Cohere
Aya Dataset for the English, Portuguese and Span-
ish languages which consist of about 3.8K, 3.8K
and 9K instructions respectively. The Aya Dataset
consists of freshly created human annotations to
existing prompts, as well as re-annotations by hu-
mans of machine-generated prompt completions.
Given that this dataset relies strongly on human
annotation, we include it in our instruction tuning
dataset - even though the languages provided are
not the indigenous American languages we are in-
terested in. We could not find any data for these
American languages in the Aya project.

MT Data: We use the official datasets provided
by the organizers (official), the NLLB and the
FLORES 200 corpora (Costa-jussà et al., 2022),
the Helsinki’23 OPUS parallel corpora (De Gibert
et al., 2023) as well as our own extraction of the
OPUS dataset (Tiedemann, 2009) – from which we
were able to extract more languages and pairs than
the original Helsinki collection. For the NLLB cor-
pus, which is sorted in decreasing order of scores
indicating translation quality, we sample sentences
from the top to ensure the highest quality sentences
are chosen for instruction tuning. Finally, as far as
possible, we try to ensure uniform sampling across
all these languages and corpora to prevent imbal-
ance.

Cross-lingual QA: We also generate synthetic
cross-lingual instruction data using a powerful
open-source LLM, Mixtral-8x7B-Instruct (Jiang
et al., 2024), for data augmentation. Our gener-
ation process is illustrated in Figure 1. Given a
translation pair (X,Y ), where X is from a high-
resource language and Y is from a low-resource
language, we follow the prompt of Köksal et al.
(2024) and ask Mixtral to generate a question Q
based on X . As X and Y are semantically equiva-
lent, Y is now used as the answer to the question
Q. Finally, we add an instruction at the end of the
prompt to generate in the target language. This is,
thus, similar to a cross-lingual QA task - where
the question is in a high-resource language, but the
answer is in the indigenous American language and
the LLM is instructed to generate its response in
the latter. In this way, we use (Q,Y ) as synthetic
cross-lingual instruction data.

During training, we convert all our instruction-
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Language Total MADLAD 400 GLOT 500 Wikipedia Helsinki’23 Helsinki’23 Helsinki’23 Helsinki’23 OCR
(Bibles) (Misc) (UDHR) (Wikipedia) (multilingual)†

Aymara (ay) 779835 58572 355229 19272 61182 0 120 16081 269379
Bribri (bzd) 41123 0 0 0 7659 0 0 0 33464
Asháninka (cni) 74964 0 0 0 0 0 0 0 74964
Chatino (ctp) 113415 0 0 0 23764 0 0 0 89651
Guarani (gn) 531478 98351 97470 39546 7849 0 102 39593 248567
Huichol (hch) 68411 0 0 0 7936 373 0 0 60102
Nahuatl (nhe) 547187 84647 23615 0 70988 0 91 8641 359205
Otomi (oto) 284988 131139 7991 0 7943 443 156 0 137316
Quechuan (quy) 986947 113640 168189 62777 61131 0 277 58073 522860
Shipibo-Konibo (shp) 32326 4897 0 0 16025 0 122 0 11282
Tarahumara (tar) 63438 0 0 0 7894 0 0 0 55544
Total 3384364 491246 652494 121595 272371 816 868 122388 1862334

Table 1: Monolingual dataset used for continued pre-training, in terms of number of sentences, for the indigenous
American languages. †OCR data is inherently multilingual, with significant amounts of English and/or Spanish, so
the data per language is likely overestimated.

Corpus English Spanish

MADLAD 400 150000 150000
Wikipedia 100000 100000
Helsinki’23 (Bibles) 148060 487006
Helsinki’23 (UDHR) 0 120

Total 398060 737126

Table 2: Monolingual dataset used for continued pre-
training, in terms of number of sentences, for high-
resourced languages (English, Spanish) we use as replay
data to prevent catastrophic forgetting.

tuning datasets to the Alpaca format.

3 Approach

To adapt LLMs for the task of translating indige-
nous American languages, we follow the 2-stage
training paradigm proposed in related work (Xu
et al., 2024; Alves et al., 2024) and explore its ef-
fectiveness for low-resource languages.

