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Introduction

We would like to welcome you to AmericasNLP 2024, the Fourth Workshop on Natural Language Pro-
cessing for Indigenous Languages of the Americas!

The main goals of the workshop are to:

• encourage research on NLP, computational linguistics, corpus linguistics, and speech around the
globe to work on Indigenous American languages.

• promote research on both neural and non-neural machine learning approaches suitable for low-
resource languages.

• connect researchers and professionals from underrepresented communities and native speakers of
endangered languages with the machine learning and NLP communities.

In 2024, AmericasNLP is being held in Mexico City, Mexico, on June 21. Prior to the workshop two
shared tasks were hosted: (1) the Shared Task on Machine Translation into Indigenous Languages and
(2) the Shared Task on the Creation of Educational Materials for Indigenous Languages. During the
workshop, there will be 2 invited talks, a poster session, and multiple paper and shared task submission
presentations.

We received a total of 37 submissions: 21 research papers, 6 previously published papers, and 10 shared
task system description papers (across both shared tasks). 16 archival papers were accepted (acceptance
rate: 76%) – in addition to the previously published and system description papers.

AmericasNLP would not have been possible without the help of the following: first, we thank our spon-
sors, Amazon and Aditu, and second, we would like to acknowledge all the time and effort put into
the reviewing process, and thank for program committee members for helping us create a high-quality
program. Finally, we also thank all the authors who submitted their work to the workshop, the partic-
ipants of both shared tasks, and everyone who will be at the workshop, both in-person and remote, to
exchange and discuss their ideas for improving natural language technologies for Indigenous languages
of the Americas!

Manuel Mager, Abteen Ebrahimi, Shruti Rijhwani, Arturo Oncevay, Luis Chiruzzo, Robert Pugh, and
Katharina von der Wense

AmericasNLP 2024 Organizing Committee
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Keynote Talk

Graham Neubig
Carnegie Mellon University

Bio: My research is concerned with language and its role in human communication. In particular, my
long-term research goal is to break down barriers in human-human or human-machine communication
through the development of natural language processing (NLP) technologies. This includes the devel-
opment of technology for machine translation, which helps break down barriers in communication for
people who speak different languages, and natural language understanding, which helps computers un-
derstand and respond to human language. Within this overall goal of breaking down barriers to human
communication, I have focused on several aspects of language that both make it interesting as a scientific
subject, and hold potential for the construction of practical systems.
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Keynote Talk

Jaime Pérez González
University of California, Santa Barbara

Bio: As a morpho-syntactician, I study word formation and I am especially interested in the interface be-
tween morphology, syntax and semantics in human languages. I look at functional factors that shape the
use of certain morphological constructions in agglutinative languages. Speakers activate these different
domains when using their language, so there must be abstract and formal principles that determine how
these patterns are represented in their minds. I investigate these topics in lesser-studied languages, with
focus on Mayan languages and Miskitu (Misumalpan language spoken in Nicaragua and Honduras).
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NLP for Language Documentation: Two Reasons for the Gap between
Theory and Practice

Luke Gessler Katharina von der Wense
University of Colorado Boulder

{luke.gessler,katharina.kann}@colorado.edu

Abstract

Both NLP researchers and linguists have ex-
pressed a desire to use language technologies
in language documentation, but most documen-
tary work still proceeds without them, present-
ing a lost opportunity to hasten the preservation
of the world’s endangered languages, such as
those spoken in Latin America. In this work,
we empirically measure two factors that have
previously been identified as explanations of
this low utilization: curricular offerings in grad-
uate programs, and rates of interdisciplinary
collaboration in publications related to NLP in
language documentation. Our findings verify
the claim that interdisciplinary training and col-
laborations are scarce and support the view that
interdisciplinary curricular offerings facilitate
interdisciplinary collaborations.

1 Introduction

In 2019, 5 out of 68 indigenous languages from
Colombia were about to become extinct: one of
them, Tinigua, had only a single speaker left;1 for
the others, the situation looked only marginally
better. Globally, approximately half of human-
ity’s roughly 7,000 languages are considered en-
dangered (Bromham et al., 2022). While many
people in Latin America and other places around
the world want their languages to be preserved, lan-
guage documentation – the process of producing
grammars and texts to record a language – is very
labor-intensive. Demand for individuals who can
perform language documentation far outstrips sup-
ply worldwide, and there is little reason to expect
this will change any time soon.

In the past 20 years,2 the computational linguis-
tics (CL) and natural language processing (NLP)
communities have responded with systems which

1https://www.eafit.edu.co/
noticias/eleafitense/113/
universo-linguistico-colombiano-68-idiomas-propios

2For an early example, see Kuhn and Mateo-Toledo (2004).

can automate some of the labor required in lan-
guage documentation (LD). For example, ELPIS
(Foley et al., 2018) can transcribe audio into text
even under the challenging conditions endemic to
the LD process, such as low data volumes. Despite
the considerable number of computational systems
which have been proposed and described over this
period, they have seen little practical use (see, e.g.,
Good et al. 2014; Flavelle and Lachler 2023).

It is puzzling, prima facie, that systems with
proven potential to facilitate LD have not been inte-
grated into LD projects, and several explanations of
this have been offered: Gessler (2022) cites lack of
interoperability between NLP systems and LD apps.
Flavelle and Lachler (2023) cite an array of orga-
nizational barriers that linguists, NLP researchers,
and community members face in their collabora-
tions, including conflicting professional incentives
and a lack of understanding of the other party’s
conceptual frameworks. They further observe that
“coursework in computational linguistics is rarely
required (or even available) to students training to
be documentary linguists, and vice-versa”, with the
consequence that they “miss out on the opportu-
nity to learn even the basic concepts of each other’s
fields, they also miss out on the opportunity to build
connections with others who may go on to special-
ize in those areas”. We expect that there is plenty
of room for many explanations to be correct, as this
issue is multifaceted.

In this work, we aim to quantify two potential
reasons for the lack of usage of NLP systems in
real-world LD projects and to compare situations
across countries. Specifically, we ask the follow-
ing research questions (RQs): (1a) How many top-
25 universities offer graduate programs in which
students can learn about both NLP and LD? (1b)
How does the answer to the aforementioned ques-
tion differ across countries? (2a) What percentage
of papers on NLP for LD are the result of truly
interdisciplinary collaborations between NLP re-

1
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searchers and documentary linguists? (2b) How
does the answer to the aforementioned question
differ across countries? (3) Finally, is there a con-
nection between the answers to (1a) and (2a)?

To answer our RQs, we use publicly available
data from two sources: graduate program curricula
and academic publications. We treat each coun-
try as as an individual unit: quantities we gather
are aggregated per country before we proceed with
analysis. Aggregation at any smaller unit (e.g.,
at the university or individual level) would make
data collection impractical, and while it is true that
countries are not monolithic with respect to curric-
ular offerings or publishing cultures, we observe
that these differences are in sum much more pro-
nounced between rather than within countries.

2 University Curricula

We examine five countries: the United States, Ger-
many, Brazil, Mexico, and Colombia. We choose
the United States and Germany because of their
prevalence in AI publication venues and because
their academic cultures are quite distinct. We addi-
tionally choose Brazil, Mexico, and Colombia, as
these countries, like much of Latin America, have
many indigenous languages.

For each country, we consider the 25 top-ranked
universities according to QS World University
Rankings 2024.3 For each university, we then de-
termine whether it offers a graduate program in
computer science (CS) or linguistics (Ling). We
define a “graduate program” as anything that is at
least partially beyond the scope of a United States
bachelor’s degree: any MS or PhD program would
qualify, though some degree programs such as li-
cenciaturas vary in whether they include graduate-
level training, and we examine their curricula on
an individual basis.

As for whether a program qualifies as “computer
science” or “linguistics”, we would like to capture
the programs that have the highest densities of NLP
researchers and documentary linguists. To this end,
we define a “computer science” program as any
program that has “natural language processing” or
“computational linguistics” in its name, or has a
graduate course in algorithms; and we define a
“linguistics” program as any program that offers at
least one graduate course in theoretical linguistics.4

3https://www.topuniversities.com/
world-university-rankings

4We do not consider whether the program contains the
word “linguistics”, as this would include programs that are
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USA 25 17 17 12 0 12 9
Germany 25 20 20 1 0 6 0
Mexico 12 3 2 0 0 1 0
Brazil 23 12 12 1 0 2 1
Colombia 8 4 3 0 0 1 0

Table 1: University curriculum data by country. Among
the 25 top-ranked universities in each country, the
columns display the number of universities which have
a qualifying computer science program; have a quali-
fying linguistics program; have both programs; have
both programs and offer both an NLP course in the com-
puter science program and a LD course in the linguistics
program; have an LD course in the computer science
program; have an NLP/CL course in the linguistics pro-
gram; and have both an NLP/CL and an LD course in
the linguistics program.

For each eligible program, we determine whether
it offers coursework in NLP/CL or LD. For a CS
department, an NLP course must be dedicated to
just NLP (an introduction to AI with a couple of
weeks introducing NLP does not qualify) and a LD
course must either include real LD or study sys-
tems which are explicitly intended for use in LD
settings. For a linguistics department, an NLP/CL
course should cover the use and/or development
of NLP systems which can automatically perform
linguistic analysis (such as finite-state automata,
PoS taggers, or parsers) or modern NLP, and a LD
course should be structured as a typical field meth-
ods course where students document a language
through the full term of the course.

2.1 Results

We give a summary of our findings in Table 1. See
[REDACTED] for full data.

RQ1a First, for CS departments, we can see that
none of the 93 departments offered an LD-related
course. Of the 56 linguistics departments, 22 of-
fered an NLP/CL course, and 10 offered both an
NLP/CL course and an LD course. This indicates
low overall availability of interdisciplinary training
to both populations, as it is overall not common for
graduate students to take courses outside of their

primarily focused on language teaching or learning and would
be unlikely to host a documentary linguist student.

2
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departments.

RQ1b Considering now the differences between
countries, we can see that 9 out of 10 of the uni-
versities offering both an LD and NLP/CL course
are in the US, as are 12 out of the 22 offering an
NLP/CL course. We also see that 12 out of the 14
universities which have both a CS program with an
NLP course and a linguistics program with an LD
course are in the US, which we view as potentially
facilitative of interdisciplinary collaborations. Thus
while rates of interdisciplinary training and contact
are low overall, they are comparatively higher for
the US, and if the view that this ought to encourage
collaboration is correct, then we should expect to
see higher rates of interdisciplinary publications
among works from the US (cf. RQ3).

3 Publications

We collect a large number of publications, each
with the following annotations:

1. Relevance – whether the work’s core contri-
bution is a resource or system that could directly
aid the efforts of documentation projects. We op-
erationalize this requirement in two ways. First, a
relevant paper must use at least one dataset that is
an order of magnitude smaller (by tokens/hours)
or more than typical high-resource datasets for the
task, and the language of this dataset must be un-
represented among these high-resource datasets.
(For example, a work on Universal Dependencies
parsing that used the Thai treebank would count,
because at 22K tokens, the Thai treebank is over
an order magnitude smaller than a typical English
treebank, EWT, which has 250K tokens.) We fur-
ther require that a relevant paper’s task be one that
has direct relevance to LD activities, such as mor-
phological parsing or machine translation.

2. Country – the country with the most repre-
sentation among the authors’ organizational affili-
ations. (We do not consider authors’ nationalities,
whatever they may be—only their institutional af-
filiations at the time of the work’s publication.) If
there is a tie, we take the country of the first author.

3. Documentation as Purpose (DaP) – whether
LD was explicitly mentioned in the paper as a mo-
tivation for the work.

4. Performance of Documentation (PoD) –
whether the collection of novel documentary data
was a part of the work, where “collection” means
the creation of digital primary language data that
did not exist before the work.

5. Interdisciplinarity (Int) – whether the author
list contains at least one NLP researcher and one
documentary linguist. Any individual researcher
may belong to at most one of these groups. Authors
are assessed on the basis of what venues they have
published in: typical NLP venues include ACL
conferences, and typical documentary linguistics
venues include LD&C and ICLDC.

The population of relevant (as defined above)
papers is diverse and distributed throughout many
publication venues, which makes it non-trivial to
sample from it. We employ two resources for gath-
ering data which have complementary strengths:
the ACL Anthology,5 a machine-readable reposi-
tory of publications from venues associated with
the Association for Computational Linguistics, and
Semantic Scholar,6 an academic publication aggre-
gator with advanced querying capabilities.

AmericasNLP & ComputEL The first part of
our data comes from two venues contained in the
ACL Anthology which we identify as having the
highest potential density of relevant papers of any
publication outlet we are aware of. These are the
AmericasNLP workshop7 and the ComputEL work-
shop.8 All documents which belong to one of our
target countries are annotated. This dataset is use-
ful because of its concentration of highly relevant
papers, but its weakness is that it is biased heavily
towards the relevant papers that are most concerned
with LD as a primary goal.

Semantic Scholar The second part of our data
comes from Semantic Scholar’s bulk search feature,
which we use to find documents which contain
at least one keyword related to LD and at least
one keyword related to NLP.9 Results are shuffled,
and the first 50 relevant papers for each of our
target countries are annotated. This dataset is useful
because it ought to offer a wider view of relevant
papers, but its weakness is that its keyword-based
approach likely excludes many relevant papers.

3.1 Results

For any one of the Latin American countries we
consider in the previous section, we are unable to
find more than 5 relevant papers despite an exhaus-
tive review of the over 3,000 publications that were

5https://aclanthology.org/
6https://www.semanticscholar.org/
7https://aclanthology.org/venues/americasnlp/
8https://aclanthology.org/venues/computel/
9See Appendix A for details.
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Country DaP PoD Int Total

ComputEL & AmericasNLP

USA 37 11 22 48
Germany 3 1 1 5
Total 40 12 23 53

Semantic Scholar

USA 18 6 8 50
Germany 4 3 5 50
Total 22 9 13 100

Table 2: The number of relevant papers for each country
(Total) which respectively had documentation as an ex-
plicit purpose (DaP), actually performed documentation
(PoD), and had an interdisciplinary authorship (Int).

returned by our query, and we therefore consider
only Germany and the United States in this sec-
tion. We give a summary in Table 2, and all data is
publicly available at [REDACTED].

RQ2a Looking at the Total rows in Table 2, we
see that less than half of all relevant papers are
the results of truly interdisciplinary collaborations
– for Semantic Scholar, as little as 13%. While not
all papers that could be relevant for LD necessarily
benefit from being interdisciplinary, we claim that
this is desirable at least for papers that cite LD as
their main motivation. As those papers number 62
overall, while only 36 are interdisciplinary, we find
the latter number to be unfortunately small. This
shows that there is much room for growth in the
formation of interdisciplinary collaborations.

RQ2b For the ACL Anthology data, the United
States has significantly more representation than
Germany, and around 80% of works name LD as
an explicit goal. Curiously, a large but smaller
number of works are interdisciplinary, which could
be interpreted as evidence of a degree of awareness
within the NLP community in the United States of
the need for NLP in LD.

A different but consistent picture emerges in the
S2 data. While many American publications still
cite documentation as a motivation, the proportion
is smaller, and the number of interdisciplinary au-
thorships is also smaller. This corroborates our
initial conjecture that ComputEL and Americas-
NLP papers would be disproportionately focused
on documentation relative to the population of rele-
vant papers as a whole. Fewer than 10% of German
papers cite documentation as a purpose or have an
interdisciplinary team.

RQ3 Unfortunately, the amount of papers we
are able to find, especially for Latin American
countries, is too small to give a definite answer to
RQ3. However, the fact that more US-based than
Germany-based researchers motivate their work
with LD and the larger number of interdisciplinary
paper collaborations could be interpreted as evi-
dence of a higher degree of awareness of LD chal-
lenges in the NLP community as well as a larger
number of LD researchers who are aware of NLP.
This, in turn, could potentially stem from more
readily accessible education on LD as well as from
programs that offer courses in both LD and NLP.

4 Conclusion

We have presented what is to our knowledge the
first evidence that provides an empirical under-
standing of two factors in the adoption of language
technologies in LD: university curricula and col-
laboration trends between NLP researchers and
documentary linguists. Our data confirms previous
claims that rates of interdisciplinary training and
collaboration are low, even for work that cites appli-
cation in language documentation as a motivation.

Moreover, while the scale of our data precludes a
firm conclusion, it is consistent with the claim that
interdisciplinary coursework is a partial determi-
nant of collaboration rates, as the higher rates of in-
terdisciplinary course offerings in the United States
(relative to Germany) are mirrored by higher rates
of interdisciplinary publishing by authors working
in the United States. This broadly supports the
view that interdisciplinary graduate coursework is
important for supporting the incorporation of hu-
man language technologies into LD practice. More
evidence is needed, however, in order to investigate
other possible factors: perhaps other influences,
such as nation-level grant programs or academic
cultures, are directly affecting both curricula and
rates of interdisciplinary collaborations.

We therefore join Flavelle and Lachler (2023) in
identifying interdisciplinary curricular offerings as
an important way for the NLP and linguistics com-
munities to work towards the ultimate goal of aid-
ing LD with language technologies. Additionally,
we observe that many of the same benefits could be
gained from interdisciplinary workshops such as
the LTLDR workshop (Neubig et al., 2020), which
gathered documentary linguists, NLP researchers,
and community members for the explicit purpose
of fostering interdisciplinary collaborations.
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Limitations

Our findings are limited by the quantity of data that
we have collected and the methods we used to sam-
ple the data points that we have. For universities,
this comes out in our selection of 5 particular coun-
tries and our consideration of 25 universities from
each, as we were unable to include more countries
and universities given the high time cost of anno-
tating a single university. For publication data, this
is instantiated in our two methods for collecting pa-
pers which, as we described, we expect introduced
sampling bias, though these two methods seemed
that they would introduce the least sampling bias
of any of the other methods we considered while
still remaining practical to perform.
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A Search Criteria

We use Semantic Scholar’s bulk search API10,
which accepts queries in a rich structured format
which features several operators which form trees
over keyword arguments. Our query is provided be-
low in an abstract syntax tree. The two main parts
of it contain keywords related to language docu-
mentation and NLP models, respectively. The tilde
operator x~n specifies that up to n words may inter-
vene between the words in x. Both keyword lists
are joined with the logical or operator | which is
satisfied if any one of the keyword expressions are
satisfied, and both keyword lists are finally joined
with the logical and operator + which is satisfied
only if both subexpressions are satisfied.

[
"+",
[

'|',
'"low-resource"',
'"low resource"~1',
'"less-resourced"',
'"less resourced"~1',
'"under-resourced"',
'"under resourced"~1',
'"under-studied"',
'"under studied"~1',
'"less-studied"',

10https://api.semanticscholar.org/api-docs/
graph#tag/Paper-Data/operation/get_graph_paper_
bulk_search
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'"less studied"~1',
'"endangered language"~1',
'"indigenous language"~1',
'"language documentation"',
'"document language"',
'"language revitalization"',
'"revitalize language"',
'"language maintenance"',
'"maintain language"',
'"language revival"',
'"revive language"',
'"ELAN"',
'"FLEx"',
'"FieldWorks Language Explorer"',
'"LingSync"',
'typological',

],
[

'|',
'model',
'resource',
'lexicon',
'parser',
'corpus',
'dataset',
'document',
'dictionary',
'grammar',
'segmentation',
'orthographic',
'normalization',
'evaluation',
'experiments',
'"machine translation"',
'"automatic translation"',
'predict',
'neural'

]
]
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Abstract

The use of machine learning and Natural Lan-
guage Processing (NLP) technologies can assist
in the preservation and revitalization of indige-
nous languages, particularly those classified as
"low-resource". Given the increasing digitiza-
tion of information, the development of transla-
tion tools for these languages is of significant
importance. These tools not only facilitate bet-
ter access to digital resources for indigenous
communities but also stimulate language preser-
vation efforts and potentially foster more inclu-
sive, equitable societies, as demonstrated by the
AmericasNLP workshop since 2021. The fo-
cus of this paper is Colombia, a country home
to 65 distinct indigenous languages, present-
ing a vast spectrum of linguistic characteristics.
This cultural and linguistic diversity is an in-
herent pillar of the nation’s identity, and safe-
guarding it has been increasingly challenging
given the dwindling number of native speakers
and the communities’ inclination towards oral
traditions. Considering this context, scattered
initiatives exist to develop translation systems
for these languages. However, these endeavors
suffer from a lack of consolidated, compara-
ble data. This paper consolidates a dataset of
parallel data in four Colombian indigenous lan-
guages - Wayuunaiki, Arhuaco, Inga, and Nasa
- gathered from existing digital resources. It
also presents the creation of baseline models for
future translation and comparison, ultimately
serving as a catalyst for incorporating more
digital resources progressively.

1 Introduction

In the field of natural language processing (NLP),
low-resource languages are characterized by lim-
ited written or spoken digital material. Conse-
quently, applying translation models rooted in ad-
vanced neural architectures to these languages is
challenging due to the models’ high dependence
on substantial data volumes (Wang et al., 2021).
However, recent years have seen a growing trend

towards working with low-resource languages for
machine translation based on transformers. No-
tably, efforts to preserve indigenous languages have
significantly contributed to advancements in this
area (Mager et al., 2018; Ortega et al., 2020a,b;
Chen and Fazio, 2021). The Americas, in particular,
host numerous endangered indigenous languages
spoken by small populations. In response, sev-
eral researchers have devoted their work towards
developing translation models for some of these
languages (Ngoc Le and Sadat, 2020). Highlight-
ing this effort, AmericasNLP was convened in 2021
as the first global workshop dedicated to the appli-
cation of NLP to American indigenous languages
(Mager et al., 2021).

The development of translation tools catering
specifically to indigenous languages has the poten-
tial to confer numerous advantages, including en-
riched access to digital resources and the promotion
of language preservation efforts. As the availability
of digital resources proliferates, it becomes increas-
ingly imperative for indigenous communities to
have access to information in their respective lan-
guages, in order to safeguard their unique cultures
and traditional ways of living. Regrettably, the lim-
ited resources available in indigenous languages
restrict their accessibility to crucial digital materi-
als. The creation of translation tools could serve
as a resolution to this issue, enabling communities
to translate digital resources into their languages.
Beyond simply providing improved access to in-
formation, these tools could stimulate language
preservation by offering a medium for language
revitalization. Furthermore, translation tools could
provide a platform for indigenous communities to
engage with the global community, contributing to
their economic and social development. By fos-
tering cross-cultural understanding and mutual re-
spect, translation tools could play a critical role in
constructing more inclusive and equitable societies.

As acknowledged by the National Indigenous
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Organization of Colombia (ONIC) (de Gobierno
Indígena – ONIC, 2015), Colombia’s linguistic di-
versity is marked by the existence of 65 indigenous
languages, alongside Spanish and two Creole lan-
guages. Among the 32 different departments in
the territory, the regions of Amazonas and Vaupés,
located in the southern sector of Colombia, stand
out for their significant diversity of indigenous lan-
guages. This assortment of indigenous languages
in Colombia is highly distinctive due to their differ-
ent characteristics. For instance, Colombia accom-
modates tonal languages similar to those found in
Southeast Asia and Central Africa, along with lan-
guages representing all four classic morphological
types. These include inflectional (as exemplified by
Kogui and Arhuaco), agglutinative (like Achagua,
Andoque, and Páez), isolating akin to the Malayo-
Polynesian languages (such as Embera and Creole),
and polysynthetic (such as Kamsá) (de Estudios de
Lenguas Aborígenes , C.C.E.L.A).

According to ONIC, the task of preserving these
indigenous voices is increasingly formidable, pri-
marily due to their endangerment amid the dwin-
dling number of native speakers. Over half of these
languages, alarmingly, have fewer than a thousand
active speakers, thus exacerbating their preserva-
tion and conservation challenges (de Gobierno In-
dígena – ONIC, 2015). Further complexities arise
from the proclivity of certain communities to up-
hold their oral traditions over written modes. Take,
for example, the Inga community, wherein cultural
identity preservation is embedded in the prioriti-
zation of oral tradition as the primary vehicle for
knowledge transmission. Such communities con-
tend that the detachment from oral traditions can
incite a loss of numerous practices that necessi-
tate face-to-face interaction and stimulate dialogue
(Rodríguez and Narváez, 2022).

Despite the existence of scattered efforts aimed
at creating translation systems for some indigenous
Colombian languages, we found no consolidated
data that allows for reuse and/or comparison (Sierra
et al., 2015; Sierra Martínez et al., 2016, 2018;
Fernandez et al., 2013). Only recently have initia-
tives emerged that have promoted data replicability
and openness in Colombian Indigenous languages
(Graichen et al., 2023). The primary objective of
this work is to consolidate a dataset of parallel data
in four Colombian indigenous languages: Wayuu-
naiki, Arhuaco, Inga, and Nasa. This dataset is a
product of the compilation, processing, and align-

ment of already existing digital resources in these
languages. It aims to serve as a starting point to en-
courage the incorporation of new digital resources
progressively. A second objective is to create a set
of baseline models for translation that can be used
for comparison in future research.

2 Related Work

Low-resource languages, which lack the digital
or written material needed to build a corpus or a
linguistic collection, include indigenous or endan-
gered languages, region-specific dialects, or lan-
guages without substantial digital resources despite
the existence of millions of speakers. The shortage
of available data, which often results from limited
access to technology, opens up opportunities to
apply various techniques like Data Augmentation,
Back-Translation, and Transfer Learning to miti-
gate this scarcity.

Studies on diverse languages have explored Neu-
ral Machine Translation, Transfer Learning, and ad-
vanced model architectures. For instance, an inves-
tigation of the Tigrinya Ethiopian language yielded
positive results using Transfer Learning (Öktem
et al., 2020). In another study comparing three dif-
ferent models, the Transformer Network performed
the best with a parallel corpus of Yoruba and En-
glish (Adebara et al., 2021). Also, a modification
of the Transformer architecture led to improved re-
sults for South African languages (van Biljon et al.,
2020). Numerous studies demonstrate the effective-
ness of Transfer Learning and advanced modeling
techniques across global languages. For instance,
Finnish and Czech were used as parent languages to
assist low-resource Estonian and Slovak languages
via Transfer Learning, leading to improvements
over the baseline for almost all pre-trained models
(Kocmi and Bojar, 2018). The combination of at-
tention layers and byte-pair encoding in Transfer
Learning also notably enhanced translation capa-
bilities for Turkic languages (Nguyen and Chiang,
2017). Notably, the pairing of the Transformer
architecture with the Back-Translation technique
resulted in improved translation quality for sev-
eral language pairs (Przystupa and Abdul-Mageed,
2019).

American Indigenous Languages, historically de-
ficient in written records, pose unique challenges
for language preservation. The AmericasNLP
workshop provided a platform to unite global re-
search groups to address these challenges, with
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a focus on machine translation across various in-
digenous languages. Numerous techniques and
strategies were employed across the participating
teams in the different versions, yielding promis-
ing results. While some teams achieved success
with multilingual neural networks (Vázquez et al.,
2021; Knowles et al., 2021; Moreno, 2021), oth-
ers found Statistical Machine Translation more ef-
fective (Parida et al., 2021). Additionally, using
unique sources such as Wikipedia and biblical texts
to build the corpus yielded significant results, en-
hancing progress beyond baseline starts (Billah-
Nagoudi et al., 2021). In the recent 2023 edition
of the Workshop, the winning team’s shared-task
strategy comprised extending and finetuning sev-
eral variants of the NLLB-200 (NLLBTeam, 2022).
This cutting-edge machine translation model is
specifically tailored for environments with scarce
resources. Their submission surpassed the baseline
by an average chrF of 11% across all languages,
yielding especially considerable enhancements for
Aymara, Guarani, and Quechua (Gow-Smith and
Sánchez Villegas, 2023).

As for the indigenous Colombian languages’
translations, Graichen et al. (2023) and Robles
et al. (2024) studies are the only works we discov-
ered that present a translation system from Wayu-
unaiki to Spanish and Ika (Arhuaco) to Spanish.
Graichen et al. (2023) applied various unsupervised
and semisupervised subword segmentation meth-
ods to enrich the data used to train a transformer-
based model with linguistic information. Accord-
ing to the results, the incorporation of linguistic
knowledge helps the system to generate improved
translation. Nonetheless, these methodologies in-
troduced substantial noise into the process.

3 Data

3.1 Langauges

The linguistic diversity of Colombia is character-
ized by a variety of indigenous languages, includ-
ing Wayuunaiki, Nasa Yuwe, Arhuaco (Ika), and
Inga. Wayuunaiki, predominantly spoken by the
Wayuú community in the La Guajira region, is the
most widely spoken indigenous language in Colom-
bia. The 2005 DANE census report (de Gobierno
Indígena – ONIC, 2015) indicates a population of
270.413 Wayuú individuals, making it the largest
indigenous demographic. Wayuunaiki is an aggluti-
native language, characterized by the combination
of independent morphemes to form words.

On the other hand, Nasa Yuwe, primarily spoken
by the Nasa people in the Cauca department and
smaller regions such as Valle del Cauca, Tolima,
and Huila, is the second most spoken indigenous
language. Although traditionally classified as part
of the Chibchan language family, it is now largely
considered an isolated language.

Likewise, the Arhuacos, who inhabit the west-
ern and southeastern regions of the Sierra Nevada
de Santa Marta, speak the Ika language. Ika, a
member of the Chibchan language family, is distin-
guished by its sentence structure, which involves
the addition of various morphemes to a root or lex-
eme.

Lastly, the Inga community, descendants of the
Inca civilization, primarily inhabit the Sibundoy
Valley within the Putumayo region, with additional
settlements in Nariño and Cauca. Their language,
Inga, belongs to the Quechuan family. The linguis-
tic diversity of these communities contributes to
the rich cultural tapestry of Colombia.

3.2 Data Collection

Locating documents written in both indigenous lan-
guages and Spanish is challenging due to a lack
of translated resources, as shown by limited trans-
lations of the constitution. The Colombian Cen-
ter for Studies in Aboriginal Languages (de Estu-
dios de Lenguas Aborígenes, 1994) has only trans-
lated the constitution into seven indigenous lan-
guages: Inga, Guambiano, Arhuaco, Kamentsa,
Kubeo, Nasa Yuwe, and Wayuunaiki. This lack
of translated resources extends to religious texts
as well. For instance, complete translations of the
Bible are only available in a handful of indigenous
languages. Specifically, complete or partial trans-
lations of the Bible exist in Wayuunaiki, Arhuaco,
and Nasa Yuwe.

For the Wayuunaiki language, in addition to the
Bible and the constitution, there are various docu-
ments that delve into the characteristics of the lan-
guage and provide sections with translated excerpts.
An example is the document “La conjugación del
verbo en la lengua Wayuu” (Álvarez, 2016) which
offers a comparative perspective on verbal conjuga-
tion in Wayuunaiki and Spanish, addressing seman-
tic, morphological, and syntactic aspects. Similar
to this, the book “Compendio de la Gramática de
la Lengua Wayuu” (Álvarez, 2017) and the arti-
cle “Panorámica de la fonología y morfología de
la lengua Wayuu” (Álvarez González, 2021) detail
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the important features of the morphology, phonol-
ogy, and syntax of the language, presenting com-
parative examples between the two languages. The
book “Vamos a hablar nuestra lengua” (Flórez et al.,
2020) provides accurate information about writing,
grammar, and cultural aspects implicit in everyday
expressions and words. The consolidation of this
language dataset was ultimately achieved by uti-
lizing a short story (Cue, 2012) and a dictionary
(Amaya, 2021). This last resource, compiled in
2021 by Rafael Jose Negrette Amaya, encompasses
a total of 74.583 translated phrases and words in
both languages.

To consolidate the Wayunnaiki dataset, sen-
tences were extracted from PDFs or web pages.
The dataset for the New Testament of the Bible
(YouVersion, 2023) was constructed using a web
scraping process. This entailed systematically pair-
ing sentences by verse and chapter of the book.
In some of the other sources, we relied on addi-
tional pre-processing steps via Large Language
Models (LLMs). Since the texts did not follow
a defined format, GPT-4 (OpenAI, 2023) was em-
ployed to extract candidate texts from the selected
documents. A prompt template was utilized to
identify and tabulate sentences in both Wayuu
and Spanish languages, with this process being
conducted at three-page intervals. An illustra-
tive example of the prompts used is, “Identify
sections in the text where Wayuu and
Spanish sentences co-occur and create a
tabulated representation...”. Then a man-
ual review process was carried out, filtering in-
complete translations, as the Spanish sentence con-
tained blank spaces or non-alphabetic characters.
The combined use of web scraping and GPT-4 in
this manner allowed for the creation of a compre-
hensive and well-structured dataset, thereby en-
hancing the overall readability and coherence of
the information.

The primary data source for Nasa Yuwe was the
constitution (de Estudios de Lenguas Aborígenes,
1994). This document is partitioned into sections:
introductory letters, articles, and a dictionary that
is a compendium of frequently translated words
and phrases from Nasa Yuwe to Spanish. An Op-
tical Character Recognition (OCR) (Smith et al.,
2009) process was employed to extract the 23 trans-
lated articles, along with introductory letters and
acknowledgments. Discrepancies were observed
in the introductory letters as the Nasa Yuwe trans-

lation occasionally contained more content than
the Spanish version. A manual review of the let-
ter text was necessitated to pinpoint precise word
translations and sentence terminations and to elimi-
nate any additional Nasa Yuwe content not found
in the Spanish text. Additionally, a dictionary (orig-
inarios. Lenguas de América) containing 3.729
words and brief phrases in both Spanish and Nasa
Yuwe was included. This dictionary is presented in
HTML format and was processed using the Beauti-
ful Soup tool (Richardson, 2007), a web scraping
library. This was followed by a manual error cor-
rection procedure to guarantee the precision of the
extraction process further.

For the Arhuaco our biggest data source was the
Bible. We again used web scraping and the Beau-
tifulSoup library on selected chapters of the Old
and New Testaments (para el Desarrollo de Pueb-
los Marginados). Our second source for Arhuaco
was the constitution (de Estudios de Lenguas Aborí-
genes, 1994). Given the low quality of the online
document, it was processed through a text identi-
fication procedure with the assistance of Google’s
DocumentAI OCR. This particular API employs
a neural network designed to enhance the recogni-
tion of text within PDF documents, which facili-
tates the conversion of visual document data into
text, organizing the content into distinct paragraphs.
This segmentation significantly simplifies the sub-
sequent concatenation of sentences, thereby stream-
lining the text analysis and processing tasks. The
initial phase of the processing involved the anal-
ysis of introductory letters, which were messages
in either Spanish or Arhuaco, expressing gratitude,
detailing efforts, and explaining the reasons behind
the creation of the book. The document was pro-
cessed in blocks of text, and sentences were con-
solidated by matching paragraphs and sentences
separated by period. After the letters, we moved
to process the constitution articles, which involved
creating a correspondence between titles in Span-
ish and Arhuaco and identifying the pairs. Finally,
a manual pairing process was carried out for the
dictionary section of the constitution. The last
source used for Arhuaco was a book titled “Can-
tando desde la Sierra” (de la comunidad arhuaca de
Jewrwa, 2014), which contains various short sto-
ries and poems in Arhuaco, accompanied by their
Spanish translations. To utilize this, each poem
was detected and subsequently matched with its
corresponding translation in the other language.

10



The Inga language was undoubtedly the
most challenging. We employ as a primary
source a comprehensive dictionary of words and
phrases (de Educación Inga de la Organización
“Musu Runakuna”, 1997). This dictionary was pro-
cessed using a methodology similar to the one used
for the Wayuunaiki language. This involved the use
of the GPT-4 (OpenAI, 2023) for identifying candi-
date pairs translations within the dictionary. Subse-
quently, a further step of data cleaning was under-
taken to minimize the occurrence of false positives.
The second source was the constitution (de Estu-
dios de Lenguas Aborígenes, 1994), which was pro-
cessed using the same procedure used for Arhuaco,
using an Google OCR and a manual cleaning step.
Table 1 shows the size of the training data for each
language.

4 Baseline construction

Following the recent results obtained by the work
of (Robles et al., 2024) and (Gow-Smith and
Sánchez Villegas, 2023) we use NLLB-200, a state-
of-the-art machine translation model specifically
designed for low-resource settings. We experiment
with different distilled versions of NLLB-200 with
600M and 1.3B parameters. Each dataset was ran-
domly divided into training, validation, and testing
sets, comprising 80%, 10%, and 10% of the total
number of sentences, respectively. The resulting
partition, along with the models and code, can be
accessed at https://github.com/juanks235/
MT-Colombian-Indigenous-Languages.

4.1 Experimental Setup

In our approach, we execute model training dis-
tinctively for each language pair available in our
dataset. We refine the embedding matrix to encom-
pass tags for newly added languages, scrutinizing
for not recognized tokens and employing text nor-
malization to reduce potential problems related to
unrecognized punctuation. The application of nor-
malization ensures the accurate processing of the
text, obviating any unknown tokens and providing
the promise that the vocabulary of the tokenizer
doesn’t require an update for the target language.
Nevertheless, if it becomes necessary for the tok-
enizer’s vocabulary to be updated, we implement an
update to include any new or unrecognized tokens
previously overlooked. Our experimental frame-
work operates on four A40-48GB, with a batch size
of 16, 1000 warmup steps, 57000 training steps,

featuring a learning rate of 1e − 4 and a weight
decay of 1e − 3. For automated evaluations, we
leverage SacreBLEU (Post, 2018) for computing
BLEU scores and chrF2++ (Popović, 2017) to mea-
sure chrF2.

4.2 Results

Table 2 presents the results obtained with different
trained models. As expected, the 1.3B model per-
formed better in translations from Spanish to the
target language.

The influence of the inclusion of dictionary data
was evaluated for the Arahauco language due to
the difficulty of its extraction. The results of the
models using all data and excluding the dictionary
generally show a low contribution from the dic-
tionary. For Arhuaco, the best model achieved a
BLEU of 7.72 and a chrF2 of 24.17 (spanish to
target).

A similar evaluation was carried out for NASA.
However, in this case, the more challenging extrac-
tion process was with letters from the constitution.
Therefore, the model trained with all data and the
model trained without constitutional letters were
evaluated. The results in terms of BLEU suggest
a little contribution from the letters, likely due to
difficulties encountered in the alignment process
due to enriched translations for the indigenous com-
munity.

In Wayuu, we evaluated the use of all data and
without the dictionary, which corresponds to the
largest fragment of the dataset. Contrary to what
was expected, the inclusion of the dictionary did
not have a positive impact on the results. In fact, the
highest scores for the BLEU metric were achieved
without the use of this data source, while the ChrF
scores did not show a significant difference. There-
fore, the most effective model was the one trained
without the dictionary using the 1.3B model, which
achieved a BLEU score of 15.37 and a ChrF2 score
of 32.06.

Finally, for Inga, we found it to be the most chal-
lenging language, both for data collection and for
the translation model. Our most successful model
yielded a BLEU score of 1.71 and a ChrF2 score
of 18.40, achieved without the utilization of the
dictionary. However, the dictionary represented
the largest dataset, and this experiment only con-
sidered 212 sentences. The built models can be
downloaded and accessed from the repository, hop-
ing to constitute a baseline for future efforts in
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Language Description Sentences
Wayuunaiki Dictionary (Amaya, 2021) 74583
Wayuunaiki Bible (YouVersion, 2023) 6220
Wayuunaiki Book (Álvarez, 2017) 534
Wayuunaiki Book (Flórez et al., 2020) 467
Wayuunaiki Book (Álvarez González, 2021) 229
Wayuunaiki Book (Álvarez, 2016) 109
Wayuunaiki Short story (Cue, 2012) 39
Wayuunaiki Constitution (de Estudios de Lenguas Aborígenes, 1994) 37
Nasa Yuwe Dictionary (originarios. Lenguas de América) 3729
Nasa Yuwe Letters (Constitution) (de Estudios de Lenguas Aborígenes, 1994) 57
Nasa Yuwe Common words (Constitution) (de Estudios de Lenguas Aborígenes, 1994) 53
Nasa Yuwe Articles (Constitution) (de Estudios de Lenguas Aborígenes, 1994) 23
Arhuaco Bible (para el Desarrollo de Pueblos Marginados) 5542
Arhuaco Articles (Constitution) (de Estudios de Lenguas Aborígenes, 1994) 88
Arhuaco Letters (Constitution) (de Estudios de Lenguas Aborígenes, 1994) 67
Arhuaco Dictionary (Constitution) (de Estudios de Lenguas Aborígenes, 1994) 46
Arhuaco Short stories (de la comunidad arhuaca de Jewrwa, 2014) 42
Inga Dictionary (de Educación Inga de la Organización “Musu Runakuna”, 1997) 3048
Inga Constitution (de Estudios de Lenguas Aborígenes, 1994) 212

Table 1: Parallel data collected for each language

these languages.

5 Conclusion and Future Work

The preservation of indigenous languages, en-
compassing their stories, wisdom, and traditions
is instrumental in fostering cross-cultural under-
standing. However, working with low-resource
languages such as these often presents unique
challenges, particularly in regions like Colombia,
which are teeming with linguistic diversity. We
constructed a dataset of parallel data in four in-
digenous Colombian languages, and the resulting
dataset is freely accessible and usable for future
research projects. Additionally, we developed base-
line translation models for each language pair. Our
findings demonstrated that the NLLB 1.3B model
excelled overall in comparison to the 600M model
as expected. Also, a contrast emerged in the range
of the BLEU score: from as low as 1.71 (Inga) to
as high as 15.37 (Wayuu). Such a significant differ-
ence is attributable to the disparities in data volume,
with Inga being the most challenging language. We
also tested the influence of the inclusion in the
training data of some of the sources in particular
those that were challenging in the extraction phase.
Although this project did not involve direct engage-
ment with community members, future work will
prioritize establishing connections with these com-
munities to expand the dataset and evaluate trans-
lation systems more thoroughly. Our focus will
be on incorporating additional Indigenous Colom-
bian languages and exploring alternative models
or architectures to potentially enhance translation

outcomes.
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Abstract
Plains Cree (nêhiyawêwin) is a morpholog-
ically complex and predominantly prefixing
language. The combinatory potential of in-
flectional and derivational/lexical prefixes and
verb stems in Plains Cree makes it challenging
for traditional auto-completion (or word sug-
gestion) approaches to handle. The lack of a
large corpus of Plains Cree also complicates
the situation. This study attempts to investigate
how well a BiLSTM model trained on a small
Cree corpus can handle a word suggestion task.
Moreover, this study evaluates whether the use
of semantically and morphosyntactically re-
fined Word2Vec embeddings can improve the
overall accuracy and quality of BiLSTM sug-
gestions. The results show that some of the
models trained with the refined vectors pro-
vide semantically and morphosyntactically bet-
ter suggestions. They are also more accurate
in predictions of content words. The model
trained with the non-refined vectors, in contrast,
was better at predicting conjunctions, particles,
and other non-inflecting words. The models
trained with different refined vector combina-
tions provide the expected next word among
top-10 predictions in 36.32 to 37.34% of cases
(depending on the model).

1 Introduction

Auto-complete systems and predictive text input
have become integral components of our daily in-
teractions with our devices and digital platforms.
These applications heavily rely on robust language
models capable of accurately predicting the next
word in a given sequence of text. While substantial
progress has been made in developing efficient lan-
guage models for major languages, the challenges
persist for low-resource languages where scarcity
of training data poses a significant obstacle. This
challenge is especially found for Indigenous lan-
guages that are often also morphologically rich.

With advances in the NLP and machine learning
fields, small training datasets have become less of

a problem; however, the handling of the morpho-
logical complexity still presents a challenge. Lane
and Bird (2020) approached this problem with the
development of an interactive word-completion sys-
tem for Kunwingku (an Indigenous language spo-
ken in Northern Australia) based on a finite state
recognizer which included most morphology for
some 500 verbs. Their tool suggests a completion
up to the next morpheme boundary and helps to
avoid the so-called “combinatorial explosion of
possible words” typical for the prefixing polysyn-
thetic languages.

Lane et al. (2022) further successfully extend
this method to Plains Cree, with a full-fledged
model including all parts of speech, covering most
inflectional morphology for the inflecting verbs
and nouns, and based on a lexicon of well over 20k
lexemes. The tool is based on a finite state mor-
phosyntactic analyzer of Plains Cree (nêhiyawêwin,
an Indigenous language spoken mainly in on the
Western Canadian Plains) (Snoek et al., 2014; Har-
rigan et al., 2017). It uses corpus-based information
about Cree prefixes to predict the most probable
and common next morpheme in a word (based on
a small corpus of some 150k Cree words). While
the results were perceived as surprisingly good,
given the small size of the corpus, there remained
yet quite many valid optional completions, since
their tool did not make use of preceding lexical
or morphosyntactic context. Similarly, with Lane
and Bird (2020), Plains Cree interactive word com-
pletion could be used by non-fluent Cree speakers
and learners who may struggle to build word forms.
Nevertheless, as the successful use of the model
requires a broad knowledge of the language and
its word formation, in order to be able to choose
the completion appropriate to the context, they con-
sidered that the compilation model might be most
useful for fluent speakers. Additionally, the model
is helpful to fluent speakers who have difficulties
with diacritics for vowel length and other aspects
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of spelling, in support of which they also included
a spelling correction component.

The present research draws inspiration from
these pioneering works of Lane et al. (2022) and
Lane and Bird (2020), and seeks to continue the
experiments in the field of word completion for
Plains Cree. The present study, however, aims to
investigate the feasibility of a complete word pre-
diction and seeks to provide fluent Cree speakers
with morphosyntactically and contextually appro-
priate, if not accurate, word suggestions which can
potentially speed up the typing process.

To achieve this, we train a Bidirectional Long
Short-Term Memory (BiLSTM) model to predict
the next word in a sequence. LSTMs, a type of re-
current neural network (RNN), have demonstrated
remarkable success in capturing contextual depen-
dencies in sequential data, making them a com-
pelling choice for natural language generation tasks
(Hochreiter and Schmidhuber, 1997; Sundermeyer
et al., 2012). Moreover, the fact that several stud-
ies working with low-resource agglutinative and
polysynthetic languages used LSTMs for word pre-
diction task (Kosyak and Tyers, 2022), makes it a
compelling choice for the Plains Cree case.

To improve the model performance, we also train
Word2Vec embeddings (Mikolov et al., 2013) for
words in the Plains Cree corpus (see Section 2.2).
Additionally, in this study, we explore the effect
of vector augmentation—based on the words’ mor-
phosyntactic analyses, WordNet semantic classes
(if applicable) (Miller, 1995), and lemmas—on the
overall model accuracy and quality of word sugges-
tions.

The paper is structured as follows. The data used
in this paper and data preprocessing are described
in Section 2. The Word2Vec vectors training and
refinement, and BiLSTM model training are de-
scribed in Section 3. Section 4 presents the results,
and Section 5 presents their discussion. Possible
directions for further research are examined in Sec-
tion 6.

2 Data

2.1 Plains Cree

Plains Cree (endonimically – nêhiyawêwin, ISO
639-3: crk) is an Algonquian language spoken in
Alberta, Saskatchewan, and Northwest Territories
in Canada, and in the northern part of Montana in
the US. This is the most widely spoken dialect of
Cree. Cree is an agglutinative and polysynthetic

language of predominantly prefixing nature. Al-
though Cree is among the most spoken Indigenous
languages of Canada, only a small corpus of Plains
Cree is available currently.

2.2 Plains Cree corpus
The training data for this study comes from a com-
bination of the Ahenakew-Wolfart Corpus (Arppe
et al., 2020), the Bloomfield Corpus (Schmirler,
2023), and the Corpus of Miscellaneous Plains
Cree Texts (misi-mîkiwâhp pêsêkinosa ohci) (Da-
canay and Arppe, 2024), which has been mor-
phosyntactically analyzed and lemmatized with the
finite-state model mentioned before (Snoek et al.,
2014; Harrigan et al., 2017), morphosyntactically
disambiguated with a CG parser (Schmirler et al.,
2018; Schmirler, 2023), and then annotated for
WordNet semantic class (for nouns and verbs, when
available). The WordNet classes are based on the
classification by Dacanay (2022) of over 20k Cree
entries in the lexical database underlying the Cree
Words/nêhiyawêwin: itwêwina, a bilingual English-
to-Cree dictionary by Wolvengrey (2001). All this
information about each word was organized in a
.tsv file, where each row included word form, anal-
ysis, and WordNet class as shown below:

awâsisak awâsis+N+A+Pl (n) child#1

2.3 Preprocessing
Before the corpus could be used for training it re-
quired significant preprocessing. First, the standard
corpus normalization steps were made: 1) punctua-
tion signs were removed, 2) words were converted
to lowercase, and 3) Arabic and Roman numerals
were removed.

Secondly, some special notes from the corpus
were taken out. They include speakers’ initials,
new segment markers (e.g., ‘Part’), web URLs for
the texts taken from the Internet pages, and tran-
scribers’ notes (e.g., ‘laughs’, ‘gesture’).

Thirdly, English pieces were removed from the
corpus along with the personal names. Lastly, the
word ‘and’, connecting multiple WordNet classes,
were removed, while all the spaces were replaced
with underscore signs, as exemplified below:

(n) bannock#1 and (n) bread#1 and (n) flour#1
-> (n)_bannock#1_(n)_bread#1_(n)_flour#1

For words that lack WordNet class (e.g., conjunc-
tions, pronouns) the UNK (unknown) code was
added.

Lastly, the morphosyntactic analyses were also
preprocessed. Originally, each analysis contained
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W/o
preverbs

With
preverbs

Word tokens 224,440 281,269
Word types 50,313 40,404
Lemmas 28,200 28,250
WordNet types 5,540 5,545
Analysis types 4,595 4,637

Table 1: Training dataset features.

a word lemma, for instance:

kâwiy+N+A+Px1Sg+Sg or

PV/ki+itêw+V+TA+Ind+X+3SgO

Lemmas were extracted from the morphosyn-
tactic analyses, to provide an additional source of
information about each word, resulting in the fol-
lowing representations:

+N+A+Px1Sg+Sg or

PV/ki+V+TA+Ind+X+3SgO
All the manipulations with the corpus were done
with regular expressions.

Next, we separated verbs from preverbs for eas-
ier processing. In Plains Cree, preverbs are a broad
category that includes both grammatical and deriva-
tional/lexical morphemes. As their name suggests,
they appear before the verb stem. Plains Cree verbs
can have multiple preverbs attached. Preverbs are
usually separated from each other and the verb
stems by hyphens (Okimâsis, 2004, 17). For in-
stance, nikakwê-nêhiyawân ’I try to speak Cree’,
where the preverb kakwê- means ’try to, attempt
to’. The number of combinations that preverbs
can form is enormous, as shown by the Lane et al.
(2022). Therefore, we decided to separate preverbs
from their stems and treat them as separate entries
in the training dataset for the purposes of this study.
By doing so, we expect to improve our model pre-
diction accuracy, because it will be able to learn
preverbs combinations and their relations with dif-
ferent verb stems.

2.4 Training dataset

After all the aforementioned preprocessing steps,
the dataset presented in Table 1 was obtained. The
left column shows the size of the corpus before
preverb separation and the right column - after sep-
aration.

3 Language modelling

3.1 Word2Vec pre-training

To improve the performance of the LSTM model,
we decided to pre-train Word2Vec vectors using
the CBOW approach. We experimented with dif-
ferent window sizes and settled with window size
5, because it was giving the best results. Consid-
ering the amount of information about each word
available in the dataset, we decided to make the
most of it during the Word2Vec pre-training. In
order to do so, separate vectors were trained on
the sequences of words1, their WordNet semantic
classes, their lemmas, and their morphosyntactic
analyses, giving us four sets of vectors. The aver-
age of four vectors was calculated, and the original
vectors for words were updated with the refined
ones. Thus, the final word vectors are based not
only on the neighbouring words but also on the
semantic classes, lemmas, and morphosyntactic
features of these neighbouring words.

Some adjustments had been made, however, to
address the case of the words without WordNet
class (such as non-inflecting particles) and/or mor-
phosyntactic analysis. The vector refinement was
organized in such a way that vectors for the ‘Un-
known’ WordNet class or analysis were not in-
cluded in the vectors’ averaging. So, for exam-
ple, the refined vector for the word mêskanaw
(mêskanaw; N+I+Sg; (n)_road#1_(n)_trail#2) was
the average of the vectors of mêskanaw and its
lemma, analysis, and semantic class. However, for
the particle iyikohk (’to such a degree; to such an
extent’), the WordNet class is unavailable, so its
averaged vector is based on the word, analysis, and
lemma vectors only.

3.2 Model training

We trained a BiLSTM language model using the
pre-defined word vectors as embeddings. As was
mentioned earlier, the Bidirectional Long Short-
Term Memory model was chosen for the purposes
of this study. The LSTM model was chosen for
our experiments because it was previously success-
fully used for predictive text tasks for polysynthetic
low-resource languages (Kosyak and Tyers, 2022).
At the beginning of the study, both unidirectional
and bidirectional models were tested, and BiLSTM

1For convenience, we will be using the term ’word’ to
refer to all the Cree tokens in the training dataset, which also
include preverbs.
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showed better results. Thus, we decided to proceed
with BiLSTM.

The data for language modelling was split into
modelling and testing subsets at a ratio of 90% to
10%. The proportionately larger training set is due
to the relatively small amount of data. The models’
evaluation was based on the 3-fold cross-validation
results.

The Word2Vec training parameters are provided
in Appendix A. The model training hyperparam-
eters are provided in Appendix B. All the BiL-
STM models were trained on the university’s high-
performance computing cluster. The average train-
ing time for each model was 2-3 hours.

4 Results

4.1 Refined BiLSTM model

To evaluate our model we looked at its top 10 pre-
dictions. The number 10 was chosen because it
covers the number of suggestions provided by all
commonly used tools, such as a smartphone key-
board (3-9 suggestions), search engine (9 sugges-
tions), and text editors (5-9 suggestions). The re-
sulting model predicted the correct word in the top
10 predictions in 36.3% of cases. Mostly, the model
handled the prediction of nouns, adverbs, and pre-
verbs better than of verbs. In comparison to the
model trained with non-refined vectors, the over-
all quality of predictions slightly improved, and
suggestions became more contextually and gram-
matically suitable (see Section 4.2 for comparison).

In cases when the model could not provide the
correct completion among the first 10 predictions,
the first letter of a word was provided to the model,
simulating the beginning of user input. As a result,
41% of previously non-predicted words were even-
tually suggested as a possible completion in the top
10 predictions. The majority of the words predicted
with the first letter input were verbs.

To sum up, the model predicts the next word by
preceding context in 36.3% of cases and predicts
the next word by context and the first letter in 28%
of cases. However, as will be shown in the next
section, this version of the model was not the most
accurate.

4.2 Model performance with different
Word2Vecs

To evaluate how the refined word vectors affected
the overall model performance, we conducted sev-
eral experiments with different combinations of

Vectors
Correct prediction

Top 1 Top 5 Top 10
Non-refined 15.06 31.15 38.55

Word+Analysis 14.19 29.92 37.34
Word+WordNet 13.92 29.59 37

Word+Analysis
+Lemma

13.8 29.57 37.14

Word+Analysis
+WordNet

13.67 29.17 36.54

Word+WordNet
+Analysis+Lemma

13.46 28.86 36.32

Table 2: Prediction accuracy for the models trained with
different Word2Vec sets (mean scores of 3-fold cross-
validation).

refined vectors. It was mainly done to scrutinize
how information about semantic, morphosyntactic,
and lemma sequences contributes to the accuracy
of the BiLSTM model. Table 2 shows the results
of these experiments with a percentage of correct
predictions in the top one, top 5, and top 10 pre-
dictions. It should be noted that these numbers
do not evaluate the semantic and morphosyntactic
appropriateness of the suggestions.

As can be seen from Table 2, the best accuracy
of predictions was shown by the model that was
trained with non-refined word vectors. However,
the results of the models trained with different sets
of refined vectors are not dramatically different as
well. Nevertheless, it is interesting to compare the
performance of the refined vectors’ models. First,
the averaging with lemma vectors does not seem
to provide better prediction results. In both cases
when they were used the overall accuracy dropped
in comparison to the same vectors’ combinations
without lemma. The morphosyntactic analysis, on
the contrary, seems to provide valuable information
about the word’s neighbours. The Word+Analysis
model provides the best results (37.34%) among
the models with refined vectors. The next best
result is shown by the Word+Analysis+Lemma
model (37.14%). The model trained with the full
Word2Vec set shows the lowest accuracy results.

To better understand how the suggestions
changed with the refined vectors, we compared
the models’ results. We began with a comparison
of the predictions produced by the BiLSTM trained
with the Word+WordNet+Analysis+Lemma refined
vectors (hereafter full BiLSTM) and the one trained
with the simple word vectors (hereafter BiLSTM).
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This comparison revealed that the full BiLSTM had
better accuracy in predicting nouns and verbs, in
contrast to other parts of speech that do not have
WordNet class. The overall top-10 suggestions
became more semantically and grammatically suit-
able to the context than those predicted by BiLSTM.
In some cases, predictions of full BiLSTM were
not equal to the originally occurring word, but they
all were in the correct morphosyntactic form. For
example, in one case, the word okimâwa ‘another
chief’ was expected, and the full BLSTM had it
as a top-10 prediction, but it also offered iskwêwa
‘another woman’, oskinîkiwa ‘another young man’,
nâpêwa ‘another man’, mostoswa ‘another cow’.
Most of them (except the ’cow’) are semantically
close to the expected word and denote humans,
and all of them are in the expected obviative form.
The top-10 BiLSTM’s predictions for this case
there were also some relevant suggestions in the
correct morphosyntactic form (e.g., oskinîkiwa,
iskwêwa, mostoswa); however, it had more seman-
tically unsuitable suggestions than full BiLSTM
like mostoswa ‘another cow’, wâkayôsa ‘another
black bear’, êskana ‘another antler’, misatimwa
‘another horse’, ôhi ‘this one’. Another example
like this is illustrated in Table 3. Both models pre-
dicted the correct word in the top 3 suggestions,
but the overall prediction quality is better in the full
BiLSTM case. Interestingly, both Word+Analysis
and Word+WordNet models predicted this word as
top-1 and did not consider the preverb ’kâ-’ in top-
5 suggestions. Word+Analysis model predictions
were all in the correct morphosyntactic form. Ex-
pectedly, Word+WordNet predictions were better
semantically sorted, but not all of them were in the
obviative form.

Another example (see Table 4), represents how
some of the suggestions of the full BiLSTM, al-
though a bit ’ambitious’ do not sound completely
absurd as well. All of them fit the overall structure
of the sentence, and some words fit the context
nicely (e.g., gift, decision). The ’ôma’ sugges-
tion after the ’ôma’ in the preceding context is,
most likely, a result of the word repetitions natu-
ral for spoken language presented in the corpus.
The Word+Analysis BiLSTM also predicted the
expected word, but other suggestions were less sat-
isfactory. The simple BiLSTM did not predict the
next word in this sequence.

In the case of verb predictions, we can observe
a more or less similar situation. Full BiLSTM

provides better suggestions than simple BiLSTM.
For instance, in the case of the example provided
in Table 5 the full BiLSTM correctly predicts the
next verb âtotamân ‘S/he will tell’ in the top 3
predictions. The regular BiLSTM, in contrast,
could not provide the expected verb. Interest-
ingly, all the other refined models predicted the
correct verb, with Word+Analysis+WordNet and
Word+Analysis models providing the best sugges-
tions. The Word+Analysis model’s suggestions are
also provided in Table 5.

Moreover, the separation of the preverbs from
the verb stems allowed all the models to sug-
gest out-of-vocabulary preverb+verb combinations.
However, the Word+Analysis refined model offered
the best preverbs and verb suggestions. When the
first preverb was provided, for example, ’ê-’, this
model suggested possible next preverbs (e.g., kî-),
as well as possible verbs, to follow it. It is also
important to note that some of the predictions are
only possible, if they are not prefixed, as they in-
corporate initial change, e.g. êtwêhk, êtwêt, and
êtât. Thus, further work is needed to address these
cases.

Finally, we observed that the refined models
were less effective in the prediction of particles.
The simple BiLSTM was on average 10% more
successful in predicting them (e.g., awa or ôma
’this’, êkosi ’so, thus’). Moreover, refined mod-
els often failed to predict low-frequency words
that, in addition, did not have a WordNet class and
morphosyntactic analysis assigned in our training
dataset.

5 Discussion and Conclusions

Although testing of the models shows that the over-
all accuracy is higher for the simple BiLSTM, we
argue that these results need further analysis and
discussion before we can come to the final conclu-
sion about vector refinement efficiency for Plains
Cree word prediction. In order to quantify the re-
sults of our qualitative observations, we did two
additional tests on the out-of-fold prediction re-
sults. First, we analyzed how semantically close
were the predictions to the expected word. Second,
we measured the morphosyntactic similarity of the
predictions and the expected words.

For the first test, we measured a Wu-Palmer Sim-
ilarity between the WordNet classes of the predic-
tions and the target words with the NLTK WordNet
package. The Wu-Palmer similarity value repre-
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Input: ...cêskwa! itwêw awa sihkihp. êkotê isi kapâw. miyosiyiwa ôhi _
Eng: Wait! S/he says this is a waterhen. Towards there, s/he goes ashore. Someone is beautiful, this is_’
No. Full BiLSTM predictions BiLSTM predictions
1 ka- Preverb kâ- Preverb
2 oskinîkiskwêwa ’another young woman’ iskwêwa ’another woman’
3 iskwêwa ’another woman’ oskinîkiskwêwa ’another young woman’
4 oskinîkiwa ’another young man’ ê- Preverb
5 wâkayôsa ’another black bear’ oskinîkiwa ’another young man’
6 nâpêwa ’another man’ nâpêwa ’another man’
7 kisêyiniwa ’another old man’ another wâkayôsa ’another black bear’
8 nâpêsisa ’another boy’ mostoswa ’another cow’
9 okimâwa ’another chief’ kisêyiniwa ’another old man’
10 nôtokêsiwa ’another old woman’ okimâwa ’another chief’

Table 3: Predictions comparison 1

Input: ...pîhci ôma owiyasiwêwin piko ta-kawotinikêhk ôma _
Eng: ’By law, s/he must take back this _’
No. Full BiLSTM predictions BiLSTM predictions
1 miyikosiwin ’gift’ ôma ’this’
2 CRTC ka- Preverb
3 askiy ’land’ owiyasiwêwin ’law, decision’
4 wîhtamâkêwin ’statement, announcement’ nêhiyaw ’Cree person’
5 ôma ’this’ mâmiskôcikâtêwin ’discussion’
6 pîkiskwêwina ’words’ kistêyihtcikâtêwin ’importance; principle’
7 tahtoskânêsiwak ’United Nations’ askiy ’land’
8 owiyasiwêwin ’law, decision’ wîhtamakêwin ’statement’
9 mâmawâyâwinihk ’community, group’ wiyastêwin ’context, foundation’

10 wiyastêwin ’structure, arrangement, format’ miyo-âyâwin ’prosperity, good health’

Table 4: Predictions comparison 2

Input: ...âcimowin ôma k-ôh-nitotamâkawiyân k- _
Eng: ‘This story, you (pl.) have not told me _’
No. Full BiLSTM predictions Word+Analysis BiLSTM predictions
1 ôh- Preverb ôh- Preverb
2 ayâyân ’I will say’ âti- Preverb
3 âtotamân ’s/he will tell’ âtotamân ’s/he will tell’
4 êsiyîhkâtêk ’it will be called’ êtwêt ’s/he says so’
5 âtotamân ’you will tell us about it’ êtwêhk ’people say’
6 êtwêhk ’people say’ êtât ’you (sg) say thus to him’
7 êtwêt ’s/he will say’ êsiyîhkâtêk ’it will be called’
8 ês-âsotamawiyâhk ’you (sg) promise to us’ êtwêyân ’I will say’
9 ây- Preverb âyâyâhk ’for us to be there’
10 êtât ’you will say to him/her’ êsiyîhkâsot ’s/he is called so’

Table 5: Predictions comparison 3
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Model
Wu-

Palmer
similarity

MorphSyn
similarity

Non-refined 37.9 42.17
Word+Analysis 38.22 42.5
Word+WordNet 37.86 41.86
Word+Analysis
+Lemma

37.93 42.21

Word+Analysis
+WordNet

37.48 42.1

Word+WordNet
+Analysis+Lemma

37.78 42

Table 6: Average Wu-Palmer similarity and morphosyn-
tactic (MorphSyn) similarity of the out-of-fold predic-
tions to the actual labels

sents the distance between two synsets within the
WordNet semantic hierarchy tree. It ranges from 0
to 1; the higher the value the more semantically sim-
ilar two words are. The second column of Table 6
shows the average semantic similarity of top-10 pre-
dictions made by the models to the corresponding
target words. The similarity was counted for/with
applicable words only, i.e. words marked for the
WordNet class.

For the second test, we calculated the Jaccard co-
efficient index for the morphosyntactic analyses of
target words and predicted words. This comparison
intended to show how well the suggested words
were able to fit the morphosyntactic structure of
the sentence. The third column of Table 6 demon-
strates the average Jaccard similarity index of all
the predictions and target words’ pairs. Similarly,
with the first test, the similarity index was calcu-
lated only for the words with the morphosyntactic
analysis in the dataset.

The results of the tests showed that
Word+Analysis and Word+Analysis+Lemma
refined models provided contextually and gram-
matically better suggestions in comparison to
other models. An average suggestion of the
Word+Analysis model was 42.5% grammatically
and 38.22% semantically similar to a target word.
However, the difference is too small to claim with
certainty that the refined vectors significantly
improved the quality of predictions.

Although vector refinement does not provide
a substantial prediction improvement, the main
experiment and the additional tests indicate that
the morphosyntactic information about words con-

tributed the most to the refined models’ accuracy
and quality of suggestions. Probably, this result
is due to the lower number of words lacking mor-
phosyntactic analysis (in comparison to words lack-
ing WordNet class). The lemma information does
not seem to contribute to the overall accuracy of
prediction. Nevertheless, it seems to improve the
overall quality of suggestions. The information
about neighbouring WordNet classes did not im-
prove the accuracy or quality of word prediction.
However, it is most likely related to the high num-
ber of words in the dataset that were not assigned a
WordNet class yet or do not have a WordNet class.

The analysis of the models trained with refined
vectors and the regular model revealed a disadvan-
tage of embeddings refinement in the present set-
tings. Although refined vectors contributed to the
slight prediction quality improvement for the words
that had all the extra information like morphosyn-
tactic analysis, WordNet class, and lemma, they
did not provide an adequate representation for the
words lacking some or all of this extra information.
The vector refinement function did not update its
vectors based on the additional information. Conse-
quently, after refinement, they could appear further
from the words they originally co-occurred with,
because their ‘neighbours’ vectors were updated.
This highlights the necessity for a better refinement
approach in further studies. In this study we used
simple vector averaging, but in the follow-up stud-
ies the more sophisticated approaches like those
proposed by Faruqui et al. (2015) and Mrkšić et al.
(2017) should be explored.

To interpret the results of this study, it is also im-
portant to keep in mind that the model was tested
on a small chunk of the corpus. Our corpus, in
general, has a large portion that comes from tran-
scribed Plains Cree narratives and fiction stories.
Transcribed narratives often have more filler words,
while fictional stories often have rare literary words.
Both significantly differ from the writing we use on
a day-to-day basis (texting, search queries, etc.). In
some cases, the preceding context may have many
words without semantic class and that makes pre-
dictions of the following words very tricky. Thus,
we are sure that under the present circumstances,
the experiment with refined BiLSTM models train-
ing yielded promising results. In future, we want to
experiment with more standardized texts for train-
ing and testing and explore the possibility of exclud-
ing filler words for the Word2Vec training. More-
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over, we believe that the predictions’ quality can
be also improved by reducing the number of non-
analyzed words with unknown WordNet classes in
our corpus. Further improvements in the training
dataset can allow the model to learn more about
contextual neighbours of each word, WordNet class
and morphosyntactic analysis.

To conclude, this research lays the groundwork
for a future predictive text model for Plains Cree.
It shows that full-word prediction is not impossi-
ble for Plain Cree, and with certain improvements
and modifications, can reach higher accuracy lev-
els. This study also explores the use of augmented
word embeddings in data scarcity cases; however,
the efficiency of this method requires further anal-
ysis with a fuller dataset. Potentially, use of the
model in tandem with other rule-based tools and
resources developed for Plains Cree, such as mor-
phosyntactic analyzer (Snoek et al., 2014; Harrigan
et al., 2017), constraint grammar parser (Schmirler,
2023), or weighted Plains Cree morpheme combi-
nations (Lane et al., 2022), can lead to more accu-
rate results. Naturally, significant improvements
are required before speakers and learners can use
this tool.

6 Future work

Naturally, this study is only the beginning of the
journey to the full-scale tool for the predictive text
for Plains Cree. Hence, there are several directions
for future research and experiments that we plan
to pursue next to address the gaps in the present
study.

First, we would like to try using fastText embed-
dings (Bojanowski et al., 2017) to capture regular-
ities on the sub-word level of Plains Cree beyond
preverbs. FastText embeddings were already suc-
cessfully used for Mi’kmaq (Boudreau et al., 2020),
another Algonquian language, and provided sub-
stantial improvements to the Mi’kmaq word predic-
tion model. It would be interesting to compare the
results of the word prediction model trained with
refined word vectors used in this study, and the one
trained with fastText embeddings. Hypothetically,
the fastText-based language model should handle
Plains Cree verbs better, because it will be able
to capture other aspects of rich Plains Cree mor-
phology (like verbal suffixes), by learning it on a
sub-word level.

Secondly, we would like to implement partial
input suggestions beyond preverbs for long mor-

phologically complex words (e.g., verbs with 3+
preverbs). This approach will require a different
methodology for dataset preparation and prediction
assessment. Moreover, the keystroke saving tests
will be required to explore the efficiency of partial
input suggestions for keyboard users.

Limitations

Since this study is experimental, many problems
have not been addressed here yet. First of all, our
model does not have mechanisms to work with
OOV (out-of-vocabulary) words. It only knows
the words and prefixes it encountered in the corpus.
This significantly limits the model at this stage,
however, we plan to address this issue during the
next development phase. Secondly, the model has
difficulties in predicting longer and more morpho-
logically complex words. As mentioned above, we
plan to fix this by implementing partial input pre-
dictions. Thirdly, the model does not yet have a
spelling relaxation function that would allow users
to type without diacritics and still get predictions.
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A Word2Vec hyperparameters

The following hyperparameters were used to train
Word2Vec embeddings.

Parameter Value
vector size 300
window 5
min count 1
workers 4

Table 7: Word2Vec hyperparameters

B BiLSTM hyperparameters

The following BiLSTM hyperparameters provided
the best training results.

Parameter Value
BiLSTM layers 3
embedding dim 300
layers dropout 0.3
sequence length 21
optimizer Adam
learning rate 0.001

Table 8: BiLSTM hyperparameters
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Abstract

Languages can encode temporal subordination
lexically, via subordinating conjunctions, and
morphologically, by marking the relation on the
predicate. Systematic cross-linguistic variation
among the former can be studied using well-
established token-based typological approaches
to token-aligned parallel corpora. Variation
among different morphological means is in-
stead much harder to tackle and therefore more
poorly understood, despite being predominant
in several language groups. This paper explores
variation in the expression of generic temporal
subordination (‘when’-clauses) among the lan-
guages of Latin America and the Caribbean,
where morphological marking is particularly
common. It presents probabilistic semantic
maps computed on the basis of the languages of
the region, thus avoiding bias towards the many
world’s languages that exclusively use lexified
connectors, incorporating associations between
character n-grams and English when. The ap-
proach allows capturing morphological clause-
linkage devices in addition to lexified connec-
tors, paving the way for larger-scale, strategy-
agnostic analyses of typological variation in
temporal subordination.

