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Abstract
Plains Cree (nêhiyawêwin) is a morpholog-
ically complex and predominantly prefixing
language. The combinatory potential of in-
flectional and derivational/lexical prefixes and
verb stems in Plains Cree makes it challenging
for traditional auto-completion (or word sug-
gestion) approaches to handle. The lack of a
large corpus of Plains Cree also complicates
the situation. This study attempts to investigate
how well a BiLSTM model trained on a small
Cree corpus can handle a word suggestion task.
Moreover, this study evaluates whether the use
of semantically and morphosyntactically re-
fined Word2Vec embeddings can improve the
overall accuracy and quality of BiLSTM sug-
gestions. The results show that some of the
models trained with the refined vectors pro-
vide semantically and morphosyntactically bet-
ter suggestions. They are also more accurate
in predictions of content words. The model
trained with the non-refined vectors, in contrast,
was better at predicting conjunctions, particles,
and other non-inflecting words. The models
trained with different refined vector combina-
tions provide the expected next word among
top-10 predictions in 36.32 to 37.34% of cases
(depending on the model).

1 Introduction

Auto-complete systems and predictive text input
have become integral components of our daily in-
teractions with our devices and digital platforms.
These applications heavily rely on robust language
models capable of accurately predicting the next
word in a given sequence of text. While substantial
progress has been made in developing efficient lan-
guage models for major languages, the challenges
persist for low-resource languages where scarcity
of training data poses a significant obstacle. This
challenge is especially found for Indigenous lan-
guages that are often also morphologically rich.

With advances in the NLP and machine learning
fields, small training datasets have become less of

a problem; however, the handling of the morpho-
logical complexity still presents a challenge. Lane
and Bird (2020) approached this problem with the
development of an interactive word-completion sys-
tem for Kunwingku (an Indigenous language spo-
ken in Northern Australia) based on a finite state
recognizer which included most morphology for
some 500 verbs. Their tool suggests a completion
up to the next morpheme boundary and helps to
avoid the so-called “combinatorial explosion of
possible words” typical for the prefixing polysyn-
thetic languages.

Lane et al. (2022) further successfully extend
this method to Plains Cree, with a full-fledged
model including all parts of speech, covering most
inflectional morphology for the inflecting verbs
and nouns, and based on a lexicon of well over 20k
lexemes. The tool is based on a finite state mor-
phosyntactic analyzer of Plains Cree (nêhiyawêwin,
an Indigenous language spoken mainly in on the
Western Canadian Plains) (Snoek et al., 2014; Har-
rigan et al., 2017). It uses corpus-based information
about Cree prefixes to predict the most probable
and common next morpheme in a word (based on
a small corpus of some 150k Cree words). While
the results were perceived as surprisingly good,
given the small size of the corpus, there remained
yet quite many valid optional completions, since
their tool did not make use of preceding lexical
or morphosyntactic context. Similarly, with Lane
and Bird (2020), Plains Cree interactive word com-
pletion could be used by non-fluent Cree speakers
and learners who may struggle to build word forms.
Nevertheless, as the successful use of the model
requires a broad knowledge of the language and
its word formation, in order to be able to choose
the completion appropriate to the context, they con-
sidered that the compilation model might be most
useful for fluent speakers. Additionally, the model
is helpful to fluent speakers who have difficulties
with diacritics for vowel length and other aspects
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of spelling, in support of which they also included
a spelling correction component.

The present research draws inspiration from
these pioneering works of Lane et al. (2022) and
Lane and Bird (2020), and seeks to continue the
experiments in the field of word completion for
Plains Cree. The present study, however, aims to
investigate the feasibility of a complete word pre-
diction and seeks to provide fluent Cree speakers
with morphosyntactically and contextually appro-
priate, if not accurate, word suggestions which can
potentially speed up the typing process.

To achieve this, we train a Bidirectional Long
Short-Term Memory (BiLSTM) model to predict
the next word in a sequence. LSTMs, a type of re-
current neural network (RNN), have demonstrated
remarkable success in capturing contextual depen-
dencies in sequential data, making them a com-
pelling choice for natural language generation tasks
(Hochreiter and Schmidhuber, 1997; Sundermeyer
et al., 2012). Moreover, the fact that several stud-
ies working with low-resource agglutinative and
polysynthetic languages used LSTMs for word pre-
diction task (Kosyak and Tyers, 2022), makes it a
compelling choice for the Plains Cree case.