3.1 Stage 1: Continued Pre-training with
LoRA

In order to “teach” our LLMs the indigenous Amer-
ican languages, we first fine-tuned LLMs with
monolingual data for each of these languages.
Given these low-resource languages are out-of-
distribution from the original pre-training data, we
also included replay data from two high-resource
languages (English and Spanish) to prevent catas-
trophic forgetting (Ibrahim et al., 2024). For each
American language, given that there were often
several (distinctive) dialects, we found that the eas-
iest setting, i.e., to concatenate all of them together,
performed very similarly to more careful dialect
separation techniques. Inspired by Nguyen et al.

(2023), who filtered data from various domains into
quality buckets, we segregated our data based on
dialects - we assigned the test/dev set dialects to
“higher-quality” buckets, and the rest to lower qual-
ity. We then tried out a variety of approaches in our
preliminary experiments that involved pre-training
on various buckets at various stages, but none of
these settings performed significantly better4 than
our earlier baseline that concatenated all dialects.
Our conclusion here was that these LLMs are only
just beginning to learn to model these very low-
resourced languages, and cannot separate between
dialects at this stage.

For efficiency reasons, we opted for low-rank
(LoRA) adaptation (Hu et al., 2021), rather than
full-fine tuning. We attached rank 8 LoRA adapters
to query and value matrices, following Hu et al.
(2021), and also fine-tuned input and output (LM
head) embeddings – which we empirically ob-
served to yield significant gains in validation per-
formance. We used average cross-entropy loss σ on
the official development set as our validation met-
ric, which we computed as the weighted average
of average perplexity on high-resource languages
(English and Spanish) and that of the indigenous
American languages:

σ = 0.9 · σ{En,Es}
avg + 0.1 · σ{American}

avg

where σ
{En,Es}
avg and σ

{American}
avg are the average

perplexities on English and Spanish, as well as the
indigenous American languages respectively.

We explored adaptation of four LLMs: Llama-2
7B (Touvron et al., 2023), MaLA-500 (Lin et al.,

4from a validation loss perspective
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Source Files Characters

Grammar/Education Book 156 (52.2%) 39,971,932 (46.6%)
Scientific Paper 58 (19.4%) 9,880,833 (11.5%)
Dictionary 55 (18.4%) 28,579,012 (33.3%)
Book 16 (5.4%) 3,360,407 (3.9%)
Other 14 (4.7%) 4,009,128 (4.7%)

Total 299 85,801,312

Table 3: Summary statistics of the OCR data grouped by source. We exclude whitespaces while counting characters.
Percentages of the total are displayed in parentheses.

Task(s) Dataset Languages Instruction Count

Human-annotated Prompt Completions Aya Dataset {es, pt, en} 16795

Cross-lingual QA Synthetic {es} → All 82538

Machine Translation

Official {es} → All 76511
NLLB {en} → {aym, gn} 13276

FLORES 200 {es, en, pt} → {aym, gn, quy} 18081
Helsinki’23 {es} → {gn, hch, nhe, quy, shp} 27976

OPUS {es, en, pt} → {aym, cni, gn, nhe, quy} 112681

Table 4: Datasets used for instruction tuning. Languages are denoted by their ISO 639 codes.

Figure 1: Illustration of our designed process of generating cross-lingual synthetic instruction data.
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2024), Mistral 7B (Jiang et al., 2023) and Mis-
tral 7B v0.25 for this task. We chose Llama-2
and Mistral since they are the most widely used
general-purpose models while MaLA-500, which
is the Llama-2 model scaled to 500 languages us-
ing LoRA adapters, could potentially enable better
cross-lingual transfer.