1 Introduction

Across the 7000+ world’s languages recorded
by the Glottolog database (Nordhoff and Ham-
marström 2011, Hammarström et al. 2023)1 there is
great variation in how temporal relations between
different eventualities can be encoded in a sentence
or discourse unit. English has one main generic
temporal subordinator, when, which is relatively
underspecified with respect to the temporal seman-
tic relation between the clause it introduces and
its matrix clause, compared to semantically more
precise connectors (e.g. after, before, or while).
The number and scope of generic temporal subor-
dinators can vary cross-linguistically from one (e.g.

1https://glottolog.org

Italian quando), to two (e.g. German wenn/als) or
several more (e.g. Pular nde/si/áay/fewndo/tuma;
Evans 2017; Pedrazzini 2023). Crucially, lan-
guages can additionally or exclusively encode
WHEN-clauses2 morphologically on the predicate,
rather than using a lexified subordinator (cf. Span-
ish viendo ‘see.GER’3 as opposed to cuando vio
‘when saw.3.SG’; Ukrainian pobačyvšy ‘see.GER’
as opposed to koly vyn pobačyv ‘when he saw’).
Because of the very nature of competition, over-
arching semantic differences between subordina-
tion strategies within individual languages cannot
be fully captured in terms of discrete, categori-
cal variables, but they should be modeled as a
continuum allowing for a degree of overlap, aim-
ing to reveal broader patterns in a probabilistic,
rather than a fully deterministic way. Previous stud-
ies (Haug and Pedrazzini 2023) have employed a
‘token-based approach’ (Levshina 2019, 2022) to
explore the semantic ground covered by English
when and induce cross-linguistically common se-
mantic dimensions from parallel corpora. In Haug
and Pedrazzini (2023), probabilistic semantic maps
(Croft and Poole 2008; Wälchli and Cysouw 2012)
of WHEN were generated from a massively parallel
corpus of 1400+ linguistic varieties (Mayer and
Cysouw 2014), to capture systematic variation in
the ways languages tend to divide the semantic
space of English WHEN by using different lexi-
cal items for its different meanings. One of the
greatest limitations of a purely token-based typo-
logical approach to the study of temporal subordi-
nation in the world’s languages is that it does not

2Small caps WHEN is used to refer to the semantic concept
of ‘generic temporal subordination’, rather than the English
lemma when (written in italics).

3The following abbreviations are used in glosses through-
out this paper: GER = gerund, 3 = third person, SG = singular,
PL = plural, SBJ = subject, VIS = visible (speaker’s area), SS
= same subject, DS = different subject, DISTR = distributive,
NARR = narrative, NSBJ = non-subject, LOC = locative, AS2 =
secondary assertion, pro = prominent, PFV = perfective.

24

https://glottolog.org


allow to account for variation within the semantic
space covered by non-lexified WHEN-clauses cross-
linguistically. That is, it will merely allow us to
observe that particular subsets of when-occurrences
are more likely to lack a parallel token in the tar-
get languages, without further identifying typo-
logically widespread constructions (or gram types;
Dahl and Wälchli 2016) within the semantic sub-
space of non-lexified WHEN-clauses.

While languages using predominantly or exclu-
sively morphological means to express generic
temporal subordination are relatively uncommon
among European languages, non-lexified WHEN-
clauses are instead particularly frequent among
Latin American languages, as evidenced by the
plethora of areal studies on converbal, clause-
bridging, and, especially, switch-reference mor-
phology in the region (among others, van Gijn et al.
2011; van Gijn 2012, 2016; Overall 2014, 2016).

This paper zooms in on the languages of Latin
American and the Caribbean, given the particular
computational challenges posed by their common,
extensive use of non-lexified WHEN-clauses (exclu-
sively so or in addition to lexified means). As in
previous experiments, Mayer and Cysouw’s (2014)
massively parallel corpus of New Testament trans-
lations is used, and probabilistic semantic maps are
adopted as a base method to induce typologically
relevant dimensions within the semantic space of
WHEN, since they allow capturing the gradience
and overlap between different means in any given
language, as well as the language-internal variation
which is inherent to the very concept of competi-
tion. The goal of this paper is twofold:

a. incorporate associations between character n-
grams and English when for capturing dif-
ferences among WHEN-clauses that are ex-
pressed morphologically as well as lexically,
and generate probabilistic semantic maps
based on the parallel dataset thus refined. As
detailed in Section 2, this method builds on
Asgari and Schütze’s (2017) ‘SuperPivot’ ap-
proach, but with substantial changes to their
pipeline. Crucially, it gets rid of the assump-
tion that there should be at most one ‘pivot’
(i.e. a marker in a parallel language) per
linguistic feature (e.g. ‘past’ in Asgari and
Schütze’s 2017 example), reflecting instead
the existing typological knowledge about the
nature of generic temporal subordination as
a phenomenon with great language-internal

variation. The code to achieve this is released
alongside this paper as a generalized tool,
which starts from one or several lexical items
in a source language and can be used to look
for systematic cross-linguistic variation in a
parallel dataset, both at the lexical and mor-
phological level;

b. generate probabilistic semantic maps that are
built exclusively on the basis of the languages
of the region, thus avoiding bias towards the
many world’s languages that exclusively or
predominantly use lexified connectors. The
resulting maps and parallel data enriched with
n-gram annotation are also released to facili-
tate future computational experiments.4

2 Methods

Dataset creation The Latin American and
Caribbean parallel language data used in this exper-
iment is a subset of Mayer and Cysouw’s (2014)
massively parallel corpus. To identify Latin Amer-
ican and Caribbean varieties in the massively par-
allel corpus, a GeoJSON dataset was manually cre-
ated using https://geojson.io/ to define the ge-
ographical region of interest. The approximate co-
ordinates for each language variety in the dataset
were taken from Glottolog and assigned to each
New Testament translation based on its associated
ISO 639-3 code. All varieties whose approximate
coordinates were outside of the polygon defined
by the GeoJSON dataset were filtered out from the
corpus. The resulting data consisted of 335 vari-
eties, representing approximately one-third of all
the languages (1,005) recorded for Latin America
and the Caribbean by Glottolog.5 Figure 1 shows
the areal distribution of the languages in our dataset
among all the languages with an ISO 639-3 code
from the region.

Word alignment & semantic mapping SyM-
GIZA++ (Junczys-Dowmunt and Szał 2012) was
used to align the English version of the New Testa-
ment to each of the translations in our dataset at the
token level, achieving a one-to-one token alignment
for each language (i.e. each English token corre-
sponds to at most one token in the target language,
in contrast to possible one-to-many or many-to-one

4The code, datasets and all the maps, only a very small
portion of which is presented in this paper, can be found in
the associated repository.

5This number excludes sign languages, as we focus on
textual data.
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Figure 1: Approximate areal distribution of the lan-
guages in the dataset (orange) among the languages
listed by Glottolog for the region (blue).

alignments). The occurrences of English when and
its parallels in all Latin American and Caribbean
languages in the dataset were then extracted. The
quality of the automatic alignment was evaluated
based on a sample of 300 when-clauses manually
aligned to the Huichol translation, against which
automatic alignment achieved a precision of 0.66,
recall of 1, and F1-score of 0.79.6

Each instance of when and its parallel in every
target language was treated as one usage point for
WHEN. Hamming distance was applied as a mea-
sure of dissimilarity between pairs of usage points,
by counting the number of languages using two
different words, as opposed to the same word, for

6To calculate precision and recall, the presence of an
aligned word in the target language was considered a ‘posi-
tive’, whereas the lack of an alignment (‘NULL’-alignment)
was considered a ‘negative’. For an alignment to be consid-
ered a ‘true negative’, English when needed to have a NULL-
alignment in Huichol in cases where Huichol does not use a
subjunction to render the WHEN-clause, but expresses tem-
poral subordination morphologically. Conversely, ‘false neg-
atives’ corresponded to any NULL-alignment which should
have been aligned to a ‘when’ word in Huichol. ‘False posi-
tives’, then, were considered cases in which when was aligned
to a token in Huichol, despite the language using a morpho-
logical subordination strategy (i.e. switch-reference) or an
independent clause, rather than a quepaucua-(‘when’)-clause.
Finally, ‘true positives’ corresponded to all ‘when’ instances
correctly aligned to a ‘when’ word in Huichol.

the two usage points in each pair. Multidimen-
sional scaling (MDS) was then used to reduce the
resulting Hamming-distance matrix to two dimen-
sions, which were then treated as coordinates to
plot the semantic map of WHEN as shown in Fig-
ure 2. Each dot in the semantic map represents a
context for WHEN (i.e., a New Testament verse),
and the farther apart two dots are, the more differ-
ent their semantics is assumed to be, and the more
likely they are to be encoded by different linguistic
means cross-linguistically.

Figure 2: Unlabelled semantic map of WHEN.

Benchmarking As a form of evaluation of the
methods and results, this experiment leveraged de-
tailed typological and grammatical descriptions of
the morphological system of one particular Latin
American language, Huichol (or Wixárika). Hui-
chol is among the several Latin American lan-
guages that show a clear division of labor between
lexified and non-lexified WHEN-clauses (Pedrazzini
2023). In particular, Huichol uses switch-reference
marking, a morphological system for tracking ref-
erents in an ongoing discourse (Roberts 2017,
538). In a ‘canonical’ switch-reference system (cf.
Haiman and Munro 1983, ix), a clause is marked
to signal whether its subject is co-referential or
not with the subject of another, usually adjacent,
clause, even though switch-reference has now long
been shown to serve a much broader purpose than
merely signaling referential (non-)identity (cf. Stir-
ling 1993; McKenzie 2012, 2015a,b; Keine 2013).
With subject co-reference, a same-subject marker
is used (SS), else a different-subject marker is em-
ployed (DS). Switch-reference is overwhelmingly
present in languages that allow and use clause
chaining, which is the possibility of asyndetically
stacking up several deranked verb forms (Stassen
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1985; Croft 2002; Cristofaro 1998, 2019), that is,
lacking marking of one or more tense, aspect, or
mood distinctions compared to independent clauses
in the same language, to signal their status as ‘me-
dial’ clauses or ‘converbs’. Switch-reference mark-
ing is well-known to serve that purpose particu-
larly commonly among South American languages
(cf. van Gijn 2016). In other words, by captur-
ing switch-reference markers, we also capture the
morphological means (i.e. the n-grams, or most
common morphemes) that signal subordination, in
our case, specifically, temporal clauses. (1) is a Hui-
chol example of canonical switch-reference from
our dataset, where switch-reference markers are
used on the dependent verb to signal its subordinate
status, where the English version has a when-clause
in both cases.7

(1) Huichol/Wixárika (Uto-Aztecan)

a. Hesüana
to.him

me-’u’-axüa-cu
3.PL.SBJ-VIS-arrive.PL-DS

müpaü
thus
ti-ni-va-ru-ta-hüave
DISTR-NARR-3.PL.NSBJ-PL-SG-say
‘When they came to him he said to them’
(Acts 20:18)

b. Hesüana
to.him

me-’u’-axüa-ca
3.PL.SBJ-VIS-arrive.PL-SS

müme,
men

müpaü
thus

me-te-ni-ta-hüave
3.PL.SBJ-DISTR-NARR-SG-say
‘When the men had come to him they said’
(Luke 7:20)

Huichol additionally has a lexified ‘when’ subordi-
nator (quepaucua), in which case switch-reference
marking is absent, as in (2).

(2) Mericüsü
then

quepaucua
when

yemuri-sie
mountain-LOC

m-a-ca-ne,
AS2-PRO-down-arrive.PFV,

teüteri
people

yumüiretü
many

me-ca-n-i-veiya-caitüni
3.PL.SBJ-NARR-NARR-3.SG.OBJ-follow-IPFV

‘When he came down from the mountain, great
crowds followed him’ (Matthew 8:1)

The concurrent presence of both a lexified con-
nector and easily isolable morphemes for morpho-
logical subordination makes the language an ideal

7In the Huichol examples, the spelling of the Bible trans-
lation in Mayer and Cysouw’s (2014) corpus was kept. Note,
however, that this is not the most common orthography found
in most studies on Huichol today.

initial benchmark for experimenting with automati-
cally detecting morphological and lexified markers
of temporal subordination in the parallel corpus.
As a form of evaluation for the character n-gram
search system described below, the Huichol trans-
lation of the New Testament was enriched with
annotation for different switch-reference markers.
The markers were identified by using existing de-
scriptions of Huichol switch-reference (i.e. Comrie
1983, 1982; Bierge 2017). The language has easily
isolable switch-reference morphemes, namely -ku
and -ka (spelled as -cu and ca in our dataset), for
‘different-subject’ and ‘same-subject’ marker, so
the placeholders DS and SS were inserted before
any word in the Huichol text ending with the re-
spective forms, thus allowing the alignment model
to capture the placeholders as dummy subordina-
tors. Based on the annotated dataset, the location of
SS and DS markers in the semantic map (Figure 3)
can be compared with the location of morphologi-
cal markers identified automatically via character
n-gram search (Figure 4 in Section 3).

Figure 3: Probabilistic semantic map of WHEN, show-
ing the location of lexified subordinators and switch-
reference markers in Huichol after direct annotation
(used as benchmark).

N-gram search Character n-grams were lever-
aged to identify potential morphological mark-
ers that are highly correlated with English when-
clauses in our dataset, in addition to lexified means.
As mentioned in the Introduction, the identification
of potentially meaningful n-grams (i.e. those ex-
pressing a particular meaning of WHEN) is based on
the approach by Asgari and Schütze (2017), albeit
with additional steps and different n-gram ranges.
Similarly to Asgari and Schütze (2017), χ2 is used
as a score of association between a ‘head pivot’
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(in our case always when) and a character n-gram,
and it is calculated based on how many times when
is aligned to a word containing that n-gram, how
many times it is aligned to other n-grams and the
frequency of both when and the n-gram. The raw
alignments by SymGIZA++ were used as a start-
ing point to identify tokens on which the n-gram
search should be carried out. The following steps
were followed to subsequently refine the parallel
dataset with potentially meaningful n-grams:

1. a bespoke list of stopwords in English was
established, based on their being either ex-
tremely frequent (Jesus, Herod, Peter, Paul)
or very likely to introduce noise in a study on
temporal subordination because of their distri-
butional overlap with subordinators in terms
of absolute position in a sentence (and, behold,
then). χ2 was used to find highly associated
forms and parallel forms with an associated
p-value of 0 were removed from the target
language;

2. associations were identified between when
and all tokens aligned to when by Sym-
GIZA++. Only tokens with the highest score
and a p-value of 0 were kept as they were and
did not undergo the next steps;

3. using spaCy’s (Honnibal and Montani 2017)
English model en_core_web_sm, the English
source text was automatically annotated for
syntactic dependency to identify the head of
the token when. This allowed for the verb of
the when-clause to be extracted and the par-
allel verb in the translation to be identified.
This choice was informed by the observation
that languages marking subordination on the
verb itself (i.e. non-lexified WHEN-clauses)
are much more likely to have an empty to-
ken <NOMATCH> aligned to English when
rather than the verb itself, so that the latter
must be included in the search for meaningful
character n-grams associated with when;

4. associations were identified between when
and n-grams of any size between 2 and 9 for
all remaining tokens aligned to either when or
its head verb;

5. the top-scoring 200 n-grams (by χ2) were
then sorted by the number of times when was
found to cooccur with the n-gram. The top-

scoring 20 n-grams among the latter were then
extracted as potentially meaningful n-grams;

6. the 20 extracted n-grams were clustered to
attempt capturing groups of n-grams that are
likely to be allomorphs of the same morpheme.
Clustering was done using DBSCAN after
converting the list of n-grams to a matrix of
TF-IDF features. DBSCAN was selected af-
ter comparison with several other clustering
algorithms (i.e. K-Means, K-Means++, Ag-
glomerative Clustering, and Gaussian Mixture
Modelling).

7. Each cluster of n-grams was assigned the
placeholder label ngram_1...ngram_N, where
N is the number of potentially meaningful n-
gram clusters found for any given language.

Geostatistical interpolation Ordinary Kriging
was then used to interpolate the linguistic items
(i.e. the parallel token, if any, to when, or the n-
gram placeholder label) used in each data point
by each language in the dataset, to look for se-
mantically relevant cross-linguistic dimensions.
The Kriging model was implemented using the
PyKrige library (Müller et al. 2023), with a Gaus-
sian variogram model, a single averaging bin for
the variogram (nlag), and coordinates_type set
to geographic. The optimal range, sill, and
nugget values for the Kriging models were set
through a trial-and-error calibration process. Differ-
ent combinations of these parameters were tested,
and the ones used to produce the maps presented in
Section 3 were chosen based on the interpretability
of the resulting contour maps, with particular atten-
tion to the map for Huichol, thanks to the additional
automatic annotation performed on the language
using external knowledge bases. The contour lev-
els generated through Kriging were normalized
between 0 and 1 to facilitate the interpretation of
the relative intensity of a linguistic means in the
semantic space so that the closer the contour level
to 1, the more intense the concentration of the re-
spective means in the area. In the maps in Section
3, contours are plotted at all levels between 0.8 and
1.

The advantage of employing a geostatistical ap-
proach, such as Ordinary Kriging, for mapping
language patterns is its ability to account for spa-
tial autocorrelation (cf. Getis 2008), which facil-
itates the nuanced weighting of variables based
on their prevalence and intensity across geograph-
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ical space. While one linguistic means might be
more widespread in terms of raw occurrence count
in a given region of the semantic map, Kriging
allows us to discern the spatial intensity of com-
peting means. This, in turn, can clarify whether
other means, despite being less prevalent overall,
are more concentrated in that area and therefore
more directly representative of the meaning asso-
ciated with the respective space in the semantic
map.

In the Kriging maps in Section 3, the placehold-
ers for the n-grams are used instead of the actual
list of n-grams.8

3 Results

Huichol Figure 4 shows the Kriging map gener-
ated from the Huichol data automatically refined
with the n-gram search method. This can be com-
pared with the labeled map in Figure 3, which, as
explained in the previous section, is instead based
on the Huichol data directly annotated with switch-
reference markers as presented in typological de-
scriptions of the language.

Figure 4: Kriging map of WHEN for Huichol.

Kriging detected relatively clearly separate areas
(i.e. contexts or usage points) for lexified means
(quepaucua), clustering at the bottom right of the
map, and non-lexified means, corresponding to
ngram_1 and ngram_2 in the map and cluster-
ing at the top of the map. NOMATCH indicates
the absence of a parallel to English when, which
suggests either a misalignment or the usage of a
non-subordinate construction (e.g. an independent
clause or a prepositional phrase, e.g. ‘during din-

8The reader can find which n-grams each group contains
for any given language in the associated repository.

ner’). It is clear that the two automatically identi-
fied groups of n-grams, ngram_1 and ngram_2, in
the Huichol map correspond to DS and SS mark-
ers respectively. The ngram_1 group includes
u, su, usu, cusu, icusu, ricusu, ericusu, whereas
ngram_2 includes ca, aca, eca, ieca, yaca, iyaca,
xeiyaca, eiyaca, nieca, which match the known
switch-reference markers -ku and -ka (spelled as
-cu and ca in our dataset) for DS and and SS respec-
tively (Comrie 1983).

Based on the Huichol results, automatic word-
alignment combined with the n-gram search
method achieves a precision of 0.90, recall of 0.99,
and F1-score of 0.94, calculated upon comparison
with another manually annotated random sample
of 300 English-Huichol WHEN-clauses with added
switch-reference distinctions (i.e. English when
was manually aligned to either quepaucua ‘when’,
DS, or SS).

Switch-reference languages A clear validation
of our method comes from the Quechuan languages
in our dataset. According to van Gijn (2016,
168-169), all Quechuan languages have switch-
reference marking, albeit with some differences in
the markers used and their semantic scope. A closer
inspection of the maps reveals that all Quechuan
languages in our dataset show, in fact, a clear di-
vision of labor between the bottom and top of
the map. Most commonly, the former is a NO-
MATCH area, whereas the top areas are instead
most clearly under the scope of switch-reference
markers. This is clearly the case, for example,
in Ambo-Pasco Quechua (Figure 5a), from Peru,
where the ngram_1 group at the top of the map
includes r, ar, ur, cur, ycur, aycur, car, all of
which contain the distinctive -r SS marker of some
Quechuan I subgroups (cf. van Gijn 2016, 168).

Another example is the map for Bolivar-North
Chimborazo Highland Quichua (Figure 5b), from
Ecuador. In this case, an ngram_1 Kriging area
was detected alongside a potentially lexified sub-
ordinator ña. The n-gram group includes aca,
paca, hpaca, shpaca, ushpaca, ashpaca, where
the Quechuan II SS marker, /S/, spelled sh, can be
discerned (van Gijn 2016, 171).9

A similar split, where the top area of the map is
dominated by a n-gram group, is also found outside
of Quechuan. This is the case, for instance, of
Cavineña (Figure 5c), a Pano-Tacanan language of

9The -ca ending is, in all likelihood, a personal ending that
is particularly frequent in the source text.
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(a) (b) (c)

Figure 5: Kriging maps of WHEN for three Latin American languages.

the Amazonian plains of northern Bolivia, where
ngram_1 includes u, su, tsu, atsu, aatsu, catsu,
baatsu, acatsu, bacatsu, itsu, where the SS marker
-tsu (cf. Guillaume 2008, 2011) can be seen.

The semantic maps for several other varieties
from different language families show a division
of labor similar to the Huichol one, between lexi-
fied means at the bottom of the map and n-gram
groups (i.e. likely morphologically encoded WHEN-
clauses) at the top of the map, as in Chuy (Mayan,
Guatemala; Figure 6a), Comaltepec Chinantec
(Otomanguean, Mexico; Figure 6b), or Terena-
Kinikinao-Chane (Arawakan, Bolivia; Figure 6c).

Beyond switch-reference The integration of
character n-grams to the semantic map of when
was primarily driven by the aim of capturing mor-
phological means of marking generic temporal sub-
ordination, which these examples from Latin Amer-
ican languages indicate as promising, especially in
light of the known switch-reference markers cap-
tured in the maps. However, as mentioned in Sec-
tion 1, there is great linguistic variation in the Latin
American and Caribbean region and the new se-
mantic maps helped capture more than just n-gram
groups overlapping with the switch-reference mark-
ers in Huichol or Quechuan languages. Several
languages, for instance, show an inverted pattern to
the Huichol one, with a lexicalized means at the top
of the map and an n-gram area at the bottom, as in
Ticuna (Ticuna-Yuri, Western Amazon; Figure 6d)
or Lomeriano-Ignaciano Chiquitano (Chiquitano,
Bolivia; Figure 6e).

Yet others only use one n-gram for both
the bottom and top areas, as in Tabasco Chon-
tal (Mayan, Mexico; Figure 6f), or only lexi-
fied means, as in San Mateo del Mar Huave

(Huavean/Isolate, Mexico; Figure 6g), Nivaclé
(Matacoan, Argentina and Paraguay; Figure 6h),
Kaqchikel (Mayan, Guatemala; Figure 6i), Guer-
rero Amuzgo (Otomanguean, Mexico; Figure 6j),
Pichis Ashéninka (Arawakan, Peru; Figure 6k), and
Chamacoco (Zamucoan, Paraguay; Figure 6l).

4 Conclusion & Future Work

Summary and findings This paper has presented
probabilistic semantic maps of WHEN-clauses
based on a parallel corpus of New Testament trans-
lations in Latin American and Caribbean languages.
The rationale behind this study was the observation
that WHEN-clauses in the Latin American region
are often encoded morphologically (exclusively or
predominantly so, i.e. in addition to lexified sub-
ordinators), which in previous token-based exper-
iments (i.e. based only on full-token correspon-
dences between languages) represented one of the
main hurdles for the detection of systematic cross-
linguistic variation in the expression of generic
temporal subordination.

It built on previous approaches based on cor-
respondences between a source word (English
when) and character n-grams, using association
measures to detect meaningful groups of n-grams
that are likely to represent a particular mor-
phological marker encoding temporal subordina-
tion in each target language. The approach has
yielded results that are clearly helpful in identi-
fying morphologically-encoded WHEN-clauses in
languages where switch-reference markers (same-
subject or different-subject marking) are employed
to mark a predicate as subordinate to their matrix
clause. The identification of groups of n-grams as
switch-reference markers in some of the languages
in the corpus was achieved by consulting descrip-
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Figure 6: Kriging maps of WHEN showing some of the systematic variation in the dataset.

tive grammars and language-specific typological
studies (e.g. on the Quechuan morphological sys-
tem), but also because of the use of Huichol, a Mex-

ican language with switch-reference morphology,
as a point of reference to build a small benchmark
and optimize hyperparameters during the genera-
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tion of the semantic maps.

Future research Future studies may want to ex-
periment with different n-gram sizes and different
association measures and Kriging parameters, as
well as use languages other than Huichol as bench-
marks for the calibration of the Kriging models.
Languages showing an opposite pattern to that of
Huichol (i.e. a lexified means where Huichol has a
morphological means, and vice versa) would par-
ticularly benefit from a close-reading evaluation to
ascertain whether the method did manage to cap-
ture morphologically-expressed when-clauses as
accurately as their opposite pattern.

Finally, the semantic dimensions in the maps
have not been fully analyzed, and future stud-
ies will take a systematic approach to identify-
ing clusters of observations that are frequently
co-expressed, whether morphologically or lexi-
cally, across the languages of the corpus, and will
establish whether such clusters represent cross-
linguistically relevant gram types.

Limitations

The main limitation of this experiment is that eval-
uation, including hyperparameter optimization for
the Kriging models, was based on one particular
language, Huichol, because of the well-studied sub-
ordination system and the presence of a lexified
subordinator in addition to the widely employed
morphological means (switch-reference). More-
over, not only is switch-reference only one of the
several attested morphological means to convey
generic temporal subordination cross-linguistically,
but there are also major differences between switch-
reference systems (both in terms of the set of mark-
ers available to a language, but also their range of
functions). The hyperparameters tuning based on
Huichol has likely introduced some bias towards
languages that have a similar system (i.e. one lexi-
fied counterpart to English when alongside switch-
reference morphology), potentially obscuring other
relevant typological dimensions (e.g. systematic
clause-bridging marking).

The n-gram approach identifies groups of charac-
ter n-grams, but does not yet provide a straightfor-
ward way of selecting one particular set of charac-
ters as the representative morpheme from a series of
potential allomorphs. A tentative solution could be
extracting the shortest allomorph, or the allomorph
representing the common denominator among all
n-grams in a set. However, this has not been tested

and we have simply numbered each group of n-
grams while keeping track of what forms each
group contains for subsequent easier retrieval and
inspection, if needed.
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Abstract

Large Language Models are transforming NLP
for a variety of tasks. However, how LLMs
perform NLP tasks for low-resource languages
(LRLs) is less explored. In line with the goals
of the AmericasNLP workshop, we focus on 12
LRLs from Brazil, 2 LRLs from Africa and 2
high-resource languages (HRLs) (e.g., English
and Brazilian Portuguese). Our results indicate
that the LLMs perform worse for the part of
speech (POS) labeling of LRLs in comparison
to HRLs. We explain the reasons behind this
failure and provide an error analysis through
examples observed in our data set.

1 Introduction

Despite numerous advancements in the NLP re-
search due to Large Language Models (LLMs),
available resources mainly cover 20 out of the esti-
mated 7,000 languages (Magueresse et al., 2020).
As a result, majority of world languages could still
be considered as ”low-resource”.

Being a low-resource language (LRL) encom-
passes different types of inadequacies with respect
to the availability of data for creating language
technologies (Gupta, 2022). Focusing on multi-
lingual linguistic scene in South America, we test
the performance of LLMs for annotating part-of-
speech (POS) tagging for 12 LRLs from Brazil,
make a comparison with 2 LRLs from Africa and 2
high resource languages (HRLs) (e.g., English and
Brazilian Portuguese) through human evaluation.

The evaluation is challenging for two reasons.
First, there is a lack of benchmark datasets for the
LRLs in Brazil in general. The ones we were able
to find in universal dependencies (UD) data base,
1 do not have the training data to fine-tune mul-
tilingual language models. Hence, we can only

1https://universaldependencies.org/

leverage prompting LLMs or cross-lingual transfer
through multilingual language models. Secondly,
there is a lack of large monolingual data to benefit
from effective multilingual and cross-lingual trans-
fer techniques (Pfeiffer et al., 2020; Ansell et al.,
2022; Alabi et al., 2022). We could only find the
Bible corpora with less than 35K sentences for 7
out of the 12 languages.

We perform the evaluation on 12 Brazilian LRLs
by prompting GPT-4 LLM and cross-lingual trans-
fer individually from English and Brazilian Por-
tuguese leveraging XLM-R. We preferred GPT-4
because the other open multilingual models (e.g.,
mT0 (Muennighoff et al., 2022), AYA (Ustun et al.,
2024)) do not support the LRLs in this study.
The results of both methods indicate low perfor-
mance (less than 34.0% while high-resource lan-
guages achieved over 90.0%). However, GPT-4
leads to better results and Brazilian Portuguese
performs better than English in zero-shot evalu-
ation. Furthermore, to boost the performance of
cross-lingual transfer, we perform language adap-
tation using XLM-R on each language, before fine-
tuning Brazilian Portuguese, and evaluating on that
language. This boosts the performance by +3 to
+12.0 points on six out of seven languages. Our
findings suggest that cross-lingual transfer to these
languages is very challenging and having few train-
ing examples may further boost the performance.
Therefore, there is a need for building NLP re-
sources across different tasks for these LRLs.

1.1 Multilingualism in Brazil

Brazil is the 5th largest country of the world (qua
land area) with a population of 203 million2 and

2Instituto Brasileiro de Geografia e Estatı́stica.
2023. https://www.ibge.gov.br/en/
cities-and-states.html. Accessed: 2023-12-
15
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it is highly multilingual. Although (Brazilian) Por-
tuguese is the official language, there are approx.
160 native/indigenous as well as sign and immi-
grant languages.3

Following Rodrigues (1986), the two macro-
language families among Brazilian native lan-
guages are Tupi (8 language families, 52 lan-
guages), and Macro-Jê (7 language families, 39
languages). There are also several large language
families (e.g., Karib (21 languages), Arawak (20
languages), Arawá (7 languages), Tukano, Maku,
and Yanomami), six smaller language families to
the south of the Amazon river (e.g., Guaikurú (1
language), Nambikwára (3 languages), Txapakura
(3 languages), Pano (13 languages), Múra (2 lan-
guages), and Matukı́na (4 languages)) and approx.
10 languages which are not part of any these fami-
lies.

These languages share grammatical properties
due to family inheritance or areal contact (Aikhen-
vald, 2002). In terms of morphology, most of these
languages are polysynthetic, head-marking, and
agglutinating with little fusion (Dixon and Aikhen-
vald, 1999; Hengeveld et al., 2007). In term of syn-
tax, there is quite some variation in terms of word
order among these languages(Campbell, 2012).

2 Literature Overview

In terms of labelled datasets for Brazilian LRLs,
we only found datasets from the UD tasks: Gerardi
et al. (2022) developed for TUDET UD treebanks
covering 8 Tupian languages, other languages cov-
ered in UD are Apurina (Hämäläinen et al., 2021),
Bororo, Madi-Jarawara, and Xavante (contributed
by the TUDET team). For the monolingual data,
we found seven Bible corpora on the eBible cor-
pus (Akerman et al., 2023) that are freely available.
All languages lack a large monolingual corpus
which makes it very challenging for cross-lingual
transfer and multilingual pre-training of LLMs.

In terms of evaluation, some studies have already
shown the potential of prompting LLMs in multilin-
gual settings (Ahuja et al., 2023a; Lai et al., 2023),
including some LRLs (Ojo et al., 2023; Ahuja et al.,
2023b). However, evaluations covering Brazilian
LRLs are lacking. To the best of our knowledge,
our study is the first to fill this gap.

3PIB. 2023. https://pib.socioambiental.
org/pt/Linguas. Accessed: 2023-12-15

3 Experimental setup

We focus our evaluation of POS tagging (a subtask
of universal dependencies (UD)) on Brazilian LRLs
due to the simplicity of the task, its popularity, and
the availability of the test evaluation datasets in UD
.4

3.1 Evaluation Datasets

We evaluated 12 Brazilian LRLs and 2 African
languages for a comparison across other regions
with low-resource languages. Finally, we added
2 HRLs (i.e., English and Brazilian Portuguese).
Our definition of HRL is based on the size of un-
labelled data on the web. The larger their size are,
the more likely they are included in pre-training of
the LLMs 5 and multilingual pre-trained LMs (Con-
neau et al., 2020). While UD (Zeman et al., 2023)
covers many languages, most LRLs only have a
test set because of their limited sizes (less than 10k
tokens). The Brazilian LRLs we evaluated on have
also less than 13k tokens (except Nheengatu with
12,621 tokens).

Table 1 shows the languages in our evaluation,
their language family, availability of monolingual
corpus or Bible corpus in that language, UD dataset,
and sizes. We collected the Bible corpus from the
eBible website and used it for language adaptation.
We have two test sets in our evaluation: (1) Test
set A: the original test set in the UD benchmark
(2) Test set B the subsample of Test set A where
we removed sentences that GPT-4 fails to provide
predictions for (mostly due to not properly iden-
tifying the language). We added this information
for a fair comparison of the methods (i.e. using the
same number of sentences in evaluation).

3.2 Models

For the experiments, we consider three approaches
that are popular in the zero-shot setting since we
lack the training data for the Brazilian languages
(see Appendix A for details).

Prompting GPT-4 We prompt GPT-4 using a
similar prompt provided by Lai et al. (2023) where
the model is provided a task description before the
input (seeAppendix B for details).

Cross-lingual transfer We trained a POS tagger
individually for English and Portuguese, and per-

4https://universaldependencies.org/
5https://help.openai.com/en/articles/

8357869-chatgpt-language-support-alpha-web
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Language Language family Monolingual data size UD dataset name Train Dev Test set A Test set B

high-resource languages
English (en) Indo-European/West Germanic not collected en ewt 12,544 2,001 2,007 -
Portuguese (pt) Indo-European/Romance not collected pt gsd 9,616 1,204 1,200 -

Brazilian languages
Apurina (apu) Arawakan Bible (8,729) apu ufpa - - 152 134
Akuntsu (aqz) Tupian N/A aqz tudet - - 343 267
Karo (arr) Tupian N/A arr tudet - - 674 172
Bororo (bor) Macro-Jê Bible (8,254) bor bdt - - 371 161
Guajajara (gub) Tupian Bible (33,757) gub tudet - - 1,182 914
Madi-Jarawara (jaa) Arawan Bible (8,606) jaa jarawara - - 20 18
Makurap (mpu) Tupian N/A mpu tudet - - 37 8
Munduruku(myu) Tupian Bible (8,430) myu tudet - - 158 82
Tupinamba (tpn) Tupian N/A tpn tudet - - 581 458
Kaapor (urb) Tupian Bible (8,535) urb tudet - - 83 20
Xavante (xav) Macro-Jê Bible (8,213) xav xdt - - 148 128
Nheengatu (yrl) Tupian N/A yrl complin - - 1239 -

African languages
Wolof (wo) Niger-Congo/Senegambian not collected wo wtb 1188 449 470 470
Yoruba (yo) Niger-Congo/Volta-Niger not collected yo ytb - - 318 318

Table 1: UD-POS datasets in our evaluation: We provide the training, validation and test splits we used for
experiments. Test set A are the original test set in UD, the Test set B is a subset of A where we removed sentences
that GPT-4 is not able to run inference for due to non-identification of the language.

form the zero-shot transfer on other languages. We
used the XLM-R-large (or simply, XLM-R) (Con-
neau et al., 2020) for training the models.

Language Adaptive Fine-tuning (LAFT) We
leverage LAFT for an effective cross-lingual trans-
fer by first adapting XLM-R-large model to a
new language with limited amount of monolingual
data (Alabi et al., 2020; Pfeiffer et al., 2020; Chau
and Smith, 2021; Alabi et al., 2022). We make use
of the Bible data as the fine-tuning corpus since it
is the largest one for these languages and we only
found 7 (out of 12 Brazilian languages) languages
which have a Bible corpus. Similar to Ebrahimi and
Kann (2021), we examine the effectiveness of this
small pre-training corpus with 8K-34K sentences.
According to Pfeiffer et al. (2020), this approach
can significantly boost cross-lingual transfer. How-
ever, it is not parameter-efficient like the MAD-X
they proposed. On the other hand, Ebrahimi and
Kann (2021) argued that simple adaptation to a new
language is more effective than MAD-X especially
when using the Bible corpus for adaptation and we
follow this recommendation in our evaluation.

4 Results

Table 2 shows the result of our evaluation on POS
tagging with the following key findings:

Zero-shot evaluation results While POS tag-
ging has a performance of 98% (e.g. for English
and Portuguese) when training data are available
(especially for HRLs), the performance decreases
while performing zero-shot transfer to other lan-

guages because POS tagging is language-specific.
The transfer performance is low for both Brazilian
and African languages (probably) because they are
not typologically related whereas English and Por-
tuguese are slightly related (i.e., being in the same
Indo-European family) and covered by XLM-R,
thus achieving an impressive transfer performance
(> +83%).

GPT-4 vs. basic cross-lingual transfer GPT-4
performed slightly better than the zero-shot transfer
from other languages in our experiments indicating
better abilities of LLMs for this task. For English
and Portuguese, the performance reaches to 90%
(although it is not on par with fully-supervised set-
ting). For African languages, the performance was
lower than the HRLs, but it was still decent (64.8-
75.4) probably because the LLMs were exposed to
some African languages during pre-training. The
struggle of GPT-4 for Brazilian LRLs can be ex-
plained with the fact that these languages were
probably not included during the pre-training. The
generation is often not useful for some examples,
where GPT-4 declines to give answers like “As an
AI, I’m unable to provide the POS tags for words
in languages I’m not programmed to understand.
”. Thus, we had to remove such examples from
our evaluation. However, this was not the case for
African LRLs and the HRLs.

Language adaptation for cross-lingual transfer
performance We performed LAFT training on
the Bible corpus individually for the apu, bor, gub,
jaa, myu, urb, and xav. Our results indicate an im-
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XLM-R XLM-R (zero-shot cross-lingual transfer) GPT-4
Language Test set A Test set A Test set B Test set B

Full-sup. en→ xx pt→ xx LAFT + pt→ xx en→ xx pt→ xx LAFT + pt→ xx 0-shot

high-resource languages
en ewt 98.0 98.0 83.6 91.9
pt gsd 97.8 90.0 97.8 92.4

Brazilian languages
apu ufpa - 37.5 40.6 44.9 36.8 40.2 44.7 42.6
aqz tudet - 31.9 37.8 31.3 36.8 49.5
arr tudet - 3.9 14.9 6.3 19.8 27.7
bor bdt - 19.0 23.5 27.3 18.4 23.0 26.4 41.3
gub tudet - 26.5 30.2 36.0 27.8 32.1 37.1 36.2
jaa jarawara - 28.2 28.4 34.5 27.2 27.9 33.6 33.0
mpu tudet - 4.9 9.0 0.0 0.8 0.0
myu tudet - 21.2 27.1 30.3 10.8 14.8 16.5 18.2
tpn tudet - 39.1 41.9 38.9 41.8 47.2
urb tudet - 7.8 11.8 21.2 9.2 9.5 21.6 32.3
xav xdt - 26.5 29.0 28.2 27.3 29.9 29.3 36.5
yrl complin - 28.9 31.5 29.0 31.7 41.2

African languages
wo wtb 87.6 29.3 35.6 64.8
yo ytb - 22.5 31.5 75.4

Average (Brazilian languages) - 23.0 27.1 21.9 25.7 33.8

Table 2: POS accuracy results for Brazilian languages: We compare the accuracy of GPT-4 to zero-shot cross-
lingual transfer from English language and Portuguese leveraging XLM-R-large multilingual pre-trained language
model. Test set A is the original test set found on UD while Test set B are the ones GPT-4 could automatically
detect their language to run inference.

provement in accuracy on 6 out of the 7 languages,
except for xav. The performance improvement is
quite large for urb (+7.2 on test A, and 12.1 on Test
B), and moderate improvement of +3 to +6 for
other languages. This experimental result shows
that with sufficient monolingual texts, we can in-
crease the performance of the cross-lingual trans-
fer results. However, for the LRLs, such data is
scarce. A more effective approach is perhaps to
annotate few examples (e.g. 10 or 100 sentences)
for training POS taggers to boost the performance
(cf. (Lauscher et al., 2020; Hedderich et al., 2020)
for a larger boost in performance for token classifi-
cation tasks in this few-short setting). Regardless,
there is a need for better methods to leverage small
monolingual data sets.

5 Error analysis

In this section, we provide examples from 2 Brazil-
ian languages (Karo and Guajajara) where the
LLMs made errors with the POS tagging. The
first line refers to the original sentence, the second
line refers to the gold-standard UD POS tag; the
third line refers to the GPT-4 POS tag.)

In example (1), the auxiliary verb (in Karo) has
the same orthographic form as the English inter-
jection okay. In example (2), the Guajajara verb
has (partially) the same orthographic form as the
English interjection (oh). Due to these similarities,

GPT-4 seems to tag the POS for these words ac-
cording to English instead of the POS tagged in
UD for Karo and Guajajara.

1. awero toba okay
NOUN VERB AUX
NOUN NOUN INTJ

2. Oho kaapii rehe .
VERB NOUN ADP PUNCT
INT VERB ADV PUNCT

6 Discussion & Conclusions

In our study, we explored how LLMs perform the
NLP task of POS tagging for 12 LRLs in Brazil
and compared this performance with 2 LRLs in
Africa and 2 HRLs (English, Brazilian Portuguese).
POS is a well established NLP task and it pro-
vides insights about the linguistic structures of the
different languages especially when only limited
data is available, such linguistic annotations have
been shown to improve language understanding
and generation for endangered languages (Zhang
et al., 2024). Our results indicate that the LLMs
(GPT-4) perform worse for LRLs on this task in
general but older approaches like language adap-
tive fine-tuning that leverage multilingual encoder
models provides some improvements. However,
with the lack of available data, any improvements
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across methods are limited. Although we focused
on 12 Brazilian LRLs, there are many other LRLs
which we were not able to cover. Future work can
expand this evaluation to more tasks and to other
LRLs not only from Brazil but from other regions
around the world as well.

7 Limitations

Due to limited space, we only focused on POS tag-
ging for this paper but there is a need to explore
how LLMs perform other NLP tasks for LRLs. We
only evaluated ChatGPT in the zero-shot learning
setting but we do not have comparisons with other
recent multilingual LLMs, e.g., BLOOM (Scao et
al., 2022), and Gemini, in various other learning
scenarios. While some of these models are cur-
rently less accessible for large-scale evaluations,
our plan is to include more models and learning
settings along the way to strengthen our evalua-
tions and comparisons in the future. Finally, the
current work only evaluates ChatGPT in terms of
performance over NLP tasks in different languages.
To better characterize ChatGPT and LLMs, other
evaluation metrics should also be investigated to
report more complete perspectives for multilingual
learning, including but not limited to adversarial
robustness, biases, toxic/harmful content, halluci-
nation, accessibility, development costs, and inter-
operability.

8 Ethics Issues

Since we used publicly available data sets, we do
not foresee any major issues in terms of ethical
concerns.
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A Models

For the experiments, we consider three approaches
that are popular in the zero-shot setting since we
lack training data for the Brazilian languages.

Prompting GPT-4 GPT-4 6 is a large language
model developed by pre-training on a large amount
of texts and code from the web, followed by in-
struction prompt tuning based on human feedback.
We prompt GPT-4 using a similar prompt provided
by Lai et al. (2023) where the model is provided a
task description before the input. We provide the
details in Appendix B.

Cross-lingual transfer We trained a POS tagger
individually for English and Portuguese, and per-
form zero-shot transfer on other languages. We
make use of the XLM-R-large (or simply, XLM-
R) (Conneau et al., 2020) for training the models.
XLM-R has been pre-trained on 100 languages of

6https://chat.openai.com/

the world with over 2TB pre-training corpus size
but this corpus does not include any indigenous
Brazilian languages.

Language Adaptive Fine-tuning (LAFT) We
leverage LAFT for an effective cross-lingual trans-
fer by first adapting XLM-R-large model to a
new language with limited amount of monolingual
data (Alabi et al., 2020; Pfeiffer et al., 2020; Chau
and Smith, 2021). This method was proven to be
very effective for low-resource languages (Adelani
et al., 2021; Muller et al., 2021). We make use of
the Bible data as the fine-tuning corpus since it is
the largest we found for these languages. We only
found 7 (out of 12 Brazilian languages) languages
with the Bible corpus. Similar to Ebrahimi and
Kann (2021), we examine the effectiveness of this
small pre-training corpus with 8K-34K sentences.
Pfeiffer et al. (2020) showed that this approach can
significantly boost cross-lingual transfer. However,
it is not parameter-efficient like the MAD-X they
proposed. On the other hand, Ebrahimi and Kann
(2021) argued that simple adaptation to a new lan-
guage is more effective than MAD-X especially
when using the Bible corpus for adaptation and we
follow this recommendation in our evaluation.

Hyper-parameter of experiments For the cross-
lingual and LAFT experiments, we used Hugging-
Face transformers (Wolf et al., 2020) and A100
Nvidia GPU for fine-tuning the models. For the
LAFT, we train for 3 epochs on one GPU while for
cross-lingual, we fine-tune English and Portuguese
individually using a batch size of 64, with gradient
accumulation of 2, and a training epoch of 10.

B Prompt Template

Table 3 provides the prompt template we used for
GPT-4 evaluation.
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Prompt

Task Description Please provide the POS tags for each word in the input sentence. The input will be a list of
words in the sentence. The output format should be a list of tuples, where each tuple consists of
a word from the input text and its corresponding POS tag label from the tag label set: [”ADJ”,
”ADP”, ”ADV”, ”AUX”,”CCONJ”, ”DET”, ”INTJ”, ”NOUN”, ”NUM”,”PART”, ”PRON”,
”PROPN”, ”PUNCT”,”SCONJ”, ”SYM”, ”VERB”, ”X”].

Note Your response should include only a list of tuples, in the order that the words appear in the input
sentence, with each tuple containing the corresponding POS tag label for a word.

Input [”What”, ”if”, ”Google”, ”Morphed”, ”Into”, ”GoogleOS”, ”?”]

Output [(”What”, ”PRON”), (”if”, ”SCONJ”), (”Google”, ”PROPN”), (”Morphed”, ”VERB”), (”Into”,
”ADP”), (”GoogleOS”, ”PROPN”), (”?”, ”PUNCT”)]

Table 3: Prompt template used for POS tagging based on Lai et al. (2023). An example prediction by GPT-4
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Abstract

Throughout history, pictorial record-keeping
has been used to document events, stories, and
concepts. A popular example of this is the
Tzolk’in Maya Calendar. The pre-Columbian
Mixtec society also recorded many works
through graphical media called codices that
depict both stories and real events. Mixtec
codices are unique because the depicted scenes
are highly structured within and across doc-
uments. As a first effort toward translation,
we created two binary classification tasks over
Mixtec codices, namely, gender and pose. The
composition of figures within a codex is es-
sential for understanding the codex’s narrative.
We labeled a dataset with around 1300 figures
drawn from three codices of varying qualities.
We finetuned the Visual Geometry Group 16
(VGG-16) and Vision Transformer 16 (ViT-
16) models, measured their performance, and
compared learned features with expert opin-
ions found in literature. The results show that
when finetuned, both VGG and ViT perform
well, with the transformer-based architecture
(ViT) outperforming the CNN-based architec-
ture (VGG) at higher learning rates. We are
releasing this work to allow collaboration with
the Mixtec community and domain scientists.

1 Introduction

Vast amounts of historical and cultural documents
are encoded in pictographic systems (Sampson,
2015). Representations such as Egyptian hiero-
glyphics use pictorial representations correspond-
ing to words and sub-word components to express
concepts. Other pictorial systems that display
scenes that evoke a known narrative have also been

used throughout the world. Rules govern the de-
piction of years, dates, names, class, ceremonies,
and gender (Jansen, 1988). The implicit gram-
matical rules can contribute to a deterministic
interpretation of these ancient narratives. Mix-
tec codices are highly structured and have fairly
rigid conventions for the representation of people
(Boone, 2000), such as loincloths on men and skirts
on women. Consequently, the depiction of persons
in these codices follows consistent patterns. Un-
fortunately, due to the ravages of time and conflict,
only a few of these codices are presently available.
Computational analyses of the codices and their un-
derlying structures may help researchers better un-
derstand the remaining works. In this paper, we ex-
plore how models such as VGG-16 (Simonyan and
Zisserman, 2015) and ViT-16 (Dosovitskiy et al.,
2021) perform when used to classify these low-
resource patterns and understand the features they
find important in this task.

2 Mixtec Codices

The researchers labeled data from three popular
sources: The Codices Vindobonensis Mexicanus
I (Lehmann and Smital, 1929; Unbekannt, 1449),
Selden (Caso, 1964; Bakewell and Hamann, 2023),
and Zouche-Nuttall (Nuttall, 1902; Forstmann,
2023). Codex Vindobonensis Mexicanus I de-
scribes both the mythological and historical found-
ing of the first Mixtec kingdoms, Codex Selden
follows the founding of the kingdom of Jaltepec
and its ruler, Lady 6 Monkey, and Codex Zouche-
Nuttall primarily illustrates the life and conquests
of Lord 8 Deer Jaguar Claw, but also details the
histories of his ancestors. Other Mixtec codices
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Codex Total Gender Pose Quality

Man Woman Standing Not Standing a b c

Nuttall 264 256 8 101 163 263 1 0
Selden 307 74 233 32 275 254 46 7

Vindobonensis Mexicanus I 714 573 141 253 461 569 123 22

Totals 1285 903 382 386 899 1086 170 29

Table 1: The counts of figures from each of the source Mixtec codices and in total, the number of man and woman
labels per codex and in total, numbers of standing and not standing labels per codex and in total, and the a, b,
and c labeled data items per codex and in total.

are extant, but their condition is degraded and not
amenable to our current machine-learning pipeline.
Each codex is made of deerskin folios, and each
folio comprises two pages. The Codex Vindobo-
nensis Mexicanus I contains 65 pages, Selden 20
pages, and the Zouche-Nuttall facsimile edition 40
pages. We chose to use the Zouche-Nuttall facsim-
ile edition over the complete 84-page edition be-
cause of its restored quality and high-quality scans
available.

2.1 Data Processing

We used the Segment Anything Model (SAM) (Kir-
illov et al., 2023) from Facebook AI Research to
extract individual figures from the three source
codices1. Figures are representations of people
or gods in Mixtec mythology and are composed of
different outfits, tools, and positions. Their names
are represented by icons placed near their position
on a page. Each figure was annotated according
to the page it was found, its quality as either a, b,
or c, and its order within the page. An a quality
rating indicated the entire figure was intact, regard-
less of minor blemishes or cracking, and could be
classified by a human annotator as man or woman,
standing or not. A b rating means that while the
previous characteristics of the figure could be de-
termined, significant portions of the figures were
missing or damaged. The c rated figures were miss-
ing most of the definable characteristics humans
could use to classify the sample.

2.2 Labeling Procedures

After figure segmentation and grading, we added
classification labels to each figure. Literature de-
scribes representations of gender and poses in Mix-
tec codices to guide our classifications (Boone,

1Each codex we used were high-quality and designated as
free for non-commercial use or provided by national libraries

2000; Smith, 1973; Jansen, 1988; Williams, 2013;
Lopez, 2021). We propose two binary clas-
sification tasks: Gender (man/woman) and Pose
(standing/not standing). These two categories
represent meaningful distinctions in Mixtec codices
and allow for the exploration of deeper, more com-
plex investigations into the structure of these docu-
ments. We refer to research on Mixtec codices to
guide our human evaluation of figures. The criteria
used by our human evaluators to determine gender
class membership were loincloths and anklets for
men, and dresses and braided hair for women. For
the standing and not standing task, if the figure is
clearly on two feet and in an upright position, it
is labeled standing, and any other position is la-
beled not standing. Two team members tagged
the images for both categories independently and
then verified the results with each other using the
process of inter-rater reliability (Hallgren, 2012).

2.3 Dataset Statistics

Codex Vindobonensis Mexicanus I represents the
largest proportion of the 1285 figures with 714,
Codex Selden has 307, and Codex Zouche Nut-
tall is the smallest with 264. Codex Vindobo-
nensis Mexicanus I contains 573 men and 141
women, Selden 74 men and 233 women, and
Zouche-Nuttall 256 men and 8 women. This im-
balance in each dataset can be attributed to the
fact that each codex is centered on a different fig-
ure. The Pose category follows a similar proportion
split, however, a not standing position outweighs
standing, for each codex. The reason for this is
unclear, although given the number of ceremonies
that each codex describes, which entails a seated
or kneeling position, this balance intuitively makes
sense. The quality of the figures is largely dom-
inated by the a classification with 1086 figures,
followed distantly by b at 170 figures, and c com-
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prising only 29 figures. Of these totals, the Zouche-
Nuttall accounts for 263 a, only one b designation,
and zero c figures. The Selden contains 254 a clas-
sifications, 46 marked with b, and 7 c. Finally the
Vindobonensis Mexicanus I has 568 a figures, 123
b, and 22 c. Given the small number of c samples
across all three codices, we use all three categories
in the model training and testing pipelines. These
numbers can be viewed in Table 1.

3 Experiment

We describe the preprocessing, finetuning, and ex-
ecution steps of this pipeline. We explore the hy-
perparameter space for each model first to find the
optimal configuration to use during execution.

3.1 Preprocessing
For our model pipeline preprocessing, the fig-
ures are moved to tensors and then normalized
to 224x224 pixels. We bias the loss function by
weighting each class in the loss function by its in-
verse. Finally, due to the overall limited number of
figures, and to prevent overfitting, we augmented
the entire dataset by using random flips and block-
ing to increase the number of samples for training.
The dataset is then split into training, testing, and
validation sets, 60%, 20%, and 20% respectively.
We set aside eight reference images to monitor
which features of gender and pose are prevalent in
activation and attention maps throughout training.

3.2 Models
Both CNNs and transformers are used in image
classification (Lu et al., 2021). We fine-tuned pop-
ular vision models VGG-16 and ViT-16 to perform
classification tasks and improve computational ef-
ficiency. We imported the models and their pre-
trained weights from the PyTorch library. We then
unfroze the last four layers and heads of each model
for training, as they are responsible for learning
complex features specific to our classification tasks
(Olah et al., 2017). Finally, the fully connected
layer of each model was replaced by one matching
our binary classification task.

3.2.1 Hyperparameters
Next, we explored the number of epochs, batch
size, and learning rate of each of our models. We
experimented with different batch sizes, ranging
from 32 to 128, and opted for an average value of
64 as no size significantly outperformed the others.
Once we finalized the hyperparameter space, we

selected the loss function and optimizer according
to the best practices associated with our pretrained
models, VGG and ViT.

4 Model Evaluation

ViT performs consistently higher than VGG for
these different learning rates, however, both re-
turned strong results for each metric. The testing
results for both ViT and VGG were high with a
small standard deviation, around 98% and 1% stan-
dard deviation for both (see Table 2). Additional
model evaluation results are listed in Appendix C.

Model Task Test Accuracy ± (stddev)
VGG-16 Gender 0.978± (0.009)
VGG-16 Pose 0.978± (0.01)

ViT-16 Gender 0.977± (0.009)
ViT-16 Pose 0.974± (0.009)

Table 2: Testing accuracy and their standard deviations
for VGG-16 and ViT-16.

5 Discussion

The purpose of the experiments is to explore
two research questions, namely: Can CNN and
transformer-based models be finetuned to classify
figures from a Mixtec Codices dataset? and Does
the model identify the same features experts do? To
answer the first question, we analyze and compare
the performances of both the pretrained ViT and
VGG models. Both models achieve great results
across training, validation, and testing phases when
using an appropriate learning rate. Smaller learn-
ing rates require more epochs to converge, as the
steps are smaller, but are less likely to miss a mini-
mum loss. On the other hand, larger learning rates
require fewer epochs, but may not converge. As
we can see in Figure 3, ViT converges for almost
all learning rates, and so could be used in environ-
ments where compute resources are lacking.

Features and Literature. We assigned refer-
ence images for each class (man and woman, and
standing/not standing) to understand which fea-
tures each model learned, as well as to compare
these learned features to those highlighted by ex-
perts. During training, we generated visualizations
of activation and attention per pixel to view how
the models learned important features over time.
In the left image in Figure 1, the ViT model as-
signed higher attention to areas corresponding to
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Unblocked man Blocked man Unblocked woman Blocked woman

Source

Pre-
Training

Post-
Training

Figure 1: ViT-16 Mean Attention Maps for man and woman. The top row shows original reference images for both
blocked and unblocked conditions. The next row shows attention maps extracted before the first epoch of training
for man, and woman (right), for both blocked and unblocked conditions. The bottom row contains attention maps
after the last epoch of training. The model shows increased attention in the loincloth area for an unblocked man, and
the skirt area for an unblocked woman, which follows expert opinion. In the blocked conditions, different areas than
the noted features are highlighted (woman), or do not converge to any particular area at all (man).

loincloths on man. On the right, ViT shows in-
creased attention to the poncho area on a woman.
We confirm that these are both features noted by
domain experts (Boone, 2000). To verify that the
model is indeed identifying the same features noted
in literature, we masked attributes on the reference
images. These features were earlier noted as dis-
criminatory for human evaluators labeling gender:
loincloths and anklets for man, and braided hair
and dresses for woman. We extended our reference
image set by adding three variations to each im-
age: either blocked hair, blocked skirt, or both for
woman. This process was replicated for the two
features indicative of man. We then tested the fine-
tuned models on the unblocked and blocked ref-
erence images and generated class activation and
attention maps. ViT correctly predicted 100% of
the unblocked reference images, 79% of the singly
blocked images, and 63% of the double blocked
images. Figure 1 shows the activation maps of the
doubly blocked images. The model fails to find
defined areas of attention. This again verifies that

the model is learning features defined in literature.

6 Summary

In this paper, we presented a low-resource dataset
of figures from three Mixtec codices: Zouche-
Nuttall, Selden, and Vindobonensis Mexicanus I.
We extracted the figures using Segment Anything
Model and labeled them according to gender and
pose, two critical features used to understand Mix-
tec codices. Using this novel dataset, we finetuned
the last few layers of CNN and transformer-based
foundational models, VGG-16 and ViT-16 respec-
tively, to classify figures as either man or woman
and standing or not standing. We found that both
models have high accuracy with this task, but that
ViT-16 may be more reliable for varying learning
rates. We confirmed that the models are learning
the features said to be relevant by experts using
class activation maps and targeted blocking of said
features. Given that these models can reliably clas-
sify figures from a low-resource dataset, this re-
search opens the door for further processing and
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analysis of Mixtec Codices. The codices them-
selves are highly structured and carry a narrative
woven through each scene. Finetuned state-of-
the-art models could be combined to classify seg-
mented figures within a scene, as well as classify
the relationship between figures. These relation-
ships would then be used to extract the narrative
from a codex, as defined by domain experts.

7 Limitations

The Mixtec civilization produced many of the avail-
able codices, however, conquest and the passage of
time have left us with only a few remaining high-
quality samples (Boone, 2000). Fortunately, many
of the surviving codices still contain examples of
scenes and can be used to build a digitized corpus
for machine processing. We chose popular models
to demonstrate our method. We believe other ar-
chitectures would have similar results. The quality
results in both models show a specialized architec-
ture is not required for accuracy. We have not yet
explored more environmentally efficient models.
Both models we adopt use pretrained classifiers,
each trained on data not specific to our domain.
The models inherit all biases previously encoded
in the model. We have not investigated how these
biases may affect downstream tasks. The finetuned
models generated few errors in our investigation,
however, we are unaware of how these biases may
result in unintended effects.

We selected classification tasks that are well un-
derstood within the Mixtec research community,
namely: man and woman, and standing and not
standing. Many experts disagree on the interpre-
tation of scenes across codices. For instance, some
early 20th-century scholars have stated cannibalism
and human sacrifice are depicted within the codices
(Pohl, 1994), while others contend that these scenes
should be understood as metaphorical interpreta-
tions (Lopez, 2021; Lopez and Collver, 2022). This
work is an initial investigation into Mixtec and low-
resource, semasiographic languages. We are pro-
hibited from deeper explorations until we align our
research direction with present communal, cultural,
and anthropological needs. Support from Mixtec
domain experts and native Mixtec speakers is es-
sential for continued development.
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A Example Codex Pages

Figure 2 show example pages from the three
codices. The Codex Vindobonensis Mexicanus
I and Facsimile Edition of the Codex Zouche-
Nuttall (Nuttall, 1902; Forstmann, 2023) we ref-
erence were digitized by The Austrian National
Library (Lehmann and Smital, 1929; Unbekannt,
1449), and the Codex Selden was digitized within
the Mesolore (Caso, 1964; Bakewell and Hamann,
2023).

B Model Execution

Model training and inference were performed on
an Nvidia A100 on the HiPerGator cluster using
PyTorch 2.1 and CUDA 11. For both VGG and
ViT, each run took up to 25 minutes to complete.
Before the first and after the last epoch of training,
an activation map for VGG and an attention map
for ViT is output for each reference image. We then
ran the testing phase of the model pipeline using
the optimal hyperparameters found during training
and validation. Testing is run 30 times for each
model and classification task and the performance
scores are averaged to measure the reliability of the
model.

C Model Evaluation

For each training and validation run, we collected
metrics such as accuracy, F1, recall, loss, and preci-
sion. The accuracy results from training for varying
levels of learning rates are presented in Figure 3 for
both VGG and ViT and both classification condi-
tions. Hyperparameter investigations revealed that
the accuracy for training and validation converged
around 100 epochs and the ideal learning rate was
0.00025.

D Reference Images

To observe the model’s feature identification
throughout the development process, we set aside
a group of reference images with equal numbers

(a) Page 45 of the Codex Zouche-Nuttall.

(b) Page 4 of the Codex Selden

(c) Page 13 of the Codex Codex Vindobonensis Mexicanus

Figure 2: Sample pages from each of the three source
codices: Codex Zouche-Nuttall, Codex Selden, and
Codex Vindobonensis Mexicanus I.
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(a) VGG-16 model Gender accuracy of the training set. (b) VGG-16 model Pose accuracy of the training set.

(c) ViT-16 model Gender accuracy of training set. (d) ViT-16 model Pose accuracy of training set

Figure 3: Training accuracy vs. percentage to completion for a given run. Graphs execution across learning rates.
Smaller learning rates converged faster across all runs, while some larger learning rates failed to converge.

(a) Unblocked Reference images.

(b) Blocked Reference images.

Figure 4: Six reference images sourced from our three references codices. From left to right the image show a man
standing, woman not standing, woman standing, man standing, woman standing, man not standing. The
bottom row shows the reference images with the full blocking available for each image.
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labeled man/woman and standing/not standing
as shown in Figure 4a. Each codex is represented
equally in the set of reference images. We then
created at most three variations for each image.
The first two variations were generated by blocking
one of the defining features, and the last involved
blocking both. If a figure did not have one of the
features, (i.e. a man without anklets, or a woman
without braided hair) then only one variation was
created. Before and after model training and vali-
dation, we used model inference on the reference
images and output class activation and attention
maps for VGG-16 and ViT-16 respectively. Fig-
ure 4b shows examples of both unmasked and fully
masked images.

E Code & Data

Our source code and data for these experiments can
be found in a GitHub repository https://github.
com/ufdatastudio/mixteclabeling.
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Abstract

Kalaallisut, also known as (West) Greenlandic,
poses a number of unique challenges to contem-
porary natural language processing (NLP). In
particular, the language has historically lacked
benchmarking datasets and robust evaluation
of specific NLP tasks, such as neural machine
translation (NMT). In this paper, we present
a new benchmark dataset for Greenlandic to
Danish NMT comprising over 1.2m words of
Greenlandic and 2.1m words of parallel Dan-
ish translations. We provide initial metrics for
models trained on this dataset and conclude by
suggesting how these findings can be taken for-
ward to other NLP tasks for the Greenlandic
language.

1 Introduction

Greenlandic (Kalaallisut) is an Inuit-Yupik-
Unangan language spoken by around 60,000 peo-
ple in Greenland and Denmark. While Greenlandic
is classified as ‘Vulnerable’ according to the En-
dangered Languages Project.1, it is nevertheless
relatively healthy. Local governance, media, and
schooling up to university level are conducted ei-
ther purely in Greenlandic, the sole official lan-
guage since 2009, or in both Greenlandic and Dan-
ish, the colonial language (Compton, 2024).

Greenlandic has a number of comparatively rare
linguistic features, not least of which is the promi-
nent use of polysynthesis (Fortescue, 2007). Mor-
phological complexity not only manifests in word-
final inflections (mood, person, number, and so
on) but also the theoretically indefinite productiv-
ity of adding morphemes to stems and concatenat-
ing other morphemes. For example, palasi means
‘priest’, palasi-nngor-poq means ‘he becomes a
priest’, palasi-nngor-tip-paa means ‘he causes him
to become a priest’, and palasi-nngor-tit-si-neq
means ‘the act of causing someone to become a
priest’.

1https://www.endangeredlanguages.com/

Additionally, there is widespread morphophono-
logical assimilation or fusion at the morpheme
boundaries (Fortescue, 1980). While these changes
are to a large extent predictable, they can make it
difficult - both for machine learning models and
humans who are not native speakers of Greenlandic
- to analyze precisely which morphemes comprise
any given word.

1.1 From linguistics to NLP

Greenlandic hence poses a number of specific chal-
lenges to contemporary machine learning-based
approaches to NLP. For example, most contempo-
rary NLP systems use sub-word tokenization strate-
gies such as Byte Pair Encoding (BPE, (Zouhar
et al., 2023). Given its morphological complexities,
sub-word tokenization seems unsuited to working
with Greenlandic data, and an informal consen-
sus among experts in the language has been that
it is hence not amenable to contemporary NLP
techniques. Does this mean that the language is
excluded from the fruits of recent advances in con-
temporary neural language technology?

We contend that this is not the case. It is true
that there is still lacking scientific investigation
into foundational aspects of how easily modern
NLP methods can be applied to a morphologically
complex, low-resource, indigenous language like
Greenlandic. However, a rapidly growing body of
research already exists for languages as morpho-
logically diverse as Nahuatl, Raramuri, Shipibo-
Konibo, and Wixarika (Mager et al., 2022) and in-
digenous languages closely related to Greenlandic
(Liu et al., 2020a; Schwartz et al., 2020). Re-
cent work has provided systematic analysis of chal-
lenges and methods involved the creation of NMT
systems for these kinds of languages (Mager et al.,
2023).

This paper aims to move the Greenlandic NLP
more in this direction by introducing a benchmark
dataset for Greenlandic to Danish and provide the
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first set of metrics on model performance. We
specifically choose to translate to Danish, since
this is a meaningful task given the complex social
history between these two languages and cultures
(Olsen, 2011; Kleeman-Andersen, 2021). In what
follows, we outline the various steps taken to con-
struct this dataset and the results of initial simple
experiments.

1.2 Current state of Greenlandic NMT
Until recently, the only available tool for machine
translation for Greenlandic to Danish was Nutserut,
a rule-based approach to machine translation de-
veloped and maintained by Oqaasileriffik, the Lan-
guage Secretariat of Greenland.2 Research into
Greenlandic NMT is thin on the ground. Earlier
work exists on Greenlandic to English NMT but
this work is hampered by the synthetic nature of the
training data (Jones, 2022). There exists a growing
body of work on related languages such as Inukti-
tut which investigates whether adding Greenlandic
data to training pipelines might increase perfor-
mance on English–Inuktitut NMT (to mixed re-
sults) (Roest et al., 2020). Beyond this, though, a
survey of the existing literature suggests that there
has to date been detailed empirical studies on the
prospects and limitations of Greenlandic NMT.

Since we first started work on our project, a num-
ber of interested stakeholders have moved into this
space, including the largest media house in Green-
land3 and Oqaasileriffik itself.4 This is a positive
development, since greater investment and engi-
neering is likely to lead to growth and broader adop-
tion of contemporary machine learning for Green-
landic. However, these tools are closed-source and
do not provide transparent quantitative metrics for
evaluating model performance. We are currently
unaware of any work which has provided quan-
tifiable metrics for Greenlandic to Danish NMT,
meaning that the results presented here are the first
such results on a benchmark dataset.

1.3 The problem of data
Thanks to the work done by custodians of Green-
landic, the language punches above its weight in
terms of linguistic resources. For example, Oqaasi-
leriffik have to date developed searchable text cor-
pora; lexical resources such as dictionaries and
terminology banks; and practical tools such as

2https://nutserut.gl/pre
3https://www.sermitsiaq.ag/
4https://nutserut.gl/

spellcheckers and text-to-speech models.5 How-
ever, the language is still greatly under-resourced
relative to other languages globally. This lack
is most apparent in the context of well-designed
Greenlandic-Danish parallel corpora. Currently
there are no gold standard corpora in this area
which can be used as a reliable benchmark for
NMT.

This data scarcity has meant that rule-based ap-
proaches have dominated, since these approaches
resolutely do not require large quantities of data.
Nevertheless, rule-based approaches to language
are now regularly replaced by or integrated along-
side machine learning developed for high perfor-
mance in low-data environments (Torregrosa et al.,
2019; Huang et al., 2020). To ensure that Green-
landic is not left behind, it is necessary to explore
all possibilities and to make the most of the avail-
able resources, even where they might not be ide-
ally suited for the task.

For our experiments, we collected data with per-
mission by scraping the public facing website of
Kalaallit Nunaata Radioa (KNR), Greenland’s na-
tional public broadcasting organization.6 As a pub-
lic broadcaster, KNR’s data were freely accessible,
and they have an official language policy necessi-
tating that all texts published on their websites are
published in both Greenlandic and Danish.

2 Methods

2.1 Data preperation

In May 2023, we scraped full articles for both
Greenlandic and Danish versions of all articles
stretching back to the first available digital texts.
This created an initial corpus of roughly 72k Green-
landic language articles and around 63k Danish
language articles. This is due to the fact that, as
one goes further back in KNR’s archives, it ap-
pears that earlier articles were not regularly trans-
lated into Danish, with the official dual translation
policy only coming into effect in 2010.7 Differ-
ent translations of the same article are linked by
a unique identifier, meaning that we were able to
remove Greenlandic texts for which there was no
translation. Scraped HTML files were consistently
structured across the translations, meaning that it
was simple task to automatically extract the main
body text from each document creating a raw text

5https://oqaasileriffik.gl/en/
6https://knr.gl/kl
7https://knr.gl/da/sprogpolitik-i-knr
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corpus of parallel documents.
To create a parallel sentence corpus, we made

use of a crude and efficient alignment algorithm.
Documents were first split into sentences by tok-
enizing on common end-of-sentence punctuation
such as periods, exclamation marks, and question
marks. This resulted in each document being trans-
formed into a list of sentences. We then compared
the the overall number of sentences in each article
between the Greenlandic and Danish version of the
document. In the case of a mismatching number
of sentences per document pair, we discarded this
pair of articles from the corpus. If the number of
sentences in an article matched, we assumed that
there was a one-to-one mapping between sentences
in the different translations of the text.