To improve the model performance, we also train
Word2Vec embeddings (Mikolov et al., 2013) for
words in the Plains Cree corpus (see Section 2.2).
Additionally, in this study, we explore the effect
of vector augmentation—based on the words’ mor-
phosyntactic analyses, WordNet semantic classes
(if applicable) (Miller, 1995), and lemmas—on the
overall model accuracy and quality of word sugges-
tions.

The paper is structured as follows. The data used
in this paper and data preprocessing are described
in Section 2. The Word2Vec vectors training and
refinement, and BiLSTM model training are de-
scribed in Section 3. Section 4 presents the results,
and Section 5 presents their discussion. Possible
directions for further research are examined in Sec-
tion 6.

2 Data

2.1 Plains Cree

Plains Cree (endonimically – nêhiyawêwin, ISO
639-3: crk) is an Algonquian language spoken in
Alberta, Saskatchewan, and Northwest Territories
in Canada, and in the northern part of Montana in
the US. This is the most widely spoken dialect of
Cree. Cree is an agglutinative and polysynthetic

language of predominantly prefixing nature. Al-
though Cree is among the most spoken Indigenous
languages of Canada, only a small corpus of Plains
Cree is available currently.

2.2 Plains Cree corpus
The training data for this study comes from a com-
bination of the Ahenakew-Wolfart Corpus (Arppe
et al., 2020), the Bloomfield Corpus (Schmirler,
2023), and the Corpus of Miscellaneous Plains
Cree Texts (misi-mîkiwâhp pêsêkinosa ohci) (Da-
canay and Arppe, 2024), which has been mor-
phosyntactically analyzed and lemmatized with the
finite-state model mentioned before (Snoek et al.,
2014; Harrigan et al., 2017), morphosyntactically
disambiguated with a CG parser (Schmirler et al.,
2018; Schmirler, 2023), and then annotated for
WordNet semantic class (for nouns and verbs, when
available). The WordNet classes are based on the
classification by Dacanay (2022) of over 20k Cree
entries in the lexical database underlying the Cree
Words/nêhiyawêwin: itwêwina, a bilingual English-
to-Cree dictionary by Wolvengrey (2001). All this
information about each word was organized in a
.tsv file, where each row included word form, anal-
ysis, and WordNet class as shown below:

awâsisak awâsis+N+A+Pl (n) child#1

2.3 Preprocessing
Before the corpus could be used for training it re-
quired significant preprocessing. First, the standard
corpus normalization steps were made: 1) punctua-
tion signs were removed, 2) words were converted
to lowercase, and 3) Arabic and Roman numerals
were removed.

Secondly, some special notes from the corpus
were taken out. They include speakers’ initials,
new segment markers (e.g., ‘Part’), web URLs for
the texts taken from the Internet pages, and tran-
scribers’ notes (e.g., ‘laughs’, ‘gesture’).

Thirdly, English pieces were removed from the
corpus along with the personal names. Lastly, the
word ‘and’, connecting multiple WordNet classes,
were removed, while all the spaces were replaced
with underscore signs, as exemplified below:

(n) bannock#1 and (n) bread#1 and (n) flour#1
-> (n)_bannock#1_(n)_bread#1_(n)_flour#1

For words that lack WordNet class (e.g., conjunc-
tions, pronouns) the UNK (unknown) code was
added.

Lastly, the morphosyntactic analyses were also
preprocessed. Originally, each analysis contained
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W/o
preverbs

With
preverbs

Word tokens 224,440 281,269
Word types 50,313 40,404
Lemmas 28,200 28,250
WordNet types 5,540 5,545
Analysis types 4,595 4,637

Table 1: Training dataset features.

a word lemma, for instance:

kâwiy+N+A+Px1Sg+Sg or

PV/ki+itêw+V+TA+Ind+X+3SgO

Lemmas were extracted from the morphosyn-
tactic analyses, to provide an additional source of
information about each word, resulting in the fol-
lowing representations:

+N+A+Px1Sg+Sg or

PV/ki+V+TA+Ind+X+3SgO
All the manipulations with the corpus were done
with regular expressions.