To examine in greater detail the role of parallel
data for continued pre-training under low-resource
settings, we trained primarily 2 sets of models,
dubbed v1 and v2. v1 used a concatenation of
all available monolingual data6, while the v2 mod-
els integrated not only monolingual data from v1,
but also the parallel corpora. Inspired from re-
lated work, we explored 3 techniques of leveraging
this parallel data: i) v2.0: considering the tar-
get side of es-X bitext as additional monolingual
data, and using the same for pre-training, ii) v2.1:
following Alves et al. (2024), concatenating7 the
source and target sentences of a certain percentage
of sentences (25%, in our experiments8), while the
rest is used for its target-side data, and iii) v2.2:
‘interleaving’ concatenated Es-X and X-Es paral-
lel text, closely following Guo et al. (2024), and
fine-tuning with the same after pre-training on ex-
clusively monolingual data (i.e. v1 models in our
case). For our best-performing model, Mistral 7B,
we found v2.2 baselines overfit and lead to diver-
gence of validation loss, as a result we discard these
models.

Given that validation loss cannot be compared
fairly across models with different tokenizers, and
may not correlate well with downstream MT per-
formance (Iyer et al., 2023), a key challenge we
faced was our inability to reliably estimate down-
stream MT performance after stage 1 pre-training.
We, thus, resorted to instruction-tuning all our top-
performing models and directly evaluated down-
stream MT quality– similar to related works (Xu
et al., 2024; Alves et al., 2024).

3.2 Stage 2: Instruction Tuning

For instruction-tuning, we continue fine-tuning the
stage 1 LoRA adapters on our curated multi-task

5https://models.mistralcdn.com/
mistral-7b-v0-2/mistral-7B-v0.2.tar

6except the OCR data, which we were only able to obtain
for v2 pre-training

7During concatenation, we prepend the language code L
before each sentence X, like so [L]: X. Source and target
sentences are then joined with the newline character \n.

8We observed higher percentages (like 75%) decreased
validation perplexity more significantly.

dataset (Table 4). We fine-tune both input and out-
put embeddings, along with the LoRA adapters,
since we observe that this leads to marginal im-
provements in MT quality. We show these results
in Table 5, along with ablations showing how each
dataset contributes to improving our overall aver-
age performance.

4 Experiments

4.1 Experimental Settings

Stage 1: We used temperature sampling with
τ = 80 to ensure uniform data distribution across
the relatively higher-resourced (English, Spanish,
Quechua, Aymara, Guarani) and the other lower-
resourced languages in this setup – since our objec-
tive in this work was to build a multilingual LLM
that generalizes well to all the languages in this
task. However, given the temperature is quite high,
and low-resource languages might thus be oversam-
pled excessively, we used a ‘clipping factor’ of 10
to ensure oversampling does not exceed 10x the
original data size.

We conducted continued pre-training of our mod-
els using Hugging Face PEFT (Mangrulkar et al.,
2022) with the DeepSpeed ZeRO3 configuration
(Rajbhandari et al., 2020) on 2 A100-80GB GPUs.
We used LoRA adapters on the query and value
matrices of rank 4, alpha 8, and dropout 0.1. We
used a batch size of 3 per GPU and 16 gradient ac-
cumulation steps. We used a learning rate of 2e-5
and a cosine scheduler. We did not use warm-up
since we also provided replay data, and empirically
found this to be a better choice for validation per-
formance. We saved and evaluated every 100 steps,
with a patience value of 5 for early stopping and av-
erage evaluation loss as the validation metric. We
pre-trained our models for 1 epoch only, due to the
enormous training costs.

Stage 2: For instruction tuning, we used the
LLaMa-Factory (Zheng et al., 2024) library –
which is an easy-to-use package for instruction
tuning, built on top of Hugging Face libraries. We
continued to tune the LoRA adapters from Stage 1
for 4 epochs using tf32 floating point precision. We
used a learning rate of 1e-4, with a cosine scheduler
and warm-up ratio of 3%. We used a batch size of
8 per GPU and 16 gradient accumulation steps.