The final corpus hence comprises the sentence
pairs from all of those articles which have the same
number of sentences per article. While this ap-
proach is of course naïve, it was necessary given
the lack of available resources to otherwise create a
useable parallel corpus. We expand on this problem
below in Limitations.

The final result of this process is a parallel corpus
of around 73k sentence pairs, comprising around
1.2m words of Greenlandic and 2.1m words of Dan-
ish. This is comparable to previous studies working
in similar linguistic contexts (Schwartz et al., 2020).
Of this data, a randomly drawn sample of 1k sen-
tences were held back as test data for evaluating
model performance.

2.2 Model creation

All models were trained using OpenNMT with a
PyTorch backend (Klein et al., 2017)8. BPE tok-
enizers were trained using pyonmtok, a wrapper for
OpenNMT’s tokenizer.9

Each experimental condition used the same Bi-
LSTM encoder-decoder architecture adopting the
default hyperparameters outlined in OpenNMT’s
documentation.10 The only exceptions are the us-
ing of the Adam for optimization and an initial
learning rate of 0.001. Each model ran for 100k
training steps with model checkpoints saved after
every 10k steps.

Alongside the custom RNN models outlined,
we also tested the performance of state-of-the-art
LLMs on this task. Using the OpenAI API, we

8https://github.com/OpenNMT/OpenNMT-py
9https://github.com/OpenNMT/Tokenizer/

10https://opennmt.net/OpenNMT-py/options/train.
html

performed zero-shot testing of GPT-3.5-turbo and
GPT-4 with the following prompt:

Translate this text from Greenlandic to
Danish, without any additional com-
ments or explanations: {text}

3 Experiment

3.1 Hardware considerations
Local models were trained on a machine running
Ubuntu (18.04.6 LTS) with 40 Intel(R) Xeon(R)
Silver 4210 CPU cores and four Quadro RTX 8000
GPUs.

3.2 Evaluation metrics
Evaluating machine translation quantitatively is a
notoriously fraught endeavour, with a number of
different metrics proposed to quantify exactly how
well any given model is performing (Popović, 2015;
Chatzikoumi, 2020; Rei et al., 2020). Since no one
metric robustly measures translation quality in a
way which is entirely in line with expectations of
human readers, we evaluate model performance
using of a range of standard metrics.

Surface similarity is measured via n-gram over-
lap using BLEU (Papineni et al., 2002) and via char-
acter overlaps with chrF (Popović, 2015). Both sets
of evaluations were performed using open-source
and publicly available implementations of these
algorithms.11,12

While both the BLEU and chrF metrics evaluate
slightly different aspects of the generated transla-
tions, they are both ultimately based on the amount
of string overlap between machine generated text
and human references. However, it is of course true
that any given sentence can be translated a seem-
ingly indefinite number of ways while retaining the
same meaning. In order to capture aspects of the
semantic similarity machine generated translations
and their references, we make use of BERTScore
(Zhang et al., 2020).13 This has been applied and
shown to perform well in Danish contexts, such as
evaluating abstractive text summarization (Kolding
et al., 2023).

3.3 Results
The results for all models are shown in Table 1
below. We see that the Bi-LSTM model with the

11https://github.com/mjpost/sacrebleu
12https://github.com/google-research/

google-research/tree/master/rouge
13https://github.com/Tiiiger/bert_score
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Model BERTscore (F1) BLEU chrF2
Bi-LSTM + 5k BPE 0.74 16 32.3
Bi-LSTM + 10k BPE 0.73 13 32.5
Bi-LSTM + 30k BPE 0.72 12 29.9
Bi-LSTM + 50k BPE 0.71 11 27.9

GPT-3.5-turbo 0.64 3 25.4
GPT-4 0.68 4 28.3

Table 1: Results across all model types

fewest number of joins performs best on this data,
with the second highest scoring model being the
model with the second lowest number of joins. In
general, we see that increasing the number of BPE
merges descreases performance in a proportional
and linear way.

Perhaps contrary to expections, the LLM solu-
tions perform notably worse than all of our much
simpler, custom RNN models. However, this is
likely due to the zero-shot nature of the task; ad-
ditional experimentation is necessary to test the
limits of LLMs for this particular tasks.

4 Discussion

4.1 What does this show?
The most striking takeaway from these prelimi-
nary results is that models generally perform rea-
sonably well when evaluated using BERTScore,
while scores tend to be much poorer for the n-gram
and character-based metrics. Put simply, it would
seem as though the translations produced by these
models tend to be semantically close to the human
generated sentences but are otherwise lexically or
stylistically divergent from the human references.

Nevertheless, the numbers presented here are not
widely different from research into similar indige-
nous linguistic contexts, such as reported BLEU
scores for Yup’ik to English (≈13, (Liu et al.,
2020a)) and Inuktitut to English (≈28, (Schwartz
et al., 2020); see also (Nicolai et al., 2021)). De-
spite the widespread perception of the linguistic
uniqueness of Greenlandic, it would seem that the
language is nevertheless amenable to NMT.

Crucially, though, we also demonstrate that a
smaller, simpler Bi-LSTM model currently outper-
forms more sophisticated LLM solutions. With
a few-shot prompting regime and additional fine-
tuning this could likely be improved, but it does pro-
vide a note of caution against immediately adopting
"state-of-the-art" models without detailed testing

and robust scientific evaluation.

4.2 Where next?

Our initial NMT experiments with Greenlandic to
Danish are limited by our use comparatively sim-
ple architectures. Immediate next steps will be to
experiment with more sophisticated neural network
architectures such as transformer-based models, as
well as the applicability of pre-trained multilin-
gual embeddings such as mT5 (Xue et al., 2021) or
mBART (Liu et al., 2020b).

This opens up a wide range of possibilities, in-
cluding practical technologies such as speech-to-
text models and improved research methods for
linguistic analysis and language modelling. This
has the potential to contribute substantially to the
scientific study of Greenlandic from the perspec-
tives of cognitive science and language psychol-
ogy, such as considering the relationship between
sub-word tokenization and human morphological
segmentation.

Finally, we aim for this to be a stepping stone
towards collaboration with researchers currently
engaged with similar work on other Inuit-Yupik-
Unangan languages. Given the similarities between
these languages, we believe that pooling resources
could lead to substantial progress in language tech-
nology for languages in this region of the world.

5 Conclusions

This paper is a preliminary step towards training
neural language technology for Greenlandic and,
crucially, empirically testing both the possibilities
and limitations of this approach. We present a
benchmark dataset for Greenlandic-Danish NMT
as well as providing initial metrics from simple
models trained on this dataset. These initial ex-
periments are not intended to provide complete,
industry-strength machine translation for Green-
landic to Danish. Improvements in the area of
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Greenlandic NMT and NLP more generally re-
quires greater emphasis on the curation and stew-
ardship of high quality training data. We believe
that this focus would contribute greatly to Green-
land’s already rich linguistic cultural heritage.

Limitations

While we view these results positively, these
trained models are far from production-ready or
of practical use. The process for creating the paral-
lel corpus is crude and involves a number of prag-
matic decisions by the authors, neither of whom
are native Greenlandic speakers. The collection
algorithm outlined in Section 2.1 was designed as
a "good enough" solution for initial experiments.
However, greater quality control with more human
intervention is required for future work to ensure
that the corpus is in fact aligned.

KNR texts have some well-known limita-
tions (Duus, 2012a,b; Hussain, 2018; Kleeman-
Andersen, 2020). Several of the texts are origi-
nally written in Danish (largely by monolingual
Danish-speaking or bilingual journalists) and sub-
sequently translated to Greenlandic. Texts hence
tend to be quite "literal" or non-idiomatic trans-
lations and thus appear somewhat unnatural to a
Greenlandic speaker. The quality of the Green-
landic texts at KNR generally is a point of heated
public debate in Greenland with many complaining
about grammatical errors, repetitive expressions,
and too much influence from Danish.
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Abstract
This paper outlines the Universal Features tag-
ging of a dependency treebank for Bribri, an
Indigenous language of Costa Rica. Universal
Features are a morphosyntactic tagging com-
ponent of Universal Dependencies, which is
a framework that aims to provide an annota-
tion system inclusive of all languages and their
diverse structures (Nivre et al., 2016; de Marn-
effe et al., 2021). We used a rule-based sys-
tem to do a first-pass tagging of a treebank of
1572 words. After manual corrections, the tree-
bank contained 3051 morphological features.
We then used this morphologically-tagged tree-
bank to train a UDPipe 2 parsing and tagging
model. This model has a UFEATS precision
of 80.5 ± 3.6, which is a statistically signif-
icant improvement upon the previously avail-
able FOMA-based morphological tagger for
Bribri. An error analysis suggests that miss-
ing TAM and case markers are the most com-
mon problem for the model. We hope to use
this model to expand upon existing treebanks
and facilitate the construction of linguistically-
annotated corpora for the language.

Resumen
Etiquetado morfológico del Bribri usando
rasgos de Universal Dependencies. Este
artículo presenta un experimento para el eti-
quetado automático de la morfología de las pal-
abras en una colección de árboles sintácticos
de dependencia en bribri, un idioma indígena
de Costa Rica. El esquema Universal Features
es un componente de etiquetado morfológico
de Universal Dependencies, un estándar para
el análisis sintáctico de oraciones. Este es-
quema busca poder etiquetar cualquier lengua
del mundo y sus diversas estructuras (Nivre
et al., 2016; de Marneffe et al., 2021). Em-
pezamos el proyecto usando un sistema basado
en reglas para etiquetar automáticamente una
colección de árboles sintácticos con 1572 pal-
abras. Después de una corrección manual, la
colección tenía un total de 3051 etiquetas mor-
fológicas. Esta nueva colección de árboles se

usó para entrenar un modelo de UDPipe 2 que
pudiera hacer etiquetado y análisis sintáctico
automáticamente. Este modelo tiene una pre-
cisión de UFEATS de 80.5 ± 3.6, lo cual es
una mejora estadísticamente significativa con
respecto a los etiquetadores basados en FOMA
disponibles para el bribri. Un análisis de er-
rores sugiere que el principal problema para el
modelo fue el no poder producir algunas etique-
tas de TAM y de caso en la salida. Esperamos
usar este modelo para expandir las colecciones
de árboles ya existentes, y así facilitar la con-
strucción de corpus anotados lingüísticamente
para esta lengua.

1 Introduction

It is essential that the fields of linguistics and Nat-
ural Language Processing dedicate time and re-
sources towards smaller, Indigenous, and minority
languages. Building annotated and tagged corpora
for smaller languages supports the expansion of
NLP capabilities in processing them, and could po-
tentially expand the languages’ domain of usage
and help create tools that aid in language revitaliza-
tion and normalization. In this paper we worked on
one small building block of future NLP tools: the
morphological tagging of corpora in the Bribri lan-
guage, an Indigenous language from Costa Rica. In
section 1 we review the process of morphological
tagging and describe the Bribri language’s vitality
and context. In section 2, we describe an algorithm
for rule-based tagging, and how we used this for
our first attempt at automatic tagging. After correct-
ing any resulting errors, we trained a deep-learning
based model to perform future tagging. Section 3
describes the tags applied to the treebank, compares
the model’s performance to a previously available
tagger, and describes the errors that the model is
making in its tagging output. Finally, section 4
describes some limitations of the tagging scheme
when describing Bribri data, as well as directions
of future work.
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1.1 Morphological Analysis and Tagging

Morphological analysis is the systematic break-
down of words into smaller pieces that reflect units
of meaning (i.e. morphemes). For example, the in-
put cats would return the output cat-s. In the con-
text of natural language processing, morphological
analysis can be paired with the task of morphologi-
cal tagging. In morphological tagging, a word like
cats would produce an output like cat+[N;PL],
NN2 or Number=Plur. These three examples, which
use different standards, indicate in different ways
that the word is plural. This tagging can support the
building of annotated corpora, which in turn allows
for more advanced linguistic research, but also for
more advanced NLP tasks such as lemmatization
and disambiguation tasks.

Morphological analysis is undertaken using dif-
ferent standards and can use language-specific
or language family-specific differentiations. The
UCREL CLAWS7 tagset (UCREL, 2011), for ex-
ample, is made for English and uses a one-tag-
per-word system which labels both the part of
speech and some related morphological charac-
teristics (e.g. cats → NN2 ‘common noun plu-
ral’). The UniMorph standard (McCarthy et al.,
2020) attempts to describe all languages using the
same tags, and it uses a one-to-many system where
one word can have several tags depending on its
part of speech and its morphemes (e.g. cats →
cat+[N;PL]). The Universal Dependencies’ (Nivre
et al., 2020) Universal Features schema (UFEATS)
also attempts to offer coverage for the morphol-
ogy of every language. It uses its own set of tags,
leaving out the part of speech but including one or
more morphological tags per word (e.g. cats →
Number=Plur). This standard is used to annotate
numerous treebanks in Universal Dependencies,
including an existing one for Bribri (see section
2.1 below). Because of this, and because it would
provide an additional way to query the existing tree-
bank for specific morphemes, the UFEATS schema
will be used in this work.

1.2 Automatic Morphological Analysis and
Indigenous Languages

Morphological analysis for under-resourced Indige-
nous languages presents unique challenges for sev-
eral reasons. The limited availability of data com-
plicates progress when determining meaningful
connections between words or units within words.
Additionally, the input of the language data can

have inconsistencies due to lack of standardization
in orthography1 and unaccounted-for variation in
data collection.

Despite these challenges, there has been work
for Universal Features tagging in languages of the
Americas. There are Universal Features tagged
datasets for Tupí languages (Rodríguez et al.,
2022), K’iche (Tyers and Howell, 2021; Tyers and
Henderson, 2021) and Yupik (Park et al., 2021).
There are also languages tagged using UniMorph,
such as Kanien’kéha (Kazantseva et al., 2024),
Plains Cree, Gitksan, Asháninka, Aymara, Seneca,
Dakota, Otomí, Mixtec, Chatino, Zapotec and To-
hono O’odham (Batsuren et al., 2022). There is
also work on using finite state transducers to do
morphological tagging and segmentation. Some
languages where such taggers exist are Haida
(Lachler et al., 2018), Michif (Davis et al., 2021),
Cree (Snoek et al., 2014), Lushootseed (Rueter
et al., 2023), Wixarika (Mager et al., 2018a),
Nahuatl (Pugh and Tyers, 2021) and Guaraní
(Kuznetsova and Tyers, 2021). Languages where
custom methods have been used for morpholog-
ical tagging and segmentation include Inuktitut
(Khandagale et al., 2022; Le and Sadat, 2021),
Seneca (Liu et al., 2021), Quechua (Llitjós et al.,
2005), Shipibo-Konibo (Mercado-Gonzales et al.,
2018) and Mapugundun (Molineaux, 2023). In
addition to these papers, Mager et al. (2018b) doc-
ument additional efforts to work on morphological
analysis and tagging of Indigenous languages in
the Americas.

1.3 Bribri Language
Bribri is a language of the Chibchan family with
approximately 7000 speakers in Costa Rica (INEC,
2011). Bribri is closely related to the Cabécar lan-
guage also spoken in Costa Rica, and it is more
distantly related to other Chibchan languages like
Malecu and Ngäbe (Quesada, 2007). Bribri is a
vulnerable language (Sánchez Avendaño, 2013),
which means that there are children in the com-
munity who only speak Spanish. As Bribri is a
low-resource language, documentation and natural

1We do not necessarily advocate standardization here. This
is a decision that needs to be taken by the community. More-
over, very valuable materials are being published in Bribri
using orthographic conventions unique to each author (MEP,
2013; García Segura, 2016; Jara Murillo and García Segura,
2022). This is a relatively common situation in writing within
Indigenous communities, and pursuing a single standard might
be detrimental to language revitalization (De Korne and Wein-
berg, 2021). We believe that this input issue is the engineers’
problem to solve, not necessarily the communities.
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language processing applications for the language
are limited and difficult to make. Moreover, the
particularities of Bribri morphosyntax make trans-
fer learning from large-resource languages difficult.
For example, the language is morphologically erga-
tive, it has numerical classifiers and a complex
deictic system, and it has a verbal system where
"now" is not the locus of division between tenses,
but rather "the night before". Examples of these
phenomenona are presented in section 4.

2 Methodology

Our overall goal is to improve morphological tag-
ging for Bribri. In this section we will explain how
we used a rule-based algorithm to tag the exist-
ing treebank using Universal Dependencies Fea-
tures. After manual correction, we tested these
features by using them to train parsing models.
When those models were trained we compared their
performance to that of a pre-existing morphology
analysis system for Bribri.

2.1 Bribri Data and Pre-existing Algorithms

There is relatively little unlabeled data for Bribri.
The main data source is the oral corpus by Flores-
Solórzano (2017a,b), which contains both text
and audio for Bribri conversations. There are
some printed materials which could provide writ-
ten data, such as textbooks (Constenla et al., 2004;
Jara Murillo and García Segura, 2013), a gram-
mar book (Jara, 2018), two dictionaries (Margery,
2005; Krohn, 2021) and several educational books
(Sánchez Avendaño et al., 2021a,b). Using this
data there has been progress in NLP, in subfields
such as speech recognition (Coto-Solano, 2021),
forced alignment (Coto-Solano and Solórzano,
2016; Solórzano and Coto-Solano, 2017; Coto-
Solano et al., 2022), machine translation (Feldman
and Coto-Solano, 2020; Kann et al., 2022; Jones
et al., 2023) and the study of semantics through
embeddings (Coto-Solano, 2022). The work also
includes the development of tools to extend the us-
age of the language, such as keyboards (Solórzano,
2010) and digital dictionaries (Krohn, 2020).

There are a few labelled datasets for the language
(e.g. Ebrahimi et al. 2021), and one of them is a
dependency treebank (Coto-Solano et al., 2021)
tagged with Universal Dependencies v2 (Nivre
et al., 2020) and stored in the CoNLL-U format.
This treebank contains 315 sentences (1572 tokens)
from some of the unlabeled sources above, and it

includes information on part-of-speech and depen-
dency arcs and labels. Figure 1 shows an example
parse from this treebank.

(1) Ye’ tö ù sú ‘I saw the house’

Ye’ tö ù sú
I ERG house saw

PRON PART NOUN VERB

nsubj

case obj

root

Morphological analysis is one of the areas where
there has been previous NLP research for Bribri.
The state-of-the-art tagger is the Flores-Solórzano
(2017b) FOMA-based tagger, which was built to
tag the oral corpus (Flores-Solórzano, 2017a). It
uses a finite state transducer (FST) which takes
one word at a time, processes its characters one
at a time, and follows a path that will ultimately
lead the FST to an end node with a list of possible
morphological features. Table 1 shows the mor-
phological features for example sentence 1. The
first word, ye’ ‘I’ is correctly predicted as a first
person singular pronoun. The second word tö, has
three possible predictions: it could be a verb, a
conjunction, or the ergative postposition. Here the
third option is the correct one, but the FST does not
output probabilities, so knowing this would require
a human determination or an additional module.
The third word, ù ‘house’ is correctly predicted as
a noun (sustantivo in Spanish), but the tag does
not specify the absolutive case that the noun is in.
Finally, the fourth word sú ‘saw’ only has +? as its
morphological tag. This means that the FST could
not find the word amongst its states, and therefore
cannot provide any morphological information.

Word Features
ye’ +1PSg
tö te+V+Imp1Intran

+Conj[subordinada]
+Posp[Erg]

ù u+Sust
sú +?

Table 1: FOMA-based morphological features for the
Bribri sentence Ye’ tö ù sú ‘I saw the house’.

2.2 Assignment of Universal Features
The challenge we are trying to solve is to improve
existing morphological tagging so that it can tag
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any word in the Bribri language, not just those
in the existing FST. In order to do this, we wrote
a series of rules (regular expressions) to tag the
sentences using Universal Dependency Features.
These regular expressions were created based off
orthological patterns determined by the researchers
with support from previously established charac-
ter patterns noted in resources such as Flores-
Solórzano’s work with verbal conjugation (Flores-
Solórzano, 2017b). In this paper we will focus our
tagging on some of the major parts of speech: verbs,
nouns, pronouns, adjectives and copulas. Here we
detail the rules for the parts of speech we selected
for this work.

2.2.1 First Pass of the Verbs
The first step in processing this data is to compile
a list of the verbs present in the text, and specify
which were transitive and which were intransitive.
Given a transitive or intransitive verb in the sur-
rounding context, we can then determine the case
of nouns and pronouns, such as the ergative and
absolutive cases which are vital to the structure of
Bribri.

After this verb list is compiled, we used a series
of regular expressions to assign Universal Depen-
dency morphological features to each of the verbs.
Once a VERB label is found in the part of speech col-
umn of the CoNLL-U, a regular expression would
be used to find the conjugation of the verb and find
its morphological features. For example, the reg-
ular expression r".*r$" is used to find the imper-
fective middle voice verbs. These tags would then
be inserted into the 5th position of a new CoNLL-
U file. For example, the verb tkër ‘to be sitting’
matches the previous regular expression, and so
it would receive the tags Aspect=Imp|Mood=Ind|
Tense=Pres|VerbForm=Fin|Voice=Mid.

2.2.2 Nouns
After the first pass of the verbs, nouns were ana-
lyzed for their plurality using the regular expression
r".*pa$", which triggers the tagging of that NOUN
with Number=Plur. Then the cases of the nouns
were determined by the presence of transitive or
intransitive verbs either directly after or two words
after the noun. NOUN subjects near verbs in the
transitive verb list would receive the Case=ERG tag.
NOUN subjects near verbs in the intransitive verb
list would receive the Case=ABS tag. Finally, if the
noun was an object, it would receive the Case=ABS
tag as well.

2.2.3 Adjectives
For the most part, Bribri adjectives do not show
number agreement with their nouns. However,
there are a few adjectives which have irregular plu-
ral forms. For example, the word tsîr ‘small’ has
the plural form tsítsi. We manually assessed the
adjectives in the treebank and tagged the irregular
plurals as Number=Plur.

2.2.4 Pronouns
Pronouns were analyzed in the same way as the
nouns and checked for Case and Number. However,
unlike nouns, the pronouns were also tagged for
Person and for Type, such as personal and recip-
rocal pronouns. The first person plural pronouns
were also tagged for Clusivity (i.e. se’ ‘inclusive
we’ and sa’ ‘exclusive we’).

Possessive pronouns were also tagged. They are
phonologically the same as the personal pronouns
(compare ye’ ‘I’ with ye’ ù ‘my house’) so their
Poss=Yes status was determined their by position
directly preceding NOUN tokens.

2.2.5 Second Verb Pass and Copulas
A second round of verb analysis was then com-
pleted so that the newly tagged Person features of
nouns and pronouns could be used to determined
the Person value for verbs that appeared in the im-
mediate context of those nominals. If the VERB has
a NOUN subject, then the tag Person=3 is assigned
to the VERB automatically. If a PRON is the subject,
then the Person of the VERB is directly copied from
that of the PRON.

The copula dör is a special part of speech. Copu-
las do not behave morphologically like verbs: They
don’t have TAM suffixes like most action verbs,
and they don’t have plural forms like most po-
sitional verbs. Copulas, however, are obligatory
in equative sentences, and pronoun subjects can
present weak forms next to both verbs and copulas.
Because of this similarity to verbs, copulas were
tagged for Person in the same way as verbs, asso-
ciating their Person to the that of the surrounding
nouns or pronouns.

2.3 Training and Statistical Comparisons

The procedure described above was used to tag the
treebank automatically. After the first and second
passes, a manual revision was carried out by the
researchers to correct the errors of the rule-based
predictions. Approximately 24% of the 330 verbs
were not recognized by the regular expressions, and
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so they were corrected manually by the authors,
using the Flores-Solórzano (2017b) verbal descrip-
tion, the Jara (2018) grammar, the Constenla et al.
(2004) textbook and the Krohn (2021) dictionary
as our main references. The surrounding context of
the verb was also referenced to support this manual
correction process. All of the nouns and copulas
were tagged correctly as predicted by the rules, but
some of the possessive pronouns needed manual
correction and this was undertaken in the same
fashion as the aforementioned manual correction
of some verbs. The irregular plural adjectives tsítsi
‘small.PL’ and tsîrala’ralar ‘tiny.PL’ were tagged
for number manually because fitting regular expres-
sions were not developed for these forms.

We used this new, morphologically-tagged
CoNLL-U file to train twenty parsing models using
UDPipe 2 (Straka, 2018). We trained these using a
cloud-based system with a V100 GPU. Each model
took approximately 1.5 hours to train and test, for
a total of 30 hours of processing. The hyperpa-
rameters can be found in Appendix A. Once these
models were trained, we calculated the precision of
the feature tagging for each of them and used this
information to compare the system’s performance
with that of the FOMA-based tagging.

3 Results

At the end of the tagging process, a word would
have its Universal Dependencies’ morphological
features in the corresponding CoNLL-U column.
Table 2 shows an example of a sentence and its
features.

Word POS Features
ye’ PRON Case=ERG|Number=Sing|

Person=1|PronType=Prs
tö PART _
ù NOUN Case=ABS|Number=Sing
sú VERB Aspect=Perf|Mood=Ind|

Tense=Past|VerbForm=Fin|
Voice=Act

Table 2: Universal Dependency Features morphological
features (UFEATS) for Ye’ tö ù sú ‘I saw the house’

3.1 Tags after Correction

After the manual corrections, there was a total of
3051 morphological features in the annotated tree-
bank. Table 3 shows the total of features for each
part of speech in the annotated dataset. The major-

ity of the tags were dedicated to the verbs (n=1504,
49%), in particular the tense-mood-aspect (TAM)
markers. There are also numerous tags for the dis-
tinction between active and middle voice, which is
crucial in the description of Bribri grammar.

Part-of-Speech Morphological Feature n

Verb Aspect=Imp 138
Aspect=Prosp 45
Aspect=Perf 65
Mood=Des 1
Mood=Imp 3
Mood=Ind 245
Person=1 47
Person=2 16
Person=3 32
Polarity=Neg 3
Tense=Pres 152
Tense=Past 97
VerbForm=Inf 63
VerbForm=Fin 267
Voice=Mid 62
Voice=Act 268

Noun Case=ABS 69
Case=ERG 5
Number=Plur 10
Number=Sing 246

Adjective Number=Plur 3

Pronoun Case=ABS 121
Case=ERG 19
Clusivity=Ex 8
Clusivity=In 11
Number=Sing 274
Number=Plur 51
Person=1 136
Person=2 38
Person=3 131
Poss=Yes 39
PronType=Dem 16
PronType=Int 12
PronType=Prs 307
PronType=Rcp 4
Reflex=Yes 7

Copula Person=1 14
Person=2 6
Person=3 20

Table 3: Part-of-Speech and Tagged Universal Features
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Error n
TAM missing 10 28%
Case missing 9 18%
Hallucinated features 7 14%
Person missing 6 12%
Number missing 5 10%
Others 12 25%

Table 4: Types of errors in the output for morphological
features in an example UDPipe 2 model (total n=49)

Pronouns were the next category in importance
(n=1174, 38%). Most of the tags were for person
and number, followed by case tags for those pro-
nouns that were either the syntactic ergative or ab-
solutive in the sentence. Importantly, the 1st person
plural pronouns were also marked for clusivity (i.e.
exclusive or inclusive), and the non-personal pro-
nouns were marked for their function (e.g. demon-
strative, interrogatives, reciprocals and reflexives).
Nouns had the third most features (n=330, 11%).
Like in the case of the pronouns, they were marked
for number, and for case if they occupied a core
argument (ergative or absolutive) position in the
sentence.

Copula features (n=40, 1%) only have tags for
the person that the copula refers to. Finally, the
three irregular plural adjectives in the corpus were
tagged with the corresponding plural feature.

3.2 Parsing Model Tests

Once the dataset was tagged, we used it to train a
series of UDPipe 2 models in order to test whether
this relatively small dataset could be used to ex-
pand our morphological tagging capabilities. We
used the 315 sentences in the annotated treebank
to create twenty random train/dev/test partitions
(80%, 10%, 10%) and train the models. The aver-
age precision for the Universal Features (UFEATS)
was 80.5 ± 3.6.

After this we randomly selected one of the mod-
els and analyzed the errors it produced. The test
set contained 304 features, and 49 of these were
predicted inaccurately (16%). Table 4 shows a sum-
mary of the errors produced by the model in the
output hypotheses for the test set.

The most frequent errors are missing features
that the model couldn’t predict. Out of all of the
errors, 28% were those where the TAM features
was missing. 18% of the errors were the result of a
missing absolutive or ergative case marking in the

output, and a further 22% were because either the
person (first, second or third) or the number of a
word were missing.

There are also a few errors in the system where
the word is assigned the correct part of speech but
a wrong feature. For example, a verb could be
assigned the past tense when it was actually in the
present, or the verb could be tagged as having a 1st
person subject, even though the gold standard had
it as a 3rd person.

Finally, it is worth noting that the model does
have a tendency to hallucinate morphological fea-
tures. There were some parts of speech, like numer-
ical classifiers and determiners, whose morphologi-
cal tagging was not included in this work (more on
this in the discussion below). However, the system
would produce features for them. In the case of a
numerical classifier like bö̀k ‘two [round things]’
the model treated this as a VERB and gave it fea-
tures for finiteness and active voice. In the case of
the determiner i’ ‘this one’, the system misclassi-
fied the part of speech as a pronoun and then gave
it features for singular number and tagged it as
a demonstrative, probably because of its phonetic
(but not syntactic) similarity with the demonstrative
pronoun i’ ‘this one’.

3.3 Comparison with FOMA Parsing

While a direct comparison between the FOMA tags
and the UFEATS is not possible due to the differ-
ence in their tagging conventions, we can estimate
their difference in providing a tentative tag for un-
seen Bribri data.

In order to calculate an error for the FOMA, we
devised the following test. We took the test sets
from each of the twenty random samplings of the
treebank. We took the words in those test sets and
tagged them individually using Flores-Solórzano’s
(2019) FOMA tagger. This can only be done word
by word because the system is based on an FST,
and cannot get information from preceding or sub-
sequent words. Then, we classified FOMA’s re-
sponses into three possibilities. First, if FOMA
produces no output (+?), then we consider this an
error. Second, if FOMA produces more than one
output (e.g. saying that the word dör is both the
ergative marker and a copula), we consider this an
error. This is because the system has no proba-
bilistic information in its output, and it would be
impossible to determine which of the two tags is
correct without an additional module that consid-
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ered context. The third condition is if the FOMA
provides only one answer (e.g. labeling the word
ye’ ‘I’ as +1PSg). We assume this is a correct an-
swer because of the FST nature of the FOMA sys-
tem: it identifies a word directly and then it has a
pre-programmed set of morphological outputs for
it. Importantly, we calculate this for all the tokens
in the UDPipe2 predictions, including those that
are tagged with an empty response _, which is a
correct gold-standard answer for words that don’t
have tags yet (e.g. postpositions and numerical
classifiers).

When we calculate the results according to these
three conditions, we get that, for the twenty runs,
the average precision of the FOMA system is 59.5
± 4.2. This is lower than the 80.5 ± 3.6 result for
the UDPipe 2 model; this comparison is shown in
figure 1. In fact, a paired t-student test revealed
that the deep learning system performs signifi-
cantly better with the same test sets (t(19)=16.5,
p<0.00001)2.

Figure 1: Precision for morphological tagging for a
deep learning model (UDPipe 2), a rule-based FST
model (FOMA) and a rule-based model that only looks
at words with existing UFEAT tags in the gold standard.

We conducted a second, more rigorous test. In
this test, we only considered words that actually
have features in the gold standard treebank. As
mentioned above, there are many words, for exam-
ple postpositions, particles and numerical classi-
fiers, which only have the marker _ in their feature

2A Shapiro-test confirms that all distributions meet
the normality assumption: pUDPipe2=0.25, pFomaAll=0.06,
pFomaUfeats=0.99.

column. In this second test we will only include
tokens if the original treebank had actual UFEATS
in it. After this modification, the precision of the
FOMA system increases to 75.7 ± 4.7. Figure 1
shows the distribution of the twenty samples, under
the condition FOMA (only for tokens with UFEATS
in the treebank). While this precision is higher than
the FOMA for all the tokens, it is still significantly
lower than the precision of the UDPipe 2 model
(t(19)=3.4, p<0.005).

These results confirm that the deep learning
model trained from our tagged treebank shows im-
provement in the state of the art for morphological
tagging in the Bribri language.

4 Discussion

Overall, the rule-based tagging of the verbs was dif-
ficult due to their morphological complexity, and
numerous manual corrections were needed. We
had specific regular expressions for over 80 verbs,
and so the rules described in section 2.2 would not
be easily transferable to larger segments of written
Bribri. However, our objective in using these rules
was to create a new system which could accept
forms it hasn’t seen before as its input. The mor-
phological feature tags we have introduced to the
treebank produce acceptable results during infer-
ence. Our future work is to take this new treebank
and use it to make morphological and syntactic
parsings of unseen sentences of Bribri in order to
expand existing corpora.

The most immediate item of future work is to
expand the tags for the remaining parts of speech.
For example, Bribri’s deictic system includes pro-
nouns that refer to distance from the speaker (near,
far) and vertical position from the reference point
(above, even and below). For example, the word
aí means ‘that one (above, near)’, and the word
dià means ‘that one (below, far)’. It also includes
deictics which need the feature Deixis=NVis (not
visible), like the word ñe’ ‘that one (that can be
heard but not seen)’. These are tags that already
exist in the Universal Features, and should be easy
to expand upon.

There are also places where the parts of speech
treated here could be expanded. For exam-
ple, Bribri has several diminutive morphemes for
nouns and adjectives (e.g. amì ‘mother’ versus
amíla ‘mommy’). These would take the feature
Degree=Dim, but this was not included in the
present work. These morphemes are important
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for the studying of Bribri discourse, and so their
tagging is necessary in the future.

More complex to tag are numerical classifiers.
These classifiers contain the number, but also se-
mantic information about the geometry of the ob-
ject. Some examples are: (i) buà bö̀töm ‘two[long]
iguanas’, (ii) apë’ bö́l ‘two people’, (iii) àshali
bö̀k ‘two[round] oranges’, and (iv) kua’kua bö̀t
‘two[flat] butterflies’. There are at least 8 of these
classes, and their tagging cannot be described with
the features in Universal Features. That additional
information would have to be included separately.

Finally, there is additional information about the
verbs that also needs to be saved separately. For
example, Bribri verbs distinguish between "recent"
and "remote" past perfect tenses. For example, the
sentence ye’ shka’ means ‘I walked (sometime yes-
terday, before I went to bed last night, or further
back in the past)’. On the other hand, the sen-
tence ye’ shké is also perfect, but it covers both
the immediate present perfect (e.g. ‘I will walk’),
and a perfect aspect action that has occurred in
the recent past, after the last time one went to bed
(e.g. ‘I walked (sometime today, in the recent past)’.
This recent tense has also been called the hodiernal
tense in literature (Dahl, 1983). This distinction
cannot be described in the Universal Features, and
would have to be stored separately as well.

One piece of future work is to make a system that
performs automatic morphological segmentation.
Such a system would get the input Shkàne ‘There
was walking’, and would be able to produce the out-
put shk-àn-e, with the root shk ‘walk’, the middle
voice suffix -àn and the remote past tense perfect
aspect suffix -e. We hope that the feature tagging
described in this paper will be helpful in making
such a segmentation system, which would further
contribute to the creation of annotated corpora.

5 Conclusions

In this paper we have presented a new morpho-
logical tagger for the Bribri language. We auto-
matically tagged an existing treebank with Univer-
sal Dependencies’ Universal Features. We hand-
corrected any errors during the tagging process,
and then used this new treebank to train a parsing
model. This model has significantly better perfor-
mance than the previous FST-based analyzer. We
will continue to expand upon this work, using these
tools to aid in the annotation of corpora for the
language.

Limitations

The system is limited to written Bribri, which might
hinder its usability for other applications, as most
speakers of Bribri do not write the language. and
much of the data we ultimately want to tag is oral
narratives. Moreover, the writing system repre-
sented in the dataset is only one of the orthogra-
phies currently in use for the language, and so an
input system that can easily accept all orthogra-
phies would need to be deployed alongside this
tagger in the future.

Ethics Statement

The work was done using openly available ma-
terials published by Costa Rican institutions (e.g.
University of Costa Rica). The models will be used
to work on corpora construction, in collaboration
with Bribri community members who work on the
linguistics of the language.
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Abstract

We propose a new paradigm for machine
translation that is particularly useful for no-
resource languages (those without any pub-
licly available bilingual or monolingual cor-
pora): LLM-RBMT (LLM-Assisted Rule
Based Machine Translation). Using the
LLM-RBMT paradigm, we design the first
language education/revitalization-oriented ma-
chine translator for Owens Valley Paiute (OVP),
a critically endangered Indigenous American
language for which there is virtually no pub-
licly available data. We present a detailed
evaluation of the translator’s components: a
rule-based sentence builder, an OVP to English
translator, and an English to OVP translator.
We also discuss the potential of the paradigm,
its limitations, and the many avenues for future
research that it opens up.

1 Introduction

Large Language Models like OpenAI’s GPT se-
ries (OpenAI, 2023) have shown remarkable ca-
pability at an impressively wide range of natural
language tasks (Bubeck et al., 2023) including ma-
chine translation (Hendy et al., 2023). These mod-
els work because they are trained on vast amounts
of natural language data, primarily from the inter-
net (OpenAI, 2023). For languages that are low-
resource (languages for which there is little pub-
licly available data) or no-resource (languages for
which there is no publicly available data), models
like these do not perform well on their own (Chowd-
hery et al., 2022; Robinson et al., 2023). There have
been many efforts in improving machine translation
for low-resource languages (see (Ranathunga et al.,
2023) for a comprehensive survey), but no-resource
languages have received much less attention in the
literature.

Over past decades, researchers and community
leaders have led many remarkable efforts in endan-
gered language revitalization (Coronel-Molina and

McCarty, 2016; Taylor and Kochem, 2022) and
reclamation (Baird, 2016). In this paper, we begin
to explore how the impressive general-purpose lan-
guage skills of LLMs might be helpful for these
kinds of efforts by introducing a new paradigm for
low/no-resource machine translation: LLM-RBMT
(LLM-Assisted Rule-Based Machine Translation).
The intuition behind our approach is that, given
the correct tools, humans are good at translating
simple sentences even for languages they do not
know. For example, a common task for students in
a language class is to translate sentences given a
set of words and rules. Given a conjugation table
and a set of verbs a motivated student could proba-
bly translate a list of simple subject-verb (e.g., “I
eat”, “you sing”, etc.) sentences with extremely
high accuracy. Of course, they are limited to only
translating specific kinds of sentences with a lim-
ited vocabulary. Still, the idea is interesting: if
we provide enough context to an LLM like Chat-
GPT, which has been shown to exhibit human-level
performance on many natural language tasks, we
may not need it to actually know (exhibit general
fluency in) the target language we want to translate
to/from. While rule-based translation can likely
never achieve the quality of modern ML transla-
tors for high-resource languages, this technique
has a few potential advantages for low/no-resource
languages. First and most importantly, it requires
no parallel corpus. Also, it is amenable to partial
translation. Humans (and, as we’ll show in this
paper, LLMs) are capable of giving partial trans-
lations when they don’t have all of the necessary
vocabulary. For example, a Spanish student that
doesn’t know the word for “dog” might still be able
to translate the rest of the sentence “the dog ate
the apple yesterday” by saying “el [dog] comió la
manzana ayer”.

In this paper, we leverage LLMs (specifically,
gpt-3.5-turbo and gpt-4 from OpenAI’s GPT se-
ries) to break down natural language sentences into
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structured simple sentences compatible with hand-
crafted rule-based translators. We also use them
to turn sentence structured information (in JSON
format) into natural language sentences. Using
this approach, the LLM never interacts directly
with the target language. Rather, we rely on the
LLM to tell us how to use the simple, rule-based
translators to provide a translation as close as pos-
sible to the user’s original input. We use this tech-
nique to build and evaluate two machine translation
tools for Owens Valley Paiute (OVP, also called
Eastern Mono or Monache in linguistics literature,
ISO 639-3 mnr (SIL International, 2024)), a criti-
cally endangered Indigenous American language in
the Uto-Aztecan language family (Moseley, 2010).
The first is a selection-based OVP to English sim-
ple sentence translator and the second is an English
to OVP translator that uses available vocabulary to
construct translations of arbitrary user input sen-
tences. The translators are oriented toward lan-
guage teaching and revitalization. They are not de-
signed to be general-purpose translators, but rather
as tools to help no-resource language learners ex-
press ideas using simple sentence constructions.

1.1 Contributions

The main contributions of this work are1:

1. An extensible OVP sentence builder for con-
structing valid subject-verb and subject-verb-
object sentences in Owens Valley Paiute.

2. An LLM-assisted OVP to English translator
that translates OVP sentence builder sentences
to English with high accuracy.

3. An LLM-assisted English to OVP translator
that translates English sentences to Owens
Valley Paiute using the sentence-builder and
OVP to English translation tools.

4. A novel methodology for the design and eval-
uation of no-resource language translators.

The rest of this paper is organized as follows. We
discuss related work in Section 2. We present the
sentence building tool and OVP to English trans-
lation system in Section 3. Then, in Section 4, we
present the English to OVP translation system and
report results on translation quality for different
types of input sentences using embeddings models

1The code behind all contributions is open-source: https:
//github.com/kubishi/kubishi_sentences

to measure semantic similarity. We conclude the
paper with a summary of contributions and discus-
sion of future research directions in Section 5.

2 Related Work

The landscape of low-resource machine translation
is vast and constantly growing. A comprehensive
survey on this subject is provided by (Ranathunga
et al., 2023), which outlines the current techniques,
guidance for selecting which techniques to use
for a given language, and future directions for re-
search. Of particular interest within this survey is
the examination of unsupervised neural machine
translation. While there exists promising research
on constructing translators from minimal corpora,
these methods invariably require some natural lan-
guage data and thus have limited applicability to no-
resource languages (such as OVP). The survey also
discusses data augmentation strategies, including
word or phrase replacement-based augmentation
and Back-Translation-based Data Augmentation,
both of which could potentially be integrated with
some of the solutions presented in this paper (in
particular the sentence builder and OVP to English
translator to be presented in Section 3). Such an
exploration is an interesting topic for future work.
Other approaches discussed in the survey such as
supervised learning, transfer learning, and semi-
supervised learning are inapplicable to our scenario
due to the absence of bilingual or monolingual cor-
pora.

Contrary to the prevailing assumption in the liter-
ature that rule-based machine translation (RBMT)
is a relic of the past, there remains active research
and development in RBMT systems tailored for the
most under resourced of languages (Khanna et al.,
2021; Pirinen, 2019; Torregrosa et al., 2019). Re-
cent work has also explored the utilization of Large
Language Models (LLMs) for enhancing transla-
tion capabilities in low-resource languages through
fine-tuning techniques (Lankford et al., 2023). Al-
though this approach has shown promise in im-
proving LLM translation quality for low-resource
languages like (e.g., Irish), its reliance on bilin-
gual corpora make it infeasible for no-resource
languages like OVP. Recently, semantic similarity
has been used to evaluate the quality of Machine
Translation systems (Cao et al., 2022; Song et al.,
2021). We observe that this technique is particu-
larly useful for evaluating the quality of the English
to OVP translator presented in this paper, due to the
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lack of parallel corpora. See (Muennighoff et al.,
2023) for a comprehensive benchmark of different
embeddings models used for computing semantic
similarities.

3 OVP to English Translation

In this section, we present an LLM-assisted
selection-based OVP to English translator. The
first piece of this translation system is a selection-
based OVP sentence builder. The sentence builder
allows users to select each of the following parts
of speech from a list of choices until they form a
valid sentence:

• Subject: The subject of the sentence.
• Subject Suffix: In OVP, noun subjects are al-

ways suffixed with either -ii (if the subject is
proximal to the speaker) or -uu (if the subject
is distant to the speaker).

• Verb: the verb of the sentence.
• Verb Suffix: In OVP, verb suffixes express the

tense/aspect of the verb.
• Object: The object of the sentence (disallowed

if the selected verb is intransitive, optional
otherwise).

• Object Suffix: In OVP, noun objects are al-
ways suffixed with either -(n)eika (if the sub-
ject is proximal to the speaker) or -(n)oka (if
the subject is distant to the speaker).

• Verb Object Pronoun Prefix: In OVP, object
pronouns are prefixed to the verbs they are
the object of. Object pronouns are required
for all transitive verbs. Even when a noun
object is specified, the pronoun is still required
and should match the object suffix (-(n)eika
matches a- or ma- and -(n)oka matches u-).

Not all of these parts of speech are required to cre-
ate a valid sentence in OVP, though. In fact, some
of them are incompatible. For example, if an intran-
sitive verb is chosen, then it cannot have an object
or object pronoun. In other words, the valid choices
a user can make is a function of the choices they
have already made. In our python implementation
for this translator, we process each user selection
and change the list of valid options for each part-of-
speech based on their current selections to ensure
they always create a valid OVP sentence. This is
the rule part of LLM-Assisted Rule-Based Machine
Translation that requires expert knowledge in the
target language to implement. The entire vocabu-
lary available for the users to select among fits on

a single page (and can be found in Appendix C).
After the user creates a valid OVP sentence, we

translate it by first encoding the following sentence
information into an English-only (using vocabulary
definitions) structured simple sentence:

• Subject: noun or pronoun subject in English
• Subject Proximity: proximal if user selected

subject suffix -ii or distant if the user selected
subject suffix -uu

• Object: noun or pronoun object in English
• Object Proximity: proximal if user selected

object suffix -(n)eika or distant if the user
selected object suffix -(n)oka

• Verb: verb in English
• Verb Tense/Aspect: one of past, present, fu-

ture, past-continuous, present-continuous,
present-perfect

Then, we use few-shot prompting to encourage an
LLM to transform the structured English data into a
natural language sentence. Consider the example in
Figure 1 where few-shot training examples (colored
black) tell the LLM how to respond to the actual
structured data for the randomly generated sentence
for “Wo’ada-ii pagwi-noka u-zawa-dü.” (colored
blue). Observe, the LLM is prompted to translate
using only the English, structured version of the
selected sentence.

To evaluate the accuracy of the translator, we
generated 100 random valid OVP sentences by iter-
atively selecting a random choice among available
choices for each of the parts of speech until the
sentence is valid. Of the 100 random sentences
generated, 98 were translated into English accu-
rately using gpt-3.5-turbo model from OpenAI’s
GPT-series. Translations and their accuracy labels
can be found in Appendix A. While impressively
accurate, this translator has many disadvantages.
It only works for simple subject-verb and subject-
verb-object sentences that use the nouns and verbs
available in the system. Also, since pronouns and
suffixes in OVP encode temporal/spatial informa-
tion, translations don’t always capture full meaning
of the sentence. The English translations are cor-
rect, but may be missing useful information. For
example "kamü-uu wo’abi-neika a-düka-ti" trans-
lates to "the jackrabbit is eating the worm", which
is technically correct, but -uu also indicates that the
jackrabbit is not present and the -neika indicates
the worm is present. Then, since -ti can is used
for both the present and past continuous tenses (is

69



Wo’ada-ii pagwi-noka u-zawa-dü.
system

You are an assistant for translating structured sentences into simple natural English sentences.
user

[{‘part_of_speech’: ‘subject’, ‘positional’: ‘proximal’, ‘word’: ‘wood’}, {‘part_of_speech’:
‘object’, ‘positional’: ‘proximal’, ‘word’: ’dog’}, {‘part_of_speech’: ‘verb’, ‘tense’: ‘present
continuous (-ing)’, ‘word’: ‘see’}]

assistant

This wood is seeing this dog.
user

[{‘part_of_speech’: ‘subject’, ‘positional’: ‘distal’, ‘word’: ‘pinenuts’}, {‘part_of_speech’: ‘ob-
ject’, ‘positional’: ‘distal’, ‘word’: ‘horse’}, {‘part_of_speech’: ‘verb’, ‘tense’: ‘future (will)’,
‘word’: ‘see’}]

assistant

Those pinenuts will see that horse.
user

[{‘part_of_speech’: ‘subject’, ‘word’: ‘mosquito’, ‘positional’: ‘proximal’}, {‘part_of_speech’:
‘object’, ‘word’: ‘fish’, ‘positional’: ‘distal’}, {‘part_of_speech’: ‘verb’, ‘word’: ‘cook’, ‘tense’:
‘present’}]

assistant

This mosquito is cooking that fish.

Figure 1: Few-shot examples for translating “Wo’ada-ii pagwi-noka u-zawa-dü.” using gpt-3.5-turbo.

[x]-ing or was [x]-ing), a better translation would
be “the jackrabbit was eating this worm”. More
advanced rules and better prompt-engineering may
help mitigate this issue.

Despite some expected disadvantages, this trans-
lator has many advantages. First, it is the first ma-
chine translator for OVP. It is also easy to extend
the tool with new nouns and verbs. Also, while
implementing the rules required expert knowledge
of what makes an OVP sentence valid, no expert
knowledge of how the rules map to English was
required (or needed to be programmed), thanks to
the LLM. Finally, we believe this kind of trans-
lation system might be a useful educational tool
that helps students learn how to build simple sen-
tences. It also may be useful as a data augmentation
technique for training neural machine translation
models for low-resource languages.

4 English to OVP Translation

In this section, we present the first English to
Owens Valley Paiute machine translator. Unlike the
OVP to English translator presented in the previous
section, the user can input any sentence in natural
language. The translator works by first using an
LLM to break the input sentence into a set of simple

structured subject-verb and subject-verb-object sen-
tences, discarding any adjectives, adverbs, prepo-
sitions, objects (except for direct objects), etc. We
encourage (through few-shot prompt engineering)
the LLM to preserve as much semantic meaning as
possible between the original sentence and the set
of simple sentences. Consider the example in Fig-
ure 2 where few-shot examples (colored black) tell
the LLM how to respond to a given input sentence
“We are playing and laughing.” (colored blue)2.
Then, we use these structured sentences and avail-
able vocabulary to build valid OVP sentences with
the sentence-building tool described in Section 3.
Once the sentence is built, we use the translator
described in Section 3 to translate the OVP sen-
tences back into English. The idea is that, while
some meaning may have been lost between the
original input sentence and the final output English
sentences, the user can be fairly confident (given
the accuracy of the OVP to English translator) that
the final translations are correct. The entire English
to OVP translation process is depicted in Figure 3.

2We also leverage OpenAI’s function calling capabil-
ity to ensure that responses are consistently formatted.
We refer interested readers to the open-source implemen-
tation’s documentation at https://github.com/kubishi/
kubishi_sentences for full details.
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We are playing and laughing.
system

You are an assistant that splits user input sentences into a set of simple SVO or SV sentences. The
set of simple sentences should be as semantically equivalent as possible to the user input sentence.
No adjectives, adverbs, prepositions, or conjunctions should be added to the simple sentences.
Indirect objects and objects of prepositions should not be included in the simple sentences.
user

I am sitting in a chair.
assistant

[{‘subject’: ‘I’, ‘verb’: ‘sit’, ‘verb_tense’: ‘present_continuous’, ‘object’: null}]
user

I saw two men walking their dogs yesterday at Starbucks while drinking a cup of coffee
assistant

[{‘subject’: ‘I’, ‘verb’: ‘see’, ‘verb_tense’: ‘past’, ‘object’: ‘man’}, {‘subject’: ‘man’,
‘verb’: ‘walk’, ‘verb_tense’: ‘past_continuous’, ‘object’: ’dog’}, {‘subject’: ‘man’, ‘verb’: ‘drink’,
‘verb_tense’: ‘past_continuous’, ‘object’: ‘coffee’}]
user

We are playing and laughing.
assistant

[{‘subject’: ‘we’, ‘verb’: ‘play’, ‘verb_tense’: ‘present_continuous’, ‘object’: null}, {‘subject’:
‘we’, ‘verb’: ‘laugh’, ‘verb_tense’: ‘present_continuous’, ‘object’: null}]

Figure 2: Few-shot training examples for the English to OVP using gpt-3.5-turbo.
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Figure 3: The entire English to OVP translation process. The box with a red, dashed border indicates the set of
sentences in Owens Valley Paiute (the target language) and the box with a blue, dashed border indicates the set of
English sentences they translate to. Ideally, the input sentence, simple sentences, and English output sentences will
have equivalent or very similar semantic meaning.

We evaluate the system by translating a set of
125 sentences. There are five types of sentences in
the dataset (25 of each):

• subject-verb (e.g., “I read” or “she sings”)
• subject-verb-object (e.g., “Mom made dinner”

or “John read a book”)
• two-verb (e.g., “She sings and dances.” or “I

ate while watching TV.”)
• two-clause (e.g., “My brother drove and I

waited.” or “Harry wrote and Ron read.”)

• complex (e.g., “Rachel and Monica share
an apartment.” or “Romeo and Juliet loved
deeply.”)

We translated all 125 sentences using both the gpt-
3.5-turbo and gpt-4 models from OpenAI’s GPT-
series, resulting in a total of 250 translations.

To measure the quality of each translation, we
compute the semantic similarity between the input
sentence and:

• the set of simple sentences generated by the
LLM-powered segmenter (denoted simple).
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• the set of simple sentences with unknown vo-
cabulary removed (denoted comparator). In-
tuitively, this represents the best the translator
can achieve given the vocabulary it has access
to. For example, suppose the verb “wash” is
not in our available vocabulary. Then the com-
parator sentence for the simple sentence “The
woman is washing” would be “The woman is
[VERB]-ing”

• the “round-trip” English translation (denoted
backwards). This is the sentence produced
using by translating the translated sentence (in
OVP) to English using the method described
in Section 3.

The usefulness of these measurements depends
greatly on the function used to compute seman-
tic similarity. We compute semantic similarity by
generating embeddings for sentences (using some
embeddings model) and computing the normalized
cosine similarity between these embeddings. For
our application, we want semantically similar sen-
tences to have small normalized cosine similarity,
independent of other linguistic features like syntax.
For example, an ideal semantic similarity function
would rank “an apple is eaten by a man” more sim-
ilar to “a man eats apples” than the sentence “a
woman drinks coffee”, despite the latter sentence
being essentially grammatically equivalent to the
target sentence.

We evaluated seven different embeddings mod-
els for this purpose and measured the semantic simi-
larity between twelve target sentences and a ranked
list of 10 sentences for each ranging from most to
least semantically similar (sentences can be found
in Appendix B). For each target sentence, we com-
pare the ground-truth ranking of the 10 sentences
to the ranking determined by the semantic simi-
larity scores yielded by a particular embeddings
model. We measure the similarity between the two
rankings using two metrics: average displacement
(average distance between a sentence’s position in
the computed ranking and its position in the target
ranking) and RBO (Rank-biased Overlap (Webber
et al., 2010)). Table 1 tabulates the results of this
evaluation. Results indicate that the all-MiniLM-
L6-v2 embeddings model perform well with re-
spect to both Average Displacement and RBO. For
this reason, we run the rest of our experiments
using this embeddings model for computing the
semantic similarity between sentences.

We computed the semantic similarity between

all pairs of sentences in the dataset to establish a
baseline for comparison. The mean semantic sim-
ilarity between a pair of unrelated sentences was
µ ≈ 0.574 with a standard deviation of σ ≈ 0.061.
Furthermore, the distribution appears to be rela-
tively Gaussian (a histogram can be found in Ap-
pendix E). Intuitively, this suggests that semanti-
cally unrelated sentences are very unlikely to have
a semantic similarity score of above µ + 3σ (i.e.,
greater than 0.757).

A good translation, then, should score high on
all three semantic similarity metrics. For example,
the translation

I am swimming.
Simple Semantic Similarity
I am swimming. 1
Comparator
I am swimming. 1
Target
Nüü pahabi-ti.
Backwards
I am swimming. 1

(model: gpt-3.5-turbo)

is perfect. There are other interesting cases too,
though. For example, when the comparator score
is low but simple and backwards scores are high,
the translator appears to do well with the vocab-
ulary available, but is only able to give a partial
translation. For example, the translation

Birds will migrate and return.
Simple Semantic Similarity
A bird will migrate.
The bird will return. 0.955
Comparator
A bird will [VERB].
The bird will [VERB]. 0.778
Target
[migrate]-wei tsiipa-uu.
[return]-wei tiipa-uu.
Backwards
That bird will migrate.
That bird will return. 0.944

(model: gpt-4)

has a high simple score, since the “Birds will mi-
grate and return” is quite similar (semantically) to
“A bird will migrate. The bird will return.”. The
comparator score is much lower, however, since
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Average
Displacement RBO

Embeddings Model mean std mean std
text-embedding-ada-002 (OpenAI, 2024a) 0.967 0.442 0.885 0.053
all-MiniLM-L6-v2 (Reimers and Gurevych, 2020) 0.933 0.323 0.884 0.050
text-embedding-3-small (OpenAI, 2024b) 1.000 0.362 0.882 0.051
text-embedding-3-large (OpenAI, 2024b) 0.917 0.463 0.882 0.054
paraphrase-MiniLM-L6-v2 (Reimers and Gurevych, 2020) 1.150 0.410 0.870 0.054
bert-base-uncased (Reimers and Gurevych, 2019) 1.600 0.703 0.777 0.100
spacy/en_core_web_md (Explosion, 2024) 1.833 0.466 0.760 0.090

Table 1: Quality of different embeddings models in measuring semantic similarity between sentences. A lower
average displacement and higher RBO indicate a better embeddings model for this purpose.

the words for “migrate” and “return” are not avail-
able in the vocabulary. The backwards score is
good because the sentence “[migrate]-wei tsiipa-
uu. [return]-wei tiipa-uu.”, when translated using
the OVP to English translator described in Sec-
tion 3, becomes “That bird will migrate. That bird
will return”, which is almost equivalent to the sim-
ple sentence. This example also highlights an ad-
vantage to our approach. No-resource language
learners can use this system to understand how sen-
tences should be structured even if it doesn’t have
all of the vocabulary necessary to generate the en-
tire translation. Furthermore, users can be fairly
confident that the OVP target sentence is accurately
translated into the English backwards sentence, due
to the accuracy of the OVP to English translator.

The simple score being low indicates that a sig-
nificant portion of the input sentence’s meaning
is lost during segmentation (due, for example, to
the input sentence containing adverbs, adjectives,
prepositions, etc. that don’t fit anywhere in a sim-
ple subject-verb or subject-verb-object sentence).
For example, the translation

My brother and I went hiking.
Simple Semantic Similarity
Brother went. I went. 0.794
Comparator
[SUBJECT] went. I went. 0.608
Target
mia-ku [brother]-uu. nüü mia-ku.
Backwards
The brother went. I went. 0.806

(model: gpt-3.5-turbo)

lost meaning in the first step segmenting the input
sentence into simple sentences because it chose to

use the verb "to go" instead of "hike" which is the
main topic of the sentence. Perhaps a better way to
have segmented this sentence would be: “Brother
hiked. I hiked”. It may be possible to encourage
the LLM to prefer “topic” verbs through prompt
engineering.

Another interesting case is when the simple and
comparator scores are high and only the backwards
score is lower. This is observed in cases where
there is ambiguity in OVP where there is not in
English. For example, in the translation

She is cooking.
Simple Semantic Similarity
She is cooking. 1
Comparator
She is cooking. 1
Target
Uhu sawa-ti.
Backwards
He is cooking. 0.836

(model: gpt-4)

“she” turns to “he” in the backwards translation
because OVP does not have gendered pronouns.
Despite the lower backwards score, this translation
is accurate.

In general, both gpt-3.5-turbo and gpt-4 models
do well with respect to the simple and backwards
semantic similarity scores. Table 2 summarizes the
mean semantic similarity scores for each model
and type of sentence. Figure 4 depicts results for
subject-verb sentences. Plots for the rest of the re-
sults can be found in Appendix D. That the simple
and backwards scores are consistently higher than
the comparator scores suggests that the translator
can be greatly improved simply by expanding its
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I will cook.

He visited.

I read.

He works.

They are climbing.

I am swimming.

They danced.

I ate.
We are playing.

She smiled.

They were laughing.

I was running.

She sings.

She is cooking.

Birds were chirping.

They will travel.

We traveled.

We will celebrate.

Birds will migrate.

Dogs are chasing.

Dogs bark.

He was painting.

She will study.

She was typing.

Plants grow.

0
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generated sentence, model
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Figure 4: Results for subject-verb sentences. The dark, medium, and light gray bands represent the baseline
similarity (between unrelated sentences in the dataset) +/- one, two, and three standard deviations, respectively.

Mean
Model Type Sim.
gpt-3.5-turbo subject-verb 0.941

two-verb 0.906
subject-verb-object 0.869
two-clause 0.879
complex 0.829

gpt-4 subject-verb 0.941
subject-verb-object 0.866
two-verb 0.905
two-clause 0.877
complex 0.830

Table 2: Translation qualities by model and sentence
type: mean semantic similarities between input sentence
and the simple, comparator, and backwards sentences
produced during translation.

vocabulary. It is also interesting to note that the
cheaper, weaker model performs quite well3.

5 Conclusion

In this paper, we present the first translation tool
for Owens Valley Paiute (a critically endangered
Indigenous American language) and, in doing so,
propose a new methodology for low/no-resource
machine translation: LLM-RBMT (LLM-Assisted
Rule-Based Machine Translation). Due to a lack of
bilingual or monolingual corpora, we use semantic

3The cost to run generate all translations was $0.09 using
gpt-3.5-turbo and $5.48 using gpt-4.

similarity to measure the quality of translations,
and observe interesting cases where the translator
performs well, where it performs well given the
vocabulary (primarily verbs and nouns) available
to it, and where it performs poorly due to current
implementation limitations.

This research opens up many directions for fu-
ture work. First, expanding the translation tool
(e.g., by adding more vocabulary, building versions
for other languages, etc.) will make it more useful
for the communities it is meant to serve. We are
currently working to add more complex sentence
structures to test the limits of this methodology.
Building this system required expert knowledge of
the target language. It may be interesting to ex-
plore how large language models might be able to
help with this task as well (e.g., in finding patterns
and implementing RBMT logic) to make it easier
for non-experts (and even experts in the language
who are less comfortable writing code) to build
these kinds of translators. Finally, other methodolo-
gies for leveraging LLMs for low/no-resource ma-
chine translation should be explored. For example,
a RAG (retrieval augmented generation) (Lewis
et al., 2020) approach that searches a knowledge-
base for known sentence structures, vocabulary,
grammar rules, etc. and uses them to perform zero-
shot translation might work well. The remarkable
general-purpose language skills that LLMs exhibit
make them a promising tool in helping revitalize
critically endangered languages.
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Appendices
A OVP to English Translator Results

sentence translation label
tei-zawa-ku ihi This cooked us. 1

isha’-uu tüba-neika ai-hibi-pü That coyote has drunk these pinenuts. 1
tüba-uu tsibui-dü Those pinenuts climb. 1

ta-w̃ui-gaa-wei mahuw̃a "They are going to write to us, you and I." 1
wo’ada-uu aaponu’-oka u-zawa-ti The mosquito is cooking the apple. 1

tübbi-uu tüwoobü-neika a-yadohi-pü The rock has talked to the earth. 1
payahuupü-uu katü-ti That river is sitting. 1

kwisha’i-wei üü You will sneeze. 1
isha’-ii tübbi-neika mai-w̃ui-gaa-wei This coyote is going to write these rocks. 1

toni-uu wünü-ti The wickiup is standing. 1
isha’pugu-neika ihi mai-dama’i-ku This found these dogs. 1

wo’ada-neika ihi mai-dama’i-gaa-wei This will find these mosquitoes. 1
tabuutsi’-uu tüba-noka u-buni-ku The cottontail saw those pinenuts. 1

maishibü-neika uhu ai-nia-ti He/she/it is reading these corn. 1
koopi’-ii wükada-noka ui-nia-ku This coffee read those bird snakes. 1

tuunapi-uu waakü-pü That food has worked. 1
katünu-ii koopi’-oka ui-nobini-wei This chair will visit those coffees. 1

aingwü-neika mahu ma-nia-dü He/she/it reads the squirrel. 1
maishibü-uu wükihaa-gaa-wei That corn is going to smile. 1
isha’-uu isha’-oka ui-zawa-wei That coyote will cook those coyotes. 1

aingwü-ii tsibui-dü This squirrel climbs. 1
katünu-ii tübbi-neika ma-buni-wei This chair will see this rock. 1

wükada-uu tsibui-ku The bird snake climbed. 1
wo’ada-uu paya-neika ma-hibi-ti The mosquito is drinking the water. 1

pagwi-neika mahu ma-w̃ui-pü He/she/it has written/is writing this fish. 1
tabuutsi’-uu isha’pugu-neika mai-nobini-gaa-wei That cottontail is going to visit those dogs. 1

paya-neika mahu mai-hibi-gaa-wei He/she/it is going to drink this water. 1
nishua’i-pü nüü I am laughing. 1

aaponu’-ii küna-neika a-düka-pü This apple has eaten this wood. 1
katü-dü uhu He/she/it sits. 1

mukita-uu isha’pugu-noka u-naki-ti The lizard is chasing the dog. 1
isha’-oka üü ui-dama’i-ku You found those coyotes. 1
pahabichi-uu wükihaa-dü That bear smiles. 1

pahabichi-ii wo’abi-noka ui-naka-dü This bear hears those worms. 1
habi-ku ihi This lay down. 1

tümui-ku taa You and I wrote. 1
üwi-ku ihiw̃a These slept. 1

tübbi-uu ta-naka-ku "That rock heard us, you and I." 1
wo’ada-uu tei-gwana-dü That mosquito smells us. 1

tümui-dü mahuw̃a They write. 1
üwi-dü nüügwa We are sleeping. 1
tsibui-ti mahu He/she/it is climbing. 1

mukita-uu tsibui-pü That lizard has climbed. 1
payahuupü-uu toyabi-neika ma-zawa-gaa-wei The river is going to cook the mountain. 1
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nobi-uu kwisha’i-ku That house sneezed. 1
kamü-uu wükihaa-dü That jackrabbit smiles. 1

toni-uu katü-wei That wickiup will sit. 1
aingwü-uu katünu-noka u-zawa-gaa-wei The squirrel is going to cook that chair. 1

paya-uu pasohobü-neika ai-buni-wei That water will see those trees. 1
toyabi-ii tsibui-ku The mountain climbed. 1

tsibui-wei taa You and I will climb. 1
pugu-uu wo’abi-neika ai-naki-ku That horse chased those worms. 1

mukita-uu wai-noka u-nobini-gaa-wei The lizard is going to visit the rice. 1
wükihaa-ti mahu He/she/it is smiling. 1

tüsüga-ii tüwoobü-neika ma-naki-gaa-wei This weasel is going to chase this earth. 1
yadoha-ku uhuw̃a They talked. 1

pahabichi-ii pugu-noka ui-nia-ku The bear read those horses. 1
paya-uu katünu-noka ui-yadohi-gaa-wei Water is going to talk to those chairs. 1

pagwi-ii wo’abi-noka ui-düka-ti This fish is eating those worms. 1
tabuutsi’-uu tübinohi-ku That cottontail played. 1

tünia-ku nüü I read. 1
poyoha-pü ihiw̃a These are running. 0

mukita-uu yotsi-wei That lizard will fly. 1
tabuutsi’-uu tübbi-neika ma-buni-pü That cottontail has seen this rock. 1
isha’pugu-ii tüba-neika ai-nobini-ku This dog visited these pinenuts. 1

isha’-uu katü-dü That coyote sits. 1
pasohobü-ii tsiipa-noka ui-naka-ku The tree heard those birds. 1

kamü-uu mukita-neika ma-zawa-wei That jackrabbit will cook this lizard. 1
tuunapi-uu tümui-gaa-wei That food is going to write. 1

wai-uu aingwü-neika ai-naka-pü That rice has heard those squirrels. 1
tsiipa-uu pugu-noka ui-naka-pü The bird has heard those horses. 1

pagwi-ii wükihaa-gaa-wei These fish are going to smile. 1
tei-nobini-dü uhuw̃a They visit us. 1

paya-neika ihi ma-dama’i-dü This finds this water. 1
isha’pugu-neika nüügwa ma-düka-ku We ate this dog. 1

tabuutsi’-uu hubiadu-dü The cottontail sings. 1
kwadzi-ii yadoha-wei This tail will talk. 1

isha’pugu-uu mukita-neika ai-naka-ti That dog is hearing these lizards. 1
pasohobü-noka üü u-zawa-gaa-wei You are going to cook that tree. 1

tsiipa-noka uhu u-buni-pü He/she/it has seen or is seeing that bird. 1
tuunapi-neika mahu mai-gwati-ku He/she/it hit the foods here. 0
isha’-eika nüügwa ai-w̃ui-gaa-wei We are going to write coyotes. 1

pasohobü-uu toyabi-neika ma-hibi-pü The tree has drunk the mountain. 1
aingwü-uu aaponu’-eika ai-naka-ti The squirrel is hearing these apples. 1
tabuutsi’-uu wai-noka u-yadohi-pü The cottontail has talked to the rice. 1
katünu-noka mahuw̃a ui-gwati-dü They are hitting those chairs. 1
tüwoobü-neika uhuw̃a mai-buni-ti They are seeing these earths. 1

koopi’-uu hukaw̃ia-ti Coffee is walking. 1
küna-ii ni-naka-ti This wood is hearing us. 1

toyabi-neika taagwa ma-buni-gaa-wei We are going to see this mountain. 1
isha’pugu-ii üwi-dü This dog sleeps. 1

pagwi-neika ihi mai-naka-gaa-wei This will hear these fish. 1
kwadzi-ii toni-neika ai-gwati-gaa-wei This tail is going to hit those wickiups. 1
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paya-ii tuunapi-noka u-düka-ti This water is eating that food. 1
mukita-uu tümui-gaa-wei That lizard is going to write. 1

pahabichi-uu küna-neika ma-zawa-ku The bear cooked the wood. 1
isha’pugu-uu tabuutsi’-eika a-zawa-dü That dog is cooking this cottontail. 1
katünu-uu pahabichi-noka u-naki-ku The chair chased the bear. 1

küna-uu waakü-gaa-wei That wood is going to work. 1
pugu-neika mahu ai-naka-ku He/she/it heard these horses. 1

Table 3: One hundred randomly generated sentences (using the OVP sentence building tool described in Section 3)
and translated (using the OVP to English translator described in Section 3) labeled 1 if the translation is accurate
and 0 otherwise.

B Semantic Similarity Sentences

Base Sentence Other Sentences
(in order of most to least semantically similar to Base Sentence)

She sings. He sings.
He/she/it sings.
She performs a song.
A song is being sung by her.
She hums a tune.
She listens to music.
She dances.
She eats.
The cat sleeps.
Mountains echo silently.

The dog fell. The dog fell yesterday.
A dog stumbled.
The puppy tripped over.
The cat is running.
An animal is in motion.
The bird flies.
Leaves fall in autumn.
He reads a book.
Clouds cover the sky.
Apples on the moon are hungry.