Next, we separated verbs from preverbs for eas-
ier processing. In Plains Cree, preverbs are a broad
category that includes both grammatical and deriva-
tional/lexical morphemes. As their name suggests,
they appear before the verb stem. Plains Cree verbs
can have multiple preverbs attached. Preverbs are
usually separated from each other and the verb
stems by hyphens (Okimâsis, 2004, 17). For in-
stance, nikakwê-nêhiyawân ’I try to speak Cree’,
where the preverb kakwê- means ’try to, attempt
to’. The number of combinations that preverbs
can form is enormous, as shown by the Lane et al.
(2022). Therefore, we decided to separate preverbs
from their stems and treat them as separate entries
in the training dataset for the purposes of this study.
By doing so, we expect to improve our model pre-
diction accuracy, because it will be able to learn
preverbs combinations and their relations with dif-
ferent verb stems.

2.4 Training dataset

After all the aforementioned preprocessing steps,
the dataset presented in Table 1 was obtained. The
left column shows the size of the corpus before
preverb separation and the right column - after sep-
aration.

3 Language modelling

3.1 Word2Vec pre-training

To improve the performance of the LSTM model,
we decided to pre-train Word2Vec vectors using
the CBOW approach. We experimented with dif-
ferent window sizes and settled with window size
5, because it was giving the best results. Consid-
ering the amount of information about each word
available in the dataset, we decided to make the
most of it during the Word2Vec pre-training. In
order to do so, separate vectors were trained on
the sequences of words1, their WordNet semantic
classes, their lemmas, and their morphosyntactic
analyses, giving us four sets of vectors. The aver-
age of four vectors was calculated, and the original
vectors for words were updated with the refined
ones. Thus, the final word vectors are based not
only on the neighbouring words but also on the
semantic classes, lemmas, and morphosyntactic
features of these neighbouring words.

Some adjustments had been made, however, to
address the case of the words without WordNet
class (such as non-inflecting particles) and/or mor-
phosyntactic analysis. The vector refinement was
organized in such a way that vectors for the ‘Un-
known’ WordNet class or analysis were not in-
cluded in the vectors’ averaging. So, for exam-
ple, the refined vector for the word mêskanaw
(mêskanaw; N+I+Sg; (n)_road#1_(n)_trail#2) was
the average of the vectors of mêskanaw and its
lemma, analysis, and semantic class. However, for
the particle iyikohk (’to such a degree; to such an
extent’), the WordNet class is unavailable, so its
averaged vector is based on the word, analysis, and
lemma vectors only.

3.2 Model training

We trained a BiLSTM language model using the
pre-defined word vectors as embeddings. As was
mentioned earlier, the Bidirectional Long Short-
Term Memory model was chosen for the purposes
of this study. The LSTM model was chosen for
our experiments because it was previously success-
fully used for predictive text tasks for polysynthetic
low-resource languages (Kosyak and Tyers, 2022).
At the beginning of the study, both unidirectional
and bidirectional models were tested, and BiLSTM

1For convenience, we will be using the term ’word’ to
refer to all the Cree tokens in the training dataset, which also
include preverbs.
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showed better results. Thus, we decided to proceed
with BiLSTM.

The data for language modelling was split into
modelling and testing subsets at a ratio of 90% to
10%. The proportionately larger training set is due
to the relatively small amount of data. The models’
evaluation was based on the 3-fold cross-validation
results.

The Word2Vec training parameters are provided
in Appendix A. The model training hyperparam-
eters are provided in Appendix B. All the BiL-
STM models were trained on the university’s high-
performance computing cluster. The average train-
ing time for each model was 2-3 hours.

4 Results

4.1 Refined BiLSTM model

To evaluate our model we looked at its top 10 pre-
dictions. The number 10 was chosen because it
covers the number of suggestions provided by all
commonly used tools, such as a smartphone key-
board (3-9 suggestions), search engine (9 sugges-
tions), and text editors (5-9 suggestions). The re-
sulting model predicted the correct word in the top
10 predictions in 36.3% of cases. Mostly, the model
handled the prediction of nouns, adverbs, and pre-
verbs better than of verbs. In comparison to the
model trained with non-refined vectors, the over-
all quality of predictions slightly improved, and
suggestions became more contextually and gram-
matically suitable (see Section 4.2 for comparison).

In cases when the model could not provide the
correct completion among the first 10 predictions,
the first letter of a word was provided to the model,
simulating the beginning of user input. As a result,
41% of previously non-predicted words were even-
tually suggested as a possible completion in the top
10 predictions. The majority of the words predicted
with the first letter input were verbs.