Decoding: We used LLaMa-Factory for decod-
ing on the test set. We used the following default
parameters for sampling: a sampling temperature
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No. Base Model Tuned Part Data Avg. chrF++

1 Llama-2-7B LoRA Parallel 7.09
2 Llama-2-7B LoRA Parallel+Aya 8.11
3 Mistral-7B LoRA Parallel 9.54
4 Mistral-7B LoRA Parallel+Aya 9.85
5 Llama-2-7B-Stage1 LoRA Parallel+Aya 15.17
6 Llama-2-7B-Stage1 LoRA+Emb Parallel+Aya 15.20
7 Mistral-7B-Stage1 LoRA+Emb Parallel+Aya 16.24
8 Mistral-7B-Stage1-v1 LoRA+Emb Parallel+Aya+Syn 16.81
9 MaLA-7B-Stage1 LoRA+Emb Parallel+Aya+Syn 17.41

10 Mistral-7B-Stage1-v2 LoRA+Emb Parallel+Aya+Syn 17.32

Table 5: chrF++ scores on the AmericasNLP24 development set using greedy decoding.

of 0.95, top-p sampling with p=0.7 and top-k sam-
pling with k=50. We used beam search with a beam
size of 10, repetition and length penalty of 1.0. We
used a batch size of 16 and set the maximum num-
ber of new tokens for generation to 512.

4.2 Instruction Tuning Experiments

We report our empirical experiment results in Ta-
ble 5 and introduce our main findings below.

Continued pre-training is crucial. As evident
from the instruction-tuning experiments performed
on two raw LLMs, i.e. Llama-2-7B & Mistral-7B,
and their corresponding stage 1 variants (Llama-
2-7B-Stage1 & Mistral-7B-Stage1), we can see
that the pre-trained stage 1 models outperform raw
instruction-tuned models by a large margin – in-
dicating that LLMs benefit significantly from in-
domain monolingual data, even if it is scarce com-
pared to usual high-resourced setups.

However, these gains can potentially suffer from
limited returns over time. For the Stage 1 v2.0
models, which have been trained on 2.5M sen-
tences (78M tokens) more, and obtained a gain
in stage 1 validation loss of almost -1.0 point, the
corresponding gains in downstream performance
(chrF++) was not as significant. Further research
is required to verify and analyse the findings from
these preliminary experiments.

The general purpose Aya instruction dataset
boosts MT performance. This was a surpris-
ing finding that showed that even though: a) the
language of the generation is not an American in-
digenous language, and b) the task is not Machine
Translation, general-purpose instruction data do
not focus on the translation task - we still found
significant gains in MT performance. This is likely
because this data helps the LLM to reason and fol-
low instructions better.

Adding cross-lingual synthetic instruction data
also helps Another interesting exploration in our
work is the usage of cross-lingual synthetic instruc-
tion data (Section 2.2). While we observe that the
quality of the synthetic is not perfect and contains
some degree of noise, it does improve the system’s
translation quality on average. Preliminary exper-
iments also suggested that substituting this with
higher quality (but less quantity) data end up per-
forming worse, suggesting that LLMs likely do
not know how to generate in these low-resource
languages and more data, even if synthetic, can
help.

Fine-tuned Mistral usually outperforms Llama-
2 Mistral 7B, which has been shown to consis-
tently outperform Llama 13B (Jiang et al., 2023),
seems to be more effective in low-resource settings
as well. It consistently beats the latter by signif-
icant margins. Hence, we choose Mistral as our
primary LLM and decide to improve on the same
for our final models.

4.3 Checkpoint Averaging

Inspired by (Gao et al., 2022), we use a straight-
forward low computational approach to boost the
performance of our instruction-tuned LLMs. We se-
lected the last 4 model checkpoints from the same
run and averaged the model (LoRA) parameters
to obtain a better model. Checkpoint averaging is
relatively cheaper and does not require storing and
querying multiple models at test time. Addition-
ally, we explore all 10 combinations of the last 4
model checkpoints, combining them in triplets and
pairs. However, the most significant improvement
was observed when averaging the last 4 models
checkpoints.

We perform decoding using default parameters
of LLaMa-Factory— a sampling temperature of
0.95, top-p and top-k sampling with p=0.7 and
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# Checkpoint Avg. chrF++ score per model
Mistral-7B-v1 MaLA-500 Mistral-7B-v2

(a) Final checkpoint (step=8151) 19.05 19.18 19.34
(b) Checkpoint 8000 19.42 19.20 19.16
(c) Checkpoint 7500 19.18 19.34 18.82
(d) Checkpoint 7000 19.27 19.08 19.14
(e) AVG(a,b,c,d) 20.29 19.94 20.07

Table 6: Checkpoint averaging with different models on AmericasNLP development set using default generation
parameters of LLaMa-Factory.

k=50 respectively, beam size 1, length and repeti-
tion penalty of 1.0 and maximum number of new to-
kens for generation 512. In Table 6, it’s evident that
the model with averaged checkpoints consistently
outperforms the others. We believe the reason be-
hind its superior performance is that checkpoint
averaging acts as a form of regularization.