The man ate an apple. The apple was eaten by the man.
A man consumes a fruit.
The boy nibbles on an apple.
Someone is eating.
He drinks water.
The woman ate a pie.
A cat chases a mouse.
Trees grow in the forest.
The car is red.
Stars twinkle at night.

The sun rises in the east. The east welcomes the sunrise.
Sunrise occurs in the east.
Day breaks in the east.
The moon sets in the west.
The stars shine at night.
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Clouds gather before rain.
The wind changes direction.
Leaves fall in autumn.
Snow covers the mountains.
A book rests on the table.

Birds fly south for the winter. For winter, birds head south.
Migratory birds travel south when it gets cold.
Birds migrate to warmer climates during winter.
Fish swim upstream.
Bears hibernate in winter.
Flowers bloom in spring.
The earth orbits the sun.
Trees lose their leaves in fall.
The sky is blue.
A cat sleeps on the couch.

I read a book yesterday. Yesterday, I finished reading a book.
A book was read by me yesterday.
I watched a movie last night.
I’ll visit the library tomorrow.
She writes a letter.
He cooks dinner.
They are painting a house.
The sun sets in the evening.
A dog barks at night.
The car needs fuel.

The cake was delicious. Delicious was the cake.
The dessert tasted great.
We enjoyed the tasty cake.
The pie is sour.
Coffee complements breakfast.
Leaves rustle in the wind.
A bird sings outside.
Children play in the park.
Traffic is heavy today.
The phone is ringing.

Lightning precedes thunder. Thunder follows lightning.
First comes lightning, then comes thunder.
The storm brings lightning and thunder.
Rain refreshes the earth.
The sun warms the ground.
A river flows to the sea.
Mountains reach towards the sky.
A cat chases a mouse.
Books fill the shelf.
The clock ticks steadily.

She painted a beautiful picture. A beautiful picture was painted by her.
The painting she created is beautiful.
She sketches a portrait.
He writes a poem.
They are filming a movie.
Birds nest in spring.
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Flowers wilt in the heat.
Kids play video games.
Cars fill the parking lot.
The sun sets late in summer.

The computer is broken. A broken state afflicts the computer.
The machine isn’t working.
We need to repair the computer.
The phone’s battery is dead.
Lights flicker during a power outage.
A book lies open on the desk.
Water boils at 100 degrees Celsius.
A cat purrs contentedly.
The door creaks when opened.
Birds migrate in autumn.

He solved the puzzle quickly. The puzzle was quickly solved by him.
Quickly, he found the solution to the puzzle.
She completes the crossword.
The mystery remains unsolved.
A race against time.
Flowers are sold at the market.
The river cuts through the valley.
A key unlocks the door.
Leaves turn red in autumn.
The train arrives at noon.

The stars twinkle at night. At night, the stars shimmer.
Twinkling stars fill the night sky.
Night unveils a sky full of stars.
The moon glows brightly.
Clouds mask the moon.
The sun sets, stars appear.
A comet streaks through the sky.
Fireflies glow in the dark.
Crickets chirp in the evening.
A candle flickers in the window.

Table 4: Base sentences and other sentences ordered by their semantic similarity to the base sentence (as determined
by authors).

C Vocabulary
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tüka eat
puni see
hibi drink

naka hear
kwana smell
kwati hit

yadohi talk to
naki chase

tsibui climb
sawa cook

tama’i find
nia read
mui write

nobini visit

(a) Transitive Verbs

katü sit
üwi sleep

kwisha’i sneeze
poyoha run

mia go
hukaw̃a walk

wünü stand
habi lie down

yadoha talk
kwatsa’i fall

waakü work
wükihaa smile
hubiadu sing
nishua’i laugh

tsibui climb
tübinohi play

yotsi fly
nüga dance

pahabi swim
tünia read
tümui write

tsiipe’i chirp

(b) Intransitive Verbs

isha’ coyote
isha’pugu dog

kidi’ cat
pugu horse

wai rice
tüba pinenuts

maishibü corn
paya water

payahuupü river
katünu chair
toyabi mountain

tuunapi food
pasohobü tree

nobi house
toni wickiup
apo cup

küna wood
tübbi rock

tabuutsi’ cottontail
kamü jackrabbit

aaponu’ apple
tüsüga weasle
mukita lizard

wo’ada mosquito
wükada bird snake
wo’abi worm
aingwü squirrel

tsiipa bird
tüwoobü earth

koopi’ coffee
pahabichi bear

pagwi fish
kwadzi tail

(c) Nouns

ku completive (past)
ti present ongoing (-ing)

dü present
wei future (will)

gaa-wei future (going to)
pü have x-ed, am x-ed

(d) Object Suffixes

nüü I
uhu he/she/it

uhuw̃a they
mahu he/she/it

mahuw̃a they
ihi this

ihiw̃a these
taa you and I

nüügwa we (exclusive)
taagwa we (inclusive)

üü you
üügwa you (plural)

(e) Subject Pronouns

ii (proximal)
uu (distal)

(f) Subject Suffixes

i me
u him/her/it (distal)

ui them (distal)
ma him/her/it (proximal)

mai them (proximal)
a him/her/it (proximal)

ai them (proximal)
ni us (plural, exclusive)
tei us (plural, inclusive)
ta us (dual), you and I
ü you (singular)

üi you (plural), you all

(g) Object Pronouns

eika (proximal)
oka (distal)

(h) Object Suffixes

Table 5: Vocabulary available in sentence building system.
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D English to OVP Translation Results
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I will cook.

He visited.

I read.

He works.

They are climbing.

I am swimming.

They danced.

I ate.
We are playing.

She smiled.

They were laughing.

I was running.

She sings.

She is cooking.

Birds were chirping.

They will travel.

We traveled.

We will celebrate.

Birds will migrate.

Dogs are chasing.

Dogs bark.

He was painting.

She will study.

She was typing.

Plants grow.
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Figure 5: Results for subject-verb sentences. The dark, medium, and light gray bands represent the baseline
similarity (between unrelated sentences in the dataset) +/- one, two, and three standard deviations, respectively.

The bird chased a worm.

The bear caught a fish.

Tom caught a fish.

Rachel loves coffee.

The sun heats the earth.

The dog ate soup.

Susan sings songs.

Romeo wrote a letter.

John read a book.

The teacher gave a lecture.

The captain steered the ship.

Mike watched a movie.

Harry received a letter.

Jack found a pail.

Paul plays the guitar.

The writer finished a story.

Mom made dinner.

The lion hunted a deer.

Anna baked a cake.

The king wore a crown.

Batman caught a thief.

The chef prepared a meal.

Alice opened a door.

Linda bought a dress.

My brother drives a car.
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Figure 6: Results for subject-verb-object sentences. The dark, medium, and light gray bands represent the baseline
similarity (between unrelated sentences in the dataset) +/- one, two, and three standard deviations, respectively.
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They danced and laughed.

We are playing and laughing.

I will cook and eat.

She sings and dances.

They are climbing and exploring.

We will celebrate and dance.

I read and write.

He visited and enjoyed.

Birds were chirping and flying.

I am swimming and relaxing.

They were laughing and joking.

She smiled and waved.

I was running and listening to music.

Birds will migrate and return.

We traveled and discovered.

They will travel and explore.

He works and studies.

She is cooking and tasting.

I ate while watching TV.

Dogs are chasing and barking.

He was painting and humming.

Dogs bark and wag their tails.

She will study and pass.

She was typing and sipping coffee.

Plants grow and bloom.
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Figure 7: Results for two-verb sentences. The dark, medium, and light gray bands represent the baseline similarity
(between unrelated sentences in the dataset) +/- one, two, and three standard deviations, respectively.

The bird chirped and the squirrel jumped.

The dog ate soup and the cat ran.

Susan sang and I read.

Mike cooked and his sister danced.

Rachel danced and Monica sang.

The bear roared and the fox hid.

Tom slept and Jerry watched.

Harry wrote and Ron read.

Jack climbed and Jill followed.

The king sat and the queen stood.

Alice laughed and Bob cried.

Mom laughed and dad cried.

Anna swam and Elsa skated.

The teacher spoke and the student listened.

The writer typed and the poet thought.

Romeo called and Juliet answered.

The captain shouted and the crew responded.

The chef baked and his assistant cleaned.

Paul jumped and Peter ducked.

Batman swung and Robin landed.

The sun shone and the moon glowed.

The lion hunted and the tiger rested.

John traveled and Mary studied.

Linda painted and her friend sketched.

My brother drove and I waited.
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Figure 8: Results for two-clause sentences. The dark, medium, and light gray bands represent the baseline similarity
(between unrelated sentences in the dataset) +/- one, two, and three standard deviations, respectively.
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The bird and the squirrel played.

The bear and the fox foraged for food.

Linda and her friend dance gracefully.

The dog and the cat were eating soup.

Susan and I will watch a movie.

The chef and his assistant prepared a feast.

Paul and Peter play the guitar.

The writer and the poet collaborated on a book.

The captain and the crew sailed the seas.

The teacher and the student were discussing.

Batman and Robin fought crime.

The lion and the tiger roared.

Tom and Jerry chase each other.

Alice and Bob solve puzzles.

Anna and Elsa share a bond.

The king and the queen ruled wisely.

Mike and his sister study together.

The sun and the moon are celestial bodies.

Rachel and Monica share an apartment.

Romeo and Juliet loved deeply.

John and Mary are traveling.

Mom and dad are celebrating their anniversary.

Harry and Ron faced many challenges.

Jack and Jill went up the hill.

My brother and I went hiking.
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Figure 9: Results for complex sentences. The dark, medium, and light gray bands represent the baseline similarity
(between unrelated sentences in the dataset) +/- one, two, and three standard deviations, respectively.
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Abstract
Modern natural language processing (NLP)
techniques increasingly require substantial
amounts of data to train robust algorithms.
Building such technologies for low-resource
languages requires focusing on data creation
efforts and data-efficient algorithms. For a
large number of low-resource languages, es-
pecially Indigenous languages of the Americas,
this data exists in image-based non-machine-
readable documents. This includes scanned
copies of comprehensive dictionaries, linguistic
field notes, children’s stories, and other textual
material. To digitize these resources, Optical
Character Recognition (OCR) has played a ma-
jor role but it comes with certain challenges in
low-resource settings. In this paper, we share
the first survey of OCR techniques specific to
low-resource data creation settings and outline
several open challenges, with a special focus on
Indigenous Languages of the Americas. Based
on experiences and results from previous re-
search, we conclude with recommendations on
utilizing and improving OCR for the benefit of
computational researchers, linguists, and lan-
guage communities.

1 Introduction

Latin America is home to a linguistically diverse
set of hundreds of indigenous languages. Many
of these are low-resource in terms of text and au-
dio resources, and generally lack basic natural lan-
guage applications such as spell checkers, part of
speech (POS) taggers, etc. However, these lan-
guages have a large number of digital resources
(not machine-readable) in the form of recordings,
plays, stories, and dictionaries. One major reposi-
tory of such materials is the Archive of the Indige-
nous Languages of Latin America (AILLA).1 Of
the documents in AILLA’s collection, particularly
interesting to NLP researchers are linguistic materi-
als such as grammars, dictionaries, ethnographies,

1A joint effort of the LLILAS Benson Latin American
Studies and Collections and UT Austin.

Figure 1: We highlight 10 Indigenous Languages from
Central and South America with large amounts of undig-
itized resources to anchor our survey and workflow rec-
ommendations for researchers and linguists.

and field notes, that can serve as training data for
NLP applications and Optical Character Recogni-
tion (OCR). Releasing digitized versions of such
a repository of hundreds of datasets can preserve
invaluable linguistic materials and accelerate re-
search in NLP. Modern OCR can extract text from
such documents, but this requires accurate layout
detection and post-processing to make the extracted
text usable for downstream NLP tasks (Bustamante
et al., 2020). OCR is a well-established field, with
its advances mostly drawing from innovations in
Computer Vision. More recently, OCR has been
increasingly used for resource-creation for low-
resource languages in NLP contexts (Ignat et al.,
2022a). There are also several excellent surveys
and tutorials (Nguyen et al., 2021; Neudecker et al.,
2021; Memon et al., 2020) on building and using
OCR for broad applications, however, there is a
dearth of specialized surveys for low-resource lan-
guage OCR. Therefore, the aim of this paper is to
fill this gap and acquaint researchers and language
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Language 693-3 Family Main Country Speakers Pages Undigitized Resource

S. Bolivian Quechua QUH Quechuan Bolivia 1.6M 216 Kalt (2016)
Mísqito MIQ Misumalpan Nicaragua, Honduras 150K 61 Bermúdez Mejía (2015)

Mam MAM Mayan Guatemala 600K 144 England (1972-1985)
Chuj CAC Mayan Guatemala 60K 564 Hopkins (1964)

Chimalapa Zoque ZOH Mixe-Zoquean Mexico <10K 3744 Johnson (2000-2005)
Chiquián Quechua QXA Quechuan Peru 100K 29 Proulx (1968)

Sharanahua MCD Panoan Peru <10K 209 Déléage (2002)
Tzeltal TZH Mayan Mexico 600K 38 Kaufman (1960-1993)
Baniwa BWI Maipurean Brazil, Venezuela 12K 310 Wright et al. (2000)

Ixil IXL Mayan Guatemala 120K 2 Adell et al. (2016)

Table 1: A brief description of the 10 languages that we focus on to highlight the amount of data in Indigenous
Languages of the Americas that requires high-quality OCR. We include their ISO 693-3 codes, primary country,
number of speakers, and references to the resource that requires digitization. Overall, this data includes 5317 pages
to be transcribed which if digitized can be sufficient to train many downstream NLP tasks.

communities with techniques and adaptions neces-
sary for high-quality digitization in low-resource
settings. To summarize, this paper makes the fol-
lowing contributions:

1. Highlights undigitized resources in 10 Ameri-
can Indigenous languages (§2).

2. First concise survey of OCR for low-resource
settings and languages (§3).

3. Discussion on major open problems in scaling
digitization for low-resource languages (§4).

4. Recommendations for researchers, linguists,
and language communities on the entire re-
source curation and digitization pipeline (§5).

2 Undigitized Data

Over the past decade, many researchers, linguists,
and consortiums have worked closely with na-
tive speakers and language communities to create
datasets including digitized text, audio, transcrip-
tions, translations, stories, etc. Some of these re-
sources may not be machine-readable but include
extremely valuable resources from an NLP perspec-
tive, such as multilingual lexicons, pronunication
guides, plain text from a wide-variety of domains
such as stories, essays, plays, news, linguistics etc.
A comprehensive guide with resources in all low-
resource languages (over 6000+) would be valuable
but is out of the scope of this paper, so we focus
on highlighting relevant resources in 10 Ameri-
can Indigenous languages. The AILLA collection
contains several textual corpora in non-machine-
readable image format for the selected languages in
Table 1, as well as in hundreds of other indigenous

languages of the Americas. The selected languages
together cover over 5000 pages of undigitized data
in these 10 languages. Each page contains multilin-
gual textual data that needs high-quality extraction.

A large majority of OCR work for low-resource
settings includes preservation and digitization of
historical data, early printed books (Reul et al.,
2017), palm-leaf manuscripts (Prusty et al., 2019;
Sharan et al., 2021; Alaasam et al., 2019) etc. Pre-
existing repositories (such as PubMed or arXiv)
are also widely used for training OCR systems
(Zhong et al., 2019; Blecher et al., 2023), how-
ever, note that this approach is not scalable to low-
resource settings which often lack such ready-to-
use datasets.

For the Americas, due to widespread adoption of
extended Latin alphabets in writing, texts from the
last couple of centuries are often typed, but several
collections include partially or completely written
handwritten documents and annotations. Histori-
cally used typing fonts may be challenging to de-
cipher or out of use due to orthographic reforms
(Naoum et al., 2019; Klaiman and Lehne, 2021;
Jiang et al., 2019), and handwriting varies widely
across individuals, making extraction challenging
(Déjean and Meunier, 2019; Alaasam et al., 2019;
Sharan et al., 2021). Over time, language commu-
nities may even adopt new orthographies, which
might require researchers to build new keyboards
and transcription systems to make the digitized cor-
pora readable by community members (Rijhwani
et al., 2023). Digitizing these resources can allow
for more accessible linguistic research, training lan-
guage models, translation systems, POS taggers,
etc. The AILLA collection constitutes of a healthy
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mix of both typed and handwritten text. As evident
from Table 1, the highlighted languages will re-
quire sustained OCR efforts to digitize their respec-
tive resources. With access to machine-readable
text, downstream NLP tools can then begin to be
built.

Note that in our concise survey paper, our aim
is not to digitize these specific books - that would
warrant separate carefully designed studies as each
resource is bound to have unique challenges and
is connected to language communities with pos-
sibly different language technology needs. This
paper highlights, for researchers unfamiliar with
these languages and domain, different resources
available for experimenting with OCR modeling ap-
proaches and recommended workflows for achiev-
ing such digitization.

3 A Concise Survey of OCR

Now that we’ve seen the data resources available
for our 10 selected Indigenous languages (§2), we
will highlight useful and practical OCR adaptations
and innovations necessary for digitization of such
low-resource language data. We cover techniques
in four major parts of the digitization pipeline:
preparation of the data and model, active training,
decoding or generation, and post-processing. To
ground the following discussion, we will define an
example dataset C, with K pages, where pi repre-
sents separate pages. L represents the paired labels
for each pi ∈ C (with each li representing the the
ground-truth words and characters for the page pi).C = {pi}Ki=1;L = {li}Ki=1

For an OCR experimental setup, we would usu-
ally have four different datasets: Cpretrain (unla-
beled pages), Ctrain (with labels Ltrain), Cval (vali-
dation/development set used for evaluation during
training along with labels Lval), Ctest (for reporting
model performance along with labels Ltest).

3.1 Preparation: Setting the Stage

Data Augmentation Due to lack of data in low-
resource indigenous languages, data augmentation
should be the first step for any digitization pipeline,
to increase the utility of the small labeled gold
dataset (Shorten and Khoshgoftaar, 2019). For an
OCR system, this means that the images them-
selves must go through several transformations
such as skewing, binarization, scaling, cropping,
blurring, etc. to ensure that the final model can
handle such variations in-the-wild and still be able

to extract text from the image. Data augmenta-
tion is well-studied in literature (Liu et al., 2018;
Khan et al., 2021) and incorporating it into OCR
pipelines has shown to increase robustness and per-
formance by making the best use of a small training
set (Storchan and Beauschene, 2019; Namysl and
Konya, 2019).

More precisely, a set of augmentation operations,
O = {o1, o2, .., oj} where j denotes the number of
operations can be applied to each image pi. o can
denote functions like binarization, greyscale, gaus-
sian blur, cropping etc. Ctrain can be augmented
using any combination of operations from set O, to
generate a new set Ctrain−aug, which would serve
as the newly expanded training corpus. For each
new augmented page, pi,j = oj(pi) and it’s label
would be li ∈ Ltrain.

Pretraining with General Unlabeled Data For
data that is not labeled, self-supervised pretraining
techniques are often used to better initialize the
network (Li et al., 2023; Bugliarello et al., 2021).
In case of encoder-decoder models, pretraining has
been applied to both components separately and
has been shown to be successful (Lyu et al., 2022;
D’hondt et al., 2017), when large amounts of un-
labeled images or text are available. Similarly,
in case of the in-house pretraining set Cpretrain,
ground-truth text labels are not available. So, the
images from this pretraining set can be used to pre-
train the OCR model, and the first-pass text can
incorporated into pretraining the post-correction
model (with learned denoising rules) (Rijhwani
et al., 2020).

Transfer Learning from Related Languages
For certain minority and low-resource languages,
it is shown that a base system that is trained to
identify a similar language or similar character-
set generally leads to performance increases down-
stream(Lin et al., 2019; Zhuang et al., 2021; Rijh-
wani et al., 2019). As an illustration, in our selec-
tion of 10 American Indigenous languages, choos-
ing a corpus in a high-resource language of Central
and South America i.e. Spanish or Portuguese,
might be appropriate for transfer learning. In the
OCR domain, transfer learning has been applied
to better enhance the quality of low-resource OCR
output at the decoding step (Todorov and Colavizza,
2020; Jaramillo et al., 2018). However, Tjuatja
et al. (2021) investigates transfer learning for OCR
post-correction for indigenous and endangered lan-
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guages and points at mixed results. They say that
for downstream performance improvements, trans-
fer learning is not straightforward and may require
getting data from a larger set of domains. Gunna
et al. (2021) investigated transfer at the text de-
tection level for Indian languages, and observed
positive outcomes when transferring from other In-
dian languages that look visually similar, even if
they are from different language families.

3.2 Training: Learning Quickly and Better

For training OCR systems, supervised techniques
are usually preferred in low-resource settings. Un-
supervised methods have shown some promise re-
cently (Gupta et al., 2021; Dong and Smith, 2018;
Garrette and Alpert-Abrams, 2016), but they often
require larger datasets for training. Since our fo-
cus is on low-resource indigenous languages, we
restrict our discussion to supervised techniques. In
this setup, there are usually two options - using off-
the-shelf systems like Google Vision, Tesseract etc.
or training from scratch. For Indigenous languages
of the Americas, using off-the-shelf OCR systems
can give an excellent starting point (Rijhwani et al.,
2023), and since they are the focus languages of
our paper, we will discussing training strategies
on top of the first-pass OCR output obtained from
such systems. Post-OCR processing aims to rectify
mistakes made by OCR systems in text extraction,
and can be extremely valuable for low-resource
languages. Post-processing is valuable because
it makes little to no assumptions about the first-
pass OCR system itself (helpful when the system is
commercial or closed-source) and instead focuses
on improving the quality of the output (Kolak and
Resnik, 2005).

First-Pass OCR For the first-pass, a high-quality
OCR system, such as Google Vision or Tesseract,
that is known to work well on endangered-language
documents (Fujii et al., 2017; Rijhwani et al., 2020)
is commonly used. Performing OCR on page pi
gives us a first-pass output, fi in the form of ni
bounding boxes x and the texts within them a. Each
x contains the set of coordinates for the bounding
box, and the corresponding string a represents the
text within the box.

fi = [(x1, a1), (x2, a2), .., (xni , ani)]
Text Corrections An ideal post-OCR text correc-
tion algorithm would model the error distribution
of the OCR algorithm’s output text and system-

atically correct it (Berg-Kirkpatrick et al., 2013;
Schulz and Kuhn, 2017). This can be an extremely
valuable tool when digitizing indigenous language
documents because the OCR pipeline’s decoder lan-
guage model is often of low-quality due to the low-
resource nature of indigenous and endangered lan-
guages. Across the digitization efforts that we’ve
highlighted and amongst others, it is quite common
to perform text-based semi-automatic or human
post-correction (Maxwell and Bills, 2017; Cordova
and Nouvel, 2021; Rijhwani et al., 2021). For every
first-pass page fi, we output a corrected page:

qi = [(x1, b1), (x2, b2), .., (xni , bni)]
where x indicates the boxes from the first-pass,

and b indicates corresponding corrected text. In
human post-correction, an annotator (preferably a
speaker of the language), would edit the first-pass
OCR output to match with the ground-truth text as
evident from the image. In semi-automatic setups,
several consistent OCR errors may be identified
from a small number of corrections and automati-
cally applied to the remaining first-pass prediction
to reduce the burden on the annotator.

Coverage Mechanism Since OCR is seen a gen-
eration task, it can be important for the model’s
attention distribution to pay attention to different
parts of the input string. To ensure that this happens,
a coverage mechanism is often introduced (Tu et al.,
2016; Mi et al., 2016). This mechanism has empiri-
cally been shown to greatly improve OCR accuracy
and seq2seq performance (See et al., 2017; Rijh-
wani et al., 2021; Klaiman and Lehne, 2021). A
coverage vector at at time step t will be

ct = t′=t−1∑
t′=0 αat′

where αat represents the attention distribution for
the input a at time step t. This coverage vector
ct can be weighted and included in the attention
computation for the next αt+1, and be added to the
base cross entropy loss as follows:

∑
t

len(a)∑
i=0 min(αat,i, ct,i)

Diagonal Attention Since post-correction from
first-pass OCR output is mostly a copying step and
reordering rarely occurs (Schnober et al., 2016),
the model can mostly focus on generating the ele-
ments close to the diagonal. Therefore, under this
paradigm, off-diagonal entries outside a certain ra-
dius are penalized more heavily by including them

91



in the training loss (Cohn et al., 2016). This sim-
plifies the decoding step and encourages the model
to maximize attention on items within the diago-
nal attention range. The modified loss function at
time step t for a diagonal range d and attention
distribution α would be:

t−d∑
t′=1α

a
t,t′ + len(a)∑

t′=t+dα
a
t,t′

Diagonal attention shown to empirically improve
OCR performance for low-resource languages (Ri-
jhwani et al., 2021, 2020) and can be easily incor-
porated in OCR post-correction modeling.

Active Learning Data labeling is an expensive
task for low-resource languages and especially so
for a non-trivial annotation task such as OCR cor-
rection or image labeling. To select only those
pages to annotate that would help the OCR model
the most, a systematic paradigm called Active
Learning can been utilized (Settles, 2012). For
the low-resource OCR domain and for layout anal-
ysis, active learning has shown to be empirically
quite valuable (Reul et al., 2018; Shen et al., 2022;
Monteleoni and Kaariainen, 2007; Abdulkader and
Casey, 2009; Gupta et al., 2016). It can help select
which part of the Cpretrain to annotate and add into
Ctrain using query by committee which trains sev-
eral learner models on the current Ctrain and each
model casts its vote/prediction on a set of V unla-
beled examples from Cpretrain. In the equations be-
low, uq(⋅) counts the number of unique characters
in a list of predictions, M represent the indepen-
dently trained models (m in total), sv represents the
vth sentence in Cpretrain, and V = len(Cpretrain).

agsv = uq([M1(sv),M2(sv), ...,Mm(sv)])
v∗ = argmaxVv=0(agsv)

Sample v∗ ∈ Cpretrain is the sample that models
disagree on most so it is actively added into the
training set Ctrain (principle of maximal disagree-
ment) since it would benefit from human annota-
tion and improve the OCR model the most (Settles,
2012).

3.3 Decoding: To Generate or Not?

In this subsection, we’ll discuss some recently pro-
posed and empirically useful strategies to improve
OCR decoding under low-resource settings.

Copy Mechanism Since at the decoding step,
it is highly likely that most of the corrected text
would be identical to the input, it is shown to be

useful (Gu et al., 2016) to have two different prob-
ability distributions for decoding - copy and gener-
ation. At decoding, the model can choose, whether
to sample from the attention distribution (Pcopy) or
generate the output through generation (See et al.,
2017; Sutskever et al., 2014).

Pcopy(yt) = t∑
t′=0αt,t′

This can reduce the OCR character and word er-
ror rates by 2-5 times under low-resource settings
(Rijhwani et al., 2020; Gu et al., 2016). Krishna
et al. (2018) also use a copying mechanism for
Sanskrit OCR and gain about 10% points over
the base model with the copy mechanism, demon-
strating that incorporating copying into an OCR
pipeline for low-resource indigenous languages
can be extremely beneficial. The copy proba-
bility can be weighted for each time step based
on a pcopy ∈ (0,1) which can be generated as a
weighted sum of the context vector, decoder state,
and the previous time step’s decoder probability.
Therefore, we get the following copy-generation
probability for a particular time step t and output
string y:
p(yt) = (1 − pcopy) ∗ P (yt) + pcopy ∗ Pcopy(yt)

Lexical Decoding In order to counter the noise
that self-training from the previous training step
is bound to introduce i.e. reinforcing the errors
from the first-pass, lexical adaptations have been
successfully introduced in the OCR decoding step
to improve the quality of the prediction (Schulz
and Kuhn, 2017; Rijhwani et al., 2021). This pro-
posed approach has shown to empirically benefit
the decoding because it assumes that the correct
forms of a word appear more frequently (assum-
ing OCR errors to be inconsistent) and biases the
output towards such observed forms.

3.4 Evaluation: How to Measure Progress?
Prediction Scoring and Evaluation Metrics
When building an OCR system from scratch, mean-
average-precision (mAP) and intersection-over-
union (IoU) are the most commonly used metric
to evaluate the quality of the bounding boxes. For
the predicted bounding boxes P = {x1, x2, ..., xe},
researchers commonly use IoU over all pairs of
boxes to generate a ranked list of the best possible
bounding box prediction and reference pairs (Gir-
shick, 2015; Prasad et al., 2019; Prieto and Vidal,
2021). Then, a range of IoU thresholds can be used
generate a confusion matrix from which we can
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get a pair of precision and recall values for that
threshold. Plotting these two values for all thresh-
olds, we can get a precision-recall curve, the area
under which is called AP i.e. average precision.
We can get an AP for each reference box xe, and
averaging them all will generate a mAP for that
page. This can indicate the quality of alignment of
the predictions P with the true reference labels.

However, for many Indigenous Languages of
the Americas, off-the-shelf systems and commer-
ical systems will produce a reasonable first-pass
prediction since they use extensions of the Latin
alphabet (Rijhwani et al., 2020). In this case, eval-
uation needs to match two text strings: the pre-
diction and the gold reference. For this, character
error rate (CER) and word error rate (WER) are
the most popular evaluation metrics. Depending
on the language, both CER and WER may not be
indicative - for polysynthetic languages where a
large amount of vocabulary would be unseen at
test-time, character-level error rate has been shown
to be more indicative of OCR performance (Rijh-
wani et al., 2023).

CER = sc + dc + ic
nc

;WER = sw + dw + iw
nw

where s, d, and i represent substitutions, deletions,
and insertions at the character or word level over
the reference text which has n characters/words.

Loss Functions If using an off-the-shelf system
for first-pass output, researchers only need to train
post-correction models. In this case, a cross en-
tropy loss is essential in addition to several other
adaptive losses discussed in §3.2 such as diago-
nal loss and coverage loss (Cohn et al., 2016; Tu
et al., 2016). To optimize a combination of these
losses, common optimizers like Stochastic Gradi-
ent Descent (SGD) or Adam are often used (Rijh-
wani et al., 2020). In situations where the OCR
system needs to be trained from scratch, per-pixel
sigmoid or softmax losses are employed due to the
pixel-level nature of the predictions from common
models like Mask R-CNN and Fast R-CNN (Gir-
shick, 2015; He et al., 2017). Multiple losses are
generally computed if different branches of a net-
work analyze and predict different aspects of the
recognition task, and total loss in such cases can be
computed by using a convex combination of these
individual losses (Prusty et al., 2019).

Figure 2: A post-corrected OCR document in Chiquián
Quechua (multilingual with Spanish and English) from
the AILLA collection (§2). Here, the annotator read-
justed he detected bounding boxes, corrected the textual
errors in the new boxes, and colored boxes belonging to
the 3 languages differently.

4 Open Problems

Layout Preservation One of the most pressing
issues remaining largely unsolved in OCR literature
is that of structure preservation. OCR tools, espe-
cially those off-the-shelf may not good preserve
the layout of the page in the output OCR text accu-
rately and might require manual post-OCR align-
ment (Tafti et al., 2016; Rijhwani et al., 2020). The
detected bounding boxes may not follow a logical
layout as would be expected by human inspection.
This means that researchers need to perform some
level of alignment after getting the OCR outputs
(Xie and Anastasopoulos, 2023), before applying
OCR models (Ignat et al., 2022a), or cropping each
image into separate line-level images (may be fi-
nancially impractical if using commercial systems).
From a resource-creation perspective for indige-
nous languages, preserving structure in the final
output is extremely important, so we recommend
that researchers think about how to design their
experiments early on to address this issue.

To the best of our knowledge, while previous
work has focused on layout detection as a first-step
(Bustamante et al., 2020), it has not been explored
as a post-processing step, primarily due to a lack of
ground-truth structural data. Previously, two major
studies (Blecher et al., 2023; Zhong et al., 2019)
have used existing large-scale corpora like arXiv to
extract large-scale ground truth (source-code); but,
this approach is not scalable to resource-creation
efforts involving low-resource languages. To build
such a structure post-correction model, annotators
would be required to not only correct the text in
the OCR but also structurally correct the first-pass
OCR outputs in some kind of graphical user inter-
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face (as shown in Figure 2). This would involve
scaling, translating, merging, or splitting bounding
boxes, while keeping the text within faithful to the
each box’s new coordinates. Such a task could be
framed as follows: for every text-corrected page qi,
we output a corrected page

ri = [(y1, c1), (y2, c2), .., (ymi , cmi)]
where mi denotes the number of new bounding
boxes after post-correction (may be different from
ni). We consider human-corrected ri as the ground-
truth text and layout. Note that while this step
mainly transforms the structure, it would also in-
volve transferring the initially corrected text (bi,
bi+1, etc) from the first-pass boxes that now make
up the corrected box yi, and therefore, the texts
are labeled as ci. However, since such structural
post-correction ground-truth data may be expensive
to obtain, researchers may also consider getting
this ground-truth from a dedicated layout detection
model automatically, and post-correcting output
from the best first-pass OCR system to adapt to this
automatically-extracted desired layout.

Atypical Characters, Fonts, and Words Model-
ing historical orthographic variations with modern-
day LMs, trained on current spelling conventions,
can prove challenging during the decoding step
(Poncelas et al., 2020). Work on better text ex-
traction from historical documents from the print-
ing press era resulted in the development of the
popularly used unsupervised Ocular model (Berg-
Kirkpatrick et al., 2013). Synthetic data has been
successfully used before to offset the effect of atyp-
ical characters and typefaces (Borenstein et al.,
2023; Drobac et al., 2017), and unsupervised tech-
niques have been used to automatically learn the
font style of a document in the context of historical
document recognition and OCR (Berg-Kirkpatrick
and Klein, 2014). However, research is still limited
in the low-resource domain and researchers would
need to ensure that their fonts and character sets are
supported by their chosen OCR model (if training
one from scratch) or are reconstructed using recent
work in visual representation learning (Srivatsan
et al., 2021; Vogler et al., 2022). For off-the-shelf
systems (interfaced through APIs), it is not possible
to directly include support for unique characters
and researchers will need to add a post-correction
step that includes a mix of post-processing scripts
for easily resolvable errors and dedicated trained
supervised models to correct first-pass output.

Linguistic Diversity For researchers working
with several low-resource or indigenous languages
at the same time, it can be desirable to train one
model that is capable of handling different writing
systems, diacritics, differing image qualities, and
unique document formatting (Joshi et al., 2020).
While one approach may be to develop ‘language-
agnostic’ methods, previous work has shown that
in practice such models are far from language-
agnostic (Joshi et al., 2020; Bender, 2011) and tend
to have high-performance only for a handful of lan-
guages. High OCR accuracy is usually desirable
for all the low-resource languages under considera-
tion, and in such a scenario, it may be best to train
separate OCR or post-correction models.

5 Workflow Recommendations

In this section, we share recommendations based on
the most successful strategies followed in the sur-
veyed papers. This can serve as a starting point for
computational researchers, linguists, and students
new to the low-resource domain. We acknowledge
that these recommendations, while grounded in
our survey, are still subjective and researchers may
need to modify some elements to suit their specific
cases.

Language and Document Selection To anchor
our survey, we selected 10 languages that have
permissive licenses, use the Latin alphabet, whose
special diacritics were available on the English key-
board, and which had typed documents in common
fonts. Similarly, when selecting documents for
their languages of interest, researchers should con-
sider licensing, need for special keyboards, quality
of the document, and layout diversity.

Evaluation Techniques For evaluation of the
OCR quality, we recommend simply looking at the
final output i.e. text. Provided there is a reference
or gold text, these predictions can be compared to
them and a CER/WER can be obtained. There is
no gold standard target CER/WER so researchers
will have to inspect the quality of the output and
decide, with feedback from language community
members, the CER/WER they would like to target
in any potential modeling. Note that a line-aligned
version of the extracted text will be required and
this may either be obtained by only OCRing at the
line-level (after cropping) or by aligning the pre-
dicted text with the reference text using metrics
such as Levenshtein distance.
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Preliminary Experiments For preliminary ex-
periments, we recommend that 1-2 lead researchers
manually annotate and audit a modest sample of
the dataset themselves. This can help ensure that
the researchers and language community members
are familiar with the annotation workflow and can
better guide any future annotators. Conducting
some annotation before running OCR experiments
is crucial because there needs to be some standard
set for evaluation of all the models we will now
experiment with. Once a few pages have been an-
notated, researchers can begin the OCR process
using a common off-the-shelf OCR method like
Google Vision or Ocular.

Data Annotation Now that the researchers have
an idea of the quality of off-the-shelf OCR systems,
we recommend that they recruit annotators to anno-
tate a larger sample of the data if the OCR quality
was found to be low. Annotators don’t need to
be speakers of the indigenous languages selected;
however, they should have basic pattern recogni-
tion, data annotation, and typing skills. Previous
work has shown that annotators without knowl-
edge of the indigenous language are fairly adept
at performing OCR corrections, if they can read
the language’s script and distinguish between any
new diacritics (Rijhwani et al., 2023). Annotators
should be trained to use the annotation platform
using standardized guidelines, and a manual audit
should be conducted by lead researchers to ensure
compliance.

Post-Correction If the performance from pre-
liminary experiments is satisfactory, we recom-
mend post-correcting to further improve the results.
A post-correction model should ideally help re-
duce character-level errors down to less than 5%
(Maxwell and Bills, 2017; Cordova and Nouvel,
2021; Rijhwani et al., 2021). As discussed in §3,
we recommend that researchers use a combination
of copy mechanism, coverage, diagonal/positional
attention, and active learning to improve perfor-
mance. Rijhwani et al. (2021) implements most
of the necessary post-correction features and their
code can be used directly to train post-correction
models for low-resource settings.

Training from Scratch On the other hand, if the
preliminary experiments reveal that the error rates
are quite high, researchers can consider simply
training a custom OCR system from scratch. This
will require a sizeable amount of annotated pages

for training in addition to computational expertise
in settling on the best hyperparameters and setting
up the training pipeline. Human-annotations col-
lected in the data annotation phase can be used
to train OCR models from scratch and first-pass
outputs can be used to train further with post-
correction models. We recommend using open-
source tools like Tesseract (Smith, 2007) or Ocu-
lar (Berg-Kirkpatrick et al., 2013) to train custom
models due to their efficiency, optimizations, and
active user community. More advanced researchers
may also consider writing their own architecture
and training pipeline from scratch. However, note
that training systems from scratch is not straight-
forward, and researchers are bound to run into chal-
lenges. For instance, Tesseract has a high setup
time and learning curve, doesn’t have any graphi-
cal user interface, and requires high-quality images
which may not be available for certain low- lan-
guages or image collections.

Deployment and Improvements For in-house
use, the final trained model can be used directly to
digitize the entire corpus and any other collections
in that language. We recommend that computa-
tional researchers and language community mem-
bers stay in touch throughout the training, annota-
tion, and deployment process, and flag any issues
with OCR quality and modeling. In some cases,
if sufficient OCR quality is not being achieved de-
spite trying the aforementioned techniques, some
concessions and further data selection and annota-
tion may be required. For instance, the quality of
the data itself might need improvement (redoing
scanning of the original source text), another phase
of annotation may need to be conducted for sub-
stantially more data, or some unique algorithmic
techniques may need to be developed to achieve
quality OCR for the particular documents. We
recommend using LabelStudio (Tkachenko et al.,
2020-2022), which is an open-source labeling and
annotation platform. The user interface is high-
quality, user-friendly, and quite simple to setup and
share with collaborators and annotators. There is
also an active LabelStudio Slack where issues get
resolved relatively quickly.

6 Related Work

Optical Character Recognition OCR has been
studied as a research problem for decades, and to-
day, commercial and open-source OCR systems
can extract text quite accurately from most images
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and can even be used in real-time due to test-time
efficiency (Smith, 2007; Blecher et al., 2023; Berg-
Kirkpatrick et al., 2013). OCR can involve ex-
tracting characters, words, paragraphs, and even
preserving the layout of text on a page or in an
image. OCR is widely used in the digital humani-
ties (Reul et al., 2017; Rijhwani et al., 2021, 2020)
and in businesses since it is a necessary step for
digitization of rare manuscripts, books, linguistic
field notes, invoices, business documents etc. It is
also an invaluable technique in creating new data
for low-resource languages for downstream NLP
tasks and applications (Ignat et al., 2022b). In the
last two decades, several excellent surveys from the
computer vision community have been published
covering OCR developments (Nguyen et al., 2021;
Neudecker et al., 2021; Memon et al., 2020). In
the low-resource domain, Hedderich et al. (2021)’s
survey covers broad NLP advances but it does not
cover optical character recognition. To the best of
our knowledge, other than ours, no previous work
has surveyed OCR for low-resource languages.

Resource Creation Text or image-based datasets
and corpora are most commonly created by scrap-
ing or crawling the web; however, we would like
to highlight a few additional OCR-created datasets,
especially those that work with American indige-
nous languages other than those reported in Ta-
ble 1. Cordova and Nouvel (2021) addresse the
lack of resources for Central Quechua, since re-
sources exist mostly in the dominant Southern va-
riety, using OCR technologies and share a suc-
cessfully digitized corpus. Hunt et al. (2023) dig-
itizes an Akuzipik (indigenous language spoken
in Alaska and parts of Russia) dictionary parallel
with Russian text, which was shown to be very
valuable for downstream NLP tasks. Other rele-
vant but non-OCR dataset creation efforts include
Guarani-Spanish news articles’ (Góngora et al.,
2021), Nahuatl speech translation (Shi et al., 2021),
and Mazatec and Mixtec translations (Tonja et al.,
2023), which can serve as valuable pretraining cor-
pora for OCR.

7 Conclusion

In this paper, we have presented a concise survey
of optical character recognition (OCR) techniques
shown to be most applicable to low-resource lan-
guages in the OCR literature. The survey is fo-
cused and similar work has not been published
before due to the small community of OCR re-

searchers working with low-resource and Indige-
nous language communities. We also highlight
undigitized datasets in 10 Central and South Amer-
ican Indigenous languages, mostly from the AILLA
collection, that can be extremely valuable to digi-
tize for downstream NLP applications. Based on
our own experiences and on findings from our liter-
ature review, we conclude with recommendations
on utilizing and improving OCR for the benefit
of computational researchers, linguists, and lan-
guage communities. We hope that our paper can be
used as a starting point for researchers or language
community members wishing to digitize their re-
sources but unaware of what OCR adaptations have
become absolutely necessary to move towards a
high-quality OCR output as well as what the open
challenges in the field are.

Limitations

We acknowledge that even with the page limit pro-
vided by a long paper, fitting all details even for
a focused topic like ours is not possible. Where
possible, we have included the most relevant de-
tails, including mathematical equations, figures,
and tables, in order to keep the survey concise and
relevant to the AmericasNLP community. In ad-
dition, experimental results for the 10 Indigenous
languages we selected to anchor our survey are out
of the scope of this paper and would easily warrant
a separate study.

Ethics Statement

The raw data resources shared for the 10 selected In-
digenous languages are entirely hosted by AILLA.
The data is freely available to the general public,
with some files shareable through request. The data
can be used without asking for permission, and
without paying any fees, as long as the resource
and collection is cited appropriately. We acknowl-
edge the linguists, native and heritage speakers, and
the AILLA team for creating such a valuable repos-
itory of raw data in indigenous languages of Latin
America. An ethical implication of this work is
that it will allow for more sustainable and equitable
work in language resource creation and natural lan-
guage processing. However, we don’t foresee any
negative ethical concerns with our work, which
hopes to encourage open-source development of
OCR models to allow researchers to move away
from relying on commercial systems to process
low-resource and Indigenous language data.
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Abstract

The current focus on resource-rich languages
poses a challenge to linguistic diversity, af-
fecting minority languages with limited dig-
ital presence and relatively old published and
unpublished resources. In addressing this is-
sue, this study targets the digitalization of old
scanned textbooks written in four Peruvian
indigenous languages (Asháninka, Shipibo-
Konibo, Yanesha, and Yine) using Optical Char-
acter Recognition (OCR) technology. This is
complemented with text correction methods to
minimize extraction errors. Contributions in-
clude the creation of an annotated dataset with
454 scanned page images, for a rigorous evalu-
ation, and the development of a module to cor-
rect OCR-generated transcription alignments.

1 Introduction

Natural Language Processing (NLP) has prompted
the development of diverse language technologies,
including machine translation, spell checkers, and
information extraction tools. Given this impact,
there is an urgent need to democratize these tech-
nologies, making them available for speakers of the
more than 7,000 languages spoken worldwide.

Currently, such technologies are restricted to
languages with ample linguistic resources that are
easily exploitable (Ataa Allah et al., 2023). This
presents a challenge for minority languages due to
their limited digital presence and the prevalence of
their resources in less accessible formats, hindering
their incorporation into the development of these
technologies (Bustamante et al., 2020). Conse-
quently, speakers of minority languages are forced
to adopt languages with greater technological ac-
cess, leading to a loss of cultural, historical, and
linguistic knowledge.

To address this situation, multiple efforts are un-
derway to diversify these technologies to minority
languages and their speakers, who face the chal-
lenge of overcoming data availability limitations.

Figure 1: OCR process

In some cases, synthetic data has been generated
(Oncevay et al., 2022), translations to languages
with more resources have been utilized (Ko et al.,
2021; Rijhwani et al., 2020), and technologies have
been adapted for dataset extraction and processing
(Bustamante et al., 2020).

However, identifying digital sources of knowl-
edge for endangered languages is a very challeng-
ing task, as they are not usually available on the
web (Bustamante et al., 2020), which is the case for
several indigenous languages of Peru. In this con-
text, Optical Character Recognition (OCR) models
have been useful to extract information and new
resources for endangered language texts (Rijhwani
et al., 2020, 2021).

For this reason, we extend the application of
OCR for digitizing old documents, with typewrit-
ten texts, in four Peruvian languages (Asháninka,
Shipibo-Konibo, Yanesha, and Yine), using Opti-
cal Character Recognition (OCR), and followed by
correction methods to minimize extraction errors
(see Figure 1).

2 Language context

According to official statistics, 48 languages are
spoken in Peru. 44 out of these 48 languages
are Amazonian languages (de Educación del Peru,
2013). The four languages this paper is focused on
(Shipibo-Konibo, Asháninka, Yanesha, and Yine)
are Amazonian languages.
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Asháninka, belonging to the Nijagantsi branch
of the Arawak language family, is primarily spo-
ken in the central Peruvian Amazonia, along the
Low Perené, Tambo, Ene, Urubamba, and Apurí-
mac rivers (Pedrós, 2018). Although the Asháninka
population is estimated to be around 70,000 speak-
ers (Pedrós, 2018), it remains unclear if this count
includes speakers of Ashéninka, a closely related
language.

Yine and Yanesha are also languages of the
Arawak family. Yine is spoken by approximately
3,000 people living near the Ucayali and Madre de
Dios rivers. Yanesha, in turn, is spoken by 1,142
people in the Peruvian department of Pasco. Yane-
sha people generally express concern for their lan-
guage, since very few children speak it and speak-
ers are mostly over 30 years old. Both Yine and
Yanesha are classified as “definitely endangered”
according to the UNESCO Atlas of the World’s
Languages in Danger (Moseley, 2010).

With an estimated 40,000 speakers, Shipibo-
Konibo is by large the most vital language in the
Pano language family. It is predominantly spo-
ken in the Peruvian regions of Ucayali and Loreto,
along the Ucayali river and its tributaries (Valen-
zuela, 2003). It is important to mention that there
is a relatively large Shipibo-Konibo community in
Lima.

3 Related work

The correction of OCR transcripts has seen the ap-
plication of various methodologies, ranging from
manual and resource-intensive approaches to more
recent and prevalent machine learning models,
particularly those based on neural networks (see
Nguyen et al. (2021) for further details). The effec-
tiveness of applications such as language models,
translation models, and spell checkers in rectifying
OCR errors is well-established. For instance, Afli
et al. (2016) employed a statistical machine transla-
tion (SMT) model, while Schulz and Kuhn (2017)
combined such models with spell checkers.

Furthermore, sequence-to-sequence neural net-
works have emerged as successful models in cor-
recting OCR transcripts, especially in scenarios
with limited data availability. Rijhwani et al. (2020)
developed a model that effectively learned from
limited data for languages like Ainu, Griko, and
Yakkha by leveraging existing translations. This
approach was further enhanced in Rijhwani et al.
(2021) through the incorporation of lexical decod-

ing and self-training strategies, achieving signifi-
cant improvements (up to 29%). For Sanskrit texts,
Maheshwari et al. (2022) obtained favorable re-
sults by considering both phonetic encoding and
the language’s official alphabet.

4 Methodology for dataset creation

4.1 Data selection

We sourced documents from the SIL International1

repository, targeting materials written in four lan-
guages: Asháninka, Shipibo-Konibo, Yanesha and
Yine. These languages were chosen for their avail-
ability of resources within the repository compared
to other Peruvian languages 2.

The documents, primarily in PDF format,
present a wide range of contents, attributes, and
layouts, including typewritten and handwritten text,
tables, and images. Additionally, the content may
be organized in multiple columns and vary in font
sizes, sometimes presented in multiple languages.

To ensure dataset consistency, we focused on
a subset of monolingual, typewritten documents
with uniform font sizes. From each document, we
selected a sample of pages (10%) for annotation
and evaluation, based on criteria such as readability,
resolution, tilt, and content alignment.

4.2 Data annotation

We manually annotated the documents following
the workflow depicted in Figure 2. This process
involved two key roles: an annotator and a reviewer.
The annotator, possessing prior annotation experi-
ence, utilized a free online OCR tool3 to generate
a preliminary transcription. This initial step facili-
tated the annotation process, minimizing the time,
effort, and potential errors associated with manual
transcription.

Subsequently, the preliminary transcription was
rectified by the annotator and reviewed by another
annotator, who double-checked the annotations and
addressed any discrepancies or errors encountered.

4.3 Data preprocessing

Although most document pages generally exhibit
good quality, certain defects, such as ink stains
overlapping with characters and low scanning res-
olution, can significantly affect fine text details,

1SIL International: https://www.sil.org/
2See Figure 4 in Appendix B for details about the data

availability.
3Free online OCR tool: https://www.onlineocr.net/es/
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Figure 2: Annotation Process.

degrading page quality, and potentially impacting
OCR performance. To address these issues, we
conducted preprocessing steps including noise and
attribute removal, as well as image enhancement,
aimed at improving OCR accuracy.

Noise removal We manually cleaned documents
using the Nitro PDF4 tool to eliminate elements
adding noise, such as images and page numbers.

Attribute removal Text delimited by boxes can
impact text recognition (see Figure 5 in the Ap-
pendix). Consequently, we categorized pages into
two groups: those containing only text (Group 1)
and those with text delimited by boxes (Group 2).

For Group 2 pages, we applied image correction
to automatically detect and remove the boxes when
needed (for one of the tools we experimented with,
it did not provide any benefit).

Image enhancement After converting the pages
to Portable Network Graphics (PNG) format, we
applied corrections focused on removing irregulari-
ties and improving the contour of the characters to
achieve more effective segmentation.

Language NoP NoS NoT NoUT NoTP
Asháninka 134 2239 8103 2309 61

Shipibo-Konibo 89 1495 7251 1685 82
Yanesha 91 1468 6315 1574 70

Yine 140 2246 9754 2449 70

Table 1: Corpora description: NoP = Number of pages,
NoS = Number of sentences, NoT = Number of tokens,
NoUT = Number of unique tokens, NoTP = Number of
tokens per page.

4.4 Dataset description
The resulting dataset comprises 454 scanned pages
from 89 books written in the four indigenous lan-
guages: Asháninka, Shipibo-Konibo, Yanesha, and
Yine. This dataset5 comprises 31,423 tokens, dis-
tributed almost equally across the languages (see

4Nitro PDF: https://www.gonitro.com/
5The dataset is available at https://github.com/iapucp/

OCR-Peru

Table 1). Significantly, compared to the dataset
previously generated by Bustamante et al. (2020),
our work expands the vocabulary by incorporating
an average of 3,110 unique tokens per language.

Beyond standard alphanumeric characters, the
dataset includes digits (0-9), diacritics, punctuation
marks, and various compound characters like m̃, c̈,
and t̃. Approximately 36% of the characters appear
fewer than 10 times. Moreover, nearly 45% of the
employed characters deviate from the contempo-
rary official alphabets of these languages.6 This
issue arises from the fact that the analyzed docu-
ments were written before the establishment of the
official alphabets for these languages.

5 OCR Process

We employed two OCR systems, Google Vision7

(version 3.4.4) and Tesseract8 (version 5.3.3), to
generate initial text transcriptions. Although nei-
ther system directly supports the languages studied,
they recognize the common Latin script shared by
these languages. Previous research has demon-
strated their effectiveness in low-resource language
settings, including Sanskrit (Maheshwari et al.,
2022), Ainu, Griko, Yakka (Rijhwani et al., 2020),
Tamil, and Sinhala (Vasantharajan et al., 2022).

After the initial OCR transcriptions, a two-step
preprocessing stage was implemented to enhance
output quality. We evaluated the results using two
standard metrics: Character Error Rate (CER) and
Word Error Rate (WER). These metrics quantify
OCR accuracy based on the Levenshtein distance,
which measures the minimum number of edit op-
erations (substitutions, deletions, insertions) re-
quired to transform the original text into the OCR-
generated text (Neudecker et al., 2021).

5.1 Preprocessing of initial OCR transcripts

Both OCR systems faced challenges in differen-
tiating between various forms of similar punctua-
tion marks, such as hyphens (-, —, _ ) and single
quotation marks ( ', ’). To address this ambiguity,
we standardized analogous punctuation marks and
converted all text to lowercase while preserving the
original content.

6The complete list of characters are included in Table 3 in
the Appendix.

7Google Vision OCR: https://cloud.google.com/vision/
docs/ocr

8Tesseract OCR: https://tesseract-ocr.github.io/
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5.2 Alignment correction

Additionally, we observed that Google Vision OCR
recognizes texts but fails to maintain the correct
order, particularly affecting the text recognition of
Group 2 pages, as depicted in Figure 3. To address
this challenge, we developed a module to auto-
matically align the initial transcriptions based on
their vertical and horizontal positions, resulting in
a reduction of approximately 9% in CER and 12%
in WER. This enhancement was unnecessary for
Tesseract OCR transcripts, as it effectively detects
text order using text block segmentation.

Figure 3: Alignment of Google Vision OCR transcrip-
tions

5.3 Types of errors

We identified three main types of errors in the OCR
predictions:

Misprediction of characters with diacritics
Characters such as b̃, c̈, m̃, p̃, t̃, and s̈ primarily
found in ancient texts, were frequently misrecog-
nized. This likely stems from their relative scarcity
in modern Latin-script training data used in the
OCR model training. This limited exposure led
to inefficient recognition, contributing to approxi-
mately 60% of OCR errors, particularly in Shipibo-
Konibo and Yanesha languages.

Insertion of non-existent characters Both OCR
engines introduced orthographically similar char-
acters not present in the original texts. Tesseract
was more prone to this error (2.7 times more fre-
quently), adding an average of 65 additional char-
acters compared to Google Vision’s 24. Tesser-
act showed repetitive patterns in adding characters,
combining similar ones like cç and ií, often at sen-
tence boundaries. Additionally, it misrecognizes
small stains as characters. In contrast, Google Vi-
sion demonstrated better stain filtering but tended
to replace similar characters like š with ŝ. This
error type represented approximately 12% of the

errors made by Google Vision OCR and 20% by
Tesseract.

Incorrect word boundary detection Predomi-
nantly observed in Google Vision OCR, this in-
volved adding extra spaces between words. It ac-
counted for 47% of text identification errors in
Asháninka and Yine languages but only 8% in
Shipibo-Konibo and Yanesha languages.

6 Post-OCR process

6.1 Correction models

We applied five post-OCR methods to correct the
errors made by the OCR systems:

SingleSource (Rijhwani et al., 2020) A sequence-
to-sequence model tailored to effectively learn
from limited data. We employed the single-source
model.

Denorm (Oncevay et al., 2022) A spell checker
trained to correct misspelling errors in Asháninka,
Shipibo-Konibo, Yanesha, and Yine languages, nor-
malizing sentences according to each language’s
grammar and norms.

Ensemble (Oncevay et al., 2022) An ensemble
spell checker addressing five types of errors: char-
acter replacements, insertions, or deletions; errors
from using a QWERTY keyboard; errors due to
syllable similarity or ambiguity between phonemes
and graphemes; and characters not included in the
standardized alphabets of the languages.

SingleSource+Denorm A cascaded approach ap-
plying the SingleSource model followed by the
Denorm model.

SingleSource+Ensemble A cascaded approach
applying the SingleSource model followed by the
Ensemble model.

6.2 Model training

Since only the model proposed by Rijhwani et al.
(2020) required training, we trained it for each lan-
guage using the basic hyperparameters configura-
tion suggested. We employed five different random
initializations on a system with 45 GB of RAM
and 8 CPUs, and it required a total of 98 hours to
complete. Subsequently, we evaluated all models
and tools using the annotated test set.

106



OCR Model
CER WER

Asháninka Shipibo-Konibo Yanesha Yine Asháninka Shipibo-Konibo Yanesha Yine

Tesseract

Baseline OCR 1.65 4.30 8.11 1.61 13.42 19.74 41.89 9.53
SingleSource 1.34 1.55 3.75 1.12 9.85 8.21 20.66 6.83

Denorm 7.32 15.83 11.32 3.68 35.84 50.33 52.28 15.25
Ensemble 4.92 11.85 9.91 4.49 29.35 44.5 48.63 18.77

SingleSource + Denorm 6.95 14.52 8.31 2.87 32.74 42.91 43.17 12.46
SingleSource + Ensemble 4.2 9.48 6.85 3.74 25.81 34.17 38.8 16.28

Google Vision

Baseline OCR 0.76 2.61 5.53 1.49 9.00 12.98 39.16 10.26
SingleSource 0.92 0.88 2.32 1.45 8.61 4.85 17.41 7.74

Denorm 6.86 14.61 10.01 3.45 33.19 44.77 54.1 15.69
Ensemble 4.04 10.55 8.09 4.47 25.52 39.07 50.46 20.09

SingleSource + Denorm 6.56 13.63 7.09 3.02 31.42 40.13 41.89 12.76
SingleSource + Ensemble 3.83 8.75 5.66 4.01 24.48 31.52 37.89 17.16

Table 2: Results of applying the correction methods to the transcripts of the Tesseract and Google Vision OCRs

7 Results

Table 2 presents the results of applying correction
methods to OCR transcripts. The SingleSource
model proved most effective in rectifying OCR er-
rors due to several factors. Firstly, pre-training the
model with the languages’ characters facilitated
the removal of non-existent characters from the
transcripts. Secondly, it reduced errors from in-
correct word boundary identification by 33% in
Asháninka and Yine languages. Lastly, it signifi-
cantly enhanced the recognition of characters with
diacritics by 35% for Shipibo-Konibo and 65% for
Yanesha, achieving a 99% accuracy in identifying
these characters.

Regarding errors introduced by this model, they
primarily involved character deletion but were
significantly fewer compared to successfully cor-
rected words. The ratio of successfully corrected
words to unsuccessfully corrected words was 5:1
for Shipibo-Konibo, 4:1 for Yanesha, and 2:1 for
Yine. However, in the case of Asháninka, this ratio
shifted to 2:1 only for the Tesseract OCR-generated
transcripts, but reversed to 3:5 for Google Vision
OCR-generated transcripts. This reversal led to a
higher number of degraded words than enhanced
ones, evidenced by a 0.16 increase in CER at-
tributed to minimal errors in OCR transcription
that the correction model cannot rectify. An im-
portant consideration of this model arises when the
text contains low-frequency characters. Uneven
distribution during dataset partitioning may result
in some characters being absent from training but
present in evaluation sets, impacting performance.

On the other hand, the correction models based
on spell-checkers approached OCR transcription
errors by standardizing the texts. Given that most
of these texts were old and did not adhere to the of-
ficial alphabet and language rules, this method was

ineffective, resulting in more errors introduced by
the model than words successfully corrected. These
errors primarily consisted of omitted diacritics and
character replacements aimed at conforming the
text to standardization norms. More analysis about
the standardization is discussed in Appendix A.

8 Conclusions and future work

This work digitized textbooks in four Peruvian
languages using OCR systems. We contributed
an annotated dataset to assess the performance of
Google Vision and Tesseract OCRs. Google Vision
demonstrated higher accuracy in character recogni-
tion, while Tesseract excelled in maintaining text
order across multiple columns. To address Google
Vision’s limitation in maintaining text order, we
developed an alignment module. Additionally, we
evaluated five error correction methods and found
that the SingleSource model, designed for learning
from limited data, was the most effective, particu-
larly in correcting characters with diacritics.

Future efforts aim to optimize the hyperparame-
ters of the SingleSource model and implement the
multi-source model by Rijhwani et al. (2020) to
leverage Spanish translations available for 89% of
the books.
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A Spell checker assessment with
standardized texts

Due to the spell checker’s limitations in correct-
ing OCR transcripts using the standardization ap-
proach, we assessed a small set of 50 sentences.
This evaluation compared the spell checker’s cor-
rections with the original texts in their standardized
versions. We manually standardized 25 sentences
in both Yanesha and Shipibo-Konibo languages
with the support of native speakers to ensure ac-
curacy. Despite this fair comparison to the stan-
dardized texts, we noted no improvement in the
CER and WER values. Moreover, opportunities for
enhancement remain in both the Denorm and En-
semble models proposed in Oncevay et al. (2022).

B Dataset additional information

Figure 4: Number of pages available in the SIL reposi-
tory for documents written in Peruvian languages. The
selected categories exclude handwritten and uncon-
strained size texts.
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Figure 5: Examples of pages from Group 1 and Group 2. Group 1 consists of text-heavy documents, whereas Group
2 presents either the entire text or portions of the text within tables.

Figure 6: Examples of document pages considering the classification made by Arrigo et al. (2022).

Language Official characters Unofficial charac-
ters

Punctuation
marks Digits

Asháninka
a, b, ch, e, i, j, k, m,
n, ñ, o, p, r, s, sh, t,
ts, y

á, c, d, é, f, g, í, l, ó,
q, u, ú, v, x, z

!, ", (, ), „ -, ., /, :, ;,
?, —,¡, ¿

0, 1, 2, 3, 4, 5, 6, 7,
8, 9

Shipibo-
Konibo

a, b, ch, e, i, j, k, m,
n, o, p, r, s, sh, t, ts,
y

á, c, d, é, e , f, g, h,
í, l, ñ, ó, q, s̈, u, ú, v,
z

!, ", (, ), „ -, ., :, ;, =,
?, ¡, ¿, —

0, 1, 2, 3, 4, 5, 6, 7,
8, 9

Yanesha
a, b, ch, e, ë, g, j, k,
ll, m, n, ñ, o, p, r, rr,
s, sh, t, ts, y

á, ä, b̃, c, c̈, d, f, h, i,
í, l, m̃, ó, p̃, q, t̃, u,
ú, v, z

", ', (, ), „ -, ., /, :, ?,
¿, —, ’ 0, 1, 2, 3, 4, 7, 8, 9

Yine
a, ch, e, g, i, j, k, l,
m, n, o, p, r, s, sh, t,
ts, u, w, x, y

á, b, c, d, é, f, í, ú, ü,
v

", (, ), *, „ -, ., /, :, ;,
?, ¿, —, _, !, ¡

0, 1, 2, 3, 4, 5, 6, 7,
8, 9

Table 3: Characters present in the documents. Official characters: Belonging to the official alphabet of the language.
Unofficial characters: Not belonging to the official alphabet of the language.
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C Resource collection
Title Language
Shitsa pajitachari anquilostoma aisati ameba Asháninka
Campa 2 Asháninka
Ocantacota nonampi Asháninka
Nantayetiri nonampiqui aisati noquemayetiri Asháninka
Shiquiri Asháninka
Naturaleza y vida social 1, 2 Asháninka
Naturaleza y vida social 1, 2 Asháninka
Quenquetsarentsi Asháninka
Ina Asháninka
Timayetatsiri quipatsiqui Asháninka
Ompiquiri 6 Asháninka
Tsame aneanatacoteri Caaroshi (Vamos a leer sobre Carlos: Libro 3 para la
lectura y escritura) Asháninka

Tuberculosis (Libro de ciencias naturales 6) Asháninka
Timatsi cameetsatatsiri acoajeitaqueri: Te oncameetsateji intsaneemparo Asháninka
Jaoca ancantajeari antecatsijeitantajeari maaroni Asháninka
Jaoca icanteetirori aamaacoventearo ajipee Asháninka
Icantacota peeraniniri Asháninka
Avatsa (El cuerpo humano: Libro de ciencias naturales 2) Asháninka
Icantacota Shintsia Asháninka
Jaoca acanteriri ameneri cameetsa vaca Asháninka
Ameneri cameetsa aparoni jananequi Asháninka
Tsame aneanatacoteri ompiquiri (Vamos a leer acerca de Ompíquiri) Asháninka
Campa 3 Asháninka
Gigkanni Pirana Yine
Gitaklu pirana ga wa prachi Yine
Giyoliklu pirana Yine
Gwacha Ginkakle Yine
Jitomta 3 Yine
Lima pirana Yine
Mgenoklumta Yine
Muchikawa kewenni pirana ga wa pimri ginkaklukaka 10 Yine
Naturaleza y vida social 1: Manual para los cursos de naturaleza y vida social,
y práctica de Castellano, para primer año Yine

Naturaleza y vida social 2 Yine
Naturaleza y vida social 3 Yine
Nopra kina 2 Yine
Papa nikchi gijga Yine
Papa-mta 1 Yine
Papisho 5 Yine
Pejri-mta 4 Yine
Walo-mta 7, 8 Yine
Yine ginkaklekaka 12 (Cartilla 12) Yine
Yine sana kamruta Yine
Yineru tokanu 3a Yine
Yineru tokanu 3b Yine
Yineru tokanu IX Yine
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Title Language
Cuentos de la zorra y el zorro Shipibo-Konibo
Ëa- tapaman caní 5 Shipibo-Konibo
Japari peoquin yoyo ati quirica Shipibo-Konibo
Jascaaquin baqueshocobo coiranhanan, jahuequiamati yoii ica Shipibo-Konibo
Jatibiainoa joni coshibaon, jascaas̈hon jacon jahuequi aresti jonibaon jahue-
quescamabi itiaquin shinana Shipibo-Konibo

Moa peoquin yoyo ati: Quirica 4 Shipibo-Konibo
Moa peoquin yoyo ati: Quirica 5 Shipibo-Konibo
Moa peoquin yoyo ati: Quirica 6 Shipibo-Konibo
Nanbonyabi nacan, noa isin meniai yoia Shipibo-Konibo
Naturaleza y vida social 2 Shipibo-Konibo
Naturaleza y vida social 3 Shipibo-Konibo
Non paron ja jahuequibo 1 (Nuestros recursos naturales: Guía didáctica 1 de
ciencias naturales) Shipibo-Konibo

Quimisha Incabo ini yoia (Leyendas de los shipibo-conibo sobre los tres Incas) Shipibo-Konibo
Quirica 10 (Afianzamiento de lectura 10: Animales del mundo) Shipibo-Konibo
Quirica 4 Shipibo-Konibo
Quirica 5 Shipibo-Konibo
Quirica 6 Shipibo-Konibo
Quirica 7 Shipibo-Konibo
Quirica 8 Shipibo-Konibo
Quirica 9 (Libro 9: Afianzamiento para la lectura) Shipibo-Konibo
Ach Yanesha
Ahuat̃ serraparñats att̃o eñalleta atsne'ñam̃a arrorr Yanesha
Amuesha 7 - SHAñE' Yanesha
Apa ñam̃a ach (Papá y mamá: Libro 3 para la lectura y escritura) Yanesha
Atet̃cha'yecue'cheshat̃oll Yanesha
Att̃o'yepotamperra Meshtaso ñam̃a po'poñ serrparñats Yanesha
Berroc̈hno ñeñt̃ Africo'marnesha' Yanesha
Cartilla 9 (Besllom̃) Yanesha
Chom - Amuesha 8 Yanesha
Homenaje a la Declaración Universal de Derechos Humanos en su 40 aniver-
sario 1948-1988 Yanesha

Ma’yarr poyoc̈her ñam̃a po’poñec̈hno serrparñats Yanesha
Manual de ganadería Yanesha
Naturaleza y vida social 3 Yanesha
Nochcar (Mi perro: Libro 6 para la lectura y escritura) Yanesha
Ot̃ec̈hno Yanesha
Pa'namen alloch yechopene'champesyen Yanesha
Pa'namen atsnañtsoc̈hno Yanesha
Pepe Yanesha
Pepe payara Yanesha
Pepe ñam̃a ema'(Pepe y la niñita: Libro 4 para la lectura y escritura) Yanesha
Posho'll (La ardilla: Libro 7 para la lectura y escritura) Yanesha
Tempo pueserrpareñ Yanesha
YANESHA' Yanesha
Yehuom̃cheña Yanesha

Table 4: Resources utilized from the SIL repository.
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Abstract

We introduce a Spanish-Awajun parallel dataset
of 22k high-quality sentence pairs with the help
of the journalistic organization Ojo Público1.
This dataset consists of parallel data obtained
from various web sources such as poems,
stories, laws, protocols, guidelines, hand-
books, the Bible, and news published by Ojo
Público. The study also includes an analy-
sis of the dataset’s performance for Spanish-
Awajun translation using a Transformer archi-
tecture with transfer learning from a parent
model, utilizing Spanish-English and Spanish-
Finnish as high-resource language-pairs. As far
as we know, this is the first Spanish-Awajun ma-
chine translation study, and we hope that this
work will serve as a starting point for future
research on this neglected Peruvian language.
The dataset is released in the following URL:
https://github.com/iapucp/Awajun-OP

1 Introduction

In the diverse linguistic landscape of the Ameri-
cas, Peru boasts 47 native languages, including 4
Andean and 43 Amazonic languages (Zariquiey
et al., 2019). Castilian Spanish, the primary official
language spoken by the majority, starkly contrasts
with these native languages. This vast language di-
versity is both a cultural treasure and a significant
communication barrier. Although human transla-
tors have played a crucial role in bridging these
gaps, their availability remains limited. Peru recog-
nizes the pivotal role of translation in politics, striv-
ing for equal language rights through initiatives
like the National Registry of Interpreters and Trans-
lators of Indigenous Languages (Vásquez, 2015).

Efforts to preserve Peru’s languages have been
insufficient, with most endangered and lacking doc-
umentation (Zariquiey et al., 2019). Mainly passed

1“Ojo Público” is a Peruvian media outlet. It is operated
by a non-profit journalistic organization based in Lima

down orally, these languages pose significant com-
putational challenges for machine translation due
to scarce monolingual or parallel texts.

However, recent research has shown promise
in Neural Machine Translation (NMT) for select
Peruvian native languages like Quechua Ayacu-
cho (quy), Quechua Cuzco (quz), Aymara (aym),
Shipibo-Konibo (shp), and Asháninka (cni). De-
spite progress, the Awajun language (agr), with
around 55,000 speakers, remains overlooked, lack-
ing dedicated NMT research. Furthermore, Awa-
jun’s data in OPUS is limited to fewer than 7,000
sentences. Given this context, exploring alternative
approaches is crucial to developing more effective
machine translation systems for Awajun and creat-
ing new parallel corpora to support these efforts.

In this work, we aim to provide a comprehensive
introduction to the Awajun language (see Appendix
B), introduce a new parallel corpus for Spanish-
Awajun (see §3), and experiment with transfer
learning strategies for developing, as far as we
know, the first NMT systems for the language pair
Spanish-Awajun (see §5 for NMT experiments and
Appendix A for related work).