To sum up, the model predicts the next word by
preceding context in 36.3% of cases and predicts
the next word by context and the first letter in 28%
of cases. However, as will be shown in the next
section, this version of the model was not the most
accurate.

4.2 Model performance with different
Word2Vecs

To evaluate how the refined word vectors affected
the overall model performance, we conducted sev-
eral experiments with different combinations of

Vectors
Correct prediction

Top 1 Top 5 Top 10
Non-refined 15.06 31.15 38.55

Word+Analysis 14.19 29.92 37.34
Word+WordNet 13.92 29.59 37

Word+Analysis
+Lemma

13.8 29.57 37.14

Word+Analysis
+WordNet

13.67 29.17 36.54

Word+WordNet
+Analysis+Lemma

13.46 28.86 36.32

Table 2: Prediction accuracy for the models trained with
different Word2Vec sets (mean scores of 3-fold cross-
validation).

refined vectors. It was mainly done to scrutinize
how information about semantic, morphosyntactic,
and lemma sequences contributes to the accuracy
of the BiLSTM model. Table 2 shows the results
of these experiments with a percentage of correct
predictions in the top one, top 5, and top 10 pre-
dictions. It should be noted that these numbers
do not evaluate the semantic and morphosyntactic
appropriateness of the suggestions.

As can be seen from Table 2, the best accuracy
of predictions was shown by the model that was
trained with non-refined word vectors. However,
the results of the models trained with different sets
of refined vectors are not dramatically different as
well. Nevertheless, it is interesting to compare the
performance of the refined vectors’ models. First,
the averaging with lemma vectors does not seem
to provide better prediction results. In both cases
when they were used the overall accuracy dropped
in comparison to the same vectors’ combinations
without lemma. The morphosyntactic analysis, on
the contrary, seems to provide valuable information
about the word’s neighbours. The Word+Analysis
model provides the best results (37.34%) among
the models with refined vectors. The next best
result is shown by the Word+Analysis+Lemma
model (37.14%). The model trained with the full
Word2Vec set shows the lowest accuracy results.

To better understand how the suggestions
changed with the refined vectors, we compared
the models’ results. We began with a comparison
of the predictions produced by the BiLSTM trained
with the Word+WordNet+Analysis+Lemma refined
vectors (hereafter full BiLSTM) and the one trained
with the simple word vectors (hereafter BiLSTM).
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This comparison revealed that the full BiLSTM had
better accuracy in predicting nouns and verbs, in
contrast to other parts of speech that do not have
WordNet class. The overall top-10 suggestions
became more semantically and grammatically suit-
able to the context than those predicted by BiLSTM.
In some cases, predictions of full BiLSTM were
not equal to the originally occurring word, but they
all were in the correct morphosyntactic form. For
example, in one case, the word okimâwa ‘another
chief’ was expected, and the full BLSTM had it
as a top-10 prediction, but it also offered iskwêwa
‘another woman’, oskinîkiwa ‘another young man’,
nâpêwa ‘another man’, mostoswa ‘another cow’.
Most of them (except the ’cow’) are semantically
close to the expected word and denote humans,
and all of them are in the expected obviative form.
The top-10 BiLSTM’s predictions for this case
there were also some relevant suggestions in the
correct morphosyntactic form (e.g., oskinîkiwa,
iskwêwa, mostoswa); however, it had more seman-
tically unsuitable suggestions than full BiLSTM
like mostoswa ‘another cow’, wâkayôsa ‘another
black bear’, êskana ‘another antler’, misatimwa
‘another horse’, ôhi ‘this one’. Another example
like this is illustrated in Table 3. Both models pre-
dicted the correct word in the top 3 suggestions,
but the overall prediction quality is better in the full
BiLSTM case. Interestingly, both Word+Analysis
and Word+WordNet models predicted this word as
top-1 and did not consider the preverb ’kâ-’ in top-
5 suggestions. Word+Analysis model predictions
were all in the correct morphosyntactic form. Ex-
pectedly, Word+WordNet predictions were better
semantically sorted, but not all of them were in the
obviative form.