During the training process, it is possible for a
few layers of the model to start over-fitting after cer-
tain steps, leading to a degradation in performance
if training continues. However, by averaging later
checkpoints with the initial ones from earlier in the
training process, the effects of over-fitting can be
mitigated. This combination helps to regularize
the model, preventing it from over-fitting to the
training data while still leveraging the useful infor-
mation learned during the later stages of training.

For future work, we will explore two approaches:
a) combining last k checkpoints instead of last 4
during model averaging. b) Weighted averaging
of checkpoints, where checkpoints with better per-
formance on the development set receive higher
weights. Our hypothesis is that these methods
could improve model performance over the current
unweighted averaging of the last 4 checkpoints.

4.4 Final Test Set Results
The final systems we submit to the shared task
are, therefore (all model IDs are from Table 6
and are open-sourced at https://tinyurl.com/
edi-amnlp24):

• System 1: Checkpoint e i.e. average of check-
points a, b, c and d, for Mistral-7B-v1

• System 2: Checkpoint e i.e. average of check-
points a, b, c and d, for MALA-7B-stage2

• System 3: Average of checkpoints a, c and d
for Mistral-7b-stage2-v2

For final inference, we use a beam size of 10
expecting a performance boost. Other decoding

parameters remained the same. We show our final
results on the AmericasNLP 2024 test sets in Table
7. We observe that while our models do not outper-
form the best systems, the gap is relatively lower
for lower resourced languages like Huichol, Nahu-
atl and Otomi. While this does align with our stated
goal of building a general purpose LLM for the lan-
guages in this task, as part of future research, we
shall explore how we can model better across the
other pairs too and increase our competitiveness.

Ethical Considerations

None of the authors of this paper speak any indige-
nous American languages in this shared task. We
rely on the language-labelled datasets suggested
by the task organizers and from other reputable
sources. We actively sought data manual inspec-
tion using Google Translate.
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Language Metrics
Best Best UEdin UEdin UEdin

system 1 system 2 Submission 1 Submission 2 Submission 3

aym
BLEU 3.49 3.23 1.14 1.06 1.13
chrF++ 30.97 29.39 21.77 21.37 21.89

bzd
BLEU 4.84 4.56 2.21 1.89 1.75
chrF++ 23.47 23.41 16.54 16.32 15.56

cni
BLEU 2.41 3.49 0.41 0.37 0.43
chrF++ 23.20 22.98 14.82 13.68 14.50

ctp
BLEU 13.44 4.65 3.35 4.30 3.38
chrF++ 37.38 23.64 17.66 20.70 17.57

gn
BLEU 12.04 11.28 3.38 1.78 3.21
chrF++ 38.93 37.64 29.20 24.61 29.13

hch
BLEU 10.08 9.62 9.87 7.03 9.60
chrF++ 27.64 26.46 24.41 22.03 24.37

nah
BLEU 2.30 1.09 0.48 0.37 0.44
chrF++ 22.87 21.71 18.12 17.21 18.98

oto
BLEU 1.42 1.55 0.43 0.21 0.44
chrF++ 12.98 12.63 8.91 7.81 9.19

quy
BLEU 4.85 4.83 1.32 0.94 1.31
chrF++ 38.21 38.19 25.23 22.77 25.04

shp
BLEU 4.45 4.14 1.34 1.56 1.55
chrF++ 29.37 27.04 22.04 22.43 22.86

tar
BLEU 0.92 1.01 0.11 0.11 0.15
chrF++ 17.03 15.42 9.65 9.49 9.48

Table 7: AmericasNLP 2024 test set results. We show the performances of the top 2 best systems from each
language, as well as each of the 3 systems we submit. Languages are denoted by their ISO 639 codes.
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Combinations of languages Source type Files Characters