2 Quispe Chequea

Ojo Público has developed a digital tool using ar-
tificial intelligence to produce journalistic verifi-
cation content in multiple formats and up to three
native languages of Peru: Quechua, Aymara, and
Awajún. This platform automates text generation,
translation, and conversion into audio messages,
which can be broadcasted by radios in nine re-
gions, including Loreto, Junín, Amazonas, Piura,
San Martín, Ayacucho, Apurímac, Puno, and Tacna.
Developed by a team of journalists, technologists,
translators, and interpreters, the project aims to
combat misinformation affecting citizens and com-
munities in the Andes and the Amazon of Perú.

This study focuses on the translation component
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of the project, specifically from data compilation to
training an NMT model from Spanish to Awajun.

3 Corpus Development

We first compared the OPUS dataset (currently
available data) and the new corpora extracted that
we call Awajun-OP. An official translator validated
all sources for the corpora to ensure the same di-
alect is used and to verify the translation quality.

3.1 OPUS dataset

From OPUS, Christodouloupoulos and Steedman
(2015) is a dataset with translations of the Bible,
including the New Testament of the 1973 edition.

3.2 Awajun-OP : New parallel corpora

Sources of Awajun translations
1. Ebible: A curated corpus of parallel data

derived from versions of the Bible provided by
Ebible.org that includes the old and new Testa-
ments(Ebible.org, 1997). Notably, a significant
portion of the audited and web-scraped data from
MADLAD-400(Kudugunta et al., 2024) originates
from this source, as it underwent manual verifi-
cation due to its comparable number of sentences.
This process yields new parallel corpora while elim-
inating potential monolingual data.

2. Poems&Stories: The website Cultura Awa-
jun2 features poems, vocabulary, and common ex-
pressions in Awajun along with their Spanish trans-
lations (Yanua, 2015a, 2016, 2015b,c). Addition-
ally, it hosts several ancestral stories in Awajun
accompanied by their Spanish versions compiled
by the National Fund for the Development of Peru-
vian Education (FONDEP, 2019).

3. Laws&Protocols: We have identified five of-
ficial documents comprising laws and protocols
translated into Awajun. The protocols include the
documentation protocol for individuals belonging
to indigenous peoples of the Peruvian Amazon (RE-
NIEC, 2015) and the protocol for the care of people
with disabilities (RENIEC, 2014). As for the laws,
they encompass the Law on artisans and the devel-
opment of artisanal activity (MINCETUR, 2020),
the Right to prior consultation (MINCUL, 2013),
and the Agreement 169 (Palomino, 2015a,b).

4. Guidelines: Various government institutions
have translated and disseminated documents to
facilitate community guidance, including those
promoting awareness of universal health rights

2https://culturaawajun.blogspot.com/

(SUSALUD, 2018), civil registration procedures
(RENIEC, 2018), and the registration of acts and
rights of native communities (SUNARP, 2023).

5. Handbook: To aid in the language acquisition
of Awajun, the Amazon Center for Anthropology
and Practical Application has published a handbook
as an educational resource (Regan, 1991).

6. News by Ojo Público: Ojo Público, a Pe-
ruvian media outlet, has previously translated its
news into Awajun (with a professional translator).
Additionally, they have generated translations for
short sentences about common domain knowledge.

Methodology for corpus creation The only
sources extracted and aligned automatically using
the document’s dot, newline character, line break,
or position were (MINCETUR, 2020; RENIEC,
2014, 2015; MINCUL, 2013). Paragraphs with
more than one sentence that had an equal num-
ber of sentences as their translation was split into
small sentences. The Ebible source can be auto-
matically aligned using their repository3. All the
additional sentences were extracted and aligned
manually arranging the sentence breaks to separate
each translation pair.

Data pre-processing It has been established that
only the following symbols can be preserved: ".",
",", "!", "?", "," "%." . In addition, pairs of sen-
tences containing empty sentences or only white
spaces are excluded. Lastly, duplicates and sen-
tences exceeding 50 words on the Spanish side are
removed. It is worth noting that we refrain from
considering the elimination of sentence pairs based
on a word ratio criterion, given the unique charac-
teristics of Awajun.

Corpora description We perform a large num-
ber or rare events (LNRE)4 modeling to analyze the
Ebible, Poems&Stories, Laws&Protocols, Guide-
lines, Handbook, News by Ojo Público and Opus-
agr. The values are shown in Table 1.

In this study, we have opted not to incorporate
OPUS-agr into our dataset Awajun-OP, considering
Ebible already encompasses the New Testament.
Most sentences stem primarily from Ebible, com-
prising nearly 74% of the compiled dataset. Po-
ems&Stories and Handbook datasets exhibit the
least volume of sentences. News by Ojo Público,
conversely, experiences a notable reduction in the

3https://github.com/BibleNLP/ebible
4We used the LNRE calculator created by Kyle Gorman:

https://gist.github.com/kylebgorman/
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S raw S clean ragr→es N V V1 V/N V1/N
es agr es agr es agr es agr es agr

OPUS-agr 6,739 6,717 0.92 141,290 125,525 13,966 26,538 7,411 16,558 0.10 0.21 0.05 0.13
Ebible 16,945 16,591 0.85 400,118 330,404 21,556 51,581 10,583 31,974 0.05 0.16 0.03 0.10
Poems&Stories 178 173 0.75 1,388 880 633 630 475 499 0.46 0.72 0.34 0.57
Laws&Protocols 1,032 938 0.89 17,621 13,890 3,394 4,413 1,963 3,001 0.19 0.32 0.11 0.22
Guidelines 778 735 0.82 11,373 8,545 2,224 2,478 1,251 1,640 0.20 0.29 0.11 0.19
Handbook 366 364 0.62 1,720 1,009 713 752 513 616 0.41 0.75 0.30 0.61
News by Ojo Público 4,221 3,646 1.14 28,643 24,223 5,407 6,625 2,948 4,154 0.19 0.27 0.10 0.17
Total 23,520 22,447 0.89 460,863 378,951 27,758 60,127 13,563 37,366 0.06 0.16 0.03 0.10

Table 1: Corpora description: S = #sentences in corpus; ragr→es = average of the ratio agr-es per sentence; N = number
of tokens; V = vocabulary size; V1 = number of tokens occurring once (hapax); V/N = vocabulary growth rate; V1/N = hapax
growth rate

number of sentences, attributed mainly to their ex-
tended length.

Although it was expected, the vocabulary size
and tokens occurring only once are higher for Awa-
jun, as this demonstrates its agglutinative prop-
erty. We have observed that the Handbook and
Poems&Stories datasets have a larger vocabulary
and a higher number of tokens occurring only once
(V1), even though they have fewer tokens per sen-
tence (N). Moreover, the sentences in these datasets
exhibit more agglutinative characteristics, as their
ragr→es are the lowest. On the other hand, the News
by Ojo Público dataset has a ragr→es greater than
one, and it is the only dataset with more sentences
in Spanish than in Awajun. However, this only
happens because News by Ojo Público has approxi-
mately 57% sentences with less or equal to 4 words.

The following example illustrates this scenario:

agr: Distrito alcaldeji nuwa

es (en): Alcaldesa distrital (District Mayoress)

In Awajun, the word "nuwa" is added to indicate
the gender of the subject.

4 Datasets of High Resource Languages

Spanish-English dataset For pre-training, we
used the EuroParl dataset for Spanish–English
(1.9M sentences) (Koehn, 2005) and for validation
and testing the WMT2007 dataset (Callison-Burch
et al., 2007).

Spanish-Finnish dataset For pre-training, we
used EuroParl (1.9M sentences) (Koehn, 2005),
EUbookshop (1.8M) (Skadin, š et al., 2014), and
TED2020 (44k) (Reimers and Gurevych, 2020)
datasets for Spanish–Finnish, this excluding 3k sen-
tences for validation, and for testing, the Tatoeba
(9.9k) dataset (Ho and Simon, 2016).

5 Neural Machine Translation for Awajun

5.1 Data partition for evaluation

Understanding the distribution of a suitable dataset
for development/testing is crucial to ensuring the
adequacy of selected sentences. Given the Bible’s
predominant role as the primary source of sen-
tences, it’s essential to carefully determine the
quantity and source of sentences to evaluate the
model impartially.

We followed a similar methodology as described
in Oncevay (2021) and collected a comprehensive
sample from various domains including News by
Ojo Público, Poems & Stories, and Handbooks.
The sample consisted of 1012 sentences in total,
out of which 200 sentences were from News by
Ojo Público, ranging from more than 9 to less than
20 words in Spanish, 400 sentences were between
5 to 9 words, and 464 sentences were sampled from
Poems & Stories and Handbooks. This sample set
was divided into 25%-25%-50%, with the first two
segments allocated for validation and testing. An
additional 250 sentences were added to each of
the two segments from a stratified sample of the
available datasets (Ebible, Guidelines, etc). The
remaining 50% and News by Ojo Público’s dataset
(excluding sentences with <4 words) was added to
the training set and upsampled to form 20% of the
training data, aiming to minimize the domain gap
within the training data. The final distribution is
shown in Table 6.

The primary metric used in this study is chrF
(Popović, 2017), which evaluates character n-
grams and is particularly useful for agglutinative
languages like Awajun. Additionally, BLEU scores
(Papineni et al., 2002) were reported, utilizing im-
plementations of sacreBLEU (Post, 2018).
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Validation Test
Parent Dataset Model BLEU Chrf BLEU Chrf

Es-En
Baseline (OPUS-agr) Transformer 4.05 30.04 4.05 30.27
Awajun-OP Transformer 7.36 38.14 6.75 37.87

Es-Fi
Baseline (OPUS-agr) Transformer 3.87 31.48 4.21 32.21
Awajun-OP Transformer 7.97 38.72 7.03 38.79

- Awajun-OP GPT - Babbage 1.77 29 1.52 29.41
- Monolingual Curated Ebible MADLAD-400 3B 0.69 9.60 0.67 9.56

Table 2: Results in BLEU and Chrf for all trained models in validation and test sets.

5.2 Subword segmentation

Subword segmentation is an important process
when translating agglutinative languages such as
Awajun. We used the Byte-Pair-Encoding (BPE;
Sennrich et al., 2016) implementation in Senten-
cePiece (Kudo and Richardson, 2018) with a vo-
cabulary size of 16,000. To enhance our vocabu-
lary, we trained a segmentation model incorporat-
ing all three languages: Spanish, English/Finnish,
and Awajun. We upsampled the Awajun data to
achieve an even distribution among the languages.

5.3 Procedure

For all experiments, we used a Transformer-based
model (Vaswani et al., 2017) with default parame-
ters from the Fairseq toolkit (Ott et al., 2019).

To improve the encoding capability on the Span-
ish side, we started by pre-training a Spanish-
English model on the Europarl dataset. After that,
we fine-tuned the pre-trained model on the Spanish-
Awajun dataset. We repeated the same experiment,
but this time we used Spanish-Finnish as the HRL.

6 Results and discussion

Table 2 presents the outcomes of transfer learning
models using Awajun-OP and OPUS-agr as base-
lines. The most remarkable scores in BLEU and
chrF were attained by Awajun-OP when utilizing
the Spanish-Finnish model as its parent. These find-
ings suggest that the agglutinative nature of Finnish
may have contributed to Awajun’s successful trans-
lation. Moreover, the close resemblance between
validation and test results underscores the model’s
generalization capabilities.

It is also noted that employing Awajun-OP
yielded a notable enhancement compared to the
baseline, achieving an improvement in BLEU score
of +2.98 and a +8.52 in chrF. Furthermore, utilizing
Spanish-Finnish as the parent model resulted in a
0.28 increase in BLEU and 0.92 in chrF for the test

Input (ES) Publicó el video original en su sitio web
con el titular

Input (EN) He posted the original video on his web-
site with the headline

Reference
(Awajun)

nagkamchaku video jiikbauwa nuna ni-
ina webjin titularan aputus jiikiu

Output Video nagkamchaku jiikbauwa duka
sitio webnum agagtmitkau

Table 3: Translation example

Dataset Good Bad Acc
Ebible 68 158 30%
Poems&Stories 5 24 17%
Laws&Protocols 5 11 31%
Guidelines 2 4 33%
Handbook 24 69 26%
News by Ojo Público 64 82 44%
Total 168 348 33%

Table 4: This table presents the results of the translator’s
examination, indicating both correct and incorrect trans-
lations. Accuracy is calculated as: Good/(Good+Bad).

set compared to the Spanish-English model. Table
3 shows a translation output from the best model.

In addition to the transfer learning experiment,
we trained a GPT-Babbage model. However, the
results were unsatisfactory, and we decided to stop
training this type of model. Morevoer, we tested
MADLAD-400 (Kudugunta et al., 2024), which
contains part of the Ebible data for Awajun, but it
underperformed as well.

BLEU scores only may not appear promis-
ing, which is similar to the results for other low-
resource languages from the Americas. To comple-
ment the evaluation, a professional Awajun trans-
lator assessed a sample of the outputs of the best
model. Table 4 showcases the translation ratings,
categorized by dataset. News by Ojo Público at-
tained the highest accuracy level at 44%, potentially
attributed to sentence length. Poems & Stories and
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Handbook results were less favorable, likely due to
the limited sentences in these datasets. Overall, ap-
proximately one-third of translations were deemed
of good quality. The translator noted that some
sentences labeled as "Bad" possessed well-written
content but differed in meaning from the reference.

7 Conclusion

In this study, we extracted and created new parallel
corpora for Spanish-Awajun, which comes from
different sources, such as stories, laws, protocols,
or guidelines from the web, plus in-house trans-
lated news texts. This helped us to develop the
first NMT models for Spanish-Awajun. Our work
revealed that implementing transfer learning with
Spanish-Finnish as a parent language resulted in
better outcomes for both the baseline and Awajun-
OP. Furthermore, we sought the assistance of a
professional translator to validate our findings and
obtain a human perspective on the quality of our
model. Despite the limited availability of data, our
research produced promising results.

We have taken the initial steps towards devel-
oping reliable translations in Awajun. For future
work, we aim to acquire additional monolingual
data for back-translation and fine-tune large multi-
lingual models such as NLLB (Costa-jussà et al.,
2022), among others.

Limitations

This paper aims to give an introduction to re-
searchers, students, of interested community in-
digenous community members to the topic of Ma-
chine Translation for Indigenous languages of the
Americas. Therefore, this paper is not an in-depth
survey of the literature on indigenous languages
nor a more technical survey of low-resource ma-
chine translation. We would point the reader to
more specific surveys on these aspects

Ethical statement

We could not find any specific Ethical issue for
this paper or potential danger. Nevertheless, we
want to point to the reader that working with in-
digenous languages (in this case, MT) implies a
set of ethical questions that are important to han-
dle. For a deeper understanding of the matter, we
suggest specialized literature to the reader https:
//aclanthology.org/2023.americasnlp-1.13.pdf
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A Related Work

The Quechuan language family has been a pri-
mary focus in MT research. Notable studies in-
clude Ortega et al. (2020), which employed a
sequence-to-sequence NMT model for Southern
Quechua, utilizing transfer learning with Finnish
due to its agglutinative characteristic. Similarly,
Huarcaya Taquiri (2020) utilized the Jehovah Wit-
nesses dataset, along with supplementary lexicon
data, to train an NMT model for Quechua, achiev-
ing notable BLEU scores. However, it’s important
to note that the high results in both cases may be
attributed to the development and test sets being
drawn from the same religious domain and distri-
bution as the training set. In addition to Quechuan
languages, NMT models have been developed for
Aymara (Apaza et al., 2023) and Shipibo-Konibo
(Gómez Montoya et al., 2019), with Spanish as
their paired language. Even in the private sector,
Google Translator has expanded its language offer-
ings to include Quechua and Aymara (Bapna et al.,
2022).

Recent research within the AmericasNLP com-
munity has been dedicated to advancing Machine
Translation (MT) for indigenous languages of the
Americas. Workshops held in 2021 and 2023
focused on translating texts in 10 indigenous
languages, including peruvian native languages
such as Quechua Ayacucho (quy), Aymara (aym),
Shipibo-Konibo (shp), and Ashaninka (cni) (Mager
et al., 2021; Ebrahimi et al., 2023). These ef-
forts aimed to explore various approaches, includ-
ing utilizing high-resource bilingual systems like
Spanish–English and Spanish–Finnish pretrained
models, alongside Statistical Machine Translation
(SMT) models. Additionally, researchers experi-
mented with fine-tuning different multilingual ar-
chitectures such as mT5, mBART, etc. Notably,
the importance of clean data was emphasized, with
studies showing improved results through the gen-
eration of additional clean data, particularly in the
case of Quechua (Moreno, 2021).

Despite efforts in Neural Machine Translation
(NMT) for Peruvian native languages, significant
attention has not been directed towards Awajun
(agr). In terms of MT models, (Serianni and White-
nack) showcased the utility of Transfer Learning,
even when the related language does not perfectly
align with the target domain, by employing Awa-
jun alongside English with parallel data from the
OPUS dataset. Kudugunta et al., 2024 compiled

a massive audited monolingual dataset, which in-
cludes Awajun, and utilized it alongside publicly
available datasets to train extensive multilingual
models spanning 419 languages. Similarly, Yuan
et al., 2022 delved into learning Detachable Mod-
els for Massively Multilingual Machine Transla-
tion for 433 languages using the OPUS dataset,
with both studies integrating Awajun as one of
the languages for translation. However, none of
these investigations have specifically targeted the
enhancement of MT performance in Awajun nor
have they presented metrics for Awajun transla-
tion. Furthermore, research conducted by (Linares
and Oncevay-Marcos, 2017) focused on language
identification models using data from web and pri-
vate repositories of 16 Peruvian native languages,
while GlotLID, targeting low-resource languages,
identified 1665 languages (Kargaran et al., 2023).
In summary, limited work has been conducted on
Spanish-Awajun MT, with data primarily sourced
from the OPUS parallel dataset.

B Language specifics

Awajun (agr), also known as Aguaruna, belongs
to the jíbaro family and it is the second most spo-
ken language in the Amazon of Peru with approxi-
mately 55,000 native speakers. It is spoken in the
peruvian regions of Amazonas, Cajamarca, San
Martín, and Loreto (Ruiz, 2020). As with many
of the native languages of Peru, it has different di-
alects depending on the geography of the speakers.
Based on the National Registry of Interpreters and
Translators of Indigenous Languages5, at the mo-
ment of this study, there are 42 translators for all
dialects. The dialect of the Marañon River is the
most spoken and is the one chosen to recollect the
data from this study.

Examples of the different variants are shown in
table 5. For the word ’smile’ in Awajun, it can be
observed that the ’shiawai’ subword is maintained
for both dialects. Furthermore, the Marañon River
dialect uses the endings with ’g’ and the Nieva and
Canepa River (NSR) dialect uses the ’j’ endings.
Although there are different dialects in Awajun,
there are mainly minor differences in vocabulary
and terminology.

Awajun exhibits a rich morphological structure

5It is a database that contains contact and registration in-
formation of citizens who have been trained by the Ministry
of Culture of Peru, through Indigenous Language Interpreter
and Translator Courses developed since 2012. Their website
is: https://traductoresdelenguas.cultura.pe/.
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English Spanish Awajun Awajun
(NSR) (Marañon)

smile sonríe yushiawai dushiawai
brother hermano yatsuj yatsug
sister hermana kaij kaig

Table 5: Dialects in Awajun

characterized by agglutinative processes, primarily
suffixation. In contrast to Spanish, Awajun exhibits
a distinct word order, typically following a subject-
object-verb (SOV) structure. This deviation poses
a considerable contrast, as Spanish predominantly
follows a subject-verb-object (SVO) order. This
linguistic distinction not only presents a challenge
in comprehension but also underscores the cultural
and grammatical differences between the two lan-
guages. Furthermore, it employs a double marking
system for grammatical categories, both in the head
and the dependent elements. Awajun marks first or
second-person objects with obligatory verbal suf-
fixes, while nominal or pronominal objects are also
marked with suffixes (Overall, 2010).

C Additional information

Additional tables and figures with information
about the corpora creation and translation metrics.

Dataset Train Validation Test
Ebible 16,591 226 226
Poems&Stories 263 29 28
Laws&Protocols 938 6 10
Guidelines 735 16 14
Handbook 720 93 93
News by Comp. C 6,686 146 145
Total 25,933 277 278

Table 6: Final distribution of datasets for train, valida-
tion, and test
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Abstract

We describe an approach to part-of-speech
tagging from audio with very little human-
annotated data, for Highland Puebla Nahuatl,
a low-resource language of Mexico.1 While
automatic morphosyntactic analysis is typically
trained on annotated textual data, large amounts
of text is rarely available for low-resource,
marginalized, and/or minority languages, and
morphosyntactically-annotated data is even
harder to come by. Much of the data from
these languages may exist in the form of record-
ings, often only partially-transcribed or ana-
lyzed by field linguists working on language
documentation projects. Given this relatively
low-availability of text in the low-resource lan-
guage scenario, we explore end-to-end auto-
mated morphosyntactic analysis directly from
audio. The experiments described in this paper
focus on one piece of morphosyntax, part-of-
speech tagging, and builds on existing work in
a high-resource setting. We use weak supervi-
sion to increase training volume, and explore a
few techniques for generating word-level pre-
dictions from the acoustic features. Our ex-
periments show promising results, despite less
than 400 sentences of audio-aligned, manually-
labeled text.

1 Introduction

Automatic morphosyntactic processing, such as
morphological analysis or syntactic parsing, is an
important task in Natural Language Processing
(NLP) for the purposes of language documenta-
tion, feature-extraction for downstream NLP tasks
(Sidorov, 2019; Wu et al., 2021; Sartakhti et al.,
2021), and for quantitative corpus-based linguistic
analysis (Tyers and Henderson, 2021; Kim et al.,
2021).

The ample research exploring these tasks has,
overwhelmingly, focused on textual data. However,

1The code used for the work described here is available at
https://github.com/VarunS9000/Wav2Pos

Figure 1: A map highlighting the 24 municipalities
where HPN is spoken in the Sierra Norte de Puebla
region of Mexico.

text for low-resource, endangered, marginalized,
and/or minority languages, which constitute a ma-
jority of the world’s languages, is often sparsely
available, if at all. Instead, much of the data from
these languages may exist in the form of record-
ings, potentially only partially-transcribed or ana-
lyzed by field linguists working on language doc-
umentation projects. At the same time, recent
progress in speech processing has resulted in pow-
erful, pretrained speech representation models such
as Wav2Vec2.0 (Baevski et al., 2020), which make
it possible to achieve impressive ASR systems via
fine-tuning on relatively little data (Yin et al., 2022).
These same representations have also been shown
to be useful in audio classification problems, such
as speaker recognition (Vaessen and Van Leeuwen,
2022) and emotion detection (Pepino et al., 2021).

In the remainder of this paper, we explore end-
to-end automated part-of-speech (POS) tagging di-
rectly from audio for an endangered Nahuatl vari-
ant, using a modest amount of transcribed data and
only a few hundred sentences of annotated text. In
light of a very limited data set.
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2 Highland Puebla Nahuatl

Nahuatl is a polysynthetic, agglutinating Uto-
Aztecan language spoken throughout Mexico and
Mesoamerica, made up of 30 recognized varieties
(INALI, 2009).

Highland Puebla Nahuatl, (or Sierra Puebla
Nahuatl, also referred to by INALI as Náhuatl del
noreste central, ISO-639-3 azz, henceforth HPN)
is a Nahuatl variant group spoken by about 70,000
people (Ethnologue’s 2007 estimate) in the North-
eastern Sierra region of the state of Puebla, Mexico
(see Figure 1) in 24 municipalities (INALI, 2009).

HPN has been the subject of documentary and
descriptive linguistic efforts (Key, 1960; Robinson,
1970; Key and Key, 1953; Key and Richie de Key,
1953; Cortez Ocotlán, 2017). Furthermore it is
one of two Nahuatl variants with a free and open
morphosyntactically-annotated corpus, in the form
of a Universal Dependencies treebank.

As an indigenous language of Mexico, HPN is
considered at risk of being lost (INALI, 2012).

3 Related work

While most effort in the area of morphosyntac-
tic analysis has focused on textual input, some re-
cent work explores the idea of performing natural
language processing directly from audio. Pupier
et al. (2022) perform end-to-end dependency pars-
ing for French from audio, by extracting audio
features, aggregating them into audio word embed-
dings using LSTMs, and performing dependency
parsing using these embeddings. These experi-
ments used a dataset size consisting of 169,500
training sentences. Omachi et al. (2022) describe a
non-autoregressive (non-transformer) method for
performing end-to-end ASR and downstream NLP
tasks such as named-entity recognition, perform-
ing part-of-speech tagging on a large.2 corpus of
spoken Japanese, and NER on a corpus of English
containing approximately 10k training sentences
(Bastianelli et al., 2020).

Shi et al. (2021) create a speech translation cor-
pus of HPN using the same dataset as in the present
paper, leveraging the fact that the entire dataset
has transcriptions and translations (dataset details
presented in Section 4).

2The size, e.g. number of sentences of words, of the cor-
pus is not reported in Omachi et al. (2022) The publication
presenting the corpus, Maekawa et al. (2000), describes it as
having 7 million morphemes.

4 Data

The speech files, the transcriptions, and the perti-
nent metadata were obtained via the dataset from
Amith et al. (2019) (hereafter “OpenSLR corpus”),
which consists of about 50 hours of audio tran-
scribed in ELAN. We processed the ELAN files,
splitting the audio into utterance-level chunks using
the Pydub Python library.3

The labeled HPN part-of-speech data comes
from recently-released Highland Puebla Nahuatl
UD treebank, which consists of (1) a small subset
of the OpenSLR corpus annotated for morphosyn-
tax, (2) a subset of texts in the azz variant from the
multi-variant parallel corpus Axolotl (Gutierrez-
Vasques et al., 2016), and (3) technical publica-
tions by the Sociedad Mexicana de Fı́sica.4 Only
(1), which contains 399 sentences and 3,463 tokens,
has corresponding audio, and is held out for sys-
tem evaluation. (2) and (3), totaling 838 sentences
and 6,671 tokens, are used in training a simple
text-based part-of-speech tagger, with which we
generate synthetic data as described in Section 5.1.

The remaining OpenSLR corpus data (i.e. all
of the audio/transcriptions that has not been anno-
tated) is partitioned into a larger dataset for fine-
tuning Wav2Vec2 (about 40k sentences), and a
smaller dataset for training the audio-based POS
tagger (about 7k sentences). We chose to use the
majority of the data for Wav2Vec2 fine-tuning in or-
der to ensure a high-performing ASR model since
without that a POS tagger would have no words
to align its POS tags with.5 We chose not to use
overlapping data for training both Wav2Vec2 and
the Wav2pos tagger to avoid overfitting and poor
performance on unseen data.

5 Methodology

In this section, we describe our method for train-
ing a POS tagger (Wav2pos) directly from audio
with less than 400 labeled examples. This process
involves training an acoustic feature extractor, gen-
erating silver training data, and aggregating the
acoustic features to word-level.

3https://github.com/jiaaro/pydub
4https://site.inali.gob.mx/SMF/Libros2.0/nhtl/

index.html
5In hindsight, it likely would have been worthwhile to

experiment with different ways to partition this data, e.g. less
data for Wav2Vec2 training and more for POS tagger training.
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Dataset Contents Sentences Tokens

Wav2Vec2 train* OSLR − HPN 32k 285k
Text POS Tagger train (HPN − OSLR) ∪ WSPN 1.7k 17.6k
Wav2pos train* OSLR − HPN 8k 71k
Test data HPN ∩ OSLR 363 2.4k

Table 1: A description of the contents of the different datasets. OSLR = OpenSLR data; HPN = Highland Puebla
Nahuatl UD treebank; WSPN = Western Sierra Puebla Nahuatl UD Treebank. *The Wav2Vec2 fine-tuning data and
the Wav2pos training data both come from the set of OpenSLR transcriptions not contained in the HPN treebank,
but they are non-overlapping.

5.1 Synthetic label generation

The total amount of labeled POS data with corre-
sponding audio for HPN is very small (363 sen-
tences, 2k tokens). We hold it out for this purpose.

In order to produce enough labeled data to
train the models, we label otherwise-unannotated
OpenSLR transcriptions using a simple tagger.
Specifically, we train an averaged perceptron model
on the remaining UD trees (those sentences without
corresponding audio), about 600 sentences. Since
this is quite small for a training set, we supple-
ment it with a UD treebank for another Nahuatl
variant, Western Sierra Puebla Nahuatl (WSPN,
ISO-639-3 nhi) (Pugh et al., 2022), which added
about 1k training sentences. The decision to add
data from another variant is motivated by other
recent work on Nahuatl syntactic parsing.

The averaged perceptron model uses words, sub-
strings, previous words, and previous predicted tags
as features. Once trained, we use it to predict POS
tags on the unannotated OpenSLR transcriptions,
resulting in “silver” training and validation data.

5.2 Extracting acoustic features

We use the unannotated (but transcribed) OpenSLR
audio (split into a training and development set)
to fine-tune the pret-trained Wav2Vec2.0 model
(Baevski et al., 2020) on an ASR task. Our result-
ing fine-tuned model achieves a WER of 39% and
CER of 18% on the held-out transcriptions.

In addition to being useful for automatically gen-
erating transcriptions, this fine-tuned model also
gives us access to audio embeddings, correspond-
ing to the discretized audio input, which have been
fine-tuned for HPN. This sequence has many more
elements than there are words (or even characters)
in the sentence. We take two approaches to convert-
ing the longer sequence of acoustic embeddings
into a single, word-level prediction in order to gen-
erate the part-of-speech tags.

5.3 Aggregating audio word embeddings with
a BiLSTM

In the first Wav2pos approach, we first identify the
subsequence of the acoustic embeddings by sepa-
rating them by predicted whitespace characters. We
pass each sequence (corresponding to segments of
a single word) through a Long Short-Term Memory
network (LSTM). The final hidden state is, then, a
vector corresponding to a word. The sequence of
word vectors is POS-tagged with a separate, bidi-
rectional LSTM.6

5.4 Character-based prediction approach
As an alternative approach, we first reformat our
data so that the label sequence, instead of consist-
ing of a single POS tag per word, has a POS tag
corresponding to each character (where the char-
acter’s POS tag is that of its word). For example,
for a transcription like kemah niyas, which origi-
nally is tagged [INTJ, VERB], the label sequence
is converted to [INTJ, INTJ, INTJ, INTJ, INTJ,
SPACE, VERB, VERB, VERB, VERB, VERB], such
that each character in the transcription has a corre-
sponding POS tag (note the inclusion of the SPACE
tag corresponding to the word boundary). We pass
the entire sequence of acoustic embeddings (with-
out splitting them up into predicted audio words)
through a BiLSTM, and make a POS prediction at
each time step. For this approach, we use CTC loss
in order to optimally-align the predicted POS tags
with the labels. During inference, for a given word
we choose the most frequent of its character-based
POS tags as its tag.

5.5 Experiments
Given our silver training and validation data, and
gold, human-annotated evaluation dataset, we com-
pare the performance of three systems (as described
in the previous section):

6The two LSTMs are trained jointly.
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Micro Macro

System Accuracy Precision Recall F1 Precision Recall F1

apt 69.7 71.7 69.8 70.7 64.5 64.8 61.5
wb 53.2 57.1 53.2 55.1 51.4 48.2 46.3
cb 70.1 71.8 70.1 70.9 74.6 64.0 63.2

Table 2: Results comparing three approaches to POS-tagging our corpus. wb and cb correspond to systems that make
predictions directly from audio, whereas the aptrepresents a pipeline system, wherein a text-based POS-tagger
is run on the transcriptions output from the ASR system. While the two Wav2pos systems vary widely in their
performance, the performance of the cb system suggests that the acoustic representations in the Wav2Vec2 model
do in fact contain sufficient syntactic information.

apt: Averaged perceptron run on the output of the
ASR. This method allows us to ascertain whether
there is any benefit to calculating the POS tags
directly from the audio instead of chaining the tag-
ging with the ASR system.

wb: Word-based aggregation, where each hidden
vector corresponding to an acoustic word (defined
by the model’s whitespace predictions) are first
aggregated into a single word vector via an LSTM,
and the sequence of aggregated word vectors is
passed through a BiLSTM to predict the sequence
of POS tags. This system is described above in
Section 5.3

cb: Character-based aggregation, where the POS
tag of a word is predicted for each of its characters,
as described in Section 5.4.

5.6 Evaluation methodology

Since Wav2pos is based on the acoustic representa-
tions of the Wav2Vec2 model fine-tuned for ASR,
and the ASR model may mistranscribe some words,
our evaluation only takes into consideration words
that the ASR model correctly transcribed. Specifi-
cally, we create tuples from the Wav2pos prediction
and the ASR output, and match the ASR output to
words in the correct transcription. If the word is
transcribed correctly (i.e. it is found in the gold
transcription), we compare the POS tags.

6 Results

The results of our three experiments are reported
in Table 2. We note the passable performance
of character-based Wav2pos model (cb), which is
slightly better than the pipeline approach of tagging
the transcriptions with a text-based POS-tagger
(apt). This result suggests that indeed there is
recoverable syntactic information represented in

the acoustic feature embeddings learned by the
Wav2Vec2 model, even (or especially) when these
embeddings correspond to only a small piece of the
word, as in the character model.

There is a significant difference in performance
between the two Wav2pos models, the the wb model
much worse on all metrics. While without more de-
tailed analysis we can only speculate, it appears
as though the aggregation step, which involves
passing a sequence of acoustic vectors through an
LSTM to produce a single “audio word vector,”
may introduce too many additional parameters for
the model to learn given the relatively small amount
of training data.

While these results are certainly interesting, they
raise more questions than they answer, primarily
as the result of the constrained set of experiments
we performed. For future work, we plan to repli-
cate these experiments, but using the same, larger
Wav2Vec2 training dataset to train the Wav2pos
models. We would also like to explore the hyperpa-
rameter space of these models in more depth, and
try using a stronger text-based tagger, such as a
multilingual pretrained transformer-based model,
to create the silver data.

Finally, given the promising results for POS tag-
ging, we are interested in expanding these efforts
to other aspects of syntactic analysis such as depen-
dency parsing.

7 Concluding remarks

We have presented a preliminary investigation of
automated morphosyntactic analysis from audio
with no human-labeled training data. We lever-
aged a large set of transcribed audio to fine-tune a
Wav2Vec2 acoustic feature-extraction model, and
experimented with producing POS-tags directly
from the acoustic embeddings. We created our
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training data by tagging unlabeled transcription
data using a simple classifier model. The results
showed that one of our audio-based POS-tagging
models performed slightly better than using the
text-based tagger to tag the transcriptions.
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Mary Key and Harold Key. 1953. The phonemes of
sierra nahuat. International Journal of American
Linguistics, 19(1):53–56.

Jongin Kim, Nayoung Choi, Seunghyun Lim, Jungwhan
Kim, Soojin Chung, Hyunsoo Woo, Min Song, and
Jinho D. Choi. 2021. Analysis of zero-shot crosslin-
gual learning between English and Korean for named
entity recognition. In Proceedings of the 1st Work-
shop on Multilingual Representation Learning, pages
224–237, Punta Cana, Dominican Republic. Associa-
tion for Computational Linguistics.

Kikuo Maekawa, Hanae Koiso, Sadaoki Furui, and Hi-
toshi Isahara. 2000. Spontaneous speech corpus of
Japanese. In Proceedings of the Second International
Conference on Language Resources and Evaluation
(LREC’00), Athens, Greece. European Language Re-
sources Association (ELRA).

Motoi Omachi, Yuya Fujita, Shinji Watanabe, and
Tianzi Wang. 2022. Non-autoregressive end-to-end
automatic speech recognition incorporating down-
stream natural language processing. In ICASSP 2022
- 2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 6772–
6776.

Leonardo Pepino, Pablo Riera, and Luciana Ferrer. 2021.
Emotion recognition from speech using wav2vec 2.0
embeddings. arXiv preprint arXiv:2104.03502.

Robert Pugh, Marivel Huerta Mendez, Mitsuya Sasaki,
and Francis Tyers. 2022. Universal Dependencies
for western sierra Puebla Nahuatl. In Proceedings of
the Thirteenth Language Resources and Evaluation
Conference, pages 5011–5020, Marseille, France. Eu-
ropean Language Resources Association.

Adrien Pupier, Maximin Coavoux, Benjamin Lecouteux,
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Abstract

This article presents an ongoing research on
one of the several native languages of the Amer-
icas: Amuzgo or jny′on3 nda3. This language
is spoken in Southern Mexico and belongs to
the Otomanguean family. Although Amuzgo
vitality is stable and there are some available re-
sources, such as grammars, dictionaries, or liter-
ature, its digital inclusion is emerging (cf. Eber-
hard et al. (2024)). In this respect, here is
described the creation of a curated dataset in
Amuzgo. This resource is intended to con-
tribute to the development of tools for scarce
resources languages by providing fine-grained
linguistic information in different layers: From
data collection with native speakers to data
annotation. The dataset was built according
to the following method: i) data collection in
Amuzgo by means of linguistic fieldwork; ii)
acoustic data processing; iii) data transcription;
iv) glossing and translating data into Spanish;
v) semiautomatic alignment of translations; and
vi) data systematization. This resource is re-
leased as an open access dataset to foster the
academic community to explore the richness of
this language.

1 Introduction

According to the facts reported in the survey
Analysis of the Language Technologies in Mex-
ico (ASTLM, 2018), Latin America is a linguistic
region with a minimum development in the cre-
ation of digital resources, specifically, regarding
native languages. One of the main causes, pointed
out by the authors, is the scarcity of data. The
researchers frequently face a lack of materials to
study these languages. For instance, several native
languages have not even been described, either be-
cause they have not been considered academically,
or because their grammar is difficult, or data col-
lection is complicated or, even, highly risky. This
stresses a gradual loss of worldviews, as well as
an augment of the digital divide, which will di-

rectly impact on the native communities by making
inequalities and marginalization larger.

With respect to the Mexican context, specialized
organisms such as the National Institute of Statis-
tics and Geography or the National Institute of In-
digenous Languages report an important linguistic
wealth. According to the numbers registered in (IN-
ALI, 2008), apart from Spanish, more than 60 na-
tive languages coexist in the country. This diversity
is classified in 11 linguistic families, 68 languages,
and 364 dialectal varieties. In terms of their vital-
ity, the languages with more speakers are Nahuatl
(more than one million), Mayan (around 800,000),
Mixtec, and Zapotec (over 400,000 speakers each).
On the contrary, there exist an important number of
languages with fewer than 1,000 speakers (INEGI,
(2015). Sadly, despite this enormous linguistic di-
versity, there is still a lack of resources, tools, and
even linguistic materials for the majority of these
languages (surprisingly, some of them well studied
and described).

Amuzgo or jny′on3 nda3 is one of the lan-
guages cited in the previous reports. Currently,
the language has a couple of grammars and sev-
eral studies about its varieties (see (Buck, 2018;
Smith and Tapia, 2002; Palancar and Feist, 2015;
Hernández et al., 2017)). In accordance with these
specialized works, Amuzgo is quite different from
the major language in the country (Spanish), which
makes it more complex to directly apply techniques
or tools from other languages. In this respect, this
work describes an ongoing research about the cre-
ation of a dataset in Amuzgo. The dataset contains
curated linguistic data collected from colloquial
speech in Amuzgo. These data are presented con-
sidering the following phases or levels: acoustic
signal processing, transcription, glossed and human
translation into Spanish, semiautomatic alignment
of human translations, and annotation. This dataset
is intended to contribute the development of tools
for scarce resources languages.
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The rest of the article is organized as follows:
Section 2 describes the main linguistic character-
istics of Amuzgo, focusing on their complexity.
Section 3 presents the method to create the dataset.
Section 4 points out some of the results and appli-
cations so far. Finally, Section 5 summarizes our
findings and highlights the future work.

2 Language description

Amuzgo or jny′on3 nda3 is spoken in Southern
Mexico. It has over 60,000 speakers, according to
the data reported by (INEGI, (2015). Grammati-
cally, the language belongs to the Otomanguean
family, alongside languages such as chatino, za-
potec, mazatec, or popolaca. It is characterized by
a wide set of personal pronouns (Buck, 2000; Palan-
car and Feist, 2015), and lexical classes, which im-
pacts on its verbal complexity (Smith and Tapia,
2002). In addition, this is a language with five
tones to mark change of meaning in different lev-
els (Hernández, 2019). For instance, Examples (1)
and (2) show how the different tones impact, not
only on the meaning, but in the linguistic level as
well.

(1) a. nkia3 "to hit"
b. nkia5 "fearful"

(2) a. ba′1 "his/her house"
b. ba′4 "your house"

While in (1), the difference between the low level
tone and the high level tone (superscripts 3 and 5,
respectively) impacts on a change in the lexical
level; i.e. the tonal contrast produces two different
types of words, in (2), the change moves to the
morphological level; i.e. the tonal change (rising
tone, superscript 1, and mid level tone, superscript
4) generates a clear distinction with respect to who
possesses the house.

2.1 Linguistic complexity
This couple of examples stress how complex the
language is, and somehow, how difficult is to apply
tools or techniques that have shown their useful-
ness in other languages. Now, to summarize the
challenges that this language entails, both in terms
of its linguistic description and its possible digi-
tal implementation, we provide below some of the
mos salient linguistic particularities reported in the
specialized literature.

The phonological system in Amuzgo has 15 con-
sonants and 7 vowels. Some of these phonemes are

product of the contact with Spanish. As noted pre-
viously, its tonal characteristics impact on different
linguistic levels: From phonology to pragmatics.
In this respect, it has been reported the existence
of five tones: rising, falling, low level, mid level,
and high level. However, some works report two
more tones; i.e. five level tones and two contour
tones (Hernández, 2019).

On the other hand, Amuzgo organizes the gram-
matical persons in two classes: Singular and plural.
Each class contains three persons morphologically
marked, being the particular interest the third per-
son in plural (they), which differentiates between
inclusion and exclusion regarding the hearer.

Finally, in terms of morphosyntactic and syn-
tactic particularities, Amuzgo is a head-marking
language, but for the third persons; the syntactic re-
lations are given by juxtaposition; and the syntactic
template both for transitive and intransitive verbs
is VSO.

3 Method

In this section, we describe the method to build the
dataset. Specifically, we highlight how the dataset
is curated by means of adding fine-grained linguis-
tic information to the gathered data. The method
consist of the following phases: i) collecting acous-
tic data from fieldwork, ii) acoustic data processing
with Praat, iii) data transcription, iv) data glossed
and human translation, v) semiautomatic alignment
of human translations, and vi) data systematization.

3.1 Data collection

The data was collected by means of traditional lin-
guistic fieldwork in one of the Amuzgo communi-
ties. Some of the researchers traveled to the com-
munity to interview a set of speakers in their natural
environment. The Amuzgo speakers were asked
some questions about how frequent they speak
the language, the contexts in which they use it,
their linguistic skills, both in Amuzgo and Spanish,
whether or not they consider themselves monolin-
gual or bilingual speakers, as well as information
about their age, gender, time of residence in the
community, whether or not they were migrants,
and so on. In addition, they had to tell a story in
Amuzgo. All the stories were digitally recorded.
The amount of hours of this oral material is around
8 hours. Finally, it is important to remark that all
the participants were informed about the use of the
material in accordance with the Mexican laws. If
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they agreed, then they should sign a document. A
more detailed explanation about this process is pro-
vided in the project GitHub site (see Section 3.5).

3.2 Acoustic data processing

The dataset here presented is based on the 8 hours
of recordings. This oral material is, thus, the raw
data from which we build the dataset.

Prior to adding any linguistic annotation, the
oral material was acoustically processed with the
software Praat (Boersma, 2014). This was done in
order to get unbiased phonological information to
be further analyzed, especially, given the tonal char-
acteristics of the language reported in Section 2.

It is worth stressing that the acoustic signal pro-
cessing is work in progress. So far, only three
recordings have been fully processed. Once this
phase is complete, it will be a major outcome of
the research.

3.3 Data transcription

The following phase consisted in making the tran-
scription of the oral data. Firstly, the stories were
divided in segments to facilitate the transcription;
i.e. we did not transcribe each story at once; on
the contrary, we attempted to recognize informative
segments or sentences to achieve a coherent text. In
this recognition process, the work performed with
the tools for speech analysis in Praat were highly
helpful, due to they were a visual guide to segment
the recordings properly.

The resulting text was linguistically analyzed in
order to corroborate the initial segmentation. In
case of unnatural divisions, for instance, incom-
plete sentences, the transcription was modified
to adapt as much as possible each segment with
a clause. This decision impacts directly on the
glosses and the human translation, yet it did not
affect the language grammaticality.

The last process of the transcription consisted in
registering the Amuzgo phonological features, as
well as incorporating the tones. The following text
is a sample of the resulting transcription.

3.4 Glosses and human translation

In these two processes, glosses and human transla-
tion, rely the major richness of the dataset. With re-
spect to the former, it is well-known that a glossed
process entails a syntactic segmentation (just like
the one attempted in the previous phase), as well as
a part of speech annotation. This linguistic infor-
mation contributes to enhance the description and
understanding of any language, due it provides an
in-depth vision of its linguistic relations. In addi-
tion, the glosses provide formal elements that can
be used to perform a better translation.

The glosses were done manually, i.e. a human ex-
pert in Amuzgo analyzed the transcriptions, made a
re-alignment of the unnatural segments proposed in
the previous phase, and performed the glossed pro-
cess according to the Leipzig Glossing Rules (Com-
rie et al., 2008). Furthermore, the expert con-
sidered the following elements when generating
the glosses: use of a consistent orthographic sys-
tem (Hernández, 2019), distinction between phono-
logical word and lexical entry (see Examples (1)
and (2)), and clitic marking.

The following process was a human translation,
which was guided by the linguistic information
registered in the glosses. Figure 1 illustrates the
result of the glossing and human translation.

3.5 Translation alignment

This phase was performed to enhance the scope
of the dataset. Mainly, by creating a parallel cor-
pus Amuzgo-Spanish, which was generated semi-
automatically by applying the Gale-Church algo-
rithm for translation alignment (Gale and Church,
1993). This algorithm is implemented in the CAT
tool OmegaT and it considers two methods: Parse-
wise and heapwise. Each one makes the alignment
taking into consideration different features in the
texts. For instance, a possible syntactic parallelism
regarding the parsewise method, or a global textual
integration regarding the heapwise method. We
tried with both methods and the result was unsatis-
factory. This is obviously due to the huge linguistic
differences between both languages.

Despite the poor performance, the results
were used as a source to manually improve
the alignments. This human improvement pro-
duced a better parallel corpus, which is freely
available in this address: https://github.com/
areyesp-77/amuzgo-dataset.git.
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Figure 1: Sample of the glosses and human translation.

3.6 Data systematization

The last phase to create the dataset implies the
integration of the linguistic information in a lexical
resource to expand the possibilities of investigation,
as well as to start applying some NLP techniques
in tasks as diverse as machine translation, part of
speech tagging, speech recognition, and so on. To
this end, we have been working in systematizing
and formalizing our data in a unique file to simplify,
as much as possible, all the fine-grained linguistic
information that we have.

In this respect, a beta version of this curated
dataset with the following information has been
released: lexical entry in Amuzgo, POS annotation,
tone annotation, linguistic processes identified,
translation into Spanish, and source (recording).
This version is available at: www.geco.unam.mx.

4 Result and projection

The outcome of all the processes described so far
is a dataset with fine-grained linguistic information
in Amuzgo. Beyond the traditional linguistic anal-
ysis, this information could be used to foster and
increase the efforts of the NLP community regard-
ing scarce resources languages, such as jny′on3

nda3.
In addition, a small parallel corpus Amuzgo-

Spanish has been generated to freely explore some
characteristics of the language by using common
corpus analyses, such as concordances, colloca-
tions, or keywords.

As an optimistic projection, the creation of re-
sources like this dataset would allow the exper-
imentation in different areas, the generation of
new knowledge, the preservation of endangered
languages, and the minimization of the digital di-
vide and its negative consequences for the native
communities.

5 Conclusions

In this article we have described the creation of a
linguistic dataset in Amuzgo. The dataset contains
curated information provided by specialists in that
language. Such information covers different lin-
guistic levels, such phonology, morphology, and
syntax, as well as a human translation into Span-
ish. In addition, the dataset was used to generate
a small parallel corpus Amuzgo-Spanish by apply-
ing a known algorithm in NLP. Both resources are
freely available for academic purposes.

Although the materials exceed the 8 hours of
recordings, the dataset here described contains only
the data of one hour. Therefore, as further work,
it is planned to process the remaining data to en-
hance the linguistic description and, accordingly,
to improve the dataset.
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Abstract

Although both linguists and language commu-
nity members recognize the potential utility of
automatic speech recognition (ASR) for docu-
mentation, one of the obstacles to using these
technologies is the scarcity of data necessary
to train effective systems. Recent advances in
ASR, particularly the ability to fine-tune large
multilingual acoustic models to small amounts
of data from a new language, have demon-
strated the potential of ASR for transcription.
However, many proof-of-concept demonstra-
tions of ASR in low-resource settings rely on a
single data collection project, which may yield
models that are biased toward that particular
data scenario, whether in content, recording
quality, transcription conventions, or speaker
population. In this paper, we investigate the per-
formance of two state-of-the art ASR architec-
tures for fine-tuning acoustic models to small
speech datasets with the goal of transcribing
recordings of Enenlhet, an endangered Indige-
nous language spoken in South America. Our
results suggest that while ASR offers utility for
generating first-pass transcriptions of speech
collected in the course of linguistic fieldwork,
individual vocabulary diversity and data quality
have an outsized impact on ASR accuracy.

1 Introduction

The fields of descriptive and documentary linguis-
tics concentrate on collecting and analyzing lan-
guage samples, particularly from understudied, In-
digenous, and endangered languages. Typically,
documentary linguists – who can be researchers
or language community members – make audio
recording of unscripted or prompted speech, fol-
lowed by transcription, glossing, translation, and
analysis. Transcription, however, often becomes
bottleneck when dealing with large speech corpora,
rendering only a fraction of the available speech
data available for analysis or for language instruc-
tion (Himmelmann, 1998).

Automatic speech recognition (ASR) has
emerged as a potential solution by providing first-
pass transcripts that can be manually corrected
(Mitra et al., 2016; Bird, 2021; Jimerson and
Prud’hommeaux, 2018). The preferred approach
for building an ASR system with scarce resources
is to fine-tune a large multilingual model to what-
ever small amount of transcribed audio data is avail-
able for the target language. Many demonstrations
of the efficacy of this approach, however, rely on
corpora with relatively few speakers or with record-
ings made under the same condition (e.g., all read
speech or broadcast news) (Jimerson et al., 2023).
One problem is that models trained on a single
uniform speech corpus may overfit to that corpus
acoustically or lexically. It is not clear how such
models will generalize to new data – whether that
data is archival recordings or recent data from a
different speaker population or data collected with
different prompts.

In this paper, we address this question using a
corpus of speech recordings for the language Enenl-
het (ISO 639-3 code tmf; not to be confused with
the related language Enlhet, ISO 639-3 code enl).
Enenlhet is spoken by fewer than 2,000 people liv-
ing in what is now Paraguay. While thousands of
the world’s languages, like Enenlhet, are endan-
gered and have minimal written documentation,
many of these languages lack three important char-
acteristics that make Enenlhet an ideal language for
exploring the utility of ASR for documentation of
diverse speech data. First, the amount of available
transcribed speech data – 5 hours – is relatively sub-
stantial for an endangered and primarily oral lan-
guage. Second, the large quantity of untranscribed
audio – over 100 hours – is highly unusual for any
endangered language, offering the potential for un-
supervised training and for experimentation with
integrating ASR into the documentation pipeline.
Third, the Enenlhet speakers who provided their
voices have stated enthusiasm for generating new
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documentation for their language in collaboration
with outsiders.

Using two ASR architectures that support fine-
tuning acoustic models to the task of ASR for small
speech datasets, we explore to what extent an exist-
ing corpus can be used to train models that gener-
alize well to new data. The dataset we use, while
part of a single data collection effort, was collected
over multiple years under varying conditions from
a large number of speakers. We simulate introduc-
ing a new recording by holding out each speaker in
turn, training on the remaining speakers, and test-
ing on the held-out speaker. We find that the high
degree of lexical diversity across speakers, as well
as differences in audio and transcription quality,
contribute to variability in word error rate (WER),
findings we quantify with a regression analysis.

2 Related work

ASR has long been proposed as a solution to the
“transcription bottleneck” challenge of language
documentation, but there has been relatively lit-
tle effort dedicated to practically using ASR for
this purpose. The focus of much of the early work
was phone-level transcription (DiCanio et al., 2013;
Johnson et al., 2018; Zahrer et al., 2020). Other ap-
plications have involved keyword spotting (Le Fer-
rand et al., 2022) or the development of front-end
tools for building ASR systems (Foley et al., 2018).
Only recently has ASR been actually used in an ac-
tive documentation pipeline (Prud’hommeaux et al.,
2021; Gupta and Boulianne, 2020; Shi et al., 2021;
Rodríguez and Cox, 2023). There is some prior
work investigating data partitioning strategies (Liu
et al., 2023), which we indirectly address in our
work when we use a held-out-speaker approach
to simulate testing a trained model on new data.
Le Ferrand et al. (2023) applied a trained model for
an under-resourced language to new data, yielding
surprisingly weak results and indicating that mod-
els fine-tuned on small amounts of data may not
generalize well to new data. We also note previous
work on the impact of specific dataset characteris-
tics, including OOV rate and audio quality which
we explore here, on word error rate (Jimerson et al.,
2023). This last paper includes data from the Amer-
icasNLP 2022 ASR shared task (Ebrahimi et al.,
2022). While the AmericasNLP datasets were ex-
tremely small (typically less than one hour), they
contained fieldwork recordings with characteristics
similar to those included in our study.

3 Data

The language of the corpus used in this study is
known by a number of names (Cabanatit, Enenxet,
Toba-Enenlhet), but following the preferences of
the community, we will refer to it here as Enenlhet
(ISO 639-3 code tmf). Enenlhet is a polysynthetic
language spoken by fewer than 2,000 people liv-
ing in the Paraguayan Chaco region. Migration
and displacement have led to dramatic language
loss; the current Ethnologue status of Enenlhet is
6b (Threatened). Enenlhet has remarkably little
available documentation. Aside from a few short
word lists compiled in the 1920s and 1960, there
are no dictionaries, and there is only one available
grammar (Unruh et al., 2003). A phone set of ap-
proximately 4 vowels and 15 consonants can be
inferred from the dataset described below.

The data used here is part of a recent multi-year
data collection effort, which has so far yielded over
120 hours of recordings with more than 40 indi-
viduals. The data was collected with university
IRB approval and is archived with the Archive
of Indigenous Languages of Latin America at the
University of Texas. Ethical practices require a
consultation with the language community before
using language material for research purposes (Piri-
nen et al., 2024). Thus, while the data we use is
publicly available1, the co-author who collected
the data gained express permission from the com-
munity for research purposes. She notes that the
Enenlhet speakers who participated in the data col-
lection were eager for their speech recordings to be
used to support documentation and revitalization
efforts.

Approximately 10 hours of the recordings from
16 speakers have been transcribed with utterance-
level timestamps. The total quantity of speech data
available in these recordings – after stripping out
silence, segments in another language, and speech
produced by the interviewer – is approximately 5
hours. Table 1 shows information for each speaker.

4 Methods

4.1 Experiments

We trained ASR models using two frameworks
that support fine-tuning from a multilingual model:
Whisper (Radford et al., 2022) and wav2vec
(Baevski et al., 2020; Conneau et al., 2021). In
the case of Whisper, we used the Whisper medium

1https://ailla.utexas.org/islandora/object/ailla%3A266554
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SSA CA ER IF PA OM HM FF TF MRR MM AR LM BT MR LF
duration 80:16 65:00 5:40 20:32 18:51 26:18 10:45 39:00 5:20 12:21 4:53 7:00 4:21 2:42 3:00 2:48
tokens 6663 5828 434 1495 1571 2139 756 3192 362 868 509 814 349 209 253 201
types 2181 1769 228 513 847 965 437 1448 229 399 261 214 164 134 144 117

Table 1: Duration (MM:SS), token count, and type count for each of the 16 speakers in our dataset.

Figure 1: OOV heatmap: Blue indicates low OOV rate
while red indicates high OOV rate, with the hue indicat-
ing more extreme values in each respective direction.

model, adhering to the hyperparameters specified
in the main tutorial2. For wav2vec, we employed
xlsr-53, following the hyperparameters of the main
tutorial3. Regarding wav2vec decoding, we de-
coded with a language model trained on the tran-
scripts of the relevant training data. Notably, we
opted for default values for decoding parameters α
and β given their minimal impact with small LMs.

Recall that the recordings used were collected
over several years, in different recording conditions
from different individuals. Our goal is not to create
a robust ASR system, but rather to assess whether
a model trained on existing data will generalize
to a new speech recording or corpus. Initially, we
train a baseline model by randomly partitioning the
entire dataset into training and testing sets. Subse-
quently, we use a “leave speaker out” cross valida-
tion approach to simulate the testing of new data on
an existing trained ASR model. For each speaker
within our dataset, we train an ASR model using all
recordings except for the those of the target speaker,
whose data is reserved for testing purposes.

2https://huggingface.co/blog/fine-tune-whisper
3https://huggingface.co/blog/fine-tune-xlsr-wav2vec2

4.2 Analysis
The ASR experiments are evaluated using the tra-
ditional Word Error Rate (WER) metric. We then
aim to identify factors that could impact system
performance. First, we focus on the lexicon, exam-
ining two factors: the Out-of-Vocabulary (OOV)
rate, which represents the proportion of tokens in
the test set that did not appear in the training set
(see Figure 1). The blue cells, corresponding to
the longest recordings SSA and CA, have a sub-
stantially larger vocabulary that overlaps with the
rest of the collection. We perform the same analy-
sis with the types. We then calculate the duration
of both the training and testing sets. Following
this, we assess the audio quality in the test sets
based on two measures: loudness and sharpness.
Loudness is a measure designed to mimic sound
perception in humans, while sharpness relates to
the subjective perception of high-frequency con-
tent in a sound. Both sharpness and loudness are
determined using the Zwicker method (Zwicker,
1960) with the Mosquito toolkit4. Finally, we
evaluate the transcription quality by conducting
a CTC-based alignment of the transcription and
utilizing the resulting CTC posterior probabilities
as a measure of transcription reliability. Our intu-
ition is that low CTC probabilities indicate that the
alignment algorithm had difficulty determining the
alignment, perhaps because of noisy recordings or
inconsistent transcriptions. To perform the align-
ment we used an ASR model trained in English
(wav2vec2_ASR_base_960h).

5 Results

Results are presented in Figure 2. Each bar corre-
sponds to a test conducted on a different speaker’s
data. The baselines are indicated by the dotted lines.
First, we see across all scenarios, wav2vec per-
forms systematically worse than Whisper. Second,
we observe in all experiments, the baseline does not
exhibit consistent inferior or superior performance
in either architecture. We note that potential biases
during experiments conducted on random splits do
not significantly impact overall performance in one

4https://github.com/Eomys/MoSQITo/tree/master
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Figure 2: WER across all speakers. Baselines are derived from a random split across all speakers.

OOV tokens OOV types train duration test duration loudness sharpness alignment score
Coeff. 0.79 0.36 -0.001 0.001 0.001 0.134 -1.588
95% CI (0.07, 1.1) (0.07,1.4) (0.07,184.) (0.07,12.3) (0.07, 0.67) (0.07,2.04) (0.07,18.9)

Table 2: regression results with WER results derived from Whisper. CI stands for Confidence Interval.

OOV tokens OOV types train duration test duration loudness sharpness alignment score
Coeff. 1.171 0.452 -0.001 0.001 0.000 0.301 -2.547
95% CI (0.08, 1.2) (0.08,1.6) (0.08,210.) (0.08,14.) (0.08, 0.76) (0.08,2.25) (0.07,20.5)

Table 3: regression results with WER results derived from wav2vec. CI stands for Confidence Interval.

direction or the other. Secondly, performance is
dependent on factors inherent to the test speaker’s
data. The regression analysis enabled us to ascer-
tain the impact of these factors on WER.

The results of the regression analysis can be
found in Table 2 for Whisper and Table 3 for
wav2vec. A significantly positive coefficient value
indicates that the factor leads to a higher (worse)
WER while a significantly negative coefficient indi-
cates that the factor leads to a lower (better) WER.
Across both architectures, three factors do not have
a significant influence on WER: duration of the
training data and test data, and loudness. One of
the most relevant factors is the OOV tokens and to
a lesser extent, the OOV types. These factors hap-
pen to be much more salient for wav2vec than for
Whisper which can perhaps explained by the use
of a language model during decoding in wav2vec.

Two metrics were used evaluate the quality of
the audio in the test sets. Loudness was found to
have minimal impact, but sharpness appears to neg-
atively impact WER. Additional experiments on
larger datasets are necessary to validate the efficacy
of this measure in assessing audio quality.

The posterior probabilities obtained from the
CTC alignment exhibited a strong negative impact
on WER, suggesting that a higher confidence score

in the alignment corresponds to a lower WER. How-
ever, the confidence interval is relatively high, rais-
ing doubts about the reliability of this measure to
evaluate the quality of the transcription. Examining
specific examples, we verified the data quality for
IF, where a very high WER was observed. It was
discovered that the transcription for this speaker
did not align with the audio; instead, it appeared to
be a translation of the audio into a related language
or dialect. However, the CTC alignment did not
substantially differ from other speakers where the
transcription matched well and the WER is much
lower. This measure appears instead to be relevant
for evaluating audio quality when there is not a
significant mismatch with the transcription.

6 Conclusions

This paper explores how contemporary speech
recognition architectures perform in a language
documentation setting, focusing on the Enenlhet
language as a case study. In order to simulate test-
ing of new data using a model trained on a previous
data collection corpus, we conducted training and
testing of ASR models using a leave-one-out eval-
uation approach, where the models were trained
on all Enenlhet speakers except one and tested on
the one left out. Additionally, we performed a re-
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gression analysis to determine the factors that may
influence WER.

The experimental results initially revealed that
the leave-one-out evaluation approach neither out-
performs or underperforms a random split approach
for our specific case. Subsequently, we found that
Out-of-Vocabulary (OOV) rates are the most sig-
nificant factor in explaining the WER for a given
test set. Lastly, both the sharpness measure and
the CTC posterior probabilities show promise in
assessing the quality of the speech signal, which
could potentially correlate with the word error rates.
Further analysis is necessary to confirm this corre-
lation. These results suggest that in low-resource
settings, ASR models may not always generalize
well to new data, which could hamper the utility of
ASR for language documentation.

References
Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed,

and Michael Auli. 2020. wav2vec 2.0: A framework
for self-supervised learning of speech representations.
In Advances in Neural Information Processing Sys-
tems, volume 33, pages 12449–12460.

Steven Bird. 2021. Sparse transcription. Computational
Linguistics, 46(4):713–744.

Alexis Conneau, Alexei Baevski, Ronan Collobert, Ab-
delrahman Mohamed, and Michael Auli. 2021. Un-
supervised cross-lingual representation learning for
speech recognition. In Proceedings of Interspeech,
pages 2426–2430.

Christian DiCanio, Hosung Nam, Douglas H Whalen,
H Timothy Bunnell, Jonathan D Amith, and
Rey Castillo García. 2013. Using automatic align-
ment to analyze endangered language data: Testing
the viability of untrained alignment. The Journal
of the Acoustical Society of America, 134(3):2235–
2246.

Abteen Ebrahimi, Manuel Mager, Adam Wiemerslage,
Pavel Denisov, Arturo Oncevay, Danni Liu, Sai
Koneru, Enes Yavuz Ugan, Zhaolin Li, Jan Niehues,
et al. 2022. Findings of the second americasnlp com-
petition on speech-to-text translation. In NeurIPS
2022 Competition Track, pages 217–232. PMLR.

Ben Foley, Joshua T Arnold, Rolando Coto-Solano,
Gautier Durantin, T Mark Ellison, Daan van Esch,
Scott Heath, Frantisek Kratochvil, Zara Maxwell-
Smith, David Nash, et al. 2018. Building speech
recognition systems for language documentation:
The coedl endangered language pipeline and infer-
ence system (elpis). In SLTU, pages 205–209.

Vishwa Gupta and Gilles Boulianne. 2020. Speech
transcription challenges for resource constrained in-
digenous language Cree. In Proceedings of the 1st

Joint Workshop on Spoken Language Technologies
for Under-resourced languages (SLTU) and Collab-
oration and Computing for Under-Resourced Lan-
guages (CCURL), pages 362–367.

Nikolaus P. Himmelmann. 1998. Documentary and
descriptive linguistics, volume 36. de Gruyter.

Robbie Jimerson and Emily Prud’hommeaux. 2018. Asr
for documenting acutely under-resourced indigenous
languages. In Proceedings of the Eleventh Interna-
tional Conference on Language Resources and Eval-
uation (LREC 2018).

Robert Jimerson, Zoey Liu, and Emily Prud’hommeaux.
2023. An (unhelpful) guide to selecting the best
asr architecture for your under-resourced language.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 1008–1016.

Lisa M Johnson, Marianna Di Paolo, and Adrian Bell.
2018. Forced alignment for understudied language
varieties: Testing prosodylab-aligner with tongan
data.

Éric Le Ferrand, Fabiola Henri, Benjamin Lecouteux,
and Emmanuel Schang. 2023. Application of speech
processes for the documentation of kréyòl gwad-
loupéyen. In Proceedings of the Second Workshop on
NLP Applications to Field Linguistics, pages 17–22.

Éric Le Ferrand, Steven Bird, and Laurent Besacier.
2022. Learning from failure: Data capture in an
Australian aboriginal community. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 4988–4998.

Zoey Liu, Justin Spence, and Emily Prud’hommeaux.
2023. Investigating data partitioning strategies for
crosslinguistic low-resource asr evaluation. In Pro-
ceedings of the 17th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 123–131.

Vikramjit Mitra, Andreas Kathol, Jonathan D Amith,
and Rey Castillo García. 2016. Automatic speech
transcription for low-resource languages-the case of
yoloxóchitl mixtec (mexico). In INTERSPEECH,
pages 3076–3080.

Flammie Pirinen, Linda Wiechetek, Trond Trosterud,
Sjur Moshagen, and Børre Gaup. 2024. Computel
partnerships in practice: Giellalt. In Proceedings
of 7th the Workshop on Computational Methods for
Endangered Languages.

Emily Prud’hommeaux, Robbie Jimerson, Richard
Hatcher, and Karin Michelson. 2021. Automatic
speech recognition for supporting endangered lan-
guage documentation. Language Documentation and
Conservation, 15:491–513.

5
136



Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2022.
Robust speech recognition via large-scale weak su-
pervision. arXiv preprint arXiv:2212.04356.

Lorena Martín Rodríguez and Christopher Cox. 2023.
Speech-to-text recognition for multilingual spoken
data in language documentation. In Proceedings of
the Sixth Workshop on the Use of Computational
Methods in the Study of Endangered Languages,
pages 117–123.

Jiatong Shi, Jonathan D. Amith, Rey Castillo García,
Esteban Guadalupe Sierra, Kevin Duh, and Shinji
Watanabe. 2021. Leveraging end-to-end ASR for
endangered language documentation: An empirical
study on Yoloxóchitl Mixtec. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 1134–1145.

Ernesto Unruh, Hannes Kalisch, and Manolo Romero.
2003. Enenlhet apaivoma: nentengiai’a nen-
giangveiakmoho neliatekamaha enenlhet apaivoma,
guía para el aprendizaje del idioma materno toba.
Nengvaanemkeskama Nempayvaam Enlhet.

Alexander Zahrer, Andrej Žgank, and Barbara Schup-
pler. 2020. Towards building an automatic transcrip-
tion system for language documentation: Experi-
ences from muyu. In Proceedings of the Twelfth Lan-
guage Resources and Evaluation Conference, pages
2893–2900.

Eberhard Zwicker. 1960. Ein verfahren zur beredinung
der lautstärke. Acta Acustica united with Acustica,
10(4):304–308.

6
137



Proceedings of the 4th Workshop on Natural Language Processing for Indigenous Languages of the Americas (AmericasNLP), pages 138–142
June 21, 2024 ©2024 Association for Computational Linguistics

Advancing NMT for Indigenous Languages: A Case Study on Yucatec
Mayan and Chol

Julio C. Rangel and Norio Kobayashi
RIKEN Information R&D and Strategy Headquarters,

2-1 Hirosawa, 351-0198 Wakoshi, Japan
{juliocesar.rangelreyes, norio.kobayashi}@riken.jp

Abstract

This study leverages Spanish-trained large lan-
guage models (LLMs) to develop neural ma-
chine translation (NMT) systems for Mayan
languages. For that, we first compile and pro-
cess a low-resource dataset of 28,135 trans-
lation pairs of Chol and Yucatec Mayan ex-
tracted from documents of the CPLM Corpus
(Martínez et al.). Then we implement a prompt-
based approach to train one-to-many and many-
to-many models. By comparing several train-
ing strategies for two LLMs, we found that, on
average, training multilingual models is better,
as shown by the ChrF++ reaching 50 on the test
set in the best case. This study reinforces the vi-
ability of using LLMs to improve accessibility
and preservation for languages with limited dig-
ital resources. We share our code, datasets, and
models to promote collaboration and progress
in this field 1.

1 Introduction

In recent times, there has been a push towards cre-
ating NLP tools for the native languages of the
Americas (Mager et al., 2023). Within this context,
Mayan languages have not received attention in
machine translation (NMT) studies, despite their
deep linguistic roots and large speaker populations.
Our study aims to bridge this gap by specifically
developing and refining NMT systems for Mayan
languages. By leveraging advancements in large
language models (LLMs) pre-trained in Spanish,
we aim to overcome the scarcity of a comprehen-
sive parallel corpus for Mayan languages. As a
result, building NMT systems for languages could
greatly benefit these language communities by en-
abling them to access services and information re-
lated to law, healthcare, and finance in their mother
tongues.

1https://github.com/RIKEN-DKO/iikim_
translator

2 Languages

The Mayan languages form a family spoken by the
Maya peoples, is primarily spoken across various
regions in Central America. This family stands as
among the most thoroughly researched and docu-
mented in the Americas (Campbell, 2000). It is
believed that the contemporary Mayan languages
originated from the Proto-Mayan language, which
was likely spoken over 5,000 years ago. This an-
cient language eventually branched out into at least
six distinct lineages: Huastecan, Quichean, Yucate-
can, Qanjobalan, Mamean, and Ch’olan–Tzeltalan
2

2.1 Yucatec Mayan
Yucatec Mayan, commonly referred to as Maya is
a language spoken in the Yucatán Peninsula and
the northern regions of Belize. Being one of the
Mayan languages Yucatec Mayan plays a vital role,
in connecting us to the diverse cultural and his-
torical legacy of the Mayan civilization. Unlike
indigenous languages Yucatec Mayan boasts a sub-
stantial number of speakers with an estimated count
of approximately 800,000 individuals 3.