Another example (see Table 4), represents how
some of the suggestions of the full BiLSTM, al-
though a bit ’ambitious’ do not sound completely
absurd as well. All of them fit the overall structure
of the sentence, and some words fit the context
nicely (e.g., gift, decision). The ’ôma’ sugges-
tion after the ’ôma’ in the preceding context is,
most likely, a result of the word repetitions natu-
ral for spoken language presented in the corpus.
The Word+Analysis BiLSTM also predicted the
expected word, but other suggestions were less sat-
isfactory. The simple BiLSTM did not predict the
next word in this sequence.

In the case of verb predictions, we can observe
a more or less similar situation. Full BiLSTM

provides better suggestions than simple BiLSTM.
For instance, in the case of the example provided
in Table 5 the full BiLSTM correctly predicts the
next verb âtotamân ‘S/he will tell’ in the top 3
predictions. The regular BiLSTM, in contrast,
could not provide the expected verb. Interest-
ingly, all the other refined models predicted the
correct verb, with Word+Analysis+WordNet and
Word+Analysis models providing the best sugges-
tions. The Word+Analysis model’s suggestions are
also provided in Table 5.

Moreover, the separation of the preverbs from
the verb stems allowed all the models to sug-
gest out-of-vocabulary preverb+verb combinations.
However, the Word+Analysis refined model offered
the best preverbs and verb suggestions. When the
first preverb was provided, for example, ’ê-’, this
model suggested possible next preverbs (e.g., kî-),
as well as possible verbs, to follow it. It is also
important to note that some of the predictions are
only possible, if they are not prefixed, as they in-
corporate initial change, e.g. êtwêhk, êtwêt, and
êtât. Thus, further work is needed to address these
cases.

Finally, we observed that the refined models
were less effective in the prediction of particles.
The simple BiLSTM was on average 10% more
successful in predicting them (e.g., awa or ôma
’this’, êkosi ’so, thus’). Moreover, refined mod-
els often failed to predict low-frequency words
that, in addition, did not have a WordNet class and
morphosyntactic analysis assigned in our training
dataset.

5 Discussion and Conclusions

Although testing of the models shows that the over-
all accuracy is higher for the simple BiLSTM, we
argue that these results need further analysis and
discussion before we can come to the final conclu-
sion about vector refinement efficiency for Plains
Cree word prediction. In order to quantify the re-
sults of our qualitative observations, we did two
additional tests on the out-of-fold prediction re-
sults. First, we analyzed how semantically close
were the predictions to the expected word. Second,
we measured the morphosyntactic similarity of the
predictions and the expected words.

For the first test, we measured a Wu-Palmer Sim-
ilarity between the WordNet classes of the predic-
tions and the target words with the NLTK WordNet
package. The Wu-Palmer similarity value repre-
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Input: ...cêskwa! itwêw awa sihkihp. êkotê isi kapâw. miyosiyiwa ôhi _
Eng: Wait! S/he says this is a waterhen. Towards there, s/he goes ashore. Someone is beautiful, this is_’
No. Full BiLSTM predictions BiLSTM predictions
1 ka- Preverb kâ- Preverb
2 oskinîkiskwêwa ’another young woman’ iskwêwa ’another woman’
3 iskwêwa ’another woman’ oskinîkiskwêwa ’another young woman’
4 oskinîkiwa ’another young man’ ê- Preverb
5 wâkayôsa ’another black bear’ oskinîkiwa ’another young man’
6 nâpêwa ’another man’ nâpêwa ’another man’
7 kisêyiniwa ’another old man’ another wâkayôsa ’another black bear’
8 nâpêsisa ’another boy’ mostoswa ’another cow’
9 okimâwa ’another chief’ kisêyiniwa ’another old man’
10 nôtokêsiwa ’another old woman’ okimâwa ’another chief’

Table 3: Predictions comparison 1

Input: ...pîhci ôma owiyasiwêwin piko ta-kawotinikêhk ôma _
Eng: ’By law, s/he must take back this _’
No. Full BiLSTM predictions BiLSTM predictions
1 miyikosiwin ’gift’ ôma ’this’
2 CRTC ka- Preverb
3 askiy ’land’ owiyasiwêwin ’law, decision’
4 wîhtamâkêwin ’statement, announcement’ nêhiyaw ’Cree person’
5 ôma ’this’ mâmiskôcikâtêwin ’discussion’
6 pîkiskwêwina ’words’ kistêyihtcikâtêwin ’importance; principle’
7 tahtoskânêsiwak ’United Nations’ askiy ’land’
8 owiyasiwêwin ’law, decision’ wîhtamakêwin ’statement’
9 mâmawâyâwinihk ’community, group’ wiyastêwin ’context, foundation’

