
Proceedings of the 4th Workshop on Natural Language Processing for Indigenous Languages of the Americas (AmericasNLP), pages 221–223
June 21, 2024 ©2024 Association for Computational Linguistics

The role of morphosyntactic similarity in generating related sentences

Michael Hammond
Dept. of Linguistics

U. of Arizona
Tucson, Arizona 85721, USA

hammond@arizona.edu

Abstract

In this paper we describe our work on Task 2:
AmericasNLP 2024 Shared Task on the Cre-
ation of Educational Materials for Indigenous
Languages. We tried three approaches, but only
the third approach yielded improvement over
the baseline system. The first system was a
fairly generic transformer model. The second
system was our own implementation of the edit
tree approach from the baseline system. Our fi-
nal attempt was a version of the baseline system
where if no transformation succeeded, we ap-
plied transformations from similar morphosyn-
tactic relations. We describe all three here, but,
in the end, we only submitted the third system.

1 Introduction

The nature of the task was to transform one sen-
tence into another in three languages based on a
specification of the morphosyntactic differences
between the input and output sentences (Chiruzzo
et al., 2024). The three languages are Bribri,
Guarani, and Maya. We give sample data in Ta-
ble 1.

Glosses or translations were not provided. In
addition, we do not know what morphosyntactic
features might be appropriate for the input sen-
tence.

We were provided with definitions for the differ-
ent tags. In the first example in Table 1 we convert
the absolutive argument to a plural. In the second
example, we convert to an affirmative. Finally, in
the third case, we switch one of the arguments to a
first person plural subject.

We tried three different approaches: a simple
transformer, our own implementation of edit trees
in terms of a single regular transduction, and us-
ing related morphosyntactic tags when possible.
In the following sections, we describe these three
attempts.

2 Transformer

The first model we tried was a simple transformer
(Vaswani et al., 2017).1 We first concatenate the
input and morphological tags to serve as input.

These are fed into the encoder which first creates
embeddings, applies drop-out, and feeds these to a
GRU layer (Cho et al., 2014).

The output and hidden weights are then fed to an
attention-based decoder with two layers of GRUs
and a simple linear layer. Attention was Bahdanau
(Bahdanau et al., 2014).

Batch size varied, but was typically around 32.
The dimensions for all hidden layers was either 512
or 1024 for different runs. Dropout for the encoder
was set at 0.1. Loss was negative log likelihood and
the Adam optimizer was used. We tried a variety of
different configurations, but best performance was
at 600 epochs with 512 hidden nodes at all layers.
See Table 2 for performance with dev data.

The data are extremely limited and this surely
impaired performance. Our sense is that simply
concatenating the input and morphosyntactic tags
was also not the best choice.

3 Edit trees as a single transduction

The baseline system for the task is based on the
notion of edit trees. The basic idea is to build a
tree representation of changes that the input must
undergo to be converted to the output (Chrupała,
2008).

Chrupała gives the edit tree in Figure 1 for
the Polish word pair najtrudniejszy ‘hardest’ and
trudny ‘hard’. The basic logic is that we identify
the largest shared span, in this case characters 3
through 6. To the left of that, we replace naj with

1All of our code can be obtained at https:
//github.com/hammondm/americasnlp24task2. Our
specific transformer architecture is an adaptation from
https://pytorch.org/tutorials/intermediate/
seq2seq_translation_tutorial.html.

221

https://github.com/hammondm/americasnlp24task2
https://github.com/hammondm/americasnlp24task2
https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html
https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html


Language Input Features Target
Bribri Pûs kapë’wa ABSNUM:PL Pûs kapë’ulur
Guarani Ore ndorombyai kuri TYPE:AFF Ore rombyai kuri
Maya Janalnajen tu k’íiwikil koonol PERSON:1_PL Janalnajo’on tu k’íiwikil koonol

Table 1: Example data

Language Accuracy BLEU ChrF
Bribri 0.00 3.14 12.51
Guarani 0.00 0.29 4.56
Maya 0.67 14.17 40.08

Table 2: Performance with transformer model on dev
data

Split(3,6)

Replace⟨naj , ϵ⟩ Split(5,0)

Replace⟨iejsz , ϵ⟩ Replace⟨ϵ, ϵ⟩

Figure 1: Example edit tree (Chrupała, 2008, p.127)

ϵ. To the right, we repeat the process and identify
the longest shared span: y. To the left of this, we
replace iejsz with ϵ. To the right, we do nothing:
Replace(ϵ,ϵ).

Formally, Chrupała defines a function lcs from
two strings (Σ∗ × Σ∗), specifically w1...n and
w′
1...m, to four natural numbers (N× N× N× N),

(i, j, k, l), representing indices into the strings
where the shared string is indexed as wi...n−j =
w′
k...m−l.
There is then a function split which maps

from a string and indices to three strings (Σ∗ ×
N × N) → (Σ∗ × Σ∗ × Σ∗), taking a string
w1...n and indices i and j and returning the triple
(w1...i, wi+1...n−j , wn−j+1...n).