2.2 Chol
The Chol people, a group, in Mexico mainly live
in the mountains of Chiapas. Being part of the
Maya community they speak Ch’ol or Chol which
belongs to the Mayan language group. Ch’ol has
three dialects (Sabanilla, Tilá and Tumbalá), these
dialects,often considered a single language show-
casing the language’s vitality and regional diversity.
Had approximately 140,806 speakers, in 2000 in-
cluding individuals who speak only this language4.

This paper outlines the design and implementa-
tion of a comparative study on two sophisticated

2https://en.wikipedia.org/wiki/Mayan_languages
3https://en.wikipedia.org/wiki/Yucatec_Maya_

language
4https://en.wikipedia.org/wiki/Chol_people
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neural machine translation (NMT) models, T5S
(T5 Spanish) and M2M100, specifically tailored
for the translation of Yucatec Mayan and Chol lan-
guages. We focus mainly on comparing the mod-
els’ accuracy in translating to the Mayan languages,
aiming to determine the most effective approach for
developing NMT systems that can serve as a start-
ing point for future Mayan-based NMT systems in
low and high resource instances.

3 Methodology

3.1 Dataset

In support of our research, we gathered a dataset
comprising 28,135 translation pairs from Spanish
to Chol languages using the CPLM (Parallel Cor-
pus, for Mexican Languages) web tool5. The data
extraction process involved downloading ZIP files,
each potentially containing multiple files with par-
allel sentences in Spanish and one or more tar-
get languages. We utilized the langdetect6 library
to verify the presence of Spanish; ZIP files with-
out Spanish were excluded. To identify relevant
files for Yucatec Mayan and Chol, we looked for
language codes ’yua’ and ’MY’ for Mayan and
’ctu’ and ’CHL’ for Chol. If codes were absent,
we searched for language names such as ’maya’
and ’chol’. Finally, we aligned the files to cre-
ate Spanish-to-Chol and Spanish-to-Mayan parallel
datasets. The number of parallel pairs per language
is shown in Table 1.

3.2 Data Preparation

Inspired by previous NMT systems for Indigenous
Languages (De Gibert et al., 2023), in the post-
processing phase, we applied a length ratio filter
to improve the quality of our translation pairs, re-
moving any with a character length ratio exceeding
4. This filtering step was critical for maintaining a
high-quality dataset by excluding pairs that could
adversely affect translation accuracy. We then ran-
domly divided the sentences into training, devel-
opment, and testing sets. The results of this data
preparation phase, including the final counts of
translation pairs, are detailed in Table 1.

4 Models

Our selection criteria focused on recent models
with extensive pretraining in Spanish, as evidence

5http://www.geco.unam.mx/
6https://github.com/Mimino666/langdetect

Language Original
# Pairs

Cleaned Train Dev/Test

maya-spanish 16149 13528 12176 1352
chol-spanish 11986 10660 9594 1066

Table 1: Summary of the dataset used for training and
testing the NMT models.

suggests this significantly aids in translating to na-
tive languages (Vázquez et al., 2021). Accordingly,
we selected the T5S (T5 Spanish) and M2M100
(480M version) models for our translation tasks.
While both models adopt the encoder-decoder ar-
chitecture foundational to Transformer models,
they are distinguished by their underlying philoso-
phies and optimizations.

This research aims to compare two approaches
to language models (LLMs): T5S, which is versa-
tile for various NLP tasks, and M2M100, which is
specialized for translation purposes. This compari-
son intends to evaluate how well a general model
like T5S can handle low resource translation sce-
narios and determine the performance of M2M100
in translating between less commonly spoken lan-
guages. Through this method, we aim to identify
which model design and training approach are most
effective in creating Mayan NMT systems.

4.1 T5S (T5 Spanish)
The T5 model, recognized for addressing a range of
NLP tasks as text-to-text conversions—including
translation, question answering, and classifica-
tion—generates target text from input (Raffel et al.,
2020). Its variant, IndT5, has been applied for
translating Spanish into 10 Indigenous languages
(Nagoudi et al., 2021). We utilize T5S (Araujo
et al., 2023), an iteration adapted from T5.1.17,
featuring an encoder-decoder structure with 12 lay-
ers, 12 attention heads, and 768 hidden dimen-
sions. T5S was pretrained on Spanish data total-
ing approximately 674GB, comprising the OSCAR
21.09 corpus (160GB), mC4-es corpus (500GB),
and SUC corpus (14GB).

4.2 M2M100
We use the M2M100 (480M) model, with 12 en-
coders, 16 decoder layers,a feed forward network
(FFN) size of 4096, and embedding dimensions of
1024 that have been optimized for machine transla-
tion. It allows for translation among 100 languages,
including Spanish, without requiring a language.
Trained on a dataset of over 1.5 billion sequences
(Fan et al., 2020) it aligns with our strategy of
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utilizing pre trained Spanish language models. Pre-
vious studies have showcased the effectiveness of
M2M100 in translating to languages like Mixtec
(Tonja et al., 2023) along with its performance in
tasks such as the AmericasNLP 2024 Shared Task
(Stap and Araabi, 2023).

5 Experiments and Results

This section outlines our training approach, exper-
imental setup, and the results obtained from de-
ploying various strategies on the T5S and M2M100
models.

5.1 Training Methodology

For our experiments, both models were trained un-
til no improvement was observed for three con-
secutive epochs on the development set, with
the best-performing checkpoint on this set be-
ing used for testing. To enable a single model
to translate between multiple languages, we
adopted a prompt format of "{source_text}
translate {source_lang} to {target_lang}:
{source_text}" before tokenization and training
commenced. This approach facilitated the develop-
ment of models capable of one-to-many (Spanish to
Indigenous languages and vice versa) translations.

5.2 Experimental Setup and Results

Table 2 summarizes the experimental results, pre-
senting both models’ performances across differ-
ent training configurations. "Mayan and Chol"
refers to a one-to-many model trained on both lan-
guages. In contrast, "Mayan" and "Chol" indicate
models trained exclusively on a single language.
The "Zero shot" configuration evaluates model per-
formance without fine-tuning. All models were
trained for translation from Spanish to a native lan-
guage, except those with prefixes ’bi’, indicating
bi-directional training.

In addition to the base dataset, we explored the
impact of augmenting it with additional data from
the Americas NLP2023 Shared Task7 (AmeNLP),
which introduces 11 more target languages. The in-
clusion of AmeNLP data initially led to a decrease
in performance metrics for both models. However,
implementing a uniform sampling strategy miti-
gated this degradation for combinations of Mayan
languages with AmeNLP data but was less effec-
tive for Mayan and Chol alone. This observation

7https://github.com/AmericasNLP/
americasnlp2023

suggests that the uniform sampling strategy is more
advantageous when a model is trained across mul-
tiple datasets.

The M2M100 model outperformed T5S in trans-
lating Mayan and Chol languages, likely due to its
specialization in translation tasks. For both mod-
els, the best average results were achieved when
training with the Mayan and Chol datasets com-
bined in a one-to-many approach. Interestingly,
M2M100 showed a slight improvement on the Chol
test set with the inclusion of "AmeNLP + uniform",
suggesting that this strategy holds promise for en-
hancing multilingual model performance with ad-
ditional data sources. The "biAmeNLP + uniform"
strategy did not yield as positive results, possibly
due to the requirement of specifying a target lan-
guage tag for M2M100, which our Indigenous lan-
guages lack. Further investigation is needed to
fully understand this aspect, despite indications
that translation quality remains consistent irrespec-
tive of the chosen target language tag (Stap and
Araabi, 2023).

For T5S, the "Maya and Chol" configuration was
confirmed as the most effective strategy, with "bi-
AmeNLP + uniform" emerging as the second-best
approach. This suggests that for T5S, a bidirec-
tional model is preferable, potentially because T5S
does not necessitate explicit source or target lan-
guage tags.

6 Conclusion and Future Work

This study has successfully demonstrated that the
T5S and M2M100 models can be adapted for trans-
lation tasks between Spanish and Mayan languages,
showcasing the potential of neural machine trans-
lation (NMT) in enhancing language preservation
and accessibility. The M2M100 model, with its
translation-focused architecture, excels in one-to-
many translation scenarios. Conversely, the T5S
model shows versatility in managing bidirectional
translations, benefiting from its flexible design.

The incorporation of the "AmeNLP + uniform"
strategy has emerged as a promising method to
broaden the models’ capabilities across multiple
languages, though it introduces challenges that ne-
cessitate further exploration. Initial experiments
have validated the potential of NMT for Yucatec
Mayan and Chol, with both models performing
effectively in low-resource settings. Despite the
variation in translation quality, the results affirm
the capacity of these models to acquire meaningful
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Table 2: Comparative performance metrics. Bold denotes overall best; underscore for best ST5 results.

Dataset Set Maya Chol Average
ChrF++ BLEU ChrF++ BLEU ChrF++ BLEU

T5S

Mayan and Chol dev 32.69 10.17 34.6 11.51 33.645 10.84
test 33.13 10.39 35.1 11.42 34.115 10.905

biAmeNLP + uniform dev 29.53 8.23 32.92 10.35 31.225 9.29
test 29.91 8.11 33.03 10.17 31.47 9.14

AmeNLP + uniform dev 21.27 4.38 23.24 5.1 22.255 4.74
test 21.1 4.01 23.42 5.02 22.26 4.515

Mayan dev 27.63 7.09
test 27.52 6.99

Chol dev 28.1 7.83
test 28.7 8.03

Zero shot dev 7.68 0.13 7.55 0.1 7.615 0.115
test 7.65 0.09 7.44 0.08 7.545 0.085

M2M100

Mayan and Chol dev 50.56 27.5 48.22 23.92 49.39 25.71
test 51.48 28.85 48.88 25.11 50.18 26.98

AmeNLP + uniform dev 49.11 25.48 47.85 24 48.48 24.74
test 50.07 26.36 48.89 25.17 49.48 25.765

Mayan dev 50.31 27.27
test 51.55 29.13

Chol dev 47.38 23.41
test 48.27 24.66

biAmeNLP + uniform dev 47.43 22.44 47.27 23.16 47.35 22.8
test 47.99 22.98 48.21 24.22 48.1 23.6

Zero shot dev 10.2 1.2 10.37 1.31 10.285 1.255
test 9.89 0.62 10.26 1.25 10.075 0.935

translations from scant data.

This study marks the beginning of exploring
NMT systems designed specifically for Mayan lan-
guages, highlighting both the possibilities and chal-
lenges of using NMT for languages, with resources.
Moving forward, our future efforts will concen-
trate on expanding datasets and investigating active
learning and few shot learning approaches. Further-
more, we plan to customize the M2M100 model
for other native languages and delve into the nu-
ances of tag selection to enhance translation accu-
racy. By progressing in these areas, we aim not
only to improve the effectiveness of NMT systems
for languages but also to contribute to the broader
field of language technology and digital transfor-
mation (DX). Additionally, we plan to apply the
techniques developed here to other low-resource
scenarios, such as natural language to SPARQL
translation.
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Abstract
This paper describes the BSC’s submission to
the AmericasNLP 2024 Shared Task. We partic-
ipated in the Spanish to Quechua and Spanish
to Guarani tasks. In this paper we show that
by using LoRA adapters we can achieve simi-
lar performance as a full parameter fine-tuning
by only training 14.2% of the total number of
parameters. Our systems achieved the highest
ChrF++ scores and ranked first for both direc-
tions in the final results outperforming strong
baseline systems in the provided development
and test datasets.

1 Introduction

In this paper we present the submission of the
Barcelona Super Computing Center to the Work-
shop on Natural Language Processing (NLP) for
Indigenous Languages of the Americas (Americ-
asNLP) 2024 Shared Task on machine translation
systems for Indigenous languages. We participated
in two directions: Spanish to Guarani and Spanish
to Quechua.

The Quechuan language family, comprising a di-
verse range of dialects, is spoken by over 6 million
individuals across South America. It has a wide ge-
ographic spread, extending from Colombia through
Ecuador, Peru, Bolivia, and Argentina. Quechua
is an oral language, which results in a scarcity of
textual resources. In this work we use an amal-
gamated data set for Quechua from Cuzco (quz)
and Ayacucho (quy), which are the most widely
spoken.

Guarani belongs to the Tupi–Guarani branch of
the Tupian language family. It is one of the official
languages of Paraguay and has more than 9 million
speakers. The data used in this work contains a
mix of dialects, from pure Guarani to more mixed
Jopara.

In this work we fine-tuned various versions of
NLLB-200 (Costa-jussà et al., 2022) as in pre-
vious year winning submission (Gow-Smith and

Sánchez Villegas, 2023). Originally, NLLB-200
had been trained using parallel data in Quechua,
Guarani, and Spanish. Our experiments aimed to
answer the following questions: (1) How benefi-
cial is fine-tuning with multilingual data in low
resource scenarios? (2) Does translation quality
improve with a greater model size for low resource
languages? (3) Can we use LoRA for fine-tuning
multilingual neural machine translation (MNMT)
systems?

The remainder of this paper is organized as fol-
lows: Section 2 describes the data collection and
preprocessing, Section 3 introduces our training
methodology, Section 4 presents the results of our
experiments and comments the results on the test
sets, and finally, Section 5 summarizes the main
findings.

2 Data collection and preparation

In this section we detail our data sources and the
data cleaning pipeline used for cleaning training
data. We utilize the parallel data provided by the
organizers and additional sources for training our
systems.

2.1 Data collection

AmericasNLP 2024 For Quechua, Americas-
NLP training data included the Jw300 corpus (Agić
and Vulić, 2019), MINEDU, and dict_misc. Addi-
tionally, English to Ayacucho Quechua (quy) and
English to Cuzco Quechua (quz) translations of
the Jw300 were also given. As for Guarani, the
parallel data provided by the organizers was col-
lected from web sources in a semi-automatic way
and later supervised by a translator (Chiruzzo et al.,
2020).

Helsinki The organizers made available parallel
data from the Helsinki University (De Gibert et al.,
2023). This data included resources from OPUS
(Tiedemann, 2012). In addition, for Guarani they
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also provided PYconst, News and Jojajovai. Fur-
thermore, they generated synthetic data using two
approaches: first, Spanish synthetic data was gen-
erated from Quechua and Guarani using Wikipedia
monolingual corpus (Tiedemann, 2020), and sec-
ond, by pivoting with English. They translated
the English source sentences from the en-quy and
en-quz Jw300 corpus into Spanish, resulting in syn-
thetic es-quy and es-quz data, and translated the
English source sentences from en-gn NLLB-seed
corpus into Spanish, resulting in es-gn.

OPUS From the OPUS corpus collection, we
get GNOME, Mozilla-I10n, Tatoeba, Ubuntu, and
Wikimedia, all of which are available in Quechua
and Guarani.

FLoRes-200 Developed by Costa-jussà et al., it
is a widely-used multiparallel evaluation dataset
which includes Guarani and Quechua. We ex-
tracted the corresponding Spanish to Guarani and
Spanish to Quechua pairs from test and devtest sets,
concatenated them, and utilized them as training
data.

Hackathon-pln-es This dataset contains transla-
tions from Spanish to Quechua Ayacucho (quy).
It is available at HuggingFace1 and is a collec-
tion of webs and others datasets, namely: "Mundo
Quechua", "Kuyakuykim (Te quiero): Apps con las
que podrías aprender quechua", "Piropos y frases
de amor en quechua", "Corazón en quechua", and
parallel data from AmericasNLP 2021 Shared Task.
We concatenated test set, validation set, and train
sets.

Monolingual-Quechua The Monolingual-
Quechua-IIC dataset (Zevallos et al., 2022) is a
monolingual corpus of Quechua extracted from 50
different monolingual sources on the web which
is available at HuggingFace2. Google Translate
was employed to generate Spanish translations
from this monolingual dataset, thereby obtaining
parallel synthetic source generated data.

NLLB The NLLB corpus3 is a dataset that was
created by OPUS (Tiedemann, 2012) based on
metadata for mined bitext released by the NLLB
project (Costa-jussà et al., 2022). We extracted and

1https://huggingface.co/datasets/
hackathon-pln-es/spanish-to-quechua

2https://huggingface.co/datasets/Llamacha/
monolingual-quechua-iic

3https://opus.nlpl.eu/NLLB/corpus/version/NLLB

incorporated pt-qu, pt-gn, en-qu and en-gn parallel
data in our training dataset.

After collecting all the data, it was concatenated
per language pair and then each set underwent the
cleaning pipeline explained in the following sub-
section.

2.2 Data preprocessing

Given that training data was obtained from vari-
ous sources and a significant part is synthetically-
created, we employed a comprehensive data pre-
processing pipeline to obtain good quality paral-
lel data. In particular, we remove duplicates and
near duplicates, we filter parallel sentences using
heuristic-based and embedding-based methods and
we remove off-target translations.

Cleaning step 1 We employed Moses (Koehn
et al., 2007) standard preprocessing script to train-
ing data: clean-corpus-n.perl which removes
sentences that have more than 150 tokens and re-
moves sentence pairs that have a length ratio greater
than 3. Then, Bifixer (Ramírez-Sánchez et al.,
2020) was used to fix possible text issues.

Cleaning step 2 To remove duplicates and near-
duplicates we used NLPDedup4. Then, we re-
moved off-target translations using googletrans
python library5. We found that there were a con-
siderable number of near duplicates and off-target
translations in the NLLB dataset collected from
OPUS. In the English to Quechua direction, for
example, 47% of the data were near duplicates,
and 21.8% of the deduplicated data were off-target
translations.

Cleaning step 3 We computed embedding-based
similarity between a sentence pair using a sentence
embedding model. We use SONAR (Duquenne
et al., 2023) to embed both source and target sen-
tences then compute a cosine similarity score be-
tween both. SONAR is a novel sentence embed-
ding model that covers 200 languages and out-
performs existing sentence embeddings such as
LASER3 (Heffernan et al., 2022) and LabSE (Feng
et al., 2022). It consists of an encoder-decoder ar-
chitecture initialized from NLLB 1.3B dense model
and trained by adding a pooling operation at the en-
coder’s outputs to extract sentence representations.

4https://github.com/saattrupdan/NLPDedup
5https://github.com/ssut/py-googletrans
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3 Methodology

3.1 Baseline Fine-tuning
We fine-tune separate NLLB models of 1.3B pa-
rameters for the Spanish to Quechua and Spanish
to Guarani training data respectively. For each di-
rection we experiment with different thresholds for
choosing the training set according to the cosine
similarity values computed using SONAR.

3.2 Multilingual Fine-tuning
Following similar lines as Gow-Smith and
Sánchez Villegas, we fine tune NLLB-1.3B with
multilingual data. We experiment with different
variants of the training data to study whether a
richer linguistic mixture of Quechua and Guarani
is beneficial for the translation quality. Specifically,
we include Portuguese and English directions to
the Spanish ones. In table 1 we show the amount
of parallel sentences collected for each translation
pair.

Source Quechua Guarani

es Original 613,006 91,025
pt Original 2,071,571 684,883
en Original 2,874,090 2,959,122

es Filtered 132,884 42,504
pt Filtered 124,942 69,046
en Filtered 167,947 96,487

Total 427,773 208,037
Deduplicated 425,773 208,037

Table 1: Corpus statistics. Filtered refers to the number
of pairs resulting from the data preprocessing pipeline.

Synthetic target generated data We study the
impact of translation quality when adding synthetic
generated data on the target side when fine tuning
the model. Synthetic data was generated using
Google Translate, translating Spanish monolingual
data from TED2020 (Reimers and Gurevych, 2020)
collected from OPUS website6 which consists in
416,846 sentences in Spanish for about 4,000 TED
talks covering a wide range of domains. We find
that this data improves performance for the Spanish
to Quechua direction (see Section 4).

Model size To investigate the effect of increasing
the model capacity, we fine-tune the NLLB pre-
trained model of 3.3B parameters with the best

6https://opus.nlpl.eu/

configuration found for the previous experiments
with the model of 1.3B parameters.

3.3 LoRA Fine-tuning

Parameter-efficient fine-tuning (PEFT) techniques
adapt pre-trained models by fine-tuning only a
small subset of the model’s parameters. The Low-
Rank Adaptation (LoRA) technique (Hu et al.,
2021) has been popularized for LLM training for
its efficiency and often comparable results with
full-parameter fine-tuning (Sun et al., 2023).

LoRA uses low-rank parametrized update matri-
ces to reduce the number of trainable parameters.
More specifically, given a pre-trained weight ma-
trix W0 ∈ Rd×k, matrix W0 is updated with a
low-rank decomposition as follows:

W0 +
α

r
∆W = W0 +

α

r
BA, (1)

where B ∈ Rd×r, A ∈ Rr×k, r is the rank of
the trainable matrices and α is a scaling parameter
that scales the learned weights. During the fine-
tuning, the original matrix W0 remains unchanged
and does not receive gradient updates. However,
matrices A and B are updated during training.

We apply LoRA to the feed-forward and atten-
tion layers. The rank of the trainable matrices was
set to 256 and α was set to 512.

3.4 Setup

For fine-tuning we use AdamW (Loshchilov and
Hutter, 2019) optimizer with β1 = 0.9, β2 = 0.98,
ϵ = 10−6, λ = 0.01. We use the inverse square
root scheduler with an initial learning rate of 2e-4
and 15,000 warmup steps. We set a batch size of 4
with 2 gradient accumulation steps, and train on 10
epochs. We use 1,000 sentences from the training
dataset as the validation dataset in training. All
models are trained using the Transformers7 library
on H100 GPUs. For LoRA we use the Peft8 library.
We saved best checkpoints every 4,000 steps ac-
cording to the best ChrF++ metric in the validation
set.

3.5 Inference

We limit the translation length to 512 tokens. For
the case of Quechua we do not allow the model to
generate an apostrophe as the Quechua Ayacucho
variety was the one used in development and test

7https://huggingface.co/
8https://huggingface.co/docs/peft/index
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sets which does not handle pentavocalism. For in-
ference, we use beam search and we experiment
with different values of the beam size and the repe-
tition penalty term (β). We find that adjusting the
repetition penalty term yields major improvements
in the case of Guarani.

3.6 Evaluation
We evaluate our fine-tuned models with the evalua-
tion script provided by the organizers. Specifically,
models were evaluated with two metrics: BLEU
(Papineni et al., 2002) and ChrF++ (Popović, 2017)
using SacreBLEU9 implementation (Post, 2018).

We compare our model’s performance against
the baseline models released by the University of
Helsinki (De Gibert et al., 2023) and the Univer-
sity of Sheffield (Gow-Smith and Sánchez Villegas,
2023). In addition, we provide the performance of
Google Translate and the pre-trained NLLB 1.3B
and 3.3B without any fine-tuning.

4 Results

4.1 Dev Set Results
Baseline Fine-tuning We first fine-tune the
NLLB 1.3B models using bilingual data. Figure
1 shows the results of a full parameter fine-tuning
of the model using different thresholds for select-
ing training data given the cosine similarity scores
computed using SONAR. Based on the results we
decide to use a threshold of 0.2 and 0.3 for Guarani
and Quechua respectively for our next experiments.
Note that we do not experiment with thresholds
greater than 0.4 for Guarani as the number of sen-
tence pairs between Spanish and Guarani given that
threshold is relatively low (less than 19K pairs).

Multilingual Fine-tuning Table 3 show the
BLEU and ChrF++ metrics evaluated on the de-
velopment dataset for the Spanish to Quechua and
Spanish to Guarani directions. As shown in the
table, using synthetic target generated data com-
bined with multilingual training improves transla-
tion quality for the Spanish to Quechua direction.
In comparison to baseline models, we observe that
our systems exhibit strong performance. In the de-
velopment set we outperform Google Translate by
+1.41 ChrF++ points and Sheffield’s baseline by
+6.05 points.

Regarding the Spanish to Guarani direction, we
find that training with multilingual parallel data

9Word n-gram order was set to 2 for SacreBLEU imple-
mentation of ChrF++.
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Figure 1: Performance evaluating on dev set. ChrF++ is
in the vertical axis, and value for the threshold is in in
the horizontal axis.

(en→gn and pt→gn) does not improve translation
quality. However, our system trained only with
Spanish to Guarani parallel data outperforms base-
line models. We outperform Helsinki’s baseline
model by +2.74 ChrF++ points and Sheffield’s
baseline by +5.31 points.

Model size Table 2 compares the performance
when increasing the model size. We compare the
NLLB 1.3 Billion parameter model with the 3.3
Billion parameter one. When fine-tuning using the
3.3B model, we find that we do slightly worse (
-1.35 ChrF++ points ) than with the 1.3B model
for the Spanish to Guarani direction, yet we gain
+0.12 ChrF++ points for the Spanish to Quechua
direction. These results indicate that increasing the
model size does not yield superior performance.
Mainly due to the small amount of data used for
fine-tuning.

Spanish → Quechua Spanish → Guarani

ChrF++ BLEU ChrF++ BLEU

NLLB-1.3B 36.27 3.77 37.48 11.15
NLLB-3.3B 36.39 4.07 36.13 10.20

Table 2: Experiments with model size.

LoRA Table 4 shows the results when fine-tuning
using LoRA adapters. Notably, for the Spanish to
Quechua direction, our system performs as well
as the full fine-tuning with the NLLB 3.3B model
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Data Spanish → Quechua Spanish → Guarani

es en pt ChrF++ BLEU ChrF++ BLEU

Baseline Helsinki 28.78 - 34.74 -
Sheffield 30.22 - 32.17 -
Google Translate 34.86 3.23 30.33 4.71

Inference NLLB-1.3B 24.97 1.95 31.28 6.27
NLLB-3.3B 26.84 1.64 32.03 6.31

Our NLLB-1.3B ✓ ✗ ✗ 32.20 3.28 37.48 11.15
NLLB-1.3B ✓ ✓ ✗ 32.71 3.18 33.94 7.89
NLLB-1.3B ✓ ✗ ✓ 32.40 3.35 33.92 7.88
NLLB-1.3B ✓ ✓ ✓ 31.59 2.94 34.01 8.26

Our NLLB-1.3B + Synthetic ✓ ✗ ✗ 35.12 3.55 32.50 6.08
NLLB-1.3B + Synthetic ✓ ✓ ✓ 36.27 3.77 32.48 6.00

Table 3: Evaluations computed on the development dataset. The symbol ✓ indicates that the parallel data in the
corresponding direction was utilized for the fine-tuning whereas ✗ indicates that it was not used.

when fine-tuning with LoRA, even though it has
85.8% fewer trainable parameters. We perform
just slightly worse when compared to the full fine-
tuning in the Spanish to Guarani direction when
using LoRA.

Trainable Parameters es→qu es→gn

NLLB-3.3B 3,898,511,360 36.39 36.13
NLLB-1.3B 1,748,125,696 36.27 37.48

NLLB-3.3B + LoRA 553,648,128 36.40 35.24
NLLB-1.3B + LoRA 377,487,360 36.11 35.26

Table 4: Experiments with LoRA fine-tuning. ChrF++
scores are shown for Spanish to Quechua (es→qu) and
Spanish to Guarani (es→gn) directions.

Inference experiments A grid search is per-
formed to understand how the beam size and the
repetition penalty term (β) parameters affect the
translation quality. We plot the obtained results in
Figure 2.

We observe that for the Spanish to Guarani direc-
tion, the penalty term has a significant impact on
the translation quality as measured by the ChrF++
score. Specifically, we find that best ChrF++ results
are obtained with a beam size of 10 and β = 4.

However, for the Spanish to Quechua direction,
neither the repetition penalty term nor the beam
size seem to have significant impact on the transla-
tion quality.
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Figure 2: Performance evaluating on dev set grouped
by repetition penalty. ChrF++ is in the vertical axis, and
beam size is in the horizontal axis.

4.2 Test Set Results

In table 5 we show the results on the test sets.
Our submitted systems ranked first in both di-
rections. On Spanish to Quechua, we achieve
38.21 ChrF++ using LoRA adapters with the 1.3B
model. We observe that our submitted systems
significantly outperform baseline models by +4.2
points on Sheffield’s baseline and by +9.4 points
on Helsinki’s baseline for this direction. On Span-
ish to Guarani direction we achieve 38.93 ChrF++
and our submitted systems outperform Helskinki’s
baseline model by up to +1.91 points and by up to
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+3.17 points for Sheffield’s baseline model.

Model rqu es→qu rgn es→gn

Baselines
Helsinki 28.81 37.02
Sheffield 34.01 35.76

Full fine-tuning
NLLB-3.3B 2 38.19 2 37.64
NLLB-1.3B 4 38.02 1 38.93

LoRA
NLLB-3.3B + LoRA 3 38.10 3 37.63
NLLB-1.3B + LoRA 1 38.21 4 37.42

Table 5: Final test results. ChrF++ scores are shown
for Spanish to Quechua (es→qu) and Spanish to Guarani
(es→gn) directions. rqu and rgn denote the position in the
final classification for Spanish to Quechua and Spanish
to Guarani respectively.

5 Conclusions

In this paper we describe the Barcelona Super-
computing Center submission to the AmericasNLP
2024 shared task. We took part in the Spanish to
Quechua and Spanish to Guarani tracks. We fine-
tuned different versions of the NLLB-200 model.
Our systems ranked in first place in both translation
directions outperforming the provided baselines.

Our experiments show that increasing model size
does not yield superior performance when data is
scarce. Also, we show that training with multilin-
gual data combined with synthetic data improves
translation quality for the Spanish to Quechua di-
rection. Finally, we show that by fine-tuning the
models using LoRA, we can obtain a similar perfor-
mance as a full parameter fine-tuning while training
only 14.2% of the parameters.
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Abstract
This paper presents the system description of
the NordicsAlps team for the AmericasNLP
2024 Machine Translation Shared Task 1. We
investigate the effect of tokenization on trans-
lation quality by exploring two different tok-
enization schemes: byte-level and redundancy-
driven tokenization. We submitted three runs
per language pair. The redundancy-driven to-
kenization ranked first among all submissions,
scoring the highest average chrF2++, chrF, and
BLEU metrics (averaged across all languages).
These findings demonstrate the importance of
carefully tailoring the tokenization strategies
of machine translation systems, particularly in
resource-constrained scenarios.

1 Introduction

The participation of the NordicsAlps team in the
AmericasNLP 2024 Machine Translation Shared
Task builds directly on the previous contributions
by the Helsinki team. The main goal of the shared
task, as in the previous editions, is to build ma-
chine translation (MT) systems capable of translat-
ing Spanish into eleven American languages. With
limited training data, the MT solutions need to
leverage cross-lingual transfer and data-efficient
approaches to achieve a good level of performance
on the translation tasks. Previous contributions of
the Helsinki team performed cross-lingual transfer
by pre-training a Spanish-English model, and trans-
ferring the knowledge learned to the language pairs
of the task, i.e., Spanish-TARGET (any of the eleven
indigenous target languages), by continued train-
ing. The previous Helsinki submissions primarily
focused on increasing the data size by collecting
additional sources and applying data augmentation
techniques, but data efficiency was not directly ad-
dressed. Our submission builds on the previous
findings and focuses on the data efficiency aspect
of the challenge.

†Authors of equal contribution

The core idea behind our proposal is that both
cross-lingual transfer and data efficiency can be
improved by optimizing the vocabulary size, which
can be controlled by means of tokenization. Fol-
lowing the current understanding about the role of
tokenization in machine translation (Section 2), we
aim at small vocabularies (short tokens). We ex-
plore two options: (1) byte-level tokenization and
(2) redundancy-driven subword-level tokenization,
and compare them with the SentencePiece tokeniza-
tion used in De Gibert et al. (2023). We submit
three runs for each language pair. Among these
runs, the redundancy-driven tokenization scheme
gives the best scores on all language pairs. Further-
more, it ranks first among all submissions to the
shared task in terms of average chrF++, chrF, and
BLEU.

2 Related Work

2.1 Machine translation for indigenous
languages of the Americas

As pointed out by Mager et al. (2018), despite
the fact that there are millions of people in the
Americas who identify as indigenous, there is a
distinct lack of language technology for the hun-
dreds of indigenous languages spoken in the Ameri-
cas. Machine translation systems have the potential
to aid in equality of access to information, edu-
cational technology, and language revitalization
efforts for indigenous communities (Mager et al.,
2018, 2023; Ebrahimi et al., 2023). However, build-
ing such systems for languages that are often rela-
tively low-resourced presents a number of potential
challenges, as delimited in a survey of the field
by Haddow et al. (2022). These challenges can
include the lack of reliable language identification
tools to aid in data collection, a scarcity of paral-
lel data sets, and non-standardized orthographies.
Mager et al. (2018) also note that indigenous Amer-
ican languages are very typologically diverse, yet
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many are understudied from a linguistic standpoint
compared to languages more commonly treated in
NLP. This limits the opportunity to experiment with
machine translation models informed by linguistic
knowledge (i.e., via token annotations), which is
an area that generally lacks study in low-resource
machine translation settings according to Haddow
et al. (2022).

Now in its fourth year, the AmericasNLP shared
task has become a lively forum for progressing in
machine translation for indigenous languages in
the Americas. Previous submissions to the 2021
and 2023 shared tasks have taken a variety of cre-
ative steps to work around the challenges com-
mon in low-resourced language machine transla-
tion. Among other things, this has included experi-
menting with fine-tuning pre-trained machine trans-
lation models; data mining and filtering; exploiting
monolingual language data to synthesize or back-
translate more parallel data; multilingual trans-
lation models; knowledge distillation; in-context
learning with GPT models; and model ensembling
(Mager et al., 2021; Ebrahimi et al., 2023). Im-
portantly, previous challenges have included qual-
itative analysis of some of the submitted transla-
tion systems. Indeed, other researchers have high-
lighted that community involvement is a key part of
developing NLP tools that have a positive impact
for indigenous communities and their languages
(Mager et al., 2023; Zhang et al., 2022).

2.2 Subword segmentation in MT
With the introduction of subword tokenization to
MT (Sennrich et al., 2016), the size of the vocabu-
lary has become a hyper-parameter, which is most
commonly set in an arbitrary way. For instance,
the size of 32k is a frequent choice for multilingual
MT at the moment. The vocabulary size can, in
principle, be optimized for the task (Kudo, 2018),
but this is hard to do in the framework of trans-
fer learning because the vocabulary of pre-trained
models is fixed and hard to map onto a different
one for the end task. This is an important obstacle
to improving cross-lingual transfer in general (Rust
et al., 2021). Byte Pair Encoding (BPE) drop-out
(Provilkov et al., 2020) is a popular general method
of regularizing the vocabulary, which is suitable for
transfer learning.

In search of a more principled approach to set-
ting the vocabulary size, Mielke et al. (2019) find
that the size of 0.4 × the initial (word-level) size
results in the lowest negative log likelihood of a

language model across multiple languages. The
size of 32k appears the best when translating from
German to English with a large training set. Oth-
erwise, 2k seems to work best for varied data sizes
and directions (Gowda and May, 2020). Defin-
ing linguistically motivated subword units is a cri-
terion proposed by Ataman and Federico (2018).
This method can help with a particular language
(e.g. Turkish), but it depends on external language-
specific knowledge. Using more linguistically
driven algorithms is found to improve downstream
performance on various tasks (Bostrom and Dur-
rett, 2020; Park et al., 2021), but the improvements
are surprisingly small and not very consistent. As a
matter of fact, replacing standard BPE tokens with
randomly selected ones gives almost the same MT
scores (Saleva and Lignos, 2023).

Byte-level tokenization is an attempt to over-
come the arbitrariness of the vocabulary size param-
eter and other limitations of subword tokenization
(Shapiro and Duh, 2018). Instead of representing
the text using subwords, the content is mapped to
bytes using the Unicode Transformation Format
8-bit (UTF-8) encoding. This strategy removes
the need for initial text processing by reducing all
texts to a small vocabulary of only 256 byte types.
This level of tokenization is similar to the character-
level (bytes roughly encode Unicode characters),
which looked promising with RNN models (Lee
et al., 2017). However, later experiments yielded
mixed results. Shaham and Levy (2021) trained
models that operate on byte sequences, outperform-
ing the subword-based models in bilingual trans-
lation. These findings were also confirmed in a
many-to-one multilingual setup and for endangered
languages (Zhang and Xu, 2022). On the other
hand, Libovický et al. (2022) find that subword to-
kenization is still better. More generally, byte-level
tokenization can improve the performance on vari-
ous tasks in low-resource languages (Clark et al.,
2022; Xue et al., 2022), but its use in high-resource
settings is still questionable. Since the data sets in
this shared tasks are relatively small, we explore the
use of small byte- and subword-level vocabularies.

3 Data

Following De Gibert et al. (2023), we train multilin-
gual one-to-many models that translate from Span-
ish to the eleven indigenous target languages and
and include English as an additional high-resource
target language.
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Spanish–English Data We use Spanish–English
parallel data from a subset of the sources men-
tioned in De Gibert et al. (2023): Europarl, Glob-
alVoices, NewsCommentary, TedTalks, and Tatoeba
collected from OPUS (Tiedemann, 2012). In con-
trast to De Gibert et al. (2023) and due to time
constraints, we do not include Bibles nor OpenSub-
titles. Validation data for pre-training comes from
the Spanish–English WMT-News corpus.

The Spanish–English parallel data underwent
cleaning with OpusFilter (Aulamo et al., 2020),
as described in De Gibert et al. (2023). Namely,
this consisted in deduplication and a set of filters
based on length difference, script identification and
language identification.

Spanish–Indigenous Language Data Our mod-
els include all eleven indigenous American lan-
guages for which data was provided in the shared
task: Asháninka (cni), Aymara (aym), Bribri (bzd),
Chatino (ctp), Guarani (gn), Hñähñu (oto), Nahu-
atl (nah), Quechua (quy), Raramuri (tar), Shipibo-
Konibo (shp), and Wixarika (hch).

We used all Spanish–indigenous language train-
ing and development data provided by the Shared
Task organizers (Ortega et al., 2020; Cushimari-
ano Romano and Sebastián Q., 2008; Mihas, 2011;
Tiedemann, 2012; Feldman and Coto-Solano, 2020;
Agić and Vulić, 2019; Montoya et al., 2019; Galar-
reta et al., 2017). Whenever available, we also
included the extra and synthetic datasets provided
by the Shared Task organizers (De Gibert et al.,
2023).

The data used for this year’s submissions differ
from those described in De Gibert et al. (2023)
in two crucial aspects. First, we did not include
Bible data, since Bibles did not improve translation
quality in earlier editions (Vázquez et al., 2021) and
were not part of the organizer-provided datasets.
Second, due to time constraints, we did not apply
any filtering or cleaning to the parallel data.

No preprocessing has been applied to the byte-
level models. Some general preprocessing was
carried out on the Spanish–indigenous language
data for the BPE-based models. This consisted
in whitespace normalization, Unicode character
normalization, and separation of punctuation from
words. Separation of punctuation from words was
done using the Moses tokenizer as well as hand-
crafted rules to prevent tokenization at apostrophes
that actually represented glottal stops. As docu-
mented in Vázquez et al. (2021), we also applied

some spelling normalization scripts to the data for
Wixarika and Raramuri.

Since all our models are multilingual models
with several target languages, we include a target
language tag at the beginning of the source sen-
tence. We did not use the additional variant and
quality tags proposed by De Gibert et al. (2023),
and opted for simply relying on the target language
for the tags.

3.1 Post-processing

The output produced by the MT models is post-
processed by removing subword segmentation
marks (if applicable), removing <unk> tokens, and
detokenizing with the Moses detokenizer (with
Spanish settings).

After inspecting the translations of the develop-
ment sets, we also apply some language specific
post-processing rules:

• For Aymara, Bribri and Raramuri, we nor-
malize apostrophes and remove whitespaces
surrounding them.

• For Guarani and Hñähñu, we apply the
normalization functions of De Gibert et al.
(2023)1, complemented with some additional
diacritic replacements.

• For Wixarika, we observed that the + sign
was not properly detokenized; however, we
could not find a simple post-processing rou-
tine to properly attach this symbol to preced-
ing and/or following tokens.

4 Methods

Our subword-level settings follow previous model
architectures and training regimes closely with a
few updates. The main difference here is the tok-
enization. In the byte-level settings, we work with
different architectures.

4.1 Subword-level Models

U-SP As a baseline, we segmented all data with
the subword tokenizer provided by De Gibert et al.
(2023). This tokenizer was trained jointly on all
source and target languages with the Unigram
model implemented in the SentencePiece toolkit,
using a vocabulary size of 32k tokens.

1See https://github.com/Helsinki-NLP/
americasnlp2023-st/blob/main/create_opusfilter_
config.py
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In preliminary experiments, we found that using
joint or separate token embeddings did not make
a significant impact, and neither did subword sam-
pling. We report results on the model that most
closely resembles the other subword setting (BPE-
MR), namely with separate embeddings and with-
out subword sampling.

BPE-MR The principle of BPE-MR is to use
text redundancy as a criterion for the vocabulary
size. We look for the vocabulary that approximately
minimizes text redundancy (hence MR). This goal
is inspired by connecting several observations from
previous work.

The first relevant point is that, given a fixed vo-
cabulary size, data compression efficiency of a tok-
enization algorithm has an impact on machine trans-
lation. That is, the tokenization that minimizes the
length of the sentence gives the best BLEU score
(Gallé, 2019). This finding is recently replicated
by Zouhar et al. (2023) using Rényi entropy as the
measure of compression efficiency. While these
findings do not suggest a preferred vocabulary size,
we note that the overall best scores are obtained
with smaller vocabularies, in the range around 2k,
already observed by Gowda and May (2020).

The second relevant point is that monolingual
BPE models maximally compress a corpus af-
ter carrying out just 200–350 merges (Gutierrez-
Vasques et al., 2021). Since each BPE merge adds
exactly one new member to the vocabulary, the
maximal compression happens with the vocabulary
size of several hundreds (number of BPE merges
+ the set of characters). This compression is mea-
sured by information theoretic redundancy of a
given corpus, and was shown to hold across a di-
verse sample of languages.

The third relevant point is that Shannon entropy
converges to a similar value across different lan-
guages when the redundancy is maximized making
different languages in some sense more similar
(Gutierrez-Vasques et al., 2021). More compatible
embedding spaces across languages coincide with
identical vocabulary sizes (Maronikolakis et al.,
2021), at least in alphabetic scripts, although the
size itself does not seem to impact the performance
on the zero-shot XNLI task.

We thus train a BPE subword tokenizer2 to carry
out 300 merges for each language. Note that this is
far fewer merges than what is typical when using
BPE for training subword tokenizers. For English

2https://github.com/rsennrich/subword-nmt

and Spanish, the tokenizers were trained on the
parallel Spanish-English training data. For the in-
digenous languages, we trained each tokenizer on
the given language’s training and development data,
as well as the extra files where available. We did
not use any provided synthetic data while training
the tokenizers. Subword tokenization models for
the indigenous languages were trained on prepro-
cessed data. We then applied the trained subword
tokenization models to their respective language’s
train, development, extra, and synthetic data, and
added the tokenized extra and synthetic data to the
train set.

For the indigenous languages, we experimented
with an early stop criteria to determine exactly how
many merges to train the tokenization models for.
This consisted in iteratively training 350 tokeniza-
tion models for each language to carry out 1 to 350
merges on the corpora. After applying each model,
we determined the difference in the frequency of
the vocabulary items merged by BPE at the given
merge and the prior merge. Based off of previ-
ous unpublished experiments with smaller datasets,
we stop training BPE models when seven models
occurred where the difference in merged-item fre-
quency was extremely low (i.e., -1 or 0). However,
for all of the indigenous languages used here, the
early stop criterion was never met in the first 350
merges. Therefore, we trained all models to carry
out 300 merges, and will conduct further research
on finding the ideal stopping point in the future.

Model Architecture and Training Regime All
MT models use the Transformer architecture
(Vaswani et al., 2017) with mostly the same hyper-
parameters as Model B of De Gibert et al. (2023).3

The models are trained with OpenNMT-py 3.4.3
(Klein et al., 2020).

The training takes place in two phases. In phase
1, the model is trained on 89% of Spanish–English
data and 1% of data coming from each of the eleven
indigenous languages. In phase 2, the proportion
of Spanish–English data is reduced to 50%, with
the other half sampled to equal amounts from the
eleven indigenous languages. We did not include
a third phase of language-specific fine-tuning this
year.

We train the first phase for 100k steps and pick
the best intermediate savepoint according to the

3Notable differences include the use of separate source and
target token embeddings, and of the ALiBi position encodings
(Press et al., 2021).

153

https://github.com/rsennrich/subword-nmt


Model Source vocab. Target vocab.

U-SP 21 511 25 949
BPE-MR 1 215 5 896
Byte-SESD, Byte-SEMD 256 256

Table 1: Vocabulary sizes of the different MT models.
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Figure 1: Development chrF++ scores (averaged over
all 11 development sets) during phase 2 training of
subword-level models.

English validation set. Depending on the model,
this occurred after 96k or 100k steps. We initialize
phase 2 with this savepoint and continue training
until 200k steps, saving intermediate checkpoints
every 2k steps. We then pick the most promising
savepoint for each language based on the chrF++
score of the development set.

We train two models, one with a baseline Sen-
tencePiece tokenizer, and one with the proposed
BPE-MR approach. They are described in detail
below.

4.2 Byte-Level Models

For our byte-level models, we experiment with dif-
ferent architectures within a one-to-many setup.
We define the following two variants: the first vari-
ant is the single encoder multiple decoder setup
(Byte-SEMD) which involves one encoder for
Spanish and one language-specific decoder for each
target language. The second variant is a single en-
coder single decoder (Byte-SESD) setup compris-
ing one encoder for Spanish and one decoder that is
shared by all target languages. The model employs
language tokens as a guide to generate text in the
target language. We proceed with the same train-
ing regiment as before, by pre-training a model on
English-Spanish data, and using the weights of the
model to initialize the encoder and decoders in the
proposed setups.

For all models, we use a total of 6 transformer
layers for the encoder and 6 layers for the decoder

Language Savepoint Before After

aym Aymara 124k 33.35 33.42
bzd Bribri 176k 23.01 22.99
cni Asháninka 196k 24.48
ctp Chatino 200k 38.34
gn Guarani 194k 31.90 34.61
hch Wikarika 142k 26.97
nah Nahuatl 152k 25.39
oto Hñähñu 130k 11.86 12.75
quy Quechua 164k 31.76
shp Shipibo-Konibo 164k 27.51
tar Raramuri 142k 15.76 15.76

Table 2: Development set chrF++ scores of the BPE-
MR model, before and after language-specific post-
processing. No post-processing was applied to six lan-
guages. The table also shows the savepoints that yielded
the reported scores. These savepoints were used for test
set translation.

with 8 attention heads, 512 hidden units and the
feed-forward dimension of 2048. We follow the ar-
chitecture of Shaham and Levy (2021) by replacing
the dense trainable embedding matrix of the embed-
dingless models with a fixed one-hot encoding of
the vocabulary. We use relative position encoding
(Shaw et al., 2018) as the limit of the sequences
supported by the framework is 5000 (lower than
the largest byte sequence in the training data). We
use the MAMMOTH toolkit (Mickus et al., 2024)
as a basis for our implementation, since it is specif-
ically designed for modular sequence-to-sequence
model training, which allows to produce the dif-
ferent sharing patterns desired in this study. The
models underwent training for 1.5 days, with an
early stopping criterion in place. However, we ob-
served that they were undertrained at the time of
submission: the loss continued to decrease, and the
early stopping mechanism had not yet been trig-
gered. Consequently, we chose the most recent
checkpoint for the submission. This issue rises due
to the sequence length of such models that requires
a larger batch size compared to the other variants
as well as a longer training budget.

5 Results

The different tokenization strategies resulted in dif-
ferent vocabulary sizes of the MT models, as can
be seen in Table 1.

5.1 Subword-level Model Evaluation
Figure 1 shows the evolution of the development
chrF++ scores during the second phase of training.
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Model aym bzd cni ctp gn hch nah oto quy shp tar Average

1 – BPE-MR [2] 29.39 [4] 23.32 [1] 23.20 [1] 37.38 [5] 36.23 [1] 27.64 [1] 22.87 [1] 12.98 [11] 32.98 [2] 27.04 [5] 14.57 [1] 26.15
2 – Byte-SEMD [8] 26.37 [8] 17.23 [9] 15.45 [2] 23.64 [10] 32.32 [9] 23.47 [8] 20.77 [7] 11.63 [14] 28.81 [10] 22.20 [9] 10.53 [8] 21.13
3 – Byte-SESD [12] 15.77 [12] 12.24 [10] 15.23 [11] 12.96 [17] 14.80 [12] 15.97 [13] 14.57 [9] 11.22 [16] 25.15 [12] 21.28 [8] 12.63 [12] 15.62

Best competitor [1] 30.97 [1] 23.47 [2] 22.98 [3] 20.70 [1] 38.93 [2] 26.46 [2] 21.71 [2] 12.63 [1] 38.21 [1] 29.37 [1] 17.03 [2] 23.32

Table 3: Official chrF++ scores on the test sets. Rankings are displayed in brackets.

We observe that the training curves are relatively
flat, which suggests that phase 2 training can be
limited to a few thousand steps without significant
impact on translation performance.

The BPE-MR model clearly outperform the U-
SP model. Moreover, the training scores of the
U-SP model fluctuate much more. In particular, the
U-SP model shows occasional language-specific
“breakdowns”, but recovers quickly from them. For
example, the chrF++ scores for Guarani vary be-
tween 27.97 (100k), 3.66 (102k), and 28.17 (104k).
We currently do not have an explanation why such
breakdowns occur, and why they only occur for
some of the languages.

On the basis of these observations, we decided
not to submit the U-SP model. Table 2 shows the
selected checkpoints per language and the corre-
sponding development set chrF++ scores of the
BPE-MR model. It also shows that language-
specific post-processing (see Section 3.1) had a
considerable impact on our Guarani and Hñähñu
results.

5.2 Test results

We submitted three runs to the shared task: (1)
BPE-MR, (2) Byte-SEMD, and (3) Byte-SESD.
Table 3 reports the official results on the test set.
Our BPE-MR submission was ranked first for 5
out of 11 languages and second for 2 additional
languages. For Bribri, Asháninka, Hñähñu and
Quechua, it was an extremely close competition:
the first 6, 7, 6 and 4 submissions respectively are
only within one chrF++ point. For all but Quechua,
our BPE-MR submission is among these best sub-
missions. In terms of average chrF++, chrF, and
BLEU, the submitted BPE-MR model ranks first
among all submissions to the shared task.

As mentioned previously, we notice that the byte-
level models are undertrained at the time of the
submission, due to the sequence length of such
models that requires a larger batch size compared
to the other variants, and a longer training budget.

6 Conclusions

This paper presents the NordicAlps submissions to
the AmericasNLP 2024 machine translation shared
task. Our contribution focuses on data efficiency,
and in particular on optimizing subword-level to-
kenization. We trained four systems: a baseline
system with a previously trained SentencePiece to-
kenizer (U-SP), a subword-level system based on
the proposed minimized text redundancy BPE ap-
proach (BPE-MR), and two byte-level systems dif-
fering in their decoder architectures (Byte-SEMD
with language-specific decoders and Byte-SESD
with a single shared decoder). We did not submit
the U-SP system.

The BPE-MR system reached the first rank in
terms of average scores across all languages. It
reached a top-five ranking for all languages except
Quechua. The Byte-SEMD and Byte-SESD sys-
tems performed less well, but this is most likely
due to undertraining.
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Abstract

This paper describes the LECS LAB submis-
sion to the AmericasNLP 2024 Shared Task
on the Creation of Educational Materials for
Indigenous Languages (Chiruzzo et al., 2024).
The task requires transforming a base sentence
with regards to one or more linguistic proper-
ties (such as negation or tense). We observe
that this task shares many similarities with the
well-studied task of word-level morphological
inflection, and we explore whether the findings
from inflection research are applicable to this
task. In particular, we experiment with a num-
ber of augmentation strategies, finding that they
can significantly benefit performance, but that
not all augmented data is necessarily beneficial.
Furthermore, we find that our character-level
neural models show high variability with re-
gards to performance on unseen data, and may
not be the best choice when training data is
limited.

1 Introduction

Morphological inflection is an NLP task with a
rich history of rule-based, statistical, and neural
methods (Clark 2002; Durrett and DeNero 2013;
Nicolai et al. 2015; Cotterell et al. 2016; Faruqui
et al. 2016; Wu et al. 2021; inter alia). Typically,
systems must predict an inflected form of a word
(such as “cats”) given a lemma form (“cat”) and
an inflectional change (plural).

In the AmericasNLP 2024 Shared Task on Cre-
ation of Educational Materials for Indigenous Lan-
guages (Chiruzzo et al., 2024), systems must con-
vert a base sentence into a target sentence by chang-
ing one or more linguistic properties (example in
Table 1). Generally, this transformation involves
inserting or deleting helper words, modifying the
inflection of words in the source sentence, or both,
and we observe many similarities (and some dif-
ferences) between this task and the morphological
inflection task.

Source Ko’one’ex ich kool

Change PERSON:1_PL

Target Ko’ox ich kool

Table 1: Example from the Yukatek Maya training data.

In approaching this task, we apply lessons from
research on inflection models. The shared task
poses particular difficulties due to the limited
amount of available training data. To alleviate this
issue, we utilize sequence-to-sequence (seq2seq)
neural models and explore various techniques, fo-
cusing in particular on exploring various data aug-
mentation strategies. We present results for all
three task languages: Bribri, Yukatek Maya,1 and
Guaraní. Our code is available on GitHub.2

2 Background

In 2021, the first edition of the workshop (and
shared task) on Natural Language Processing
for Indigenous Languages of the Americas
(AmericasNLP) was proposed. For this edition,
the task of machine translation was presented
to the participants. The goal of this shared task
was to learn machine translation models for ten
indigenous languages. The participants were given
ten sets of language pairs: Quechua–Spanish,
Wixarika–Spanish, Shipibo-Konibo–Spanish,
Asháninka–Spanish, Raramuri–Spanish, Nahu-
atl–Spanish, Otomí– Spanish, Aymara–Spanish,
Guarani–Spanish, and Bribri–Spanish (Mager
et al., 2021). For the 2022 edition, the participants
were asked to present novel speech-to-text transla-
tion systems for Bribri–Spanish, Guaraní–Spanish,
Kotiria–Portuguese, Wa’ikhana–Portuguese, and
Quechua–Spanish (Ebrahimi et al., 2022). Finally,
in 2023, the task was machine translation for the

1This language is referred to by task organizers (and many
speakers) simply as ‘Maya’ - we also use this shorter form.

2https://github.com/lecs-lab/americasnlp2024
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ten pairs mentioned above, plus a new language
pair, Chatino-Spanish (Ebrahimi et al., 2023).

3 Related Work

Many of our strategies are inspired by research
in morphological inflection. Morphological
(re)inflection is the task of predicting an inflected
form given a lemma or wordform and one or more
target morphological features, and has been studied
extensively through several shared tasks (Cotterell
et al., 2016, 2017, 2018; Vylomova et al., 2020; Pi-
mentel et al., 2021; Kodner et al., 2022; Goldman
et al., 2023).

Morphological inflection has been studied with
neural models such as RNNs (Kann and Schütze,
2016), convolutional neural networks (Östling,
2016), variational autoencoders (Zhou and Neu-
big, 2017), and transformers (Wu et al., 2021).

Data augmentation has been proposed as a strat-
egy to address the challenges of training neural
models on inflection tasks, particularly with limited
data. Approaches have included creating artificial
examples that copy the inputs directly to the out-
puts (Kann and Schütze, 2017; Bergmanis et al.,
2017; Liu and Hulden, 2022; Yang et al., 2022),
creating synthetic examples using morphological
analyzers (Nicolai et al., 2017), and editing sub-
strings using various methods to identify candidate
stems (Silfverberg et al., 2017; Anastasopoulos and
Neubig, 2019).

4 Models

We explore a number of models, including small
sequence-to-sequence models, pretrained multilin-
gual models, and large language models. For most
models, input for a given instance consists of the
source sentence plus the expected set of linguistic
changes (e.g. PERSON:1_PL in Table 1).

4.1 Character-level neural models

We compare several different small character-level
sequence-to-sequence models, using the Yoyodyne
library for implementation.3

LSTM. We use a standard encoder-decoder
LSTM with cross-attention. LSTMs have proven
effective at inflection tasks (Cotterell et al., 2018),
outperforming transformers under certain condi-
tions (Wu et al., 2021). The expected linguistic
changes are concatenated with the source sentence.

3https://github.com/CUNY-CL/yoyodyne

Transformer. Wu et al. (2021) also finds that in
many cases, the transformer can outperform recur-
rent networks at character-level tasks. Thus, we
also compare with an encoder-decoder transformer.
Linguistic changes are treated as in the LSTM.

Pointer-generator. For tasks such as summa-
rization (and the current task!) where the output
sequences may share many tokens with the input
sequence, the pointer-generator mechanism (See
et al., 2017) has proven effective. The mechanism
is a modification of an encoder-decoder archi-
tecture that introduces a pointing mechanism,
where the model can copy a token from the input
sequence rather than generating a novel token.
Unlike the prior models, linguistic changes are
encoded and attended to separately, so that they
cannot be “pointed to” by the pointer-generator
mechanism. We explore both LSTMs and Trans-
formers with pointer-generator mechanisms.

We performed a hyperparameter search to deter-
mine the optimal hyperparameters for both the
attentive-LSTM and pointer generator. The results
of our search, our final hyperparameters, are given
in Table 2. The full hyperparameter space we ex-
plored is reported in Appendix A. We train all mod-
els on a NVIDIA A100 GPU, with Adam optimiza-
tion, a linear scheduler, a learning rate of 0.001,
and a dropout of 0.2. We also explored using a
larger architecture with the parameters described in
Yang et al. (2022), however, we find these models
nearly always underperform by a wide margin.4

4.2 Pretrained multilingual models

Transfer learning is a common strategy used to
overcome limited data in lower-resource languages.
To this end, we utilize mBART (Liu et al., 2020),
which has shown a promising capability of gen-
eralization in the case of unseen languages (Liu
et al., 2021). The desired linguistic change is ap-
pended to the source sentence, separated by the
model separation token.

4.3 Large language models

Large language models (LLMs) generally strug-
gle on rare, low-resource languages that are not
well-represented in their training corpora (Robin-
son et al., 2023; Ahuja et al., 2023). However,

4Results are given in Appendix B. We observe that the
larger models tend to overfit the training data, with much
higher validation loss than their smaller counterparts.

2
160

https://github.com/CUNY-CL/yoyodyne


Model Language Hyperparameters

Batch Size Embedding Size Hid. Size Attn Heads Enc. Layers Dec. Layers

LSTM
Bribri 32 512 448 1 1 1
Maya 32 256 896 1 2 1
Guaraní 16 256 1152 1 1 1

PG
Bribri 32 256 1280 2 1 1
Maya 64 448 1728 1 1 1
Guaraní 16 192 1152 1 1 1

Table 2: Hyperparameters for LSTM and Pointer Generator models for three languages

LLMs may be able to achieve better performance
on these languages through in-context learning
(also known as few-shot prompting), where a small
number of examples for a novel task are provided
in the prompt at inference time (Brown et al., 2020).
With ever-increasing context lengths, LLMs have
even been able to learn completely novel languages
using comprehensive linguistic resources provided
in the context (Tanzer et al., 2024).

We utilize the ChatGPT API and the GPT-4
model to study in-context learning for our sentence
transformation task (OpenAI et al., 2024). Since
the provided training splits are very small, we pro-
vide the entire training set as context in our prompts.
We also experiment with attempting to provide a
more focused, relevant context, by filtering train-
ing examples to only those that have a linguistic
change in common with the test sentences.

We utilize the gpt-4-0125-preview model,
with temperature of 0 and a fixed random seed of
430. Full details about our prompting strategy are
provided in Appendix C. As making an API call for
every unique test example is fairly expensive, we
prompt the model to make predictions on chunks
consisting of multiple examples. We experiment
with chunks of 20 and 80 examples.

# examples
Split Bribri Guaraní Maya

Train 309 178 594
Dev 212 79 149

SENTENCE COPYING 331 226 749
TRANSITIVE TRANSFORM. 3392 195 1671
STEM PERTURB. 200 200 200
CONCATENATION 500 500 500
EMBEDDINGS 300 250 -

Table 3: The number of examples in the train and dev
split (top) and the number of artificial examples created
by each augmentation strategy (bottom).

5 Data Augmentation

In very low-resource settings, data augmentation
can be highly effective at improving output quality
and performance. We employ a number of strate-
gies for augmentation. Table 3 summarizes the
training splits and number of artificial examples cre-
ated by each strategy. Examples of each augmenta-
tion strategy appear in Table 10 (Appendix D).

Sentence copying (COPY). A major challenge in
this task is that the sentences in the evaluation set
include lemmas and words which are not present in
the training set. To address this, we use a variation
of the lemma copying technique described in Liu
and Hulden (2022); Yang et al. (2022), which we
designate sentence copying.

In this technique, we create additional training
examples where the source and target sentence are
identical and the Change field is blank. We cre-
ate examples for every source sentence and target
sentence in the training set (COPYtr). We also ex-
periment with creating examples for every source
sentence in the dataset being used for evaluation,
and add these to the former to create COPYall. This
technique, a form of domain adaptation, provides
the model with a bias towards copying and aids
the decoder in producing coherent sentences in the
language. COPYall was not an allowable strategy
for our final shared task submission, but we include
the results here for comparison.

External sentence copying (COPYext). As ex-
ternal resources are valid for the shared task, we
can extend the coverage provided by the sentence
copying technique by using data from outside the
provided datasets, similar to the approach used in
Kann and Schütze (2017). We find existing un-
labeled text corpora in the languages and create
additional COPY rows for every sentence.

For Maya, we extract transcriptions from the
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ELAN5 (Sloetjes and Wittenburg, 2008) data in the
Yucatec Maya DoReCo dataset (Skopeteas, 2022).
We discard non-utterance transcriptions (such as
pauses) but keep the same segmentation as the orig-
inal transcription (which may not be grammatically
complete sentences). For Bribri, we leverage the
dataset provided by the AmericasNLP 2024 Shared
Task 1;6 we also use the provided orthographic con-
version tool.7 Finally, for Guaraní, we use a portion
of the CC-100 corpus (Conneau et al., 2020).

All datasets were sanity-checked to ensure they
used orthographies comparable to the training data
for a given language, but no comprehensive anal-
ysis was performed for orthographic alignment.
We also filter the datasets by excluding utterances
which are significantly longer than those in the
shared task training or dev sets.8

Transitive transformations (TRANS). In the
standard inflection task, inputs are lemmas and out-
puts are inflected word forms. In this task, however,
the inputs are grammatical sentences (as there is no
clear equivalent for a lemma form of a sentence)
and have non-null linguistic features already.

For example, there are instances in the datasets
which transform a sentence to carry second per-
son inflection. Presumably, the source sentence in
these instances is either first or third person; the
linguistic features of the source sentences are not
specified. If there is also an instance in the dataset
where the same source sentence is transformed to
carry third person inflection, then we know there
is a relationship between the two target sentences
(in addition to their relationships to the common
source sentence).

In these cases, we can create an additional exam-
ple that takes one of the target sentences as input
and produces the other target sentence, using the
linguistic change from the latter instance (and vice
versa). We can use this strategy for any pair of ex-
amples where the source sentence is identical and
the linguistic change of the latter sentence replaces
all of the feature values of the former. We describe
this strategy as transitive transformations.

Stem perturbation (PER). We follow the in-
sights of Silfverberg et al. (2017) and Anastasopou-

5https://archive.mpi.nl/tla/elan
6https://turing.iimas.unam.mx/americasnlp/

2024_st_1.html
7https://github.com/AmericasNLP/

americasnlp2024/
8Arbitrarily defined, per language, as 1.5 times the max

length in characters of a sentence in the training or dev set.

los and Neubig (2019), which seek to replace stems
with random character sequences from the lan-
guage. Different approaches have been used to
identify stems: Silfverberg et al. (2017) uses the
longest common substring, while Anastasopoulos
and Neubig (2019) uses character alignment to se-
lect substrings that are aligned between the lemma
and inflected form.

We use an alternate strategy based on edit trees.
Starting with a source sentence, we randomly
change one or two characters (via deletion, or via
insertion of or replacement with a random charac-
ter from the domain character set); if the edit trees
which could be applied to the original source can
be also applied to the altered sentence, the latter is
considered valid and added to the pool of possible
augmentations. We repeat this process ten times
per original source sentence (with each altered sen-
tence serving as the new ‘source’ sentence), then
randomly sample from the pool of possible aug-
mentations for training.

Concatenation (CON). For this strategy, we se-
lect sentence pairs that have exactly the same set of
linguistic transformations. We then produce a new
training example by concatenating the two source
sentences to be the new source, and concatenating
the two target sentences to be the new target output.

Embedding-based augmentation. A more struc-
tured approach to augmentation is to replace words
with their synonyms whenever possible while keep-
ing the sentence structure and type of transforma-
tion constant. To find synonyms in our vocabulary,
we first train language-specific static embeddings
over external datasets for Guaraní and Bribri. For
this purpose, we simply use the data provided as
part of the first shared task of AmericasNLP 2024.

Deviating from our previous character-based ap-
proach, we use byte-pair encoding to tokenize our
data. We then train a word2vec model and use
these vectors as subword representations. Words
that are not inflected in the training data9 are re-
placed with a randomly sampled word from its top
3 most similar words in the embedding space. This
allows us to create duplicates of both source and
target sentences with minimal, targeted alteration

9After byte-pair encoding, we create a list of standalone
tokens and use them as candidates for synonym replacement.
Our BPE encoder uses underscores to denote that a token
is inflected or acts as an inflection. We assume that these
standalone tokens that frequently appear without underscores
can be replaced with a synonym.
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to the semantic and morpho-syntactic content of
the data.

6 Results and Discussion

6.1 Evaluation

We report results on the evaluation split provided
for the shared task. Models are evaluated with per-
sentence accuracy, BLEU score (Papineni et al.,
2002), and CHRF score (Popović, 2015).

6.2 Models

We compare the various architectures described in
section 4 and report results in Table 4.

Character-level neural models. Our character-
level models strongly outperform the baselines on
Maya, are competitve on Bribri, and underperform
on Guaraní. Within the character-level architec-
tures, the LSTM models perform best in nearly
all cases. For the smaller datasets (which have
roughly 200-300 training examples), the standard
LSTM model achieves the best performance, while
on Maya (∼ 600 examples) the pointer-generator
LSTM outperforms. This may indicate that the
pointer-generator model needs a certain amount
of training data to effectively utilize the pointing
mechanism and outperform a standard LSTM, and
only the Maya dataset meets that threshold.

For Guaraní, all of the sequence-to-sequence
models perform very poorly. Qualitative analysis
of the results shows that the models struggle to
repeat back valid sentences in the language at all.

Pretrained multilingual models. mBART
achieves our second best performance on Maya
(second to pointer-generator LSTM), and the
results for Guaraní and Bribri are also competitive
with those of ChatGPT models. Unlike the
character-level models, mBART tokenizes the
source into subwords; hinting at the possible
advantages of using subwords and the information
they could carry from the model being pretrained
on other languages.

Large language models. The ChatGPT-based
approach achieves competitive performance, pro-
viding evidence that the model is able to capture
some patterns correctly through in-context learn-
ing. The approach outperforms all other models on
Guaraní (the language with the least training data),
demonstrating that the LLM is able to leverage its
vast training knowledge as a strong prior on the

task at hand, and to make robust generalizations
from the available data.

We observe minimal differences based on the
chunk size, except for Maya where the smaller
chunk size performs significantly better. The sys-
tem using smart retrieval (SR) is able to achieve
close performance for Guaraní and Maya, but un-
derperforms on Bribri; SR is potentially a viable
way to reduce prompt size and thereby cost.

LLMs offer a promising approach to building
NLP systems for under-resourced languages, par-
ticular when using in-context learning for rare lan-
guages, as here. However, the high cost of infer-
ence, lack of control (due to the closed-source na-
ture of the models), and privacy concerns are major
considerations for practical usage in an endangered
language context.

6.3 Data augmentation

Based on the results of the previous section, we se-
lect the LSTM and pointer-generator LSTM for our
experiments with various augmentation strategies.
Noting that the three shared task metrics do not al-
ways align in their assessment of best-performing
model, we primarily focus on chrF, as accuracy and
BLEU score tend to have high variability.10

We present results for models trained using each
of the data augmentation strategies in Figure 1.
The copying strategies tend to be the strongest,
followed by the stem perturbation strategy. The
other strategies show mixed results, and in some
cases underperform the baseline.

Sentence copying. We focus on a number of vari-
ations and combinations of the copy strategy and
report results in Figure 2, finding that all of our
strategies generally improve over the baseline. Un-
surprisingly, the models trained on data including
the source sentences of the evaluation set outper-
formed those without by an average of 14.46 chrF
points. This strategy, in which the model is re-
trained before running inference and the target out-
puts are neither required nor exposed, provides
clear benefits in this highly low-resource scenario.

The COPYext strategies show mixed results,
sometimes matching or outperforming the COPYall
strategies (as in Bribri) but sometimes underper-
forming (as in Maya, LSTM). Combining strate-
gies shows mixed results, and we suspect that after

10We observe these metrics jump wildly during training.
Furthermore, having even a single incorrect output character
can affect the accuracy and BLEU metrics significantly.
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Bribri Guaraní Maya
Architecture Acc. BLEU chrF Acc. BLEU chrF Acc. BLEU chrF

Naive Copy 0.00 10.59 38.42 0.00 23.33 71.47 0.00 33.67 69.15
Edit Trees 5.66 20.35 45.56 22.78 34.99 77.14 26.17 52.38 78.72

LSTM 0 19.73 32.57 0 1.95 27.43 40.94 61.24 83.33
PG-LSTM 0 17.38 27.36 0 1.64 27.34 51.68 75.51 90.37
TRANSFORMER 0 13.29 29.17 0 1.27 27.90 16.11 42.33 70.33
PG-TRANSFORMER 0 7.9 23.09 0 0.64 22.16 10.74 36.45 64.74

MBART 5.66 40.13 60.43 32.91 35.12 77.62 50.34 74.12 88.70

ChatGPT
chunksize = 20 12.26 43.43 63.31 32.91 45.63 79.21 48.99 74.46 89.54
chunksize = 80 12.74 43.87 62.39 32.91 48.70 80.32 32.89 51.36 69.84
chunksize = 1, SR 6.13 39.42 57.67 30.38 45.55 81.80 48.32 74.50 88.47

Table 4: Results for different models on development data, with no data augmentation. We bold the best results
overall and the best results within each section. PG = pointer-generator. SR = smart retrieval.

20 30 40 50 60

Base

+ Copy_all

+ Copy_ext

+ Trans

+ Per

+ Con

LSTM PG LSTM

(a) Bribri

20 40 60 80 100

Base

+ Copy_all

+ Copy_ext

+ Trans

+ Per

+ Con

LSTM PG LSTM

(b) Guaraní

20 40 60 80 100

Base

+ Copy_all

+ Copy_ext

+ Trans

+ Per

+ Con

LSTM PG LSTM

(c) Maya

Figure 1: chrF results for various data augmentation strategies.

a certain number of synthetic examples, the utility
of this strategy declines.