10 wiyastêwin ’structure, arrangement, format’ miyo-âyâwin ’prosperity, good health’

Table 4: Predictions comparison 2

Input: ...âcimowin ôma k-ôh-nitotamâkawiyân k- _
Eng: ‘This story, you (pl.) have not told me _’
No. Full BiLSTM predictions Word+Analysis BiLSTM predictions
1 ôh- Preverb ôh- Preverb
2 ayâyân ’I will say’ âti- Preverb
3 âtotamân ’s/he will tell’ âtotamân ’s/he will tell’
4 êsiyîhkâtêk ’it will be called’ êtwêt ’s/he says so’
5 âtotamân ’you will tell us about it’ êtwêhk ’people say’
6 êtwêhk ’people say’ êtât ’you (sg) say thus to him’
7 êtwêt ’s/he will say’ êsiyîhkâtêk ’it will be called’
8 ês-âsotamawiyâhk ’you (sg) promise to us’ êtwêyân ’I will say’
9 ây- Preverb âyâyâhk ’for us to be there’
10 êtât ’you will say to him/her’ êsiyîhkâsot ’s/he is called so’

Table 5: Predictions comparison 3
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Model
Wu-

Palmer
similarity

MorphSyn
similarity

Non-refined 37.9 42.17
Word+Analysis 38.22 42.5
Word+WordNet 37.86 41.86
Word+Analysis
+Lemma

37.93 42.21

Word+Analysis
+WordNet

37.48 42.1

Word+WordNet
+Analysis+Lemma

37.78 42

Table 6: Average Wu-Palmer similarity and morphosyn-
tactic (MorphSyn) similarity of the out-of-fold predic-
tions to the actual labels

sents the distance between two synsets within the
WordNet semantic hierarchy tree. It ranges from 0
to 1; the higher the value the more semantically sim-
ilar two words are. The second column of Table 6
shows the average semantic similarity of top-10 pre-
dictions made by the models to the corresponding
target words. The similarity was counted for/with
applicable words only, i.e. words marked for the
WordNet class.

For the second test, we calculated the Jaccard co-
efficient index for the morphosyntactic analyses of
target words and predicted words. This comparison
intended to show how well the suggested words
were able to fit the morphosyntactic structure of
the sentence. The third column of Table 6 demon-
strates the average Jaccard similarity index of all
the predictions and target words’ pairs. Similarly,
with the first test, the similarity index was calcu-
lated only for the words with the morphosyntactic
analysis in the dataset.

The results of the tests showed that
Word+Analysis and Word+Analysis+Lemma
refined models provided contextually and gram-
matically better suggestions in comparison to
other models. An average suggestion of the
Word+Analysis model was 42.5% grammatically
and 38.22% semantically similar to a target word.
However, the difference is too small to claim with
certainty that the refined vectors significantly
improved the quality of predictions.

Although vector refinement does not provide
a substantial prediction improvement, the main
experiment and the additional tests indicate that
the morphosyntactic information about words con-

tributed the most to the refined models’ accuracy
and quality of suggestions. Probably, this result
is due to the lower number of words lacking mor-
phosyntactic analysis (in comparison to words lack-
ing WordNet class). The lemma information does
not seem to contribute to the overall accuracy of
prediction. Nevertheless, it seems to improve the
overall quality of suggestions. The information
about neighbouring WordNet classes did not im-
prove the accuracy or quality of word prediction.
However, it is most likely related to the high num-
ber of words in the dataset that were not assigned a
WordNet class yet or do not have a WordNet class.

The analysis of the models trained with refined
vectors and the regular model revealed a disadvan-
tage of embeddings refinement in the present set-
tings. Although refined vectors contributed to the
slight prediction quality improvement for the words
that had all the extra information like morphosyn-
tactic analysis, WordNet class, and lemma, they
did not provide an adequate representation for the
words lacking some or all of this extra information.
The vector refinement function did not update its
vectors based on the additional information. Conse-
quently, after refinement, they could appear further
from the words they originally co-occurred with,
because their ‘neighbours’ vectors were updated.
This highlights the necessity for a better refinement
approach in further studies. In this study we used
simple vector averaging, but in the follow-up stud-
ies the more sophisticated approaches like those
proposed by Faruqui et al. (2015) and Mrkšić et al.
(2017) should be explored.