An edit tree is then either a Replace node with
two strings or it is a Split node with two indices
and two daughter nodes that are themselves edit
trees.

An edit tree is built with the function et which
is defined as follows with respect to strings w and
w′. If there is no lcs span, then the tree is simply
Replace(w, w′).

Otherwise it is defined as:

Split(iw, jw),
et(wprefix , w

′
prefix ),

et(wsuffix , w
′
suffix )

(1)

Language Accuracy BLEU ChrF
Bribri 3.30 12.93 39.14
Guarani 0.00 22.19 72.63
Maya 1.34 30.68 71.95

Table 3: Performance with our implementation of edit
trees on dev data

In our implementation, these operations are
mapped to a single regular transduction with back-
references. For convenience, we use python for
this.

First, Split nodes are represented as a list of three
elements: the left daughter, the two indices, and
the right daughter. Replace nodes are represented
as a pair of strings. The tree in Figure 1 would be
represented as:

[(naj , ϵ), (3, 6), [(iejsz , ϵ), (5, 0), (ϵ, ϵ)]] (2)

We traverse the tree from left to right converting
each node into a pair of strings. All string pairs
map to themselves. Pairs of indices i, j are trans-
lated into maps from .{1,k}, where k = j − i,
to the next available backreference. In the case
of the tree in Figure 1, we have the translation
naj.{1,3}iejsz.{1,1} mapping to \1\2. This
mapping is executed in our code using the python
re.sub function.

This approach approximates the baseline system,
but does not perform as well. See Table 3.

4 Morphosyntactic similarity

Our final model, and the one we submitted, was an
addition to the baseline system.

The baseline system records the edit trees that
are associated with specific morphosyntactic tag
combinations along with the relative frequency of
each tree.

At inference stage, one selects the edit trees as-
sociated with the tags for the test item, sorts these
by how frequently they’re used in training, and try
them one by one starting from the most frequent. If
a rule succeeds, the output of that rule is returned.

222



Language Accuracy BLEU ChrF
Bribri 9.38 17.13 55.07
Guarani 25.81 50.36 79.46
Maya 14.84 22.55 73.18

Table 4: Performance with morphosyntactic tag similar-
ity on test data

If no rule succeeds or the specific tag combina-
tion is not in the training data, then the input is
returned as the output.

Our adaptation here was to add additional op-
tions to the list. If the procedure above produced
no distinct output form, we then applied additional
rules. These additional rules were generated from
the full list of rules, sorted by how similar the tag
sequence is to the test item tag sequence. If the
above procedure results in no change, we then turn
to these rules, going through them one by one. This
procedure is terminated the same way as the base-
line system: when a rule produces a change, that is
the final output and further rules are not considered.
If no rule produces a distinct output, the input itself
is returned.

This change results in a modest overall improve-
ment in the baseline as seen in Table 4.

5 Conclusion

To summarize, we tried three different techniques:
transformer, edit trees as transductions, and ex-
ploiting morphosyntactic similarity in selecting edit
trees.

As implemented, the transformer performed the
worst. Systems built on edit operations seem to
perform much better in these character-to-character
mapping domains, so this is not really a surprise.

Translating edit trees into regular transductions
did not reach the level of the baseline, but is not
an unreasonable approach to pursue further. Edit
operations are clearly useful. The question is what
is the scope of those operations. Are they separate
operations as in edit trees as originally developed
or can some amalgam of those operations be more
successful.

Finally, using morphosyntactic similarity is suc-
cessful and this is thus clearly an approach worth
pursuing further.

One very obvious way to go further is to build a
model of the morphosyntactic structure of the input.
We do not know what the words mean, but perhaps
we can get some mileage toward identifying parts

of speech from the meanings of the tags. With
this in hand, we could exploit that part of speech
information in our edit trees.

This last approach is purely speculative, but it
seems like a fairly obvious way to go (in hindsight!)
given the nature of the task.

Acknowledgments

Thanks to Diane Ohala for useful discussion. All
errors are my own.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Luis Chiruzzo, Pavel Denisov, Samuel Canul Yah,
Lorena Hau Ucán, Marvin Agüero-Torales, Aldo
Alvarez, Silvia Fernandez Sabido, Alejandro
Molina Villegas, Abteen Ebrahimi, Robert Pugh, Ar-
turo Oncevay, Shruti Rijhwani, Rolando Coto-Solano,
Katharina von der Wense, and Manuel Mager. 2024.
Findings of the AmericasNLP 2024 shared task on
the creation of educational materials for indigenous
languages. In Proceedings of the 4th Workshop on
Natural Language Processing for Indigenous Lan-
guages of the Americas (AmericasNLP). Association
for Computational Linguistics.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Grzegorz Chrupała. 2008. Towards a machine-learning
architecture for lexical functional grammar parsing.
Ph.D. thesis, Dublin City University.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

223