Combined strategies. Finally, we experiment
with combinations of augmentation strategies, di-
rectly concatenating the synthetic datasets, with
results in Figure 3. We observe mixed results—for
Guaraní and Maya, none of the combined strate-
gies show significant improvements over individ-
ual strategies, and in some cases performance de-
grades somewhat. We do see improvements in
Bribri with the combined COPYall + PER strategy
and the COPYall + PER + CON strategy over any
of the individual strategies. Broadly, we find that
synthetic data of this sort can only help up to a cer-
tain amount, and creating more synthetic data does
not necessarily continue to improve performance.

7 Shared Task Submission

We selected a number of systems for final sub-
mission to the shared task, based on our evalua-
tion results. We use the ChatGPT system with a
chunk size of 20, the MBART system, and sev-
eral of the augmented character-level neural sys-
tems. We aim to select a diverse set of augmented
systems, so we select the COPYext, COPYtr +
COPYext, and COPYext + PER systems for the
LSTM model and the COPYext, COPYext+TRANS,
and COPYext+PER+CON systems for the pointer-
generator model.

We train final models using the training data
and specified synthetic dataset. We perform hy-
perparameter search and select the optimal model
architecture for each language and model, which
we report in appendix A. We train models for 1000
epochs, selecting the best model according to vali-
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Figure 2: chrF results for strategies incorporating sentence copying using various sources. COPYtr uses only the
training data. COPYall uses training data and source sentences from the evaluation data. COPYext uses sentences
from external corpora.
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Figure 3: chrF results for combinations of strategies.

dation accuracy.

We report results from the covered test set in
Table 5. Disappointingly, we observe significant
performance discrepancies from our dev set results,
with only the ChatGPT-based system maintaining
similar scores. We propose three possible factors
that could have caused this.

First, all of the datasets involved are quite small,
and it is possible that through random variability,
the test set was meaningfully different in distribu-
tion from the evaluation set. Neural models can be
vulnerable to distributional shift, particularly when
training data is scarce (Linzen, 2020), which may
explain why the non-neural baseline model fared
better.

We briefly investigate whether this is the case by
examining the types of linguistic changes in each
data split. Specifically, for each desired linguistic
change in the evaluation and test datasets (which
might include multiple changes from a single exam-
ple), we compute the number of times that change
occurs in the training dataset, and average over all

changes. This gives us a rough estimate of how
common the linguistic changes are in the model’s
training data.

We report these results in Table 6. We find that
for Bribri and Guaraní, the distribution is very sim-
ilar between the dev and test sets, while for Maya,
the test set contains changes that are far more rare
(-23.6 points) on average. As Maya was the lan-
guage where we observed the greatest discrepancy
in performance, this could be a contributing fac-
tor, and represents an important consideration for
neural models.

The other potential contributing factor is that due
to the small datasets and difficult nature of the task,
the performance of our models was highly vari-
able. For augmentation strategies such as synonym
replacement, the base assumption that synonyms
are even present in a dataset of this size might not
be accurate. During training, we often observed
dev accuracy curves that swung wildly, sometimes
jumping up or down by 10 points in a single epoch.
Furthermore, since we performed a large number
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Bribri Guaraní Maya
# Architecture Acc. BLEU chrF Acc. BLEU chrF Acc. BLEU chrF

Baseline (Edit Trees) 8.75 22.11 52.73 14.84 25.03 76.10 25.81 53.69 80.23

1 ChatGPT 12.08 36.95 66.75 30.77 45.18 82.33 51.61 76.82 90.29

LSTM models
2 +COPYext 3.96 16.45 47.74 7.69 17.80 70.54 19.35 57.60 78.29
3 +COPYext + COPYtr 5.00 19.77 48.26 9.34 13.15 67.20 18.71 50.21 76.19
4 +COPYext + PER 4.17 16.34 51.81 8.24 15.34 66.82 16.77 59.19 79.34

PG models
5 +COPYext 0.62 13.52 34.75 7.69 20.74 71.18 30.32 60.14 79.70
6 +COPYext + TRANS 0.21 7.73 31.29 11.81 17.55 69.13 15.81 43.75 71.75
7 +COPYext + PER + CON 5.21 27.72 56.81 12.09 22.54 71.85 34.84 69.18 85.89

8 MBART 0.83 9.90 36.47 3.30 13.84 61.46 35.16 68.11 86.04

9 EMBEDDING AUG. + LSTM 0.83 7.91 47.76 0.55 3.80 56.21 - - -

Table 5: Test results for our submitted models.

Language Dev Test

Bribri 71.9 77.5
Guaraní 12.8 12.1
Maya 71.4 47.8

Table 6: Average frequency in the training data of each
linguistic change observed in the dev and test set.

of experiments and selected our final models using
the same evaluation set, we may have unintention-
ally overfit to the specific evaluation set and chosen
systems that did not generalize well to the new data.
In the future, this could be avoided by using many-
fold cross-validation to select models rather than a
single dev set.11

Finally, we saw significant performance bene-
fits to including sentence copying in Figure 2, and
we employed this in all of our submitted character-
level systems. However, this strategy is most ben-
eficial when it includes the sentences and lemmas
that appear in the data being evaluated. It is possi-
ble that our external corpora happened to contain
more overlap with the dev set examples than those
in the test set, which could significantly impact
performance. We suspect the strategy of retrain-
ing including the test inputs as synthetic examples
could alleviate this.

Overall, these results serve as a cautionary ex-
ample of the risks of selecting final systems based
on limited evaluation metrics in extremely low-
resource scenarios.

11We considered this, but it was ultimately too resource-
intensive for the number of experiments we wished to run.

8 Conclusion

We describe our systems for the 2024 Americas-
NLP Shared Task on the Creation of Educational
Materials for Indigenous Languages, which include
LLM-based systems, character-level neural net-
works, and finetuned multilingual models. We ob-
serve potential benefits from augmentation strate-
gies for character-level models, particularly the
sentence copying strategy, which helps a model
adapt to new examples.

However, we find that nearly all of our systems,
with the exception of the LLM system, do not gen-
eralize well to the covered test set, resulting in poor
performance on the shared task. These results reaf-
firm the difficulty of training robust neural models
in low-resource scenarios and the importance of
thorough validation.
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A Hyperparameter Search Space

We performed a hyperparameter search for the
attentive-LSTM and pointer-generator models us-
ing the sentence copying data augmentation strat-
egy. We used random search with the goal of maxi-
mizing validation accuracy. We report the search
space we considered in Table 7.

Hyperparameter Distribution Values

Batch Size categorical 16, 32, 64
Embedding Size q_uniform 128 to 1024; q=64
Hidden Size q_uniform 128 to 2048; q=64
Attention Heads values 1, 2
Encoder Layers values 1, 2, 3
Decoder Layers values 1, 2, 3

Table 7: Hyperparameter Search Space

B Larger Architectures

For thoroughness, we also compare architectures
using the architecture size described in Yang et al.
(2022). We report these results in Table 8.

Except for the transformer models, these larger
models well underperform their smaller counter-
parts, in many cases overfitting the training data
and completely failing to generalize. The trans-
former models perform more robustly, and seem to
benefit from deeper and larger architectures.

C LLM Prompting

We attempted two different prompting strategies
for our Chat-GPT implementation.

In the first strategy, we used a full-context ap-
proach, using the entire language’s training split as
the context. We tried these two different chunk size
settings, calling the API with chunks of 20 or 80
test sentences at a time.

In the second strategy, we tried a smart-retrieval
approach with a chunk size of one to only provide
relevant examples as context. Relevant examples
were those with the same changes as the test sen-
tences within the language’s training split.

In Table 9, an example of the prompt we pro-
vided using the smart-retrieval approach for a sen-
tence in Bribri is shown. Note that this prompt
provides just one training instance; in our experi-
ments we provided multiple instances per prompt.

D Augmentation Examples

We provide examples of the rows created by each
augmentation strategy in Table 10
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Bribri Guarani Maya
Architecture Acc. BLEU chrF Acc. BLEU chrF Acc. BLEU chrF
LSTM 0 9.44 26.21 0 0.59 18.38 0 5.53 27.13
PG-LSTM 0 8.45 25.54 0 0.85 18.32 24.16 49.66 76.77
TRANSFORMER 0 18.19 32.93 0 1.42 29.96 27.52 53.14 74.18
PG-TRANSFORMER 0 0 0.26 0 0 0.33 0 0 1.61

Table 8: Results for different architectures, using larger model sizes of Yang et al. (2022). PG = pointer-generator.

**Prompt**
Below is an example of a sentence in Bribri, the linguistic change, and the target
sentence after applying the change.

ID: Bribri0303
Source: Ye’ shka’
Change: TYPE:NEG, TENSE:PRF_PROG
Target: Ye’ kë̀ ku

¯
’bak shkö́k

Below is a similar example, where the source sentence and linguistic change are
given, and the output sentence is not known. For this example, please output only
the id and target sentence values, as in:

ID: Some ID
Target: Sentence after applying the change

Do not output any additional text, and do not output the Source or Change fields.
This is very important, take your time and do not mess up or I will lose my job.

Example Input:
ID: Bribri0367
Source: Pûs kapë’wa

¯Change: TYPE:NEG, TENSE:PRF_PROG
Target: *

Model Response:
ID: Bribri0367
Target: Pûs kë̀ ku

¯
’bakapë’wa

¯
Table 9: Example prompt given while LLM prompting.
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Strategy Source Change Target

COPY (original) Ko po ojupi TENSE:FUT_SIM Ko po ojupíta

(augmented) Ko po ojupi NOCHANGE Ko po ojupi

COPYext (original) - - -

(augmented) Nde ruvichápe NOCHANGE Nde ruvichápe

TRANS (originals) Che rasy
Che rasy

PERSON:2_SI
PERSON:1_PL_EXC

Nde nderasy
Ore rorasy

(augmented) Nde nderasy PERSON:1_PL_EXC Ore rorasy

PER (original) Ha’e oguapy PERSON:3_PL Hikuái oguapy

(augmented) Ha’e ocguapy PERSON:3_PL Hikuái ocguapy

CON (originals) Nde nderejapói
Apurahéi kuri

PERSON:3_PL
PERSON:3_PL

Ha’ekuéra ndojapói
Ha’ekuéra opurahéikuri

(augmented) Nde nderejapói apurahéi kuri PERSON:3_PL Ha’ekuéra ndojapói ha’ekuéra
opurahéikuri

EMBED (original) Mombe’ukuéra omboty kuri
pende arete

ASPECT:IPFV Mombe’ukuéra omboty kuri hína
pende arete

(augmented) Sombezlkuéra omboty-kuri
pende arete

ASPECT:IPFV ombeãrkuéra omboty kurir
hína pende arete

Table 10: Example applications of our augmentation strategies. All examples are Guaraní.
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Abstract
This paper describes the submission of Team
“Giving it a Shot” to the AmericasNLP 2024
Shared Task on Creation of Educational Mate-
rials for Indigenous Languages. We use a sim-
ple few-shot prompting approach with several
state of the art large language models, achiev-
ing competitive performance on the shared
task, with our best system placing third over-
all. We perform a preliminary analysis to de-
termine to what degree the performance of our
model is due to prior exposure to the task lan-
guages, finding that generally our performance
is better explained as being derived from in-
context learning capabilities.

1 Introduction

This paper describes the submission of Team “Giv-
ing it a Shot” to the AmericasNLP 2024 Shared
Task on Creation of Educational Materials for In-
digenous Languages (Chiruzzo et al., 2024). This
task covers three indigenous languages of the
Americas: Yucatec Maya (yua), Guaraní (grn),
and Bribri (bzd). The task is similar to the clause-
level reinflection task described by Goldman and
Tsarfaty (2022) and explored in a 2022 MRL
shared task (Goldman et al., 2022). However, it
is more challenging in a number of ways. The first
is structural: the present shared task provides an
input sentence, and what values of features should
be changed, while the previous task provided all
feature values present in the input and what they
should be changed to. As such, the features de-
scribing the source must be learned latently. Other
challenges come from differences in the languages
covered: all three languages in this shared task are
relatively low-resource, and correspondingly the
training data in the shared task is also very limited
(595 training examples at most).

However, as a morphological/morphosyntactic
task1, the input-output functions are relatively sim-

1Note that, as in prior work on clause-level morphology,

ple compared to many common tasks in NLP, be-
ing in all likelihood context-free or even regular
(Karttunen and Beesley, 2005; Pullum and Gaz-
dar, 1982; Roark and Sproat, 2001). Increasingly
in NLP, even computationally complex tasks such
as sentiment analysis are being framed as few-shot
tasks for large language models (LLMs), with im-
pressive results being obtained by presenting a few
examples to a language model and allowing it to
perform next-token prediction (Wang et al., 2024;
Wei et al., 2022; Brown et al., 2020). The ability of
such paradigms to improve performance over raw
language model probabilities has been termed in-
context learning; however, this term has been the
subject of controversy, as it is not learning in the
traditional machine learning sense, nor is it clear
exactly how much information is being extracted
from the context. For example, in the “in-context
learning” of sentiment analysis, much of the rela-
tion between a sentence and a sentiment label is
presumably latent in the pre-trained weights, and
the examples serve moreso to “extract” that infor-
mation from the model, enabling better generaliza-
tion than could be expected from the information
in the provided in-context examples alone.

This setting therefore represents an interesting
case: if few-shot prompting works well here, will
it be due to prior language exposure, or an abil-
ity to generalize simple functions from limited
data? To explore this question, we create three
simple few-shot prompting-based systems, based
on two closed-source LLMs (GPT-3.5 and GPT-4)
and one openly available model (Command R+),
finding they perform competitively on the shared
task. We permute the characters in the dataset to
preserve the problem stucture while ablating lan-
guage information, finding some evidence that the
models primarily generalize in-context data, rather
than using prior language exposure.

the functions involved sometimes operate at the clause level
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Here’s some examples.

Source,Change,Target

Táan a bin koonol tu k’íiwikil koonol,TYPE:NEG,Ma’ táan a bin koonol tu k’íiwikil koonoli’

Táan u bin koonol tu k’íiwikil koonol,TYPE:NEG,Leti’e’ ma’ táan u bin koonol tu k’íiwikil koonoli’

Jach k’a’abéet in bin tu k’íiwikil koonol,TYPE:NEG,Ma’ jach k’a’abéet in bin tu k’íiwikil koonoli’

Táan a bine’ex ich kool,TYPE:NEG,Ma’ táan a bine’ex ich kooli’

Teche’ ka bin xíimbal tu yotoch,TYPE:NEG,Teche’ ma’ ta bin xíimbal tu yotochi’

...

Now fill in the third column:

Te’exe’ táan a bine’ex koonol tu k’íiwikil koonol,TYPE:NEG,Te’exe’ ma’ táan a bine’ex koonol tu k’íiwikil

koonoli’

Figure 1: Sample prompt (examples abbreviated). The real output of GPT-4 is shown in bold. The same prompt
format is used for all systems and languages.

2 Method

We treat the task as a simple few-shot prompt-
ing problem, using no external data. We consider
three models: two closed-source (gpt-4-0125
and gpt-3.5-turbo-0125 from OpenAI) and one
open-source (Command R+ from Cohere). Our
prompt is minimal, de-emphasising problem spe-
cific factors. It simply presents relevant exam-
ples from the training data in a CSV format, then
asks the model to complete the third column of
a test item CSV row. We use no additional data
besides the provided training set, and perform no
fine-tuning. A sample prompt is shown in Fig-
ure 1. In contrast to prior work showing the util-
ity of expert prompting (Xu et al., 2023), describ-
ing the task domain (Zhang et al., 2024), and tip-
ping (Salinas and Morstatter, 2024), preliminary
evidence showed limited effects of any of these
techniques when augmenting our prompt format.
Indeed, treating the problem as a simple CSV com-
pletion task seems to have triggered interesting be-
havior in all 3 models: almost without exception,
the first line contained either just the predicted tar-
get, or all three completed columns separated by
commas. Indeed, even on our worst-performing
model and language pair, Bribri using the Co-
here model, only 4/480 examples in the test set
are miss-parsed by these heuristics (i.e., yielding
something other than the model’s prediction), in
contrast to prior works where large language mod-
els typically place their completions unpredictably
in unstructured text, causing parsing errors.

While the format of the prompt is simple, some
heuristics are required to best make use of the pro-
vided training data and compute costs. Typically,

(e.g. the addition of a particle to express negation)

only examples of the requested change are shown.
In cases where more than 10 examples of a partic-
ular change occur in the training data, the training
data exhibiting this change is sorted according to
the sum of BLEU (Papineni et al., 2002) and chrF
(Popović, 2015) with the source of the test item
as a reference, and the 10 examples with the high-
est score used in the prompt. Further, when the
specific change occurs fewer than 3 times in the
training data (as is often the case in Bribri), we
back off to similar changes: we break the queried
change into the component feature changes, and
take up to 3 instances of each component change.
If a feature change does not occur on its own in the
training data, we add one example containing the
feature change which maxmizes the sum of BLEU
and chrF between its source and the target source.
Finally, we add up to 8 examples which contain
some of the component changes, again chosen by
their source BLEU+chrF similarity.

We use temperature 0.1 for the OpenAI models
and temperature 0.3 for Cohere models. Prelim-
inary evidence suggested that lower temperatures
aided consistency.

3 Results

Our results on the test set are shown in full in Ta-
ble 1. All of the models improve over the pro-
vided baseline for at least one of the languages.
Command R+ struggles the most with the task,
scoring below the baseline for Bribri and Guaraní
(though improving substantially in terms of BLEU
and chrF for the former). All systems improve
dramatically over the baseline for Maya, which
had the most provided training examples (595),
with few requiring backoff. The systems per-
formed competitively in the shared task, with
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Bribri Maya Guaraní

System Acc. BLEU chrF Acc. BLEU chrF Acc. BLEU chrF

command-r-plus 7.08 31.68 62.45 49.03 73.09 88.54 9.34 22.64 73.40
gpt-3.5-turbo-0125 11.67 33.80 65.51 50.97 75.09 89.76 18.13 31.94 79.36

gpt-4-0125 17.71 39.48 69.28 53.87 78.54 91.66 25.00 40.55 81.71
Baseline (edit trees) 8.75 22.11 52.73 25.81 53.69 80.23 14.84 25.03 76.10

Table 1: Performance of our three submissions for each language compared to the provided baseline. Our simple
GPT-4-based system is our best across all metrics (shown in bold), placing third overall in the shared task. Scores
below the baseline are shown in italics.

Command R+ placing 8th, gpt-3.5-turbo-0125
placing 6th, and gpt-4-0125, placing third over-
all and coming in first for Maya (tying the sec-
ond place system in accuracy but out-performing
in terms of the secondary metrics). Overall, these
results indicate that even very simple approaches
using large language models can be useful for
low-resource morpho-syntactic tasks, when train-
ing data is limited. However, choice of model re-
mains important–despite the fact that Command
R+ both out-performs gpt-3.5-turbo on MMLU
and ranks higher on the LMSys Chatbot Arena2,
it substantially under-performs on both Bribri and
Guaraní.

4 In-context generalization or prior
exposure?

While our results suggest that large language mod-
els can solve complex clause-level reinflection
tasks for some indigenous languages, it is unclear
what drives this behavior. One hypothesis is that
it is driven largely by prior exposure to these
languages. The Glot500 dataset, which attempts
to collate large amounts of data for low-resource
languages for language model pretraining, con-
tains 610,052 Maya sentences; 87,568 Guaraní
sentences, and none for Bribri (ImaniGooghari
et al., 2023). Attempts to develop a large corpus
for Bribri have so far maxed out at just around
100,000 tokens, even with manual gathering of
data from books not on the internet (Coto-Solano,
2022). This lines up relatively neatly with our re-
sults, with Maya > Guaraní > Bribri.

Another possibility is that the model is primar-
ily generalizing the patterns of in-context exam-
ples it is provided. Support for this account is
provided from the observation that the same pat-

2https://leaderboard.lmsys.org

tern of Maya > Guaraní > Bribri is evident in the
baseline, which has no prior language exposure;
suggesting that the inherent difficulty of the task
may vary between the languages/their datasets. As
such, our primary results alone are ambiguous be-
tween these two hypotheses.

To differentiate these hypotheses, we develop
a simple test involving permuting the alphabet
for each language, such that most characters are
mapped to other characters. This should provide a
problem of an equivalent difficulty to the original,
but which has a very different distribution over to-
kens, which should limit the degree to which the
model uses information from prior exposure to the
languages. To ensure the difficulty characteristics
of the problem are preserved, letters with diacrit-
ics are permuted analogously to their counterparts
without diacritics. This is due to the observation
that a positive quality of our systems is their ten-
dency to generalize patterns that apply to one set
of diacritics on a letter to different diacritics on
that letter. As an example, here is a real Maya sen-
tence from the dataset followed by its permuted
counterpart:

(1) Teche’ ka bin xíimbal tu najil Original

(2) Kitsi’ pe dun cúumder ko neyur Permuted

As the structure of the shared task prevents us from
evaluating on a permuted test set, we present re-
sults on the development set for this experiment,
shown in Table 2. We note that the results should
be interpreted in light of the fact that there is sub-
stantial variability (on the order of ≈ 5 percentage
points) from run-to-run. Ideally, we would run this
experiment repeatedly to compute confidence in-
tervals, but resource constraints prevent this.

Overall, our results suggest that our model
performance is mostly a result of generaliz-
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Bribri Maya Guaraní

System Data Acc. BLEU chrF Acc. BLEU chrF Acc. BLEU chrF

command-r-plus
orig. 10.85 40.61 55.93 44.96 72.96 88.55 22.78 35.42 76.09
perm. 5.66 34.47 55.22 43.62 72.77 88.14 21.52 41.95 75.22

gpt-3.5-turbo-0125
orig. 4.72 37.23 57.52 51.68 76.20 90.16 34.18 44.95 82.07
perm. 9.91 37.72 58.22 51.68 76.62 89.97 32.91 49.17 81.83

gpt-4-0125
orig. 15.57 41.35 62.88 53.02 75.32 91.05 39.24 52.68 83.06
perm. 18.87 42.15 63.94 55.03 76.98 90.86 31.65 46.90 83.10

Table 2: We isolate the role of in-context generalization for our models using a permuted version of the devel-
opment set. For each model, we show in bold whether performance is better on the permuted variant of the
development set (lower), or the original development set (upper). Generally, systems perform similarly on both
datasets, suggesting performance is primarily derived from the in-context examples.

ing in-context information, rather than applying
language-level knowledge. For Maya, all 3 mod-
els retain their level of performance on the per-
muted test set. For Bribri, we see a moderate de-
crease in performance for Command R+, but an
increase in performance for GPT-3.5 and GPT-4.
This suggests an effect on the (e.g. distributional)
properties of subword tokens on in-context gener-
alization behaviours. On the other hand, Guaraní
performance clearly degrades for GPT-4, suggest-
ing either a subword issue as in the case of Bribri,
or some amount of prior knowledge of the lan-
guage from pre-training or instruction tuning be-
ing recruited. Taken together, though, these results
suggest that in-context learning in these models is
able to generalize a small set of examples in a lin-
guistically plausible way, even in the absence of
prior exposure to the language of the stimuli.

5 Conclusion

We present a simple few-shot learning setup for
the AmericasNLP 2024 Shared Task on the Cre-
ation of Educational Materials for Indigenous Lan-
guages, applied to three state-of-the-art large lan-
guage models. We find even simple few-shot
prompting techniques are able to beat the base-
line, with our best system (GPT-4) placing third
in the shared task. We investigate the extent to
which the performance of our approach is due to
a model’s prior exposure to the language, by us-
ing a character-permuted version of the develop-
ment set to maintain the problem structure while
ablating the language information. We find from
this preliminary evidence that the performance of

these systems is driven more by in-context learn-
ing capabilities than prior exposure to these low-
resource indigenous languages. We also find pre-
liminary evidence of performance sensitivity to
subwords, as we find that sometimes the model
performs better on the permuted language than the
original language.

One question not addressed here is the cause
of the relative performance of the models on each
of the three languages. The differences in perfor-
mance mirror the performance of the baseline, sug-
gesting that in some sense perhaps e.g. the Maya
data is simpler or the training data is more infor-
mative than for some of the other languages. How-
ever, future work could characterize this further,
investigating what kind of data sparsity these sys-
tems can generalize over and what kinds of func-
tions they are better or worse at generalizing. For
example, anecdotally for Bribri we found the sys-
tems struggled to generalize morphophonological
stem changes (e.g., sú + ök should be sawök, but
the model produces súök).
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Maja Popović. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392–395, Lisbon, Portugal. Association for
Computational Linguistics.

Geoffrey K. Pullum and Gerald Gazdar. 1982. Natural
languages and context-free languages. Linguistics
and Philosophy, 4(4):471–504.

Brian Roark and Richard Sproat. 2001. The Formal
Characterization of Morphological Operations. In
Computational Approaches to Morphology and Syn-
tax. Oxford University Press.

Abel Salinas and Fred Morstatter. 2024. The butterfly
effect of altering prompts: How small changes and
jailbreaks affect large language model performance.
Preprint, arXiv:2401.03729.

Zengzhi Wang, Qiming Xie, Yi Feng, Zixiang Ding, Zi-
nong Yang, and Rui Xia. 2024. Is ChatGPT a good
sentiment analyzer? A preliminary study. Preprint,
arXiv:2304.04339.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2022. Finetuned lan-
guage models are zero-shot learners. In The Tenth
International Conference on Learning Representa-
tions, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net.

Benfeng Xu, An Yang, Junyang Lin, Quan Wang,
Chang Zhou, Yongdong Zhang, and Zhendong Mao.
2023. Expertprompting: Instructing large lan-
guage models to be distinguished experts. Preprint,
arXiv:2305.14688.

Kexun Zhang, Yee Man Choi, Zhenqiao Song, Taiqi
He, William Yang Wang, and Lei Li. 2024.
Hire a linguist!: Learning endangered languages
with in-context linguistic descriptions. Preprint,
arXiv:2402.18025.

178

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://aclanthology.org/2022.coling-1.393
https://aclanthology.org/2022.coling-1.393
https://aclanthology.org/2022.coling-1.393
https://doi.org/10.18653/v1/2022.mrl-1.14
https://doi.org/10.18653/v1/2022.mrl-1.14
https://doi.org/10.18653/v1/2022.mrl-1.14
https://doi.org/10.1162/tacl_a_00528
https://doi.org/10.1162/tacl_a_00528
https://doi.org/10.18653/v1/2023.acl-long.61
https://doi.org/10.18653/v1/2023.acl-long.61
https://web.stanford.edu/group/cslipublications/cslipublications/koskenniemi-festschrift/8-karttunen-beesley.pdf
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049
http://www.jstor.org/stable/25001071
http://www.jstor.org/stable/25001071
https://doi.org/10.1093/oso/9780199274772.003.0002
https://doi.org/10.1093/oso/9780199274772.003.0002
https://arxiv.org/abs/2401.03729
https://arxiv.org/abs/2401.03729
https://arxiv.org/abs/2401.03729
https://arxiv.org/abs/2304.04339
https://arxiv.org/abs/2304.04339
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://arxiv.org/abs/2305.14688
https://arxiv.org/abs/2305.14688
https://arxiv.org/abs/2402.18025
https://arxiv.org/abs/2402.18025


Proceedings of the 4th Workshop on Natural Language Processing for Indigenous Languages of the Americas (AmericasNLP), pages 179–187
June 21, 2024 ©2024 Association for Computational Linguistics

A Comparison of Fine-Tuning and In-Context Learning for Clause-Level
Morphosyntactic Alternation

Jim Su*, Justin Ho*, George Aaron Broadwell, Sarah Moeller, Bonnie J. Dorr
University of Florida

{jimsu, justinho, broadwell, smoeller, bonniejdorr}@ufl.edu

Abstract

This paper presents our submission to the
AmericasNLP 2024 Shared Task on the Cre-
ation of Educational Materials for Indigenous
Languages. We frame this task as one of mor-
phological inflection generation, treating each
sentence as a single word. We investigate and
compare two distinct approaches: fine-tuning
neural encoder-decoder models such as NLLB-
200, and in-context learning with proprietary
large language models (LLMs). Our findings
demonstrate that for this task, no one approach
is perfect. Anthropic’s Claude 3 Opus, when
supplied with grammatical description entries,
achieves the highest performance on Bribri
among the evaluated models. This outcome cor-
roborates and extends previous research explor-
ing the efficacy of in-context learning in low-
resource settings. For Maya, fine-tuning NLLB-
200-3.3B using StemCorrupt augmented data
yielded the best performance.

1 Introduction

The AmericasNLP 2024 Shared Task on the Cre-
ation of Educational Materials for Indigenous Lan-
guages (Chiruzzo et al., 2024) focuses on the chal-
lenge of clause-level morphosyntactic alternation
for low-resource indigenous languages of the Amer-
icas. The objective of this task is to develop a
system capable of applying a set of grammatical at-
tributes to a given source sentence, thereby generat-
ing a target sentence with the desired changes. The
motivation behind this task lies in the potential for
such systems to aid in the preservation and revital-
ization of endangered languages (Anastasopoulos
and Neubig, 2019).

This task involves three indigenous languages
of the Americas: Bribri, Guaraní, and Maya. Two
examples are provided below:

Example 1.1. Bribri
Source sentence: Ye'shka' (“I walked”)
Attributes: TYPE:NEG (negative polarity)

Target sentence: Ye'kë shkàne (“I didn’t walk”)

Example 1.2. Maya
Source sentence: Táan in xíimbal tu jáal já’

(“I’m walking on the beach”)
Attributes: TYPE:NEG (negative polarity)
Target sentence: Ma’ táan in xíimbal tu jáal ja’i’

(“I’m not walking on the beach”)

We frame this task as one of morphological in-
flection generation, treating each sentence as a sin-
gle word. Our objective is thus twofold: to de-
velop a system that performs sentence-level mor-
phological inflection for low-resource indigenous
languages of the Americas, and to provide insight
into what techniques are effective for future prac-
titioners who attempt this task. In pursuit of this
goal, we compare the performance of two distinct
approaches: fine-tuning pre-trained transformer
models and leveraging LLMs through in-context
learning. By evaluating these two approaches, we
aim to contribute to the understanding of effec-
tive strategies for addressing the unique challenges
posed by low-resource languages in tasks such as
morphosyntactic alternation.

2 Background

This task is unique, as previous literature has ex-
plored morphological inflection generation on the
word level rather than on the sentence level (Nico-
lai et al., 2023). Further, this task is challenging for
two reasons:

1. Data scarcity: low-resource indigenous lan-
guages, by definition, have limited available
data for training and evaluating machine learn-
ing models (Liu and Dorr, 2024). The scarcity
of parallel corpora, annotated texts, and lin-
guistic resources poses significant obstacles
in developing robust morphological inflection
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systems (Moeller, 2021). This scarcity is com-
pounded by the novel nature of this task as
prior literature is scarce.

2. Unusual linguistic properties: Indigenous lan-
guages of the Americas exhibit a wide range
of linguistic properties that diverge from those
of well-studied languages like English or
Spanish. These languages often feature in-
tricate morphological, phonological, and or-
thographic systems (Dagostino et al., 2024).
They may be polysynthetic and adhere to ir-
regular morphological paradigms. Such lin-
guistic properties can make it challenging to
model computationally, especially in the con-
text of limited training data.

Prior results have demonstrated the effectiveness
of transformer-based models (Vaswani et al., 2023)
on the word-level inflection task (Anastasopoulos
and Neubig, 2019). Building upon this success, we
evaluate the performance of fine-tuned transformer
models on the sentence-level task, exploring their
ability to capture and generate morphological in-
flections in context.

In an effort to extend the available data, we
search for external sentence-level parallel corpora
aligned with the task format. However, our search
yields no suitable resources. While it may be
possible to preprocess and adapt data from other
formats in a separate pre-training stage, this ap-
proach is complex and may require a significant
time investment for developing custom preprocess-
ing pipelines, which is not possible in our study,
given the short time-frame of this shared task.

To address the challenge of limited data re-
sources, we opt for data augmentation using Stem-
Corrupt (Anastasopoulos and Neubig, 2019), gener-
ating synthetic instances based on the existing data.
StemCorrupt is a data augmentation technique cre-
ated for generating additional instances for the
word-level inflection task. The use of StemCor-
rupt is motivated by the availability of pre-existing
code and the relative simplicity of this technique,
which allow us to quickly run data augmentation
and focus our efforts on other aspects of the task.

The limited supervised data challenge also
prompts us to explore the use of proprietary large
language models (LLMs). These models have
the capability to process long context windows
of arbitrary text as input and do not require fine-
tuning, making them a promising alternative for

low-resource settings where extensive task-specific
data is unavailable.

Recent advancements have demonstrated that by
scaling training compute and corpus size, LLMs
may excel in tasks for they which they are not
explicitly trained (Wei et al., 2022). Studies explor-
ing the use in-context learning with LLMs on low-
resource machine translation have shown promis-
ing results (Tanzer et al., 2024). More recent work
in the area suggests that when paired with appro-
priate language resources, LLMs can even surpass
human baselines in translation quality (Reid et al.,
2024). These findings highlight the potential of
in-context learning in LLMs for addressing the
challenges posed by low-resource languages and
the importance of incorporating relevant linguistic
knowledge to maximize their performance.

3 Data

For fine-tuning, we use the provided training
dataset1 and an augmented dataset that we create
by applying StemCorrupt to the provided training
dataset. For in-context learning, we experiment
with the inclusion of a grammatical description in
the prompt. Previous work investigating the use of
proprietary LLMs on low resource languages has
shown that, when combined with grammatical de-
scriptions, these models obtain strong performance
on tasks such as machine translation (Tanzer et al.,
2024). We hypothesize that using grammatical
descriptions in an in-context learning setting can
improve performance on this task as well.

3.1 Training Data

The training set provided by the organizers contains
1199 training instances. These instances consist
of 594 Maya instances, 427 Bribri instances, and
178 Guarani instances. This dataset is somewhat
imbalanced, with Guarani comprising only 14.8%
of all training instances.

Each instance contains a set of change tags,
i.e., morphosyntactic attributes that act as func-
tors (such as TYPE:NEG to indicate negation of
sentence polarity). Across all languages, there are
77 unique change tags. These follow a long-tailed
distribution: some tags are shared across languages
while others are unique to a particular language.
Refer to the Appendix A for an exhaustive distribu-
tion of change tags.

1https://github.com/AmericasNLP/americasnlp2024
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3.2 Data Augmentation
We perform data augmentation to generate 1000
additional instances for each language. Prior litera-
ture has demonstrated the efficacy of StemCorrupt
for improving the performance of language models
on word-level inflection tasks (Samir and Silfver-
berg, 2023). We explore the effect of StemCorrupt
on this task at the sentence level.

3.3 Utilizing Grammatical Descriptions
We encounter two challenges to using published
grammatical descriptions of these three languages:

1. Grammatical descriptions are difficult to find,
and the orthographies used in them vary.
Many of the resources that do exist were pub-
lished in the 1960-80s or earlier and are only
accessible online as PDF images of printed
text or in digital formats that do not translate
easily into correct Unicode characters.2 We
narrow our search to resources that use En-
glish as the analysis language which limit our
choices further since other descriptions seem
to be available in Spanish. Finally, we search
for grammatical descriptions with interlinear
glossed text (e.g. Umaña et al. (1998)) in order
to provide information similar to the change
tokens provided in the shared task data.

2. The length of data passed into an LLM is lim-
ited by its context window, establishing a hard
limit on how much data (in particular, excerpts
from the published resources) can be passed
into the model. Even within this hard limit,
particularly long input sequences can degrade
performance (Li et al., 2024).

We employ the following grammatical descrip-
tions, focusing on passages that contained interlin-
ear glossed texts:

1. Bribri - Dickeman-Datz (1985) and Jara
(1995)

2. Guarani - Estigarribia (2020)

We are unable to find a suitable grammatical
description for the Yucatec Maya language that
matched the orthography used in this task.

2For example, the scans of these typewritten Peace
Corps language learning lessons: https://www.livelingua.
com/project/peace-corps/guarani or this image of a
Bribri grammatical description: http://journals.uvic.
ca/index.php/WPLC/article/view/5054/1954

3.4 Data Processing
Since curated data is provided by the shared task
organizers, minimal preprocessing is required. The
Bribri data needs some additional preparation. For
Maya and Guarani, no preprocessing is done.

For the Bribri language, training instances are
provided in both the data/ and pilotdata/ directories.
We concatenate the training sets and development
sets across data/ and pilotdata/.

The Bribri data/ directory contains the straight
apostrophe (') character while the pilotdata/ direc-
tory contains the right single quotation mark (’).
We replace each instance of the right single quota-
tion mark in the Bribri pilot training data with the
straight apostrophe.

4 Experiments

We perform four experiments and compare the re-
sults:

1. Fine-tuning the pre-trained encoder-decoder
models

2. Fine-tuning the pre-trained encoder-decoder
models with data augmentation

3. In-context learning on proprietary LLMs

4. In-context learning on proprietary LLMs with
a grammatical description

4.1 Experiment Setup
We apply two classes of experimental setups: fine-
tuning and in-context learning. Fine-tuning adapts
a pre-trained model to predict the target column one
instance at a time. In-context learning includes the
full training set and instances from the validation
set in the prompt of an LLM, predicting multiple
targets per inference run.

Both setups have strengths and weaknesses. In-
context learning is constrained by a fixed context
window but can work on arbitrary forms of task
information such as grammatical descriptions. In
contrast, fine-tuning allows the model’s parame-
ters to be updated on an arbitrarily large training
dataset but requires task-specific parallel data that
is challenging to find for low-resource languages.

4.1.1 Fine-Tuning
For each training instance, we concatenate the
source sentence with the change tags. A separator
token is used to delimit the end of the source sen-
tence and the start of the change token. A model
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Model Bribri Guarani Maya
Baseline
(Kann and Schütze, 2016) 5.66 22.78 26.17
BART Family
BART-Large 7.11 2.53 44.96
MBART-50 12.89 0.00 9.39
T5-FLAN Family
FLAN-T5-XL 1.33 0.00 2.01
NLLB-200 Family
NLLB-200-distilled-600M 19.55 21.51 49.66
NLLB-200-distilled-600M (+ StemCorrupt) 20.00 16.45 58.39
NLLB-200-3.3B 24.88 16.45 53.02
NLLB-200-3.3B (+ StemCorrupt) 28.44 21.51 52.35
In-Context Learning
Claude 3 Opus 30.53 18.99 54.36
Claude 3 Opus (+ grammatical description) 36.73 17.72 N/A
Gemini 1.5 Pro 8.41 N/A 44.97
Gemini 1.5 Pro (+ grammatical description) 12.21 N/A N/A

Table 1: Dev set accuracy score for all fine-tuned models. Bold means best performing model for that language. It
is worth noting that for Maya, we are not able to find grammatical descriptions that matched the orthography of the
task. As for Gemini 1.5 Pro, we suspect there may be an issue with the tokenizer for Guarani as the model would
generate few predictions before failing.

is trained for each language as opposed to creat-
ing a single multi-lingual inflection model, since
we find the former results in better performance
over the latter. We run our experiments on a single
A100 GPU using a batch size of 64. We follow
the same evaluation scheme proposed by the orga-
nizers using accuracy, chrF, and BLEU (Popović,
2015; Papineni et al., 2002).

4.1.2 In-Context Learning
For each in-context learning experiment, the LLM
is provided the following:

1. The training set, with IDs replaced by the row
number

2. The development set with changes removed

3. A relevant prompt (refer to the Appendix A
for exact prompts used)

4.2 Fine-Tuning Pre-Trained
Encoder-Decoder Models

We fine-tune a variety of encoder-decoder model
families. Different variants of BART are used such
as mBART to evaluate the effect of multi-lingual
pre-training on this task (Lewis et al., 2019; Liu
et al., 2020). The FLAN-T5 series of models are
also evaluated as these models incorporate a unique

pre-training process that is promising in terms of
boosting model performance (Chung et al., 2022).
The last family of models examined is the NLLB-
200 family of models for their strong performance
on low-resource translation (Team et al., 2022).
We experiment with the 600M and 3.3B parameter
version of each model. Although the NLLB-200
also includes a Mixture of Experts (MoE) model
that may outperform the other versions, this model
is not investigated due to its prohibitive size (54B
parameters, which exceeds the memory capacity of
an A100 GPU).

4.3 Fine-Tuning Pre-Trained
Encoder-Decoder Models with Data
Augmentation

StemCorrupt is used to generate 1000 instances for
each language. Only NLLB-200 3.3B is trained
using the augmented StemCorrupt data as this is
the best performing model found during fine-tuning
on non-augmented data.

4.4 In-Context Learning on Proprietary
LLMs

We evaluate two proprietary LLMs:

1. Gemini 1.5 Pro. This model is selected for its
long context window and strong performance
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Model Window Size Strategy
Gemini 1.5 Pro 1 Million All
Claude 3 Opus 200k Relevant

Table 2: Context window size for each model and docu-
ment strategy used.

on in-context low-resource machine transla-
tion (Reid et al., 2024)

2. Claude 3 Opus. This model is selected as the
current state of the art in proprietary LLMs
(Anthropic, 2024).

We briefly evaluate GPT-4 Turbo but encounter
significant challenges (OpenAI et al., 2024). The
model produces outputs of unacceptably low qual-
ity, rendering them effectively unusable. Addition-
ally, GPT-4 Turbo proves unstable, consistently
failing to fully process the full test dataset.

4.5 In-Context Learning on Proprietary
LLMs with a Grammatical Description

Each LLM evaluated by our team is constrained
by a different context window length, which af-
fects the strategy used for passing in the grammati-
cal description. Our team relies on two strategies:
passing all grammar resources to the model and
passing the most relevant grammar resources to the
model. The most relevant grammar resource for
each language is determined by hand, with the most
frequent change tokens for each language guid-
ing this search. The selected section for each lan-
guage describes the language’s morphology, verbal
agreement system, and syntax of various sentence
types including affirmative statements, negation,
and questions.

5 Results

5.1 Dev Set Results

Table 1 shows the results of our fine-tuned models
and in-context learning experiments on the dev set.
For all languages except for Guarani, we are able to
exceed the baseline performance significantly. For
Bribri, in-context learning combined with a gram-
matical description is the highest performing tech-
nique with an accuracy of 36.73% over the base-
line of 5.66%. For Maya, fine-tuned NLLB-200-
distilled-600M with StemCorrupt augmented data
is the best technique with an accuracy of 58.39%
over the baseline of 26.17%.

Model Bribri Guarani Maya
Baseline 8.75 14.84 25.81
Submission 1
NLLB-200-3.3B 9.79 0.00 37.42
Submission 2
Claude 3 Opus 26.88 0.00 33.23

Table 3: Test set accuracy score for all fine-tuned mod-
els. Bold means best performing model for that lan-
guage.

There are unique trends that can be observed
from the results of our system runs on the dev set.
As anticipated, Guarani proves challenging to im-
prove upon due to particularly limited data. Even
when data augmentation techniques are applied,
results of neural techniques are still below that of
the statistical-backed baseline. This result reaf-
firms the findings of prior literature in terms of the
weaknesses of neural techniques under sparse data
conditions. Furthermore, this result hints at mor-
phological or linguistic complexities in Guarani
that make this task challenging.

Comparing fine-tuning and in-context learning,
no technique was optimal across all languages.
This result affirms two ideas: fine-tuning models
is still relevant in the age of LLMs, and LLMs em-
powered with language resources are a viable ap-
proach for this task. For Bribri, fine-tuned models–
even with data-augmentation–are not able to match
the best performing in-context learning LLM.

5.2 Test Set Results
Table 3 details the test results for our submissions.
Our model’s performance on the test set exhibits
an unexpected discrepancy compared to its perfor-
mance on the dev set. Both of our best systems
for the dev set underperform significantly when
evaluated on the test set. Compared to the dev set,
the accuracy on the test set is 20% lower for Maya
and 10% lower for Bribri. This significant drop in
performance warrants further investigation to iden-
tify potential causes, such as differences in domain,
style, or linguistic properties between the dev and
test sets.

Despite this unexpected discrepancy, it is worth
noting that our team achieved the second best sys-
tem submission for Bribri. Without access to the
target column of the test set, the exact reason re-
mains unclear. With such a limited number of train-
ing instances, both the in-context learning and fine-
tuned model may not have enough examples to
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generalize to different data distributions. Due to
weak performance of our system runs applied to
the dev set (and our misunderstanding that only
above-baseline runs are submissible), our team has
no submitted Guarani results for the test set.

6 Future Work

Much future work remains. Our search for lan-
guage resources reveals a wide variety of language
resources of varying types and orthographies. A fu-
ture area of research is an exploration of the effect
of different orthographies on the LLM performance
in an in-context learning setting.

Additionally, a significant advantage of in-
context learning is the reduction of restrictions on
data types that can be utilized by the model. Ex-
ploring the effect of different resource types, such
as dictionaries and learning worksheets, would be
valuable. A historic bottleneck for the translation or
inflection of low-resource languages has been data,
specifically gold-standard data that adheres to a
specialized format. By leveraging in-context learn-
ing, the variety of usable data is greatly increased
and can offer opportunities for further exploration.

StemCorrupt has shown promise for sentence-
level inflection despite initially being developed
for word-level inflection. Exploring the feasibility
of extending this technique to other languages is a
worthwhile future endeavor.

7 Conclusion

In this paper, we present the systems submitted
by our team for the AmericasNLP 2024 Shared
Task on the Creation of Educational Materials for
Indigenous Languages. We find that while LLMs–
through in-context learning–exhibit impressive ca-
pabilities, fine-tuning still has a role to play in the
modern NLP space. Moreover, we reaffirm the re-
sults of prior literature regarding the promise of
LLMs when applied to low-resource languages us-
ing in-context learning. Additional work must be
done to explore the abilities of such systems, but
initial results point to promising potential for the
task of morphosyntactic alternation. Our work also
extends prior literature on StemCorrupt and demon-
strates potential applications for the technique on
sentence-level inflection generation.

Limitations

The main limitation of our work is selecting only
grammatical descriptions published in English.

More grammatical descriptions are available in
Spanish.
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A.1.2 With grammatical description
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Figure 1: Distribution of change tags for each language.
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Abstract

This paper presents DC_DMV’s submission to
the AmericasNLP 2024 Shared Task 1: Ma-
chine Translation Systems for Indigenous Lan-
guages. Our submission consists of two multi-
lingual approaches to building machine trans-
lation systems from Spanish to eleven Indige-
nous languages: fine-tuning the 600M distilled
variant of NLLB-200, and an experiment in
training from scratch a neural network using
the Mamba State Space Modeling architecture.
We achieve the best results on the test set for
a total of 4 of the language pairs between two
checkpoints by fine-tuning NLLB-200, and out-
perform the baseline score on the test set for 2
languages.

1 Introduction

The 2024 AmericasNLP Shared Task on machine
translation (MT) for Indigenous languages consists
of developing an MT system (or systems) for the
purpose of translating Spanish to 11 Indigenous
languages of the Americas: Aymara (aym), Bribri
(bzd), Asháninka (cni), Chatino (ctp), Guaraní (gn),
Wixarika (hch), Nahuatl (nah), Hñähñu/Otomí
(oto), Quechua (quy), Shipibo-Konibo (shp), and
Rarámuri (tar). We take two approaches in parallel,
namely finetuning NLLB-200 (Team et al., 2022)
and training a Mamba architecture-based neural
network (Gu and Dao, 2023) from scratch.1

2 Data

2.1 Data Sources

We utilize data from a number of sources, namely
the training and development sets provided by the
task organizers, data gathered as part of last year’s
HelsinkiNLP submission (De Gibert et al., 2023),

*Both authors contributed equally to this work.
1Code for both of our models is available here: https:

//github.com/tomlup/americasnlp-2024-st1-dc_dmv

parallel data from Tatoeba2 released under a CC-
BY 2.0 FR., and pivot translations generated from
non-Spanish-to-target language parallel data from
the Tatoeba Translation Challenge (Tiedemann,
2020). We include additional data to try to com-
pensate for the sparseness of data available in the
target languages more generally.

Organizer-provided Data Training and devel-
opment data for the 11 target languages included
in the shared task were released by task organiz-
ers3. The provided data includes data explicitly de-
noted as the training set, supplemental translation
data from Spanish, and supplemental translation
data from English. An overview of the organizer-
provided data we used can be found in Table 1.

HelsinkiNLP Data collected for the 2023
HelsinkiNLP submission to the shared task
(De Gibert et al., 2023) was also provided by the
task organizers. This data is sourced from the
OPUS corpus collection (Tiedemann, 2012), the
FLORES-200 corpus (Team et al., 2022), the JHU
Bible corpus (McCarthy et al., 2020), and various
other texts spanning legal, educational, and news
domains.

Tatoeba Translation Challenge Spanish-to-
target-language parallel data is available from
the Tatoeba website2 for Guarani, Nahuatl, and
Quechua.

Pivot Translations The Tatoeba Translation
Challenge (Tiedemann, 2020) provides non-
Spanish parallel data for Guarani, Nahuatl, and
Quechua. We utilize machine translation sys-
tems to construct additional parallel language data.
Data in English, Esperanto, French, German, He-
brew, Japanese, Macedonian, Polish, Russian, and
Ukrainian was translated using bilingual Opus-MT

2Tatoeba website.
3AmericasNLP 2024 Shared Task GitHub
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Target Language Data Source(s)
aym Global Voices (Tiedemann, 2012)
bzd (Feldman and Coto-Solano, 2020)
cni AshanikaMT (Ortega et al., 2020; Cushimariano Romano and Sebastián Q., 2008;

Mihas, 2011)
ctp https://scholarworks.iu.edu/dspace/handle/2022/21028
gn (Chiruzzo et al., 2020)
hch (Mager et al., 2018)
nah Axolotl (Gutierrez-Vasques et al., 2016)
oto https://tsunkua.elotl.mx/about/
quy JW300 (Agić and Vulić, 2019), Global Voices (Tiedemann, 2012)
shp (Montoya et al., 2019), (Galarreta et al., 2017), https://www.sil.org/

resources/archives/30143
tar (Brambila, 1976)

Table 1: Sources of data provided by task organizers.

systems (Tiedemann and Thottingal, 2020). Data
in Chinese, Javanese, and Portuguese was trans-
lated into Spanish using NLLB-200 (Team et al.,
2022). Additionally, English-Indigenous language
data that was provided as supplemental data by task
organizers were also translated using Opus-MT. We
make use of pivot translations only in the Mamba
model.

2.2 Data Organization

For the purposes of training, we organize our col-
lected data into three stages. Stage 1 includes all
synthetic parallel texts created by means of pivot
translation and synthetic data provided by task or-
ganizers. Stage 2 includes the supplemental data
sourced from the 2023 HelsinkiNLP submission,
as well as other Spanish-source supplemental data
provided by task organizers. Stage 3 includes train-
ing data provided by the shared task organizers.

2.3 Duplicate Filtering

After all training data was organized into stages, all
data for each target language was then filtered to
remove duplicates using OpusFilter (Aulamo et al.,
2020). The pipeline for filtering was as follows:
All duplicates within Stage 3 data were removed.
Then, all duplicates within Stage 2 and overlap
with Stage 3 were removed from Stage 2. Finally,
all duplicates within Stage 1 and any overlap with
Stage 2 and Stage 3 were removed from Stage 1.
The total number of training examples from each
stage is shown in Table 2.

Language Stage 1 Stage 2 Stage 3
aym 16,338 17,679 6,453
bzd 0 0 7,303
cni 13,018 0 3,860
ctp 2,762 2,246 357
gn 617,894 42,184 14,500
hch 505 2,628 6,587
nah 9,279 2,493 15,450
oto 0 9,012 4,531
quy 64,337 16,112 119,471
shp 23,125 16,719 14,511
tar 0 2,254 14,658

Total 747,258 110,787 207,681

Table 2: Overview of data organization by number of
examples.

3 Methods

3.1 Finetuning NLLB-200

Our first method involves fine-tuning the NLLB-
200 model (Team et al., 2022). We use the distilled
600M parameter variant, and leave all parameters
trainable. We motivate this decision as follows.
Given that we are tokenizing previously unseen
languages using an already-trained tokenizer, the
distribution and linear ordering of tokens in our
fine-tuning data will differ vastly from the distribu-
tion and linear ordering in the languages previously
seen by the model. As such, it is sensible to re-
train the entire model, including the embeddings,
to model this very different distribution. To that
end, we introduce additional language tokens for
the eight target languages in the shared task not
already represented in the model (all except for Ay-
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mara, Guarani, and Quechua), which are randomly
initialized.

We finetune on padded mini-batches of size 4
with a maximum sequence length of 384, in which
all 4 training examples in a given batch have the
same target language. However, batches from all 11
target languages are shuffled together. We optimize
using AdamW, with a learning rate of 1 · 10−5 and
a weight decay of 1 · 10−4.

With regard to training stages, we do not use
the Stage 1 data to fine-tune NLLB. The number
of epochs through each stage for each of our fine-
tuned NLLB models are presented in Table 3.

The generation process for producing transla-
tions for evaluation uses a maximum sequence
length of 384 and beam search with 4 beams and
early stopping.

3.2 Mamba State Space Model

Our second method involves training a neural net-
work using repeating multiple Mamba architecture
layers and a language model head. We submit re-
sults for a model containing 3 Mamba layers and
a final linear layer with 256 dimensions, and a vo-
cabulary of 16,000 subword tokens trained on all
data using SentencePiece (Kudo and Richardson,
2018) using a unigram language model algorithm
(Kudo, 2018).

For the purposes of training our Mamba model,
we modify our training data by appending a target
language token to the beginning of each source sen-
tence. We additionally append a start of sentence
token and end of sentence token to the start and
end of each sentence, respectively.

We train our model on padded mini-batches of
size 128 with a maximum sequence length of 512.
Each mini-batch contains shuffled data taken from
all languages and all data used for training during
an epoch. We optimize the model using AdamW
using a learning rate of 1 · 10−3 and a weight de-
cay of 1 · 10−4. The model is trained for 5 epochs
through all data (Stage 1, Stage 2, and Stage 3),
followed by an additional 25 epochs on combined
Stage 2 and Stage 3 data. We motivate our deci-
sion to include Stage 1 data only in early training
by our belief that our synthetic pivot translations
are noisier than original Spanish-source translation
data, but find it important to train our model on a
wide range of data early on. In this regard, we view
our later stages of training on Stage 2 and Stage 3
data as tuning our model on higher quality data.

4 Results

We present our results in Tables 5 and 6, along-
side results for the two baseline systems. The re-
ported scores are calculated using the chrF++ met-
ric (Popović, 2017), as stipulated by the shared
task.

Our NLLB+FT(v2) model beats both baseline
systems on the development set for Aymara and
Quechua, and both baseline systems on the test set
for Quechua and Rarámuri. Additionally, several
of our models beat at least one baseline system on
the development set for Bribri, Nahuatl, Quechua,
and Shipibo-Konibo.

Of all submissions this year, our NLLB+FT(v2)
model achieves the best result for Aymara, Shipibo-
Konibo, and Rarámuri, and our NLLB+FT(v4)
model achieves the best result for Bribri, as eval-
uated on the test set. Our NLLB+FT(v2) and
NLLB+FT(v4) models achieve average chrF++
scores across all languages of 22.17 and 23.32 re-
spectively, with NLLB+FT(v4) representing the
second best overall submission.

Interestingly, while our models did not achieve
the best result on the test set for Asháninka,
Hñähñu, and Quechua as measured by the offi-
cial metric, at least one of our NLLB+FT models
outperformed the best submission in BLEU score
(Post, 2018). We report these scores in Table 4.

Our Mamba model shows poor performance at
the stage in training at time of submission. How-
ever, we believe much of this to be due to un-
dertraining given that our model is trained from
scratch. With this in mind, we believe continued
training may lead to success of our Mamba model,
and plan to continue experiments with this archi-
tecture.

5 Conclusion

In this paper, we presented our submission to the
AmericasNLP 2024 shared task on machine transla-
tion systems for Indigenous languages. Our submis-
sions included six versions of a fine-tuned 600M
parameter distilled variant of NLLB-200, and one
Mamba-based model trained from scratch. We
trained all of our models on multilingual data to
translate from Spanish to 11 target Indigenous lan-
guages. We achieve the best chrF++ scores on
4 languages with our fine-tuned NLLB-200 mod-
els, improving upon the baseline systems for two
languages and setting a new highest score for Rará-
muri. Additionally, we find our Mamba-based
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Version # Epochs Stage 2 # Epochs Stage 3 # Epochs Addl. Stage 2 # Epochs Addl. Stage 3
v1 3 10 0 10
v2 3 10 3 0
v3 3 10 3 3
v4 3 10 3 4
v5 3 10 0 6
v6 3 10 3 8

Table 3: Our six fine-tuned NLLB submissions differ solely in the number of epochs through each fine-tuning stage.
All models were trained for 3 epochs on the Stage 2 data (# Epochs Stage 2), followed by 10 epochs on the stage 3
data (# Epochs Stage 3). We then experiment with training the models on the Stage 2 data again (# Epochs Addtl.
Stage 2), on the Stage 3 data again (# Epochs Addtl. Stage 2), or both. The order in which this process occurs is
laid out left-to-right in the table. For instance, NLLB+FT(v6) was trained, in order, for 3 epochs through Stage 2,
followed by 10 epochs through Stage 3, followed by 3 more epochs through stage 2, and finally 8 epochs through
Stage 3.

Language v1 v2 v3 v4 v5 v6
cni 3.56 3.52* 3.56* 3.51* 3.41* 3.49*
oto 1.55* 1.46* 1.66 1.49* 1.52* 1.36
quy 4.01 5.41 4.13 4.32 3.91 4.05

Table 4: BLEU scores for our six NLLB+FT submissions for the languages on which we achieve a higher BLEU
score than the winning submission. The highest score for each language is bolded. All other results that achieve
a higher BLEU score than the submission with the highest chrF++ score for that language are denoted with an
asterisk.

model to perform poorly given its training, but plan
to continue training and experimentation with this
architecture.

Limitations

Due to dialectal and orthographic variation of the
Indigenous languages included in this shared task,
it is unclear how our systems would perform on
language data that spans such variation not repre-
sented in the task data. For example, the provided
data for Quechua belongs to the Quechua Ayacu-
cho variant of the Southern Quechua dialect4. It is
unclear how performance would vary for different
varieties of Quechua.

Ethics Statement

To our knowledge, our work on this project adheres
to the principles set forth in Schwartz, 2022.
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Abstract
In this paper, we present the four systems
developed by the Meenzer team from JGU
for the AmericasNLP 2024 shared task on
the creation of educational materials for In-
digenous languages. The task involves accu-
rately applying specific grammatical modifica-
tions to given source sentences across three
low-resource Indigenous languages: Bribri,
Guarani, and Maya. We train two types of
model architectures: finetuning a sequence-to-
sequence pointer-generator LSTM and finetun-
ing the Mixtral 8x7B model by incorporating
in-context examples into the training phase.
System 1, an ensemble combining finetuned
LSTMs, finetuned Mixtral models, and GPT-
4, achieves the best performance on Guarani.
Meanwhile, system 4, another ensemble con-
sisting solely of fine-tuned Mixtral models, out-
performs all other teams on Maya and secures
the second place overall. Additionally, we con-
duct an ablation study to understand the perfor-
mance of our system 4.1

1 Introduction

Natural language processing (NLP) serves as a
valuable educational tool for facilitating the learn-
ing of (endangered) languages. One effective
method for generating learning material involves a
system automatically transforming sentences based
on specific properties. Subsequently, language
learners are tasked with replicating the transfor-
mation, thus reinforcing their understanding of the
language structure. The AmericasNLP 2024 shared
task on the creation of educational materials for In-
digenous languages (ST 2) (Chiruzzo et al., 2024)
focuses on creating such material for three low-
resource Indigenous languages: Bribri, Guarani,
and Maya. Participants are tasked with applying
a specific grammatical property to a given source
sentence and producing the accurate modification.

1The code is available at https://github.com/
MinhDucBui/SharedTaskAmericasNLP2024.

Figure 1: A Bribri sample from the shared task.

Our systems (which we submitted under the
name "Meenzer Team") are ensembles composed
of a range of models: finetuned character-level
pointer-generator LSTMs (See et al., 2017), fine-
tuned Mixtral 8x7B large language models (LLMs)
(Jiang et al., 2024) via training on in-context exam-
ples, and GPT-4 (OpenAI, 2023). The main metric
of the shared task is accuracy. We outperform all
teams on Guarani by employing an ensemble across
all models. Additionally, our ensemble of finetuned
Mixtral models achieves the highest performance
on Maya and reaches the second place overall.

The remainder of this paper is organized as fol-
lows: Section 2 details the task at hand and intro-
duces the provided data. Following that, Section
3 dives into the details of our four system submis-
sions. Section 4 presents the outcomes observed
on both the development and test sets of the shared
task. Lastly, an ablation study on our best perform-
ing system is provided in Section 5.

2 Task and Data

2.1 Task

In the context of this shared task, a source sentence
is accompanied by a designated change feature,
which the system is tasked with applying, see Fig-
ure 1. These features include modifications related
to grammar, such as negation, and each sample
can entail multiple concatenated grammatical alter-
ations. While the shared task bears resemblance
to morphological inflection shared tasks (Cotterell
et al., 2016), where the goal is to modify a single
word, our scenario necessitates adjustments to the
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Train Dev Test

Bribri 310 213 481
Guarani 179 80 365
Maya 595 150 311

Table 1: Dataset sizes for each language and split.

entire sentence to accurately represent a specified
property.

2.2 Data
The dataset encompasses three Indigenous lan-
guages: Bribri, Guarani, and Maya.2 For each
language, a training and a development set are
provided. Additionally, the input side of the test
set is given and used to submit predictions for the
shared task’s final evaluation. Within the training
set, Bribri comprises 28 unique features, resulting
in 135 distinctive combinations; Guarani encom-
passes 19 unique features, forming 21 combina-
tions; and Maya has 33 unique features, yielding
52 combinations. A summary of the sample distri-
bution per language and split is presented in Table
1.

3 Meenzer Team’s System

Our systems consist of ensembles comprising var-
ious models, including finetuned character-level
pointer-generator LSTMs, finetuned Mixtral 8x7B
LLMs utilizing in-context finetuning, and GPT-4.

3.1 Pointer-Generator LSTM
Our first model group is a character-level sequence-
to-sequence LSTM architecture, featuring an
LSTM encoder and decoder equipped with an at-
tention mechanism, alongside a pointer-generator
(Bahdanau et al., 2015; See et al., 2017). The
pointer-generator allows the LSTM to both copy
words through pointing and generate characters
from a predefined vocabulary (Vinyals et al., 2015).

In contrast to the typical sequence-to-sequence
LSTM models, we use a separate LSTM encoder to
encode the provided change features. For a detailed
explanation of the sequence-to-sequence LSTM,
we refer to Bahdanau et al. (2015). Furthermore,
we deploy a pointer generator with a character-level
vocabulary: At timestep t, given the attention distri-
bution at over the characters in the source sequence,
the decoder state st and the context vector h∗t , the

2https://github.com/AmericasNLP/
americasnlp2024/tree/master/ST2_
EducationalMaterials/data

Figure 2: An example of a 1-shot prompt for a sample,
with [LANGUAGE] being replaced by the specific lan-
guage under consideration. During training, we predict
and compute the loss based on the [TARGETsample] se-
quence. However, during testing, [TARGETsample] is left
blank and must be predicted.

generation probability pgen ∈ [0, 1] is determined
as:

pgen = σ(wTh∗h
∗
t + wTs st + wTx x+ bptr)

where vectors wth∗ , ws, wx and the scalar bptr are
all learnable parameters, while σ represents the sig-
moid function. The probability pgen serves as a soft
switch, enabling the model to decide whether to
generate a character from the vocabulary or to copy
a character from the source sequence by sampling
from the attention distribution at:

P (w) = pgenPvocab(w) + (1− pgen)
∑

i:wi=w

ati,

where Pvocab(w) represents the probability distribu-
tion across all characters in the vocabulary, while
P (w) additionally adds all characters present in the
source sequence.

Training We adopt a two-step training approach
for our model: Initially, we train a model on the
combined training sets of all three languages for
100 epochs, incorporating early stopping. Addition-
ally, we employ hyperparameter tuning through
100 trials; see Appendix A.1. Subsequently, in
preparation for our ensemble approach, we select
the top 10 models and conduct further finetuning
on each model using the dataset of the target lan-
guage. This process is repeated independently for
all three languages. Each change feature is as-
signed a distinct feature token, and we include
language tags for each individual dataset, treating
them as a change feature.
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Bribri Guarani Maya Avg.
Acc. BLEU ChrF Acc. BLEU ChrF Acc. BLEU ChrF Acc.

Dev Set

(1) LSTMs+Mixtrals+GPT4s 30.19 51.96 67.60 53.16 61.98 88.53 70.46 85.14 93.75 51.27
(2) LSTMs+Mixtrals 30.19 51.96 67.60 49.36 58.09 86.33 70.46 85.14 93.75 50.00
(3) LSTMs 24.10 50.30 61.47 41.77 43.28 77.65 70.47 85.13 93.59 45.45
(4) Mixtrals 22.17 47.28 66.80 44.30 54.78 84.60 61.74 80.67 91.60 42.74

Test Set

(1) LSTMs+Mixtrals+GPT4s 17.50 44.20 70.09 34.62 49.60 84.93 38.39 66.81 83.70 30.17
(2) LSTMs+Mixtrals 17.50 44.20 70.09 23.08 35.95 79.71 38.39 66.81 83.70 26.32
(3) LSTMs 8.54 32.50 61.24 12.64 20.01 71.61 27.74 58.59 79.29 16.31
(4) Mixtrals 19.38 46.93 73.02 23.90 36.94 79.48 53.87 77.68 90.94 32.38

Table 2: Our results on the development set (upper part) and the official results on the test set (lower part).

3.2 Mixtral 8x7B (Instruct)

Our second model is the Mixtral 8x7B (Instruct),3

a LLM finetuned on instructional data (Jiang et al.,
2024).

Architecture The Mixtral 8x7B model is a
sparse mixture of experts language model (Shazeer
et al., 2017), employing the same decoder-only
transformer architecture as Mistral 7B (Jiang et al.,
2023). However, it distinguishes itself by having
each layer composed of 8 feedforward blocks, re-
ferred to as experts. At every token and layer, a
router network selects two experts, which may vary
at each timestep, to process the current state and
combines their outputs. Consequently, while each
token theoretically has access to 47B parameters,
only 13B active parameters are utilized during in-
ference. We leverage the instruction-tuned version.

Training We employ, what Li et al. (2023) call,
supervised in-context learning (SICL), which dif-
fers itself from conventional in-context learning
(ICL) by integrating in-context examples directly
into the training phase (Min et al., 2022; Chen et al.,
2022). We concatenate the task instruction, labeled
in-context examples, and the target sequence to
predict. Subsequently, we finetune the model to
predict the target sequence, see Figure 2 for an
example. In contrast, ICL generate predictions
without adjusting model parameters.

To enhance both training and inference effi-
ciency, we implement 4-bit quantization with
LoRA (Dettmers et al., 2023). We train multiple
LoRA adapters by varying the number of exam-
ples per prompt (k) and the number of epochs (m).
Specifically, we experiment with k = 5, 10, 20 and

3Model taken from https://huggingface.co/
mistralai/Mixtral-8x7B-Instruct-v0.1

m = 10, 20, resulting in a total of 6 models per lan-
guage. Each LoRA adapter, applied onto the query
and value projection matrices in the self-attention
module, possesses a rank of 8. For each sample,
examples are selected based on their overlap with
the same or similar changes, with the top-k most
similar examples chosen. Additionally, the order of
the top-k examples is randomized for each epoch.
We employ a learning rate of 1e-4 alongside a co-
sine learning rate scheduler, with a weight decay
of 0.1.

3.3 GPT-4

In addition to Mixtral 8x7B, we incorporate GPT-
4 using ICL. GPT-4, another LLM, is configured
with k = 20 examples. We maintain consistency
in example selection and prompt style with Mixtral
8x7B (Instruct). Specifically, we leverage the gpt-
4-turbo-2024-04-09 version of GPT-4.

3.4 Ensembling Strategy

Our four final systems consist of different ensem-
bles constructed from the previously mentioned
models, leveraging majority voting to reach a final
decision, with the best-performing model on the
development set breaking ties. To introduce more
diversity for the LLMs, we generate two inference
prompts: While one prompt organizes the top-k
examples in ascending order, the other arranges
them in descending order. Consequently, for each
language, we have 10 LSTM, 12 Mixtral, and 2
GPT-4 predictions. For each system, we choose
the best combination of models by evaluating their
performance on the development set.

System 1 This system incorporates predictions
from the LSTM, Mixtral 8x7B, and GPT-4 models.
It is denoted by (1) LSTMs+Mixtrals+GPT4s.
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System 2 This system comprises predictions
from the LSTM and Mixtral 8x7B models, labeled
as (2) LSTMs+Mixtrals.

System 3 This system solely relies on predictions
from the LSTM models, identified as (3) LSTMs.

System 4 This system only considers the Mixtral
models and is denoted by (4) Mixtrals.

4 Results

The primary metric for evaluating the shared task
performance is accuracy (acc.), supplemented by
BLEU (Papineni et al., 2002) and ChrF (Popović,
2015) as additional metrics. We present the results
for the development set and test set in Table 2.

4.1 Development Set Results
The ensemble of all models demonstrates the
highest performance, achieving an average ac-
curacy of 51.24 and attaining the top scores
across all languages. Notably, the only differ-
ence between (1) LSTMs+Mixtrals+GPT4s and
(2) LSTMs+Mixtrals is in the Guarani language,
where the addition of ChatGPT improves perfor-
mance. When considering only LSTM models, we
still achieve an average accuracy of 45.45, com-
pared to 42.74 for Mixtral models.

4.2 Test Set Results
On the test set, we observe a significant differ-
ence from the reported development set results.
The Mixtral ensemble performs best, achieving
an accuracy of 32.38, approximately 10 points
lower than its development set performance. Sur-
prisingly, the LSTM ensemble performs notably
worse, with an average accuracy of only 16.31.
This decline in performance cascades through all
other ensembles incorporating LSTM models: (2)
LSTMs+Mixtrals achieves an average accuracy of
26.32, while (1) LSTMs+Mixtrals+GPT4s reaches
an average of 30.17.

Nevertheless, our (1) system achieves the high-
est performance on Guarani among all shared task
systems, while (4) Mixtrals attains the highest
accuracy on Maya (tied with another team). Over-
all, our (4) Mixtrals system secures second place
among all systems based on average accuracy.

Development & Test Set Discrepancy The
LSTMs, constructed at the character-level and
trained from scratch with a limited training set,
might encounter numerous unknown characters.

Bribri Guarani Maya Avg.

Ensemble vs. (Best) Single Model

Mixtral (Single) 17.45 40.50 57.71 38.55
Mixtrals (Ensemble) 22.17 44.30 61.74 42.74

ICL vs. SICL

Mixtral (ICL) 7.08 18.99 35.57 20.55
Mixtral (SICL) 14.15 36.7 57.71 36.19

Random Prompt Order

Mixtral (Fix) 8.49 35.44 54.36 32.76
Mixtral (Random) 14.15 36.70 57.71 36.19

Table 3: Ablation study on the development set for (4)
Mixtrals, our best system.

Analyzing the case-sensitive character overlap be-
tween the language specific training, development,
and test sets reveals a substantial disparity. For
instance, in the case of Bribri, we observe that,
while 21% of samples in the development set con-
tain unseen characters, this figure rises to 65.4% in
the test set. Similarly, for Guarani, the proportion
increases from 11.4% in the development set to
22.3% in the test set. Conversely, for Maya, while
there are no unseen characters in the development
set, they account for 15.5% of samples in the test
set.