To interpret the results of this study, it is also im-
portant to keep in mind that the model was tested
on a small chunk of the corpus. Our corpus, in
general, has a large portion that comes from tran-
scribed Plains Cree narratives and fiction stories.
Transcribed narratives often have more filler words,
while fictional stories often have rare literary words.
Both significantly differ from the writing we use on
a day-to-day basis (texting, search queries, etc.). In
some cases, the preceding context may have many
words without semantic class and that makes pre-
dictions of the following words very tricky. Thus,
we are sure that under the present circumstances,
the experiment with refined BiLSTM models train-
ing yielded promising results. In future, we want to
experiment with more standardized texts for train-
ing and testing and explore the possibility of exclud-
ing filler words for the Word2Vec training. More-

21



over, we believe that the predictions’ quality can
be also improved by reducing the number of non-
analyzed words with unknown WordNet classes in
our corpus. Further improvements in the training
dataset can allow the model to learn more about
contextual neighbours of each word, WordNet class
and morphosyntactic analysis.

To conclude, this research lays the groundwork
for a future predictive text model for Plains Cree.
It shows that full-word prediction is not impossi-
ble for Plain Cree, and with certain improvements
and modifications, can reach higher accuracy lev-
els. This study also explores the use of augmented
word embeddings in data scarcity cases; however,
the efficiency of this method requires further anal-
ysis with a fuller dataset. Potentially, use of the
model in tandem with other rule-based tools and
resources developed for Plains Cree, such as mor-
phosyntactic analyzer (Snoek et al., 2014; Harrigan
et al., 2017), constraint grammar parser (Schmirler,
2023), or weighted Plains Cree morpheme combi-
nations (Lane et al., 2022), can lead to more accu-
rate results. Naturally, significant improvements
are required before speakers and learners can use
this tool.

6 Future work

Naturally, this study is only the beginning of the
journey to the full-scale tool for the predictive text
for Plains Cree. Hence, there are several directions
for future research and experiments that we plan
to pursue next to address the gaps in the present
study.

First, we would like to try using fastText embed-
dings (Bojanowski et al., 2017) to capture regular-
ities on the sub-word level of Plains Cree beyond
preverbs. FastText embeddings were already suc-
cessfully used for Mi’kmaq (Boudreau et al., 2020),
another Algonquian language, and provided sub-
stantial improvements to the Mi’kmaq word predic-
tion model. It would be interesting to compare the
results of the word prediction model trained with
refined word vectors used in this study, and the one
trained with fastText embeddings. Hypothetically,
the fastText-based language model should handle
Plains Cree verbs better, because it will be able
to capture other aspects of rich Plains Cree mor-
phology (like verbal suffixes), by learning it on a
sub-word level.

Secondly, we would like to implement partial
input suggestions beyond preverbs for long mor-

phologically complex words (e.g., verbs with 3+
preverbs). This approach will require a different
methodology for dataset preparation and prediction
assessment. Moreover, the keystroke saving tests
will be required to explore the efficiency of partial
input suggestions for keyboard users.

Limitations

Since this study is experimental, many problems
have not been addressed here yet. First of all, our
model does not have mechanisms to work with
OOV (out-of-vocabulary) words. It only knows
the words and prefixes it encountered in the corpus.
This significantly limits the model at this stage,
however, we plan to address this issue during the
next development phase. Secondly, the model has
difficulties in predicting longer and more morpho-
logically complex words. As mentioned above, we
plan to fix this by implementing partial input pre-
dictions. Thirdly, the model does not yet have a
spelling relaxation function that would allow users
to type without diacritics and still get predictions.
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A Word2Vec hyperparameters

The following hyperparameters were used to train
Word2Vec embeddings.

Parameter Value
vector size 300
window 5
min count 1
workers 4

Table 7: Word2Vec hyperparameters

B BiLSTM hyperparameters

The following BiLSTM hyperparameters provided
the best training results.

Parameter Value
BiLSTM layers 3
embedding dim 300
layers dropout 0.3
sequence length 21
optimizer Adam
learning rate 0.001

Table 8: BiLSTM hyperparameters
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