Aymara Mono 8 682,766
English/Asháninka Mixed 2 1,605,073
English/Aymara Mixed 9 2,945,037
English/Chatino Mixed 8 2,708,631
English/Guaraní Mixed 12 2,773,253
English/Hñähñu Mixed 5 2,181,855
English/Nahuatl Mixed 24 8,950,757
English/Quechua Mixed 7 1,429,763
English/Spanish/Aymara Mixed 1 246,850
English/Spanish/Quechua Mixed 3 953,120
English/Spanish/Rarámuri Mixed 2 1,250,289
English/Wixarika Mixed 1 544,090
French/Aymara Mixed 1 52,022
French/Bribri Mixed 1 1,099,198
French/Hñähñu Mixed 1 111,296
French/Quechua Mixed 1 194,163
French/Rarámuri Mixed 1 23,418
German/Guaraní Mixed 1 178,220
German/Quechua Mixed 2 1,361,053
Nahuatl Mono 2 224,394
Quechua Mono 10 492,504
Russian/Guaraní Mixed 1 51,939
Russian/Nahuatl Mixed 1 75,205
Russian/Quechua Mixed 2 193,794
Spanish/Asháninka Mixed 9 2,133,942
Spanish/Asháninka/Quechua Mixed 1 65,046
Spanish/Aymara Mixed 45 9,546,160
Spanish/Aymara/Nahuatl/Quechua Mixed 1 208,828
Spanish/Bribri Mixed 4 801,911
Spanish/Chatino Mixed 3 1,162,349
Spanish/Guaraní Mixed 20 8,101,890
Spanish/Hñähñu Mixed 10 3,059,227
Spanish/Nahuatl Mixed 17 6,171,836
Spanish/Quechua Mixed 67 19,830,467
Spanish/Rarámuri Mixed 6 1,311,759
Spanish/Shipibo-Konibo Mixed 4 461,930
Spanish/Wixarika Mixed 5 1,478,789
Wixarika Mono 1 1,138,488

Table 8: Summary statistics of the OCR data, grouped by Combinations of languages. Characters counted without
whitespaces.
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Source Low-resource languages Source type Files Characters

Book Nahuatl Mono 1 195,009
Quechua Mixed 8 1,727,827

Mono 6 299,083
Wixarika Mono 1 1,138,488

Dictionary Asháninka Mixed 3 783,665
Aymara Mixed 15 4,792,382
Chatino Mixed 2 1,012,744
Guaraní Mixed 8 5,509,379
Nahuatl Mixed 5 3,424,235
Quechua Mixed 19 12,354,240
Rarámuri Mixed 3 702,367

Grammar/Education Book Asháninka Mixed 5 2,279,964
Aymara Mixed 25 6,212,691

Mono 8 682,766
Bribri Mixed 3 714,131
Chatino Mixed 1 149,605
Guaraní Mixed 16 4,585,622
Hñähñu Mixed 13 4,441,870
Nahuatl Mixed 24 9,877,127

Mono 1 29,385
Quechua Mixed 47 9,072,258

Mono 5 247,344
Rarámuri Mixed 3 1,146,458
Shipibo-Konibo Mixed 3 314,443
Wixarika Mixed 2 218,268

Other Aymara Mixed 4 1,136,545
Hñähñu Mixed 1 95,944
Nahuatl Mixed 5 1,461,840
Rarámuri Mixed 1 54,278
Wixarika Mixed 3 1,260,521

Scientific Paper Asháninka Mixed 3 675,386
Asháninka/Quechua Mixed 1 65,046
Aymara Mixed 12 648,451
Aymara/Nahuatl/Quechua Mixed 1 208,828
Bribri Mixed 2 1,186,978
Chatino Mixed 8 2,708,631
Guaraní Mixed 10 1,010,301
Hñähñu Mixed 2 814,564
Nahuatl Mixed 8 434,596
Quechua Mixed 7 754,112
Rarámuri Mixed 2 682,363
Shipibo-Konibo Mixed 1 147,487
Wixarika Mixed 1 544,090

Table 9: Summary statistics of the OCR data, grouped by Source and Low-resource languages. Characters
counted without whitespaces.
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