5 Ablation Study

In this section, we conduct a brief ablation study on
our best-performing system, (4) Mixtrals. The
results on the development set are presented in
Table 3.

Ensemble vs. (Best) Single Model We demon-
strate that assembling the Mixtral models into
an ensemble boost performance by approximately
4.19 average accuracy points compared to the sin-
gle best Mixtral model.

ICL vs. SICL For this and the following compar-
ison, we fix the number of examples to k = 20 and
epochs to m = 10. We observe that ICL, which
does not adjust parameters, demonstrates an aver-
age accuracy of only 20.55, a notable 15.64 lower
than SICL.

Random Order per Epoch: Finally, we investi-
gate the impact of randomly varying the order of
the k examples in the prompt per epoch on per-
formance. We find that maintaining a fixed order
(consistent during inference) leads to decreased
performance across all languages, with an average
accuracy decrease of 3.43.
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6 Conclusion

We presented the systems of the Meenzer Team
by JGU for the AmericasNLP 2024 shared task on
the creation of educational resources. We trained
character-level pointer-generator LSTMs as well
as Mixtral 8x7B models finetuned through SICL.
In addition, we used GPT-4 models via in-context
learning. We secured second place with an en-
semble of the finetuned Mixtral 8x7B models and
reached the highest accuracy on Maya. Addi-
tionally, we achieved the highest performance on
Guarani using an ensemble of LSTM, Mixtral, and
GPT-4 models.
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Hyperparameter values

Optimization

Batch size {2, 4, . . . , 128}
Learning rate [1e−5, 0.01]
β1 [.8, .999]
β2 [.98, .999]
Label smoothing [0, .2]
Scheduler {reduceonplateau, warmupinvsqrt, (none)}
Warmup samples∗ {0, 10, . . . , 1000}
Factor∗ [.1, .9]
Min. learning rate∗ [1e−7, .001]
Learning rate patience∗ {1, 2, . . . , 5}

Architectural

Embedding Size {16, 32, . . . , 512}
Hidden layer size {64, 128, . . . , 2048}
Encoder & Decoder layers {1, 2}
Feature Attention heads {1, 2}
Dropout [0, .5]

Table 4: LSTM hyperparameter space. Continuous distributions are denoted by intervals [. . . ], while discrete ones
show step sizes 1, 2, . . . , max. We uniformly sample from these, except for the learning rate, which follows a log
uniform distribution. Hyperparameters and the distributions we sample from. ∗ marks conditional hyperparameters,
relevant only with chosen schedulers.

A Appendix

A.1 Hyperparameter Grid
We report in Table 4 the hyperparameter grid for
our LSTMs.
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Abstract

This paper presents our approach to the Ameri-
casNLP 2024 Shared Task 2 as the JAJ (/dæz/)
team. The task aimed at creating educational
materials for indigenous languages, and we fo-
cused on Maya and Bribri. Given the unique
linguistic features and challenges of these lan-
guages, and the limited size of the training
datasets, we developed a hybrid methodol-
ogy combining rule-based NLP methods with
prompt-based techniques. This approach lever-
ages the meta-linguistic capabilities of large
language models, enabling us to blend broad,
language-agnostic processing with customized
solutions. Our approach lays a foundational
framework that can be expanded to other in-
digenous languages languages in future work.

1 Introduction

In recent years, there has been a surge of interest
in developing natural language processing (NLP)
technologies for low-resource languages. This is
motivated by the desire to preserve cultural heritage
and foster linguistic diversity.

Among 7,000 living languages on Earth, 42%
of languages are in danger of disappearing, ac-
cording to Ethnologue1. In the Americas, there
are approximately 1,200 languages (Hammarström
et al., 2024), and about 70% of them are classi-
fied as endangered or already extinct by the United
Nations Educational, Scientific and Cultural Or-
ganization (UNESCO) (Moseley and Alexandre,
2010). The endangered languages are losing their
vitality, and intergenerational transmission is barely
occurring or not occurring at all, which suggests
these languages are at a high risk of becoming
extinct in the near future, along with the the cul-
tural legacy residing within. While many commu-
nities are engaged in revitalization endeavors, such
as developing educational resources for language

1https://www.ethnologue.com/insights/how-many-
languages-endangered/

preservation, these initiatives are confronted with
significant challenges in terms of cost and time in-
vestment. NLP can be one way of ameliorating the
situation.

The AmericasNLP 2024 Shared Task 2 is specifi-
cally aimed at creating educational materials for in-
digenous languages in the Americas, such as Maya,
Guarani, and Bribri (Chiruzzo et al., 2024). These
languages each have their own unique linguistic
features and challenges, offering a rich opportunity
for the application of innovative NLP techniques.

In this shared task, we are given a dataset with
base sentences and the grammatical changes ex-
pected to be applied to each base sentence. Based
on this information, we will train a system that
can transform the base sentences according to the
indicated changes.

Base sentence: Ye’ shka’ (Bribri for “I walked”)
Expected change: Polarity: Negative
Target sentence: Ye’ kë shkane (Bribri for “I didn’t walk”)

We participated in this task with the goal of de-
veloping a method that effectively handles the lin-
guistic complexities of these languages. Our hy-
brid methodology combines rule-based NLP meth-
ods with prompt-based techniques, making use of
the meta-linguistic capabilities of large language
models (LLMs). This approach enabled us to
blend broad, language-agnostic processing with
customized solutions that address each language’s
unique needs.

Maya largely does not conjugate verbs based on
grammatical tense; instead, it uses aspectual mark-
ing to express time-related information. The abun-
dance of apparently simple examples with only a
single change, presented an interesting challenge.
Rather than using all the available examples, we
experimented with selection methods to find the
most syntactically similar example sentences.

Bribri, on the other hand, had a much more com-
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plicated system of verb conjugation. Using more
examples was not as effective as a separate system
to handle the intricate verb morphology. This as-
pect of Bribri posed a substantial challenge, further
complicated by variations in notation and spelling
observed across different educational resources.

While our system addresses specific linguistic
features of Maya and Bribri, we encountered time
constraints that limited our ability to apply similar
dedicated modifications to Guarani. Consequently,
Guarani was processed using the base system, with-
out the benefit of language-specific adaptations.
Recognizing the unique linguistic structure and cul-
tural significance of Guarani, we are committed to
expanding our system in the future to include tai-
lored strategies that cater specifically to its needs,
enhancing the model’s overall effectiveness.

2 Prior Work

Our approach is inspired by previous work on
Rosetta Stone puzzles (Bozhanov and Derzhanski,
2013). These puzzles are carefully designed to
encourage solvers to deduce implicit linguistic fea-
tures from a low-resource language, relying solely
on a limited set of bilingual sentence pairs, one of
which is a low-resource language with uncommon
linguistic features. Leveraging the inferred linguis-
tic patterns, solvers are tasked with translating new
sentences in both directions, which is in essence a
few-shot translation task.

Şahin et al. (2020) explored the resolution of
Rosetta Stone problems using a range of algo-
rithms, from random word selection to transformer-
based language models. Sung et al. (2024) con-
ducted similar experiments, specifically focusing
on assessing the metalinguistic awareness of pre-
trained language models. Their findings not only
underscored the limitations of various algorithms
in tasks requiring linguistic inference skills but also
outlined directions for advancing machines’ com-
prehension of human language.

Recent advancements in the application of LLMs
to Rosetta Stone puzzles have shown encouraging
outcomes, demonstrating the potential of LLMs to
extract and apply linguistic knowledge from lim-
ited data (Vamvas, 2022; Chi et al., 2024). This
research supports the feasibility of our approach,
suggesting that LLMs can adeptly adapt to the in-
tricacies of low-resource languages by leveraging
their inherent capabilities in pattern recognition
and language comprehension.

Another relevant research area is the Machine
Translation from One Book (MTOB) task (Tanzer
et al., 2024). In this task, models are trained to
translate between English and Kalamang using
only a single Kalamang textbook. LLMs seem
to be breaking into this space as well, as shown
by Gemini 1.5l’s state-of-the-art performance on
this task. The MTOB task is particularly pertinent
to our work because it demonstrates the potential
of machine learning models to operate effectively
even with severely limited datasets, mirroring the
conditions we faced in the shared task (Pichai and
Hassabis, 2024).

3 Method

3.1 Preparing the Examples

Due to the limited dataset size, ensuring the quality
and consistency of data was paramount. We imple-
mented several preprocessing steps to optimize the
training data:

Duplicate Removal and Capitalization: We re-
moved duplicate entries where the source and
change tags were identical and standardized capi-
talization across the dataset to ensure uniformity.
This reduced the number of example sentences in
Maya from 594 to 584, but didn’t affect Bribri or
Guarani.

Tag Collapsing: Through detailed analysis of
the training data, we identified and merged change
tags that consistently appeared together, reducing
redundancy. For example for changes that included
both ASPECT and TENSE in Maya, we removed
the TENSE tags as they did not appear to change
the Target sentence.

Sub-step Expansion: We split some com-
plex changes into simpler, sequential sub-steps.
For instance, a change tagged as TYPE:NEG,
SUBTYPE:INT was decomposed into two stages:
first applying TYPE:NEG to reach an intermediary
form, followed by SUBTYPE:INT to achieve the fi-
nal state. This added 12 new cases to Maya and 6
new cases to Bribri.

Backward Labeling: When feasible, we gener-
ated additional training cases by labeling from the
target back to the source, effectively doubling the
data for those instances. The total number of ex-
amples used were 1199 for Maya (up from 594),
329 for Bribri (up from 309), and the 178 Guarani
examples remained unchanged.
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Independence Analysis: By consulting
language-specific textbooks and analyzing the
training data, we identified which changes were
independent and which were interdependent,
enabling more precise modeling of language rules.

3.2 Base System
Our base system is designed to leverage the ca-
pabilities of large language models by prompting
them with relevant example cases. The system’s
operation during inference takes the same form, re-
gardless of language, with some language specific
modifications at key points.

Initially we simply included all available exam-
ples with the same change as the test case. How-
ever, we quickly found that not all test case changes
were represented in the training data, particularly
those with compound changes. To address this,
we implemented a language-specific strategy for
decomposing and processing the changes:

Maya: Changes that commonly occurred to-
gether (e.g., ASPECT:BEG, TENSE:PAS_SIM) were
collapsed into a single step (ASPECT:BEG). The re-
maining changes were then split and processed
sequentially in the order: STATUS → PERSON →
ASPECT → TYPE → SUBTYPE.

Bribri: Changes that typically co-occurred (e.g.,
ABSNUM:PL, PERSON:3_PL) were combined into
a single change (PERSON:3_PL). PERSON is then
processed separately from the other changes.

Guarani: Changes are applied consecutively in
the case of compound changes.

When a test case has a compound change,
it is passed to the language specific function
that determines which changes should be applied
and if they can be applied together or sequen-
tially. In the case of sequential changes, the
system will reprompt the model with the modi-
fied output from the previous step until all spec-
ified changes are implemented. For instance,
a Bribri case with the change TENSE:PRF_REC,
ASPECT:PFV, ABSNUM:PL, PERSON:3_PL will un-
dergo two rounds of processing, each focusing on
one specific change. First the tense will be changed
to recent perfect, then the result of that will be
changed to 3rd person plural.

3.3 POS Tagging
A key component of our system is the application
of custom, simplified part of speech (POS) taggers

tailored to each target language. These taggers are
primarily dictionary-based and are used to supple-
ment the example sentences being passed to the
LLM by explaining better the grammatical role of
the words of the provided examples. The POS tag-
ger for Maya focuses predominantly on function
words, as these play a crucial role in understanding
the grammatical structure of sentences. We didn’t
use a full dictionary for Maya, but made sure to
have coverage of aspect markers such as táan and
pronouns such as in or teen (Bolles and Bolles,
1996). Additionally our tagger is designed to rec-
ognize and handle known suffixes such as e’ex. For
Bribri, we developed a POS tagger using a compre-
hensive dictionary of Bribri words from Professor
Haakon S. Krohn’s website2 (Krohn, 2023).

3.4 The Prompt
The prompt was adapted from the one Vamvas
(2022) used for the Rosetta Stone Puzzles. It inte-
grates the retrieved examples with part of speech
tags, as well as some language specific hints.

Here is a full example from Maya:

System message:
You are a helpful assistant with a strong background
in linguistics.

User message:
This is a linguistic puzzle. Below are example sen-
tences in a foreign language and sets of changes
to apply to them.The examples are followed by the
problem sentence and desired change.Your task is to
look closely at the example sentences and to change
the sentence correctly.

Example 1:
Sentence: Tin kaxtik a najil
((Tin, PRON:TA:1_S) (kaxtik, ::) (a, PRON:A:2_X)
(najil, ::))
Change(s): PERSON:3_PL, ASPECT:PRG
Answer: Táan u kaxtiko’ob a naajil
((Táan, PART:ASP:) (u, PRON:A:3_X) (kaxtiko’ob,
:kaxtik:3_P) (a, PRON:A:2_X) (naajil, ::))

Example 2-5

Here is the problem. Answer first, then explain your
reasoning.
Sentence: Tin wilaj u sáastal tin kaajal ((Tin,
PRON:TA:1_S) (wilaj, ::) (u, PRON:A:3_X)
(sáastal, ::) (tin, PRON:TA:1_S) (kaajal, ::))
Change(s): PERSON:3_PL
Hint:

3.5 Generation and Postprocessing
We tested generation on the develop-
ment set using gpt-3.5-turbo-0125,

2https://www.haakonkrohn.com/bribri/index.html
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gpt-4-0125-preview (OpenAI et al., 2024),
and Mixtral-8x7B-Instruct-v0.1 (Jiang et al.,
2024). For the GPT models, we used temperature
of 0. For Mixtral we used a greedy search.

While the generation can be stopped after
“\n\n”, we found that not setting the stop allowed
the model to generate an explanation of the change.
This was useful for interpretability, and we were
able to spot some issues during development this
way.

For postprocessing, the preamble (Answer:) and
POS tags are stripped from the first line. Mixtral is
less consistent with the answers, so we wrote some
rule based processing to find potential answers in
quotes.

Here is an example output from GPT-4:

Answer: Tu yilo’ob u sáastal tu kaajalo’ob
((Tu, PRON:TA:3_X) (yilo’ob, :yil:3_P) (u,
PRON:A:3_X) (sáastal, ::) (tu, PRON:TA:3_X)
(kaajalo’ob, :kaajal:3_P))

Explanation:
The task involves changing the sentence from first
person singular to third person plural. To do this,
we follow the patterns observed in the examples.
1. Pronoun Change: In all examples, the first
person singular pronoun “Tin” changes to the third
person plural pronoun. In Examples 2 and 5, “Tin”
changes to “Tu” for third person plural. Therefore,
both instances of “Tin” in the problem sentence are
changed to “Tu”.
2. Verb and Action Word Changes: In the exam-
ples, verbs and action words that are in first person
singular form are changed to their third person plu-
ral forms by adding an “o’ob” suffix or changing
the suffix to match third person plural conventions.
This is seen in Example 5 with “wilaj” changing to
“yilo’ob” and “kaajali”’ changing to “kaajalo’obi”’.
Since “kaajali”’ is not present in the problem sen-
tence, but “kaajal” is, we apply a similar transfor-
mation to “kaajal”, changing it to “kaajalo’ob”. The
word “wilaj” similarly changes to “yilo’ob” follow-
ing the pattern from Example 5.
3. Maintaining Unchanged Parts: Elements that
do not pertain to person, such as “u sáastal” (indicat-
ing possession or association with “sáasta”), remain
unchanged in the transformation, as seen across all
examples.
By applying these rules derived from the examples,
we correctly transform the problem sentence to third
person plural as requested.

3.6 Maya Adaptations

Initially, our system used all available examples for
each change, but we refined our example selection
process for Maya, where certain changes could
return over 100 relevant examples.

We conducted experiments on the development
set to find the optimal number of examples. These

System Accuracy BLEU ChrF
5 examples 20.81 50.72 78.60
+ selected 47.56 72.39 89.36
+ POS Tags 56.38 78.26 91.33
All matches 56.38 77.63 91.30

Table 1: Different types of example retrieval on the
Maya development set

experiments varied the number of examples from
one to ten per test case. The results indicated that
selecting five examples struck the best balance be-
tween performance and cost-efficiency.

The selection of these five examples was based
primarily on syntactic relevance rather than seman-
tic similarity or word form matching. By compar-
ing the POS tagged source sentences of the exam-
ples with that of the input, we were able to identify
examples that shared similar syntactic structures.
This approach ensured that the examples used were
not structurally analogous, enhancing the effective-
ness of the model’s performance.

For example if the input sentence is Ma’ ta jutaj
a najili’, an example sentence Ta manaj a najil
overlaps significantly in word form, but the first
sentence is a negative sentence, while the second
is affirmative. This means they will react to the
next change slightly differently. Instead, we match
Ma’ ta jutaj a najili’ with Ma’ tin wa’alik u k’aaba’
which is structurally similar, despite less character-
level overlap.

This method reduced computational costs by ap-
proximately 75% across the full test set, achieving
comparable results to using the full example set,
as shown in Table 1. Using five carefully selected
examples with POS tags not only matches the per-
formance of using all examples on the development
set, but also achieves substantial cost savings, fur-
ther justifying our approach.

3.7 Bribri Adaptations
Managing the complexity of Bribri verb conjuga-
tion, especially for irregular verbs, necessitated in-
novative methods to enhance translation accuracy.
An initial experiment used an oracle verb conjuga-
tion hint, which leveraged correct verb forms from
target sentences in the development set, to evaluate
potential performance enhancements. This experi-
ment led to a substantial increase in accuracy from
15% to 65%, signifying the crucial role of accurate
verb conjugation in model performance.

Motivated by the success of the oracle hint, we
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System Accuracy BLEU ChrF
Examples 14.62 43.69 64.61
+ VERB form hint 46.70 64.84 79.85
+ MODE hints 47.17 67.01 80.75

Table 2: Ablation results for the hint categories on the
Bribri development set

developed a rule-based verb conjugator, employ-
ing a comprehensive database of verb conjugations
sourced from Jara Murillo (2018)3. In this system,
verbs identified by our POS tagger are looked up in
the database to ascertain the correct conjugational
form based on the grammatical context. For in-
stance, in the sentence Ye’ tö i kötwa with changes
TYPE:NEG, TENSE:FUT_CER, ASPECT:IPFV, the
verb kötwa is located by the POS tagger and looked
up in the verb conjugation database. It’s found to
be the perfect remote form of ujtökwa. The con-
jugator transforms the verb into ujtèpawa for the
negative certain future tense. This transformation is
then included as a hint in the model’s prompt:“The
correct form of kötwa is likely ujtèpawa.”

These enhancements, particularly the integration
of verb conjugation hints, have markedly improved
our system’s performance, as detailed in the abla-
tion study results in Table 2. While the rule-based
conjugator does not replicate the perfect accuracy
of the oracle hint, it significantly contributes to the
overall effectiveness of the system in managing
Bribri’s complex verb conjugations.

3.8 Additional hints

Drawing from the Machine Translation from One
Book (MTOB) task, we supplemented our ap-
proach with grammatical hints taken from text-
books. For each language, we incorporated short
summaries of grammatical rules related to the
changes from language textbooks. While time
constraints limited the coverage of all possible
changes, the preliminary results from these hints
were promising and represent a straightforward av-
enue for further improvement.

4 Results

Our systems for Maya and Bribri improved on
the baselines provided by the task organizers by
considerable amounts. In particular, our system’s
Bribri accuracy was over six times higher than the

3https://www.lenguabribri.com/gramática-de-la-lengua-
bribri

Data Accuracy BLEU ChrF
Maya dev 56.38 78.26 91.33
Maya test 54.17 71.72 82.78
Baseline 25.81 53.69 80.23
Bribri dev 47.17 67.01 80.75
Bribri test 53.55 78.41 91.53
Baseline 8.75 22.11 52.73
Guarani dev 41.77 55.81 86.12
Guarani test 36.81 48.29 84.12
Baseline 14.84 25.03 76.10

Table 3: The results of the submitted system on the
development and test sets.

edit-tree based baseline. This is likely due to the
challenges of complex verb conjugation using an
edit-tree approach. The complete results can be
seen in Table 3.

As indicated in Tables 1, Maya became more
resource efficient with example selection and POS
tagging. Bribri performance saw the largest boost
from verb hints and moderate improvements from
mode hints, as shown in Table 2.

Our Bribri system was the best performing in the
competition. Our Maya system came a close third.
Due to this, and despite regrettably not submitting
Guarani results, our contribution was ranked first
overall. We submitted Guarani after the deadline,
and report the results of all three languages on the
development and test sets compared to the baseline
in Table 3.

5 Discussion

We submitted our results using GPT-4 for system
prompting due to its superior performance on the
development set. Table 4 details the performance
across different LLMs, noting that while Mixtral
scored more competitively with GPT 3.5 for Maya,
it was outperformed by both GPT models in the
other languages.

5.1 Error Analysis

5.1.1 Maya
The errors in Maya predominantly stem from in-
consistencies in the example data and the complex
syntactic structures that require deeper linguistic in-
sights beyond mere pattern matching. For instance,
the development set case Te’exe’ ti’ kajakbale’ex tu
yotoche’ (TYPE:NEG) changes to Ma’ kajakbale’ex
tu wotochi’, contrasting with a similar training ex-
ample Leti’obe’ ti’ u taalo’obi’ (TYPE:NEG) that
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Lang System Acc. BLEU ChrF
Mixtral 44.97 69.19 83.52

Maya GPT-3.5 42.28 67.84 86.04
GPT-4 56.38 78.26 91.33
Mixtral 34.43 42.86 72.06

Bribri GPT-3.5 40.57 61.15 77.04
GPT-4 47.17 67.01 80.75
Mixtral 12.66 20.95 69.84

Guarani GPT-3.5 36.71 51.38 83.35
GPT-4 41.77 55.81 86.12

Table 4: The results on the development set for the
different LLMs.

becomes Leti’obe’ ma’ ti’ u taalo’obi’, where
Leti’obe and ti’ are retained. These inconsistencies,
including the absence of examples for changes like
tu yotoche’ to tu wotochi’, contribute to over 50%
of the errors.

Additionally, positioning of wáaj in interroga-
tive sentences varied without clear rules, leading
to misplacement about 25% of the time. These id-
iosyncratic cases highlight the need for more robust
language-specific rules in our system.

The remaining errors involved rule misappli-
cation, such as overuse of the suffix -o’ob, and
spelling mistakes like failing to correctly modify
tu wotoch to tu yotoch.

5.1.2 Bribri
For Bribri, verb conjugation continues to be a ma-
jor issue, accounting for 57% of the errors. These
range from minor issues like incorrect accent place-
ment (e.g., sùr instead of súr) to significant errors
such as incorrect verb forms (e.g., kötwa instead
of ujtèkèulur). Another 19% of errors were due to
omissions, where words present in the reference
were missing in the hypothesis (e.g., Ppö instead
of I ppö).

Less frequently, errors involved extraneous
words in the hypothesis, making up 9% of the total
errors (e.g., Ye’ wa stsa’ instead of Ye’ stsa’). In-
correct pronoun use accounted for 8% of the errors,
and the remaining 6% were due to words appearing
out of order (e.g., Kë ie’ stsö instead of Ie’ kë stsö).

5.1.3 Guarani
For Guarani, although no language-specific opti-
mizations were implemented, the error analysis
indicates that the majority of the issues are related
to verb conjugation. Specifically, incorrect verb
forms account for 75% of the errors observed. This

suggests that developing a system similar to the
rule-based verb conjugator used for Bribri, which
provides hints based on accurate verb conjugation,
could be highly beneficial in improving the accu-
racy for Guarani. Implementing such a system
could significantly reduce errors and enhance the
model’s overall performance for this language.

6 Conclusion

Supplementing the capabilities of LLMs, such as
GPT-4, by incorporating simple rule-based natu-
ral language processing techniques, our approach
to the AmericasNLP 2024 Shared Task 2 has laid
a foundational framework that can be expanded
in future work to include other low-resource lan-
guages, contributing to the creation of educational
materials for indigenous languages.

Particularly effective were the custom verb con-
jugation hints for Bribri, which markedly improved
accuracy. This approach underscores the ongoing
need for focused linguistic tools tailored to the spe-
cific structural complexities of each language.

Throughout the project, we encountered sev-
eral challenges, including inconsistencies in the
training data and the complex nature of indige-
nous language structures that often deviate sig-
nificantly from those of more widely studied lan-
guages. These issues underscore the importance of
developing tailored NLP tools that can adapt to the
idiosyncrasies of any given language.

Looking ahead, we aim to extend our method-
ology to include Guarani more comprehensively,
enhance our rule-based systems for better accuracy,
and further explore the potential of LLMs in pro-
cessing linguistically diverse and low-resource lan-
guages. This work not only contributes to the field
of computational linguistics by providing valuable
insights into the treatment of indigenous languages
but also plays a crucial role in the preservation and
revitalization of these vital cultural heritages.

By continuing to refine our approaches and ex-
pand our linguistic coverage, we hope to contribute
to a more inclusive and equitable representation of
languages in the digital age, ensuring that technol-
ogy serves as a bridge rather than a barrier in the
education and preservation of linguistic diversity.
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Abstract

This paper describes the University of Edin-
burgh’s submission to the AmericasNLP 2024
shared task on the translation of Spanish into 11
indigenous American languages. We explore
the ability of multilingual Large Language
Models (LLMs) to model low-resource lan-
guages by continued pre-training with LoRA,
and conduct instruction fine-tuning using a va-
riety of datasets, demonstrating that this im-
proves LLM performance. Furthermore, we
demonstrate the efficacy of checkpoint averag-
ing alongside decoding techniques like beam
search and sampling, resulting in further im-
provements. We participate in all 11 transla-
tion directions. Our models are released here:
https://tinyurl.com/edi-amnlp24

1 Introduction

We participated in AmericasNLP 2024’s shared
task on machine translation (MT). It requires par-
ticipants to translate from Spanish to 11 indige-
nous American languages: Aymara (aym), Bribri
(bzd), Ashaninka (cni), Chatino (ctp), Guarani
(gn), Huichol (hch), Nahuatl (nhe), Otomi (ote),
Quechua (quy), Shipibo-Konibo (shp) and Tarahu-
mara (tar). We adopted multilingual large lan-
guage models (LLMs) and our workflow consists
of data curation, continued pre-training, instruc-
tion tuning, and several decoding techniques. We
submitted to all 11 translation directions.

We study and report the feasibility of using
LLMs for very low-resource machine translation
tasks. LLMs have recently been the focus of re-
cent research interest, and in machine translation,
they have demonstrated competitive or better per-
formance against traditional neural MT systems
in high-resource languages (Hendy et al., 2023;
Robinson et al., 2023; Iyer et al., 2023; Alves et al.,
2024). Nonetheless, research has shown that these

*denotes equal contribution

models struggle in low-resource settings if used
off-the-shelf (Robinson et al., 2023), and there has
been limited exploration of adapting LLMs to ex-
tremely low-resource MT. Existing approaches rely
on massively multilingual dictionaries (Lu et al.,
2023) or a series of complex grammatical and lin-
guistic tools (Zhang et al., 2024). Despite their
effectiveness, a pitfall of these approaches is that it
can be hard to scale them up to build multilingual,
low-resource LLMs. Moreover, it is unclear how
the (scarce) monolingual and parallel data available
for these languages can be effectively utilised, and
how recent developments in MT of high-resource
languages (Xu et al., 2024; Alves et al., 2024) scale
to very low-resource settings.

This work attempts to take a step towards answer-
ing these questions. We build multilingual LLMs
for these indigenous American languages by fine-
tuning Llama-2 7B (Touvron et al., 2023), Mistral
7B (Jiang et al., 2023) and MaLA-500 (Lin et al.,
2024). We explore continued pre-training with
LoRA on various monolingual and parallel data
sources. We then conduct instruction tuning using
a variety of tasks and language pairs, and show
this contributes to performance improvements in
MT. We end this work by demonstrating how famil-
iar techniques such as checkpoint averaging, beam
search, and sampling help boost LLM performance
for low-resourced translation as well.

2 Data

2.1 Monolingual data

We summarize statistics of the monolingual data
used in our experiments in Table 1. We curate this
data from various sources:

MADLAD-400 (Kudugunta et al., 2024): This
is a manually audited general domain dataset
sourced from Common Crawl, spanning 419 lan-
guages. Given this corpus has many dialects among
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the American languages of interest, we create a dic-
tionary1 mapping each language to the ISO 639-3
codes of all its dialects, and download all of them.
We remark on various strategies we tried for han-
dling dialects in Section 3.1. We sample 150000
sentences from the English and Spanish splits to
maintain comparable data quantities.

Glot500 (ImaniGooghari et al., 2023): This
dataset belongs to multiple domains, covers 500
languages and spans multiple licences. We down-
loaded the publicly available version of this dataset
from Hugging Face, for the languages of interest to
us, and concatenated the train, dev, and test splits
for these languages. We handled dialects similar to
the MADLAD-400 corpus.

Wikipedia: We download Wikipedia dumps
for the languages of interest and parse them with
WikiExtractor (Attardi, 2015) for downstream use.

Helsinki’23 datasets (De Gibert et al., 2023):
We reuse the monolingual data extracted by the
winning team from the AmericasNLP 2023 Shared
Task, University of Helsinki. We separate out
the Bibles, UDHR, Wikipedia, and Miscellaneous
(Misc) domains.

OCR data: In the pursuit of additional data, we
utilized alternative external resources. We manu-
ally extracted2 various text resources (summarised
in Table 9 and classified them into groups and lan-
guages. The extracted files were converted to PDF
format. Each page of the file was transformed
into PNG format and upscaled to a resolution of
600 DPI. Our approach employed ocrmac3(based
on the Apple Vision Framework) for OCR. The
methodology focused solely on bounding box text
spans, without the application of sentence or para-
graph restoration. We summarize statistics of the
OCR data in Tables 3, 8, 9.

2.2 Instruction Tuning data
Inspired from Alves et al. (2024), we try to make
our instruction tuning dataset as diverse as possi-
ble, and observe that multi-task instruction tuning
yields performance gains on the singular task of
Machine Translation as well. We summarize the

1https://tinyurl.com/uedin-dialectsdict
2We are not speakers of any indigenous languages in this

shared task.
3https://github.com/straussmaximilian/ocrmac

v0.1.6 with parameters: recognition_level="accurate",
language_preference=["es-ES", "en-US", "ru-RU", "fr-FR",
"de-DE"]

statistics of our instruction tuning dataset in Table
4, and detail our sources as follows:

Aya (Singh et al., 2024): We use the Cohere
Aya Dataset for the English, Portuguese and Span-
ish languages which consist of about 3.8K, 3.8K
and 9K instructions respectively. The Aya Dataset
consists of freshly created human annotations to
existing prompts, as well as re-annotations by hu-
mans of machine-generated prompt completions.
Given that this dataset relies strongly on human
annotation, we include it in our instruction tuning
dataset - even though the languages provided are
not the indigenous American languages we are in-
terested in. We could not find any data for these
American languages in the Aya project.

MT Data: We use the official datasets provided
by the organizers (official), the NLLB and the
FLORES 200 corpora (Costa-jussà et al., 2022),
the Helsinki’23 OPUS parallel corpora (De Gibert
et al., 2023) as well as our own extraction of the
OPUS dataset (Tiedemann, 2009) – from which we
were able to extract more languages and pairs than
the original Helsinki collection. For the NLLB cor-
pus, which is sorted in decreasing order of scores
indicating translation quality, we sample sentences
from the top to ensure the highest quality sentences
are chosen for instruction tuning. Finally, as far as
possible, we try to ensure uniform sampling across
all these languages and corpora to prevent imbal-
ance.

Cross-lingual QA: We also generate synthetic
cross-lingual instruction data using a powerful
open-source LLM, Mixtral-8x7B-Instruct (Jiang
et al., 2024), for data augmentation. Our gener-
ation process is illustrated in Figure 1. Given a
translation pair (X,Y ), where X is from a high-
resource language and Y is from a low-resource
language, we follow the prompt of Köksal et al.
(2024) and ask Mixtral to generate a question Q
based on X . As X and Y are semantically equiva-
lent, Y is now used as the answer to the question
Q. Finally, we add an instruction at the end of the
prompt to generate in the target language. This is,
thus, similar to a cross-lingual QA task - where
the question is in a high-resource language, but the
answer is in the indigenous American language and
the LLM is instructed to generate its response in
the latter. In this way, we use (Q,Y ) as synthetic
cross-lingual instruction data.

During training, we convert all our instruction-
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Language Total MADLAD 400 GLOT 500 Wikipedia Helsinki’23 Helsinki’23 Helsinki’23 Helsinki’23 OCR
(Bibles) (Misc) (UDHR) (Wikipedia) (multilingual)†

Aymara (ay) 779835 58572 355229 19272 61182 0 120 16081 269379
Bribri (bzd) 41123 0 0 0 7659 0 0 0 33464
Asháninka (cni) 74964 0 0 0 0 0 0 0 74964
Chatino (ctp) 113415 0 0 0 23764 0 0 0 89651
Guarani (gn) 531478 98351 97470 39546 7849 0 102 39593 248567
Huichol (hch) 68411 0 0 0 7936 373 0 0 60102
Nahuatl (nhe) 547187 84647 23615 0 70988 0 91 8641 359205
Otomi (oto) 284988 131139 7991 0 7943 443 156 0 137316
Quechuan (quy) 986947 113640 168189 62777 61131 0 277 58073 522860
Shipibo-Konibo (shp) 32326 4897 0 0 16025 0 122 0 11282
Tarahumara (tar) 63438 0 0 0 7894 0 0 0 55544
Total 3384364 491246 652494 121595 272371 816 868 122388 1862334

Table 1: Monolingual dataset used for continued pre-training, in terms of number of sentences, for the indigenous
American languages. †OCR data is inherently multilingual, with significant amounts of English and/or Spanish, so
the data per language is likely overestimated.

Corpus English Spanish

MADLAD 400 150000 150000
Wikipedia 100000 100000
Helsinki’23 (Bibles) 148060 487006
Helsinki’23 (UDHR) 0 120

Total 398060 737126

Table 2: Monolingual dataset used for continued pre-
training, in terms of number of sentences, for high-
resourced languages (English, Spanish) we use as replay
data to prevent catastrophic forgetting.

tuning datasets to the Alpaca format.

3 Approach

To adapt LLMs for the task of translating indige-
nous American languages, we follow the 2-stage
training paradigm proposed in related work (Xu
et al., 2024; Alves et al., 2024) and explore its ef-
fectiveness for low-resource languages.

3.1 Stage 1: Continued Pre-training with
LoRA

In order to “teach” our LLMs the indigenous Amer-
ican languages, we first fine-tuned LLMs with
monolingual data for each of these languages.
Given these low-resource languages are out-of-
distribution from the original pre-training data, we
also included replay data from two high-resource
languages (English and Spanish) to prevent catas-
trophic forgetting (Ibrahim et al., 2024). For each
American language, given that there were often
several (distinctive) dialects, we found that the eas-
iest setting, i.e., to concatenate all of them together,
performed very similarly to more careful dialect
separation techniques. Inspired by Nguyen et al.

(2023), who filtered data from various domains into
quality buckets, we segregated our data based on
dialects - we assigned the test/dev set dialects to
“higher-quality” buckets, and the rest to lower qual-
ity. We then tried out a variety of approaches in our
preliminary experiments that involved pre-training
on various buckets at various stages, but none of
these settings performed significantly better4 than
our earlier baseline that concatenated all dialects.
Our conclusion here was that these LLMs are only
just beginning to learn to model these very low-
resourced languages, and cannot separate between
dialects at this stage.

For efficiency reasons, we opted for low-rank
(LoRA) adaptation (Hu et al., 2021), rather than
full-fine tuning. We attached rank 8 LoRA adapters
to query and value matrices, following Hu et al.
(2021), and also fine-tuned input and output (LM
head) embeddings – which we empirically ob-
served to yield significant gains in validation per-
formance. We used average cross-entropy loss σ on
the official development set as our validation met-
ric, which we computed as the weighted average
of average perplexity on high-resource languages
(English and Spanish) and that of the indigenous
American languages:

σ = 0.9 · σ{En,Es}
avg + 0.1 · σ{American}

avg

where σ
{En,Es}
avg and σ

{American}
avg are the average

perplexities on English and Spanish, as well as the
indigenous American languages respectively.

We explored adaptation of four LLMs: Llama-2
7B (Touvron et al., 2023), MaLA-500 (Lin et al.,

4from a validation loss perspective
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Source Files Characters

Grammar/Education Book 156 (52.2%) 39,971,932 (46.6%)
Scientific Paper 58 (19.4%) 9,880,833 (11.5%)
Dictionary 55 (18.4%) 28,579,012 (33.3%)
Book 16 (5.4%) 3,360,407 (3.9%)
Other 14 (4.7%) 4,009,128 (4.7%)

Total 299 85,801,312

Table 3: Summary statistics of the OCR data grouped by source. We exclude whitespaces while counting characters.
Percentages of the total are displayed in parentheses.

Task(s) Dataset Languages Instruction Count

Human-annotated Prompt Completions Aya Dataset {es, pt, en} 16795

Cross-lingual QA Synthetic {es} → All 82538

Machine Translation

Official {es} → All 76511
NLLB {en} → {aym, gn} 13276

FLORES 200 {es, en, pt} → {aym, gn, quy} 18081
Helsinki’23 {es} → {gn, hch, nhe, quy, shp} 27976

OPUS {es, en, pt} → {aym, cni, gn, nhe, quy} 112681

Table 4: Datasets used for instruction tuning. Languages are denoted by their ISO 639 codes.

Figure 1: Illustration of our designed process of generating cross-lingual synthetic instruction data.
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2024), Mistral 7B (Jiang et al., 2023) and Mis-
tral 7B v0.25 for this task. We chose Llama-2
and Mistral since they are the most widely used
general-purpose models while MaLA-500, which
is the Llama-2 model scaled to 500 languages us-
ing LoRA adapters, could potentially enable better
cross-lingual transfer.

To examine in greater detail the role of parallel
data for continued pre-training under low-resource
settings, we trained primarily 2 sets of models,
dubbed v1 and v2. v1 used a concatenation of
all available monolingual data6, while the v2 mod-
els integrated not only monolingual data from v1,
but also the parallel corpora. Inspired from re-
lated work, we explored 3 techniques of leveraging
this parallel data: i) v2.0: considering the tar-
get side of es-X bitext as additional monolingual
data, and using the same for pre-training, ii) v2.1:
following Alves et al. (2024), concatenating7 the
source and target sentences of a certain percentage
of sentences (25%, in our experiments8), while the
rest is used for its target-side data, and iii) v2.2:
‘interleaving’ concatenated Es-X and X-Es paral-
lel text, closely following Guo et al. (2024), and
fine-tuning with the same after pre-training on ex-
clusively monolingual data (i.e. v1 models in our
case). For our best-performing model, Mistral 7B,
we found v2.2 baselines overfit and lead to diver-
gence of validation loss, as a result we discard these
models.

Given that validation loss cannot be compared
fairly across models with different tokenizers, and
may not correlate well with downstream MT per-
formance (Iyer et al., 2023), a key challenge we
faced was our inability to reliably estimate down-
stream MT performance after stage 1 pre-training.
We, thus, resorted to instruction-tuning all our top-
performing models and directly evaluated down-
stream MT quality– similar to related works (Xu
et al., 2024; Alves et al., 2024).

3.2 Stage 2: Instruction Tuning

For instruction-tuning, we continue fine-tuning the
stage 1 LoRA adapters on our curated multi-task

5https://models.mistralcdn.com/
mistral-7b-v0-2/mistral-7B-v0.2.tar

6except the OCR data, which we were only able to obtain
for v2 pre-training

7During concatenation, we prepend the language code L
before each sentence X, like so [L]: X. Source and target
sentences are then joined with the newline character \n.

8We observed higher percentages (like 75%) decreased
validation perplexity more significantly.

dataset (Table 4). We fine-tune both input and out-
put embeddings, along with the LoRA adapters,
since we observe that this leads to marginal im-
provements in MT quality. We show these results
in Table 5, along with ablations showing how each
dataset contributes to improving our overall aver-
age performance.

4 Experiments

4.1 Experimental Settings

Stage 1: We used temperature sampling with
τ = 80 to ensure uniform data distribution across
the relatively higher-resourced (English, Spanish,
Quechua, Aymara, Guarani) and the other lower-
resourced languages in this setup – since our objec-
tive in this work was to build a multilingual LLM
that generalizes well to all the languages in this
task. However, given the temperature is quite high,
and low-resource languages might thus be oversam-
pled excessively, we used a ‘clipping factor’ of 10
to ensure oversampling does not exceed 10x the
original data size.

We conducted continued pre-training of our mod-
els using Hugging Face PEFT (Mangrulkar et al.,
2022) with the DeepSpeed ZeRO3 configuration
(Rajbhandari et al., 2020) on 2 A100-80GB GPUs.
We used LoRA adapters on the query and value
matrices of rank 4, alpha 8, and dropout 0.1. We
used a batch size of 3 per GPU and 16 gradient ac-
cumulation steps. We used a learning rate of 2e-5
and a cosine scheduler. We did not use warm-up
since we also provided replay data, and empirically
found this to be a better choice for validation per-
formance. We saved and evaluated every 100 steps,
with a patience value of 5 for early stopping and av-
erage evaluation loss as the validation metric. We
pre-trained our models for 1 epoch only, due to the
enormous training costs.

Stage 2: For instruction tuning, we used the
LLaMa-Factory (Zheng et al., 2024) library –
which is an easy-to-use package for instruction
tuning, built on top of Hugging Face libraries. We
continued to tune the LoRA adapters from Stage 1
for 4 epochs using tf32 floating point precision. We
used a learning rate of 1e-4, with a cosine scheduler
and warm-up ratio of 3%. We used a batch size of
8 per GPU and 16 gradient accumulation steps.

Decoding: We used LLaMa-Factory for decod-
ing on the test set. We used the following default
parameters for sampling: a sampling temperature
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No. Base Model Tuned Part Data Avg. chrF++

1 Llama-2-7B LoRA Parallel 7.09
2 Llama-2-7B LoRA Parallel+Aya 8.11
3 Mistral-7B LoRA Parallel 9.54
4 Mistral-7B LoRA Parallel+Aya 9.85
5 Llama-2-7B-Stage1 LoRA Parallel+Aya 15.17
6 Llama-2-7B-Stage1 LoRA+Emb Parallel+Aya 15.20
7 Mistral-7B-Stage1 LoRA+Emb Parallel+Aya 16.24
8 Mistral-7B-Stage1-v1 LoRA+Emb Parallel+Aya+Syn 16.81
9 MaLA-7B-Stage1 LoRA+Emb Parallel+Aya+Syn 17.41

10 Mistral-7B-Stage1-v2 LoRA+Emb Parallel+Aya+Syn 17.32

Table 5: chrF++ scores on the AmericasNLP24 development set using greedy decoding.

of 0.95, top-p sampling with p=0.7 and top-k sam-
pling with k=50. We used beam search with a beam
size of 10, repetition and length penalty of 1.0. We
used a batch size of 16 and set the maximum num-
ber of new tokens for generation to 512.

4.2 Instruction Tuning Experiments

We report our empirical experiment results in Ta-
ble 5 and introduce our main findings below.

Continued pre-training is crucial. As evident
from the instruction-tuning experiments performed
on two raw LLMs, i.e. Llama-2-7B & Mistral-7B,
and their corresponding stage 1 variants (Llama-
2-7B-Stage1 & Mistral-7B-Stage1), we can see
that the pre-trained stage 1 models outperform raw
instruction-tuned models by a large margin – in-
dicating that LLMs benefit significantly from in-
domain monolingual data, even if it is scarce com-
pared to usual high-resourced setups.

However, these gains can potentially suffer from
limited returns over time. For the Stage 1 v2.0
models, which have been trained on 2.5M sen-
tences (78M tokens) more, and obtained a gain
in stage 1 validation loss of almost -1.0 point, the
corresponding gains in downstream performance
(chrF++) was not as significant. Further research
is required to verify and analyse the findings from
these preliminary experiments.

The general purpose Aya instruction dataset
boosts MT performance. This was a surpris-
ing finding that showed that even though: a) the
language of the generation is not an American in-
digenous language, and b) the task is not Machine
Translation, general-purpose instruction data do
not focus on the translation task - we still found
significant gains in MT performance. This is likely
because this data helps the LLM to reason and fol-
low instructions better.

Adding cross-lingual synthetic instruction data
also helps Another interesting exploration in our
work is the usage of cross-lingual synthetic instruc-
tion data (Section 2.2). While we observe that the
quality of the synthetic is not perfect and contains
some degree of noise, it does improve the system’s
translation quality on average. Preliminary exper-
iments also suggested that substituting this with
higher quality (but less quantity) data end up per-
forming worse, suggesting that LLMs likely do
not know how to generate in these low-resource
languages and more data, even if synthetic, can
help.

Fine-tuned Mistral usually outperforms Llama-
2 Mistral 7B, which has been shown to consis-
tently outperform Llama 13B (Jiang et al., 2023),
seems to be more effective in low-resource settings
as well. It consistently beats the latter by signif-
icant margins. Hence, we choose Mistral as our
primary LLM and decide to improve on the same
for our final models.

4.3 Checkpoint Averaging

Inspired by (Gao et al., 2022), we use a straight-
forward low computational approach to boost the
performance of our instruction-tuned LLMs. We se-
lected the last 4 model checkpoints from the same
run and averaged the model (LoRA) parameters
to obtain a better model. Checkpoint averaging is
relatively cheaper and does not require storing and
querying multiple models at test time. Addition-
ally, we explore all 10 combinations of the last 4
model checkpoints, combining them in triplets and
pairs. However, the most significant improvement
was observed when averaging the last 4 models
checkpoints.

We perform decoding using default parameters
of LLaMa-Factory— a sampling temperature of
0.95, top-p and top-k sampling with p=0.7 and
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# Checkpoint Avg. chrF++ score per model
Mistral-7B-v1 MaLA-500 Mistral-7B-v2

(a) Final checkpoint (step=8151) 19.05 19.18 19.34
(b) Checkpoint 8000 19.42 19.20 19.16
(c) Checkpoint 7500 19.18 19.34 18.82
(d) Checkpoint 7000 19.27 19.08 19.14
(e) AVG(a,b,c,d) 20.29 19.94 20.07

Table 6: Checkpoint averaging with different models on AmericasNLP development set using default generation
parameters of LLaMa-Factory.

k=50 respectively, beam size 1, length and repeti-
tion penalty of 1.0 and maximum number of new to-
kens for generation 512. In Table 6, it’s evident that
the model with averaged checkpoints consistently
outperforms the others. We believe the reason be-
hind its superior performance is that checkpoint
averaging acts as a form of regularization.

During the training process, it is possible for a
few layers of the model to start over-fitting after cer-
tain steps, leading to a degradation in performance
if training continues. However, by averaging later
checkpoints with the initial ones from earlier in the
training process, the effects of over-fitting can be
mitigated. This combination helps to regularize
the model, preventing it from over-fitting to the
training data while still leveraging the useful infor-
mation learned during the later stages of training.

For future work, we will explore two approaches:
a) combining last k checkpoints instead of last 4
during model averaging. b) Weighted averaging
of checkpoints, where checkpoints with better per-
formance on the development set receive higher
weights. Our hypothesis is that these methods
could improve model performance over the current
unweighted averaging of the last 4 checkpoints.

4.4 Final Test Set Results
The final systems we submit to the shared task
are, therefore (all model IDs are from Table 6
and are open-sourced at https://tinyurl.com/
edi-amnlp24):

• System 1: Checkpoint e i.e. average of check-
points a, b, c and d, for Mistral-7B-v1

• System 2: Checkpoint e i.e. average of check-
points a, b, c and d, for MALA-7B-stage2

• System 3: Average of checkpoints a, c and d
for Mistral-7b-stage2-v2

For final inference, we use a beam size of 10
expecting a performance boost. Other decoding

parameters remained the same. We show our final
results on the AmericasNLP 2024 test sets in Table
7. We observe that while our models do not outper-
form the best systems, the gap is relatively lower
for lower resourced languages like Huichol, Nahu-
atl and Otomi. While this does align with our stated
goal of building a general purpose LLM for the lan-
guages in this task, as part of future research, we
shall explore how we can model better across the
other pairs too and increase our competitiveness.

Ethical Considerations

None of the authors of this paper speak any indige-
nous American languages in this shared task. We
rely on the language-labelled datasets suggested
by the task organizers and from other reputable
sources. We actively sought data manual inspec-
tion using Google Translate.
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Language Metrics
Best Best UEdin UEdin UEdin

system 1 system 2 Submission 1 Submission 2 Submission 3

aym
BLEU 3.49 3.23 1.14 1.06 1.13
chrF++ 30.97 29.39 21.77 21.37 21.89

bzd
BLEU 4.84 4.56 2.21 1.89 1.75
chrF++ 23.47 23.41 16.54 16.32 15.56

cni
BLEU 2.41 3.49 0.41 0.37 0.43
chrF++ 23.20 22.98 14.82 13.68 14.50

ctp
BLEU 13.44 4.65 3.35 4.30 3.38
chrF++ 37.38 23.64 17.66 20.70 17.57

gn
BLEU 12.04 11.28 3.38 1.78 3.21
chrF++ 38.93 37.64 29.20 24.61 29.13

hch
BLEU 10.08 9.62 9.87 7.03 9.60
chrF++ 27.64 26.46 24.41 22.03 24.37

nah
BLEU 2.30 1.09 0.48 0.37 0.44
chrF++ 22.87 21.71 18.12 17.21 18.98

oto
BLEU 1.42 1.55 0.43 0.21 0.44
chrF++ 12.98 12.63 8.91 7.81 9.19

quy
BLEU 4.85 4.83 1.32 0.94 1.31
chrF++ 38.21 38.19 25.23 22.77 25.04

shp
BLEU 4.45 4.14 1.34 1.56 1.55
chrF++ 29.37 27.04 22.04 22.43 22.86

tar
BLEU 0.92 1.01 0.11 0.11 0.15
chrF++ 17.03 15.42 9.65 9.49 9.48

Table 7: AmericasNLP 2024 test set results. We show the performances of the top 2 best systems from each
language, as well as each of the 3 systems we submit. Languages are denoted by their ISO 639 codes.
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Combinations of languages Source type Files Characters

Aymara Mono 8 682,766
English/Asháninka Mixed 2 1,605,073
English/Aymara Mixed 9 2,945,037
English/Chatino Mixed 8 2,708,631
English/Guaraní Mixed 12 2,773,253
English/Hñähñu Mixed 5 2,181,855
English/Nahuatl Mixed 24 8,950,757
English/Quechua Mixed 7 1,429,763
English/Spanish/Aymara Mixed 1 246,850
English/Spanish/Quechua Mixed 3 953,120
English/Spanish/Rarámuri Mixed 2 1,250,289
English/Wixarika Mixed 1 544,090
French/Aymara Mixed 1 52,022
French/Bribri Mixed 1 1,099,198
French/Hñähñu Mixed 1 111,296
French/Quechua Mixed 1 194,163
French/Rarámuri Mixed 1 23,418
German/Guaraní Mixed 1 178,220
German/Quechua Mixed 2 1,361,053
Nahuatl Mono 2 224,394
Quechua Mono 10 492,504
Russian/Guaraní Mixed 1 51,939
Russian/Nahuatl Mixed 1 75,205
Russian/Quechua Mixed 2 193,794
Spanish/Asháninka Mixed 9 2,133,942
Spanish/Asháninka/Quechua Mixed 1 65,046
Spanish/Aymara Mixed 45 9,546,160
Spanish/Aymara/Nahuatl/Quechua Mixed 1 208,828
Spanish/Bribri Mixed 4 801,911
Spanish/Chatino Mixed 3 1,162,349
Spanish/Guaraní Mixed 20 8,101,890
Spanish/Hñähñu Mixed 10 3,059,227
Spanish/Nahuatl Mixed 17 6,171,836
Spanish/Quechua Mixed 67 19,830,467
Spanish/Rarámuri Mixed 6 1,311,759
Spanish/Shipibo-Konibo Mixed 4 461,930
Spanish/Wixarika Mixed 5 1,478,789
Wixarika Mono 1 1,138,488

Table 8: Summary statistics of the OCR data, grouped by Combinations of languages. Characters counted without
whitespaces.
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Source Low-resource languages Source type Files Characters

Book Nahuatl Mono 1 195,009
Quechua Mixed 8 1,727,827

Mono 6 299,083
Wixarika Mono 1 1,138,488

Dictionary Asháninka Mixed 3 783,665
Aymara Mixed 15 4,792,382
Chatino Mixed 2 1,012,744
Guaraní Mixed 8 5,509,379
Nahuatl Mixed 5 3,424,235
Quechua Mixed 19 12,354,240
Rarámuri Mixed 3 702,367

Grammar/Education Book Asháninka Mixed 5 2,279,964
Aymara Mixed 25 6,212,691

Mono 8 682,766
Bribri Mixed 3 714,131
Chatino Mixed 1 149,605
Guaraní Mixed 16 4,585,622
Hñähñu Mixed 13 4,441,870
Nahuatl Mixed 24 9,877,127

Mono 1 29,385
Quechua Mixed 47 9,072,258

Mono 5 247,344
Rarámuri Mixed 3 1,146,458
Shipibo-Konibo Mixed 3 314,443
Wixarika Mixed 2 218,268

Other Aymara Mixed 4 1,136,545
Hñähñu Mixed 1 95,944
Nahuatl Mixed 5 1,461,840
Rarámuri Mixed 1 54,278
Wixarika Mixed 3 1,260,521

Scientific Paper Asháninka Mixed 3 675,386
Asháninka/Quechua Mixed 1 65,046
Aymara Mixed 12 648,451
Aymara/Nahuatl/Quechua Mixed 1 208,828
Bribri Mixed 2 1,186,978
Chatino Mixed 8 2,708,631
Guaraní Mixed 10 1,010,301
Hñähñu Mixed 2 814,564
Nahuatl Mixed 8 434,596
Quechua Mixed 7 754,112
Rarámuri Mixed 2 682,363
Shipibo-Konibo Mixed 1 147,487
Wixarika Mixed 1 544,090

Table 9: Summary statistics of the OCR data, grouped by Source and Low-resource languages. Characters
counted without whitespaces.
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Abstract

In this paper we describe our work on Task 2:
AmericasNLP 2024 Shared Task on the Cre-
ation of Educational Materials for Indigenous
Languages. We tried three approaches, but only
the third approach yielded improvement over
the baseline system. The first system was a
fairly generic transformer model. The second
system was our own implementation of the edit
tree approach from the baseline system. Our fi-
nal attempt was a version of the baseline system
where if no transformation succeeded, we ap-
plied transformations from similar morphosyn-
tactic relations. We describe all three here, but,
in the end, we only submitted the third system.

1 Introduction

The nature of the task was to transform one sen-
tence into another in three languages based on a
specification of the morphosyntactic differences
between the input and output sentences (Chiruzzo
et al., 2024). The three languages are Bribri,
Guarani, and Maya. We give sample data in Ta-
ble 1.

Glosses or translations were not provided. In
addition, we do not know what morphosyntactic
features might be appropriate for the input sen-
tence.

We were provided with definitions for the differ-
ent tags. In the first example in Table 1 we convert
the absolutive argument to a plural. In the second
example, we convert to an affirmative. Finally, in
the third case, we switch one of the arguments to a
first person plural subject.

We tried three different approaches: a simple
transformer, our own implementation of edit trees
in terms of a single regular transduction, and us-
ing related morphosyntactic tags when possible.
In the following sections, we describe these three
attempts.

2 Transformer

The first model we tried was a simple transformer
(Vaswani et al., 2017).1 We first concatenate the
input and morphological tags to serve as input.

These are fed into the encoder which first creates
embeddings, applies drop-out, and feeds these to a
GRU layer (Cho et al., 2014).

The output and hidden weights are then fed to an
attention-based decoder with two layers of GRUs
and a simple linear layer. Attention was Bahdanau
(Bahdanau et al., 2014).

Batch size varied, but was typically around 32.
The dimensions for all hidden layers was either 512
or 1024 for different runs. Dropout for the encoder
was set at 0.1. Loss was negative log likelihood and
the Adam optimizer was used. We tried a variety of
different configurations, but best performance was
at 600 epochs with 512 hidden nodes at all layers.
See Table 2 for performance with dev data.

The data are extremely limited and this surely
impaired performance. Our sense is that simply
concatenating the input and morphosyntactic tags
was also not the best choice.

3 Edit trees as a single transduction

The baseline system for the task is based on the
notion of edit trees. The basic idea is to build a
tree representation of changes that the input must
undergo to be converted to the output (Chrupała,
2008).

Chrupała gives the edit tree in Figure 1 for
the Polish word pair najtrudniejszy ‘hardest’ and
trudny ‘hard’. The basic logic is that we identify
the largest shared span, in this case characters 3
through 6. To the left of that, we replace naj with

1All of our code can be obtained at https:
//github.com/hammondm/americasnlp24task2. Our
specific transformer architecture is an adaptation from
https://pytorch.org/tutorials/intermediate/
seq2seq_translation_tutorial.html.
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Language Input Features Target
Bribri Pûs kapë’wa ABSNUM:PL Pûs kapë’ulur
Guarani Ore ndorombyai kuri TYPE:AFF Ore rombyai kuri
Maya Janalnajen tu k’íiwikil koonol PERSON:1_PL Janalnajo’on tu k’íiwikil koonol

Table 1: Example data

Language Accuracy BLEU ChrF
Bribri 0.00 3.14 12.51
Guarani 0.00 0.29 4.56
Maya 0.67 14.17 40.08

Table 2: Performance with transformer model on dev
data

Split(3,6)

Replace⟨naj , ϵ⟩ Split(5,0)

Replace⟨iejsz , ϵ⟩ Replace⟨ϵ, ϵ⟩

Figure 1: Example edit tree (Chrupała, 2008, p.127)

ϵ. To the right, we repeat the process and identify
the longest shared span: y. To the left of this, we
replace iejsz with ϵ. To the right, we do nothing:
Replace(ϵ,ϵ).

Formally, Chrupała defines a function lcs from
two strings (Σ∗ × Σ∗), specifically w1...n and
w′
1...m, to four natural numbers (N× N× N× N),

(i, j, k, l), representing indices into the strings
where the shared string is indexed as wi...n−j =
w′
k...m−l.
There is then a function split which maps

from a string and indices to three strings (Σ∗ ×
N × N) → (Σ∗ × Σ∗ × Σ∗), taking a string
w1...n and indices i and j and returning the triple
(w1...i, wi+1...n−j , wn−j+1...n).

An edit tree is then either a Replace node with
two strings or it is a Split node with two indices
and two daughter nodes that are themselves edit
trees.

An edit tree is built with the function et which
is defined as follows with respect to strings w and
w′. If there is no lcs span, then the tree is simply
Replace(w, w′).

Otherwise it is defined as:

Split(iw, jw),
et(wprefix , w

′
prefix ),

et(wsuffix , w
′
suffix )

(1)

Language Accuracy BLEU ChrF
Bribri 3.30 12.93 39.14
Guarani 0.00 22.19 72.63
Maya 1.34 30.68 71.95

Table 3: Performance with our implementation of edit
trees on dev data

In our implementation, these operations are
mapped to a single regular transduction with back-
references. For convenience, we use python for
this.

First, Split nodes are represented as a list of three
elements: the left daughter, the two indices, and
the right daughter. Replace nodes are represented
as a pair of strings. The tree in Figure 1 would be
represented as:

[(naj , ϵ), (3, 6), [(iejsz , ϵ), (5, 0), (ϵ, ϵ)]] (2)

We traverse the tree from left to right converting
each node into a pair of strings. All string pairs
map to themselves. Pairs of indices i, j are trans-
lated into maps from .{1,k}, where k = j − i,
to the next available backreference. In the case
of the tree in Figure 1, we have the translation
naj.{1,3}iejsz.{1,1} mapping to \1\2. This
mapping is executed in our code using the python
re.sub function.

This approach approximates the baseline system,
but does not perform as well. See Table 3.

4 Morphosyntactic similarity

Our final model, and the one we submitted, was an
addition to the baseline system.

The baseline system records the edit trees that
are associated with specific morphosyntactic tag
combinations along with the relative frequency of
each tree.

At inference stage, one selects the edit trees as-
sociated with the tags for the test item, sorts these
by how frequently they’re used in training, and try
them one by one starting from the most frequent. If
a rule succeeds, the output of that rule is returned.
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Language Accuracy BLEU ChrF
Bribri 9.38 17.13 55.07
Guarani 25.81 50.36 79.46
Maya 14.84 22.55 73.18

Table 4: Performance with morphosyntactic tag similar-
ity on test data

If no rule succeeds or the specific tag combina-
tion is not in the training data, then the input is
returned as the output.

Our adaptation here was to add additional op-
tions to the list. If the procedure above produced
no distinct output form, we then applied additional
rules. These additional rules were generated from
the full list of rules, sorted by how similar the tag
sequence is to the test item tag sequence. If the
above procedure results in no change, we then turn
to these rules, going through them one by one. This
procedure is terminated the same way as the base-
line system: when a rule produces a change, that is
the final output and further rules are not considered.
If no rule produces a distinct output, the input itself
is returned.

This change results in a modest overall improve-
ment in the baseline as seen in Table 4.

5 Conclusion

To summarize, we tried three different techniques:
transformer, edit trees as transductions, and ex-
ploiting morphosyntactic similarity in selecting edit
trees.

As implemented, the transformer performed the
worst. Systems built on edit operations seem to
perform much better in these character-to-character
mapping domains, so this is not really a surprise.

Translating edit trees into regular transductions
did not reach the level of the baseline, but is not
an unreasonable approach to pursue further. Edit
operations are clearly useful. The question is what
is the scope of those operations. Are they separate
operations as in edit trees as originally developed
or can some amalgam of those operations be more
successful.

Finally, using morphosyntactic similarity is suc-
cessful and this is thus clearly an approach worth
pursuing further.

One very obvious way to go further is to build a
model of the morphosyntactic structure of the input.
We do not know what the words mean, but perhaps
we can get some mileage toward identifying parts

of speech from the meanings of the tags. With
this in hand, we could exploit that part of speech
information in our edit trees.

This last approach is purely speculative, but it
seems like a fairly obvious way to go (in hindsight!)
given the nature of the task.
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Abstract

This paper presents the results of AmericasNLP
2024 Shared Task on the Creation of Educa-
tional Materials for Indigenous Languages, the
first natural language processing (NLP) shared
task on automatically creating educational re-
sources for languages Indigenous to the Amer-
icas. Teams are tasked with generating varia-
tions of sentences according to linguistic fea-
tures that could be used for grammar exercises.
The languages involved in this task are Bribri,
Maya, and Guarani. Seven teams took part in
the challenge, submitting a total of 22 systems,
obtaining very promising results.

1 Introduction

The AmericasNLP 2024 Shared Task on the Cre-
ation of Educational Materials for Indigenous Lan-
guages is a competition aimed at encouraging the
development of Natural Language Processing sys-
tems (NLP) to help with the teaching and diffusion
of Indigenous languages of the Americas. Many of
the Indigenous languages of the Americas are vul-
nerable or endangered. This means that, depending
on the language, no or only a few children are learn-
ing them and, generally, they are only spoken by a
few small groups of people. Because of this, some
of these languages are at a high risk of becoming
extinct in the near future. Many communities are
carrying out revitalization efforts, including teach-
ing their languages to their community members.
Creating materials to teach these languages is an
urgent priority, but this process is expensive and
time consuming. NLP presents an opportunity to
help with these efforts.

In addition to being endangered, the Indige-
nous languages of the Americas are so-called
low-resource languages (Joshi et al., 2020): the
data needed to train any NLP systems, let alone

deep learning-based systems, is severely limited.
This means that many approaches used for high-
resource languages, such as English and Chinese,
are not directly applicable or perform poorly. On
top of this, many Indigenous languages exhibit lin-
guistic properties uncommon among languages fre-
quently studied in NLP. This constitutes an addi-
tional difficulty.

In this task, participants built systems for trans-
forming sentences in an Indigenous language ac-
cording to some linguistic feature (such as negation
or tense), in a way that could enable to automati-
cally create grammar exercises. This often implies
inflecting the main verb of the sentence, but other
types of changes could be necessary as well, such
as including different adverbs or particles, or mak-
ing adaptations according to agreement rules.

We hope that this challenge helps to motivate re-
searchers to develop systems for these Indigenous
languages, as well as spark the interest in NLP re-
search for the huge diversity of languages across
the American continent, as is the goal of the Ameri-
casNLP workshop since its inception (Mager et al.,
2021).

2 Related Work

NLP for Educational Applications Over the last
years, NLP has been used more and more in ed-
ucational contexts. Examples for this are NLP-
based tutors (Wollny et al., 2021; Dyke et al., 2013;
Macina et al., 2023), feedback systems for teachers
(Suresh et al., 2022), or automatic student assess-
ment (Andersen et al., 2013). Closest in spirit to
the AmericasNLP Shared Task on the Creation of
Educational Materials for Indigenous Languages
is work on automatic exercise creation (Hill and
Simha, 2016; Perez and Cuadros, 2017): with this
shared task, we aim at automatically creating sen-
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tence pairs in Indigenous languages, where the first
sentence can be given to a learner with the task to
correctly produce the second one by applying the
indicated change.

Morphological Inflection This task shares simi-
larities with morphological inflection shared tasks
such as the SIGMORPHON 2016 Shared Task on
Morphological Reinflection (Cotterell et al., 2016),
in which the participants were presented with a
word and a target morphological feature, and they
had to inflect the word into a form corresponding
to that feature. This could start with the lemma
(subtask 1), with an inflected word with known
morphology (subtask 2), or with an inflected word
that is not annotated (subtask 3). The present task
is more similar to that last subtask in that the partic-
ipants are presented with an unannotated inflected
form and they have to generate another inflected
form, but in our case the word is used in the context
of a sentence and often other words in the sentence
might be affected by the change as well, so it is a
case of reinflection in context.

The most important precedent of a task
about reinflection in context is the CoNLL–
SIGMORPHON 2018 Task 2 (Cotterell et al.,
2018), where participants were presented in a cloze
test format, with a sentence containing a gap and
a lemma, and they had to produce the appropriate
inflected form that fits the gap. In our case, we are
presenting a whole sentence without gaps, and the
participants have to detect the words they have to
change in order to adapt it to the expected features.

These previous competitions have featured some
Indigenous languages of the Americas in their data:
Cotterell et al. (2016) included Navajo, while Cot-
terell et al. (2018) also added Quechua, Mapun-
dungun and Greenlandic Inuit (alongside 100 more
languages). As far as we know, this is the first
time the Bribri, Mayan, and Guarani languages are
featured in a task of these characteristics.

3 Task Description

The idea of this shared task is to automatically con-
vert sentences in Indigenous languages into small
exercises for language learners. In particular, we
aim to create grammar exercises in which students
must tweak a sentence changing its tense, aspect,
or other morphosyntactic features. In order to do
this, participants have to create systems that can
automatically modify sentences with regard to a
given property (e.g., they must create a negated

version of a sentence). Those sentences could then
be used as exercises by either asking learners to
do the same transformation or by masking out all
changed words in the sentence and asking learners
to fill in the blank.

For instance, if a model can correctly reproduce
the linguistic labels, it will also be capable of trans-
forming simple sentences from first-person singular
to first-person plural, as in the following example
in Maya:

Original Sentence:
J-jaan en tin najil (1s)
tr. I ate at my home.

Transformed Sentence:
J-jaano’ob tu najil (1p)
tr. We ate at his/her/their house.

Using that pair of sentences, we could come up
with the grammar exercise below.

Exercise 1. Transform the following sentence to
first-person plural:
J-jaan ____ najil
a) béet u
b) o’ob tu
c) o tin
d) o’ob janal

Task Format The participants were provided
with one data file for each language, containing
the following columns:

• ID: unique identifier of the example.

• original sentence: this would be used as the
system input.

• change to be conducted: tag indicating the
morphosyntactic change to perform.

• target sentence: sentences expected as system
output.

Systems were expected to take the original sen-
tence and a morphosyntactic feature marker, and
generate the target sentence as output. Internally,
the examples were organized in clusters in which,
starting from one original sentence, one or more
morphosyntactic variations (deltas) were created.

The task was evaluated in terms of exact accu-
racy (fraction of times the system output matched
the expected output), and also two classic metrics
for generative tasks: BLEU (Papineni et al., 2002)
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and chrF (Popović, 2015). The main metric for the
task was exact accuracy.

4 Dataset

Table 1 shows a summary of the data created for
this task. In each case we present the number of
clusters and the number of total examples provided.

Train Dev Test Total
Bribri Examples 309 212 480 1001

Clusters 15 17 32 64
Maya Examples 594 149 310 1053

Clusters 179 53 89 321
Guarani Examples 178 79 364 621

Clusters 56 14 34 104

Table 1: Size of the dataset.

4.1 Bribri

Bribri (Glottolog brib1243) is a Chibchan lan-
guage spoken in Southern Costa Rica. It is spoken
by approximately 7000 people (INEC, 2011) and
it is closely related to other Chibchan languages
like Cabécar (Quesada, 2007). Bribri is vulnerable
(Sánchez Avendaño, 2013), in that some children
are not learning to speak the language from their
parents.

Bribri is a morphologically ergative SOV lan-
guage. Its verbs have fusional morphology, with
suffixes to indicate voice, tense, aspect and mood.
Bribri is a tonal language with five tones, and these
also form minimal pairs in the verbal morphology
(e.g., falling tone ché ‘said’ versus high tone chè ‘is
saying’). Most nouns do not have any morpheme
that indicates the plural, but some animate plural
nouns do trigger morphological changes in the verb,
either by the use of a suffix for number agreement
(e.g., I túr ‘he runs’ versus I túndak ‘they are run-
ning’), or by changing the verb to a suppletive root
for the plural (e.g., Chìchi dör bë̂rie ‘The dog is
big’ versus Chìchi dör wîwî ‘The dogs are big’).

There are numerous published educational ma-
terials for Bribri. These include a grammar book
(Jara, 2018), two textbooks (Constenla et al., 2004;
Jara Murillo and García Segura, 2013), two dic-
tionaries (Margery, 2005; Krohn, 2021), several
books for school children (Sánchez Avendaño et al.,
2021a,b) and several books with transcribed oral lit-
erature (Jara, 1993; Jara and García Segura, 1997;
García Segura, 2016, 2021; Jara Murillo and Gar-
cía Segura, 2022). There is also an oral cor-

pus (Flores-Solórzano, 2017a,b) with audiovisual
recordings of oral literature.

The data included in this shared task was con-
structed by using examples from the textbooks and
the grammar cited above, as well as examples from
the treebank in Coto-Solano et al. (2021). We fo-
cused on the verbal morphology, particularly the
tense-aspect-mood suffixes. We selected a total
of 64 sentences and then conjugated the verbs in
all their possible forms, based on the information
in the books and on the conjugations in the mor-
phological analysis of Flores-Solórzano (2017c).
We included a number of irregular verbs in the ex-
ample, given their high frequency in the language
(e.g., tso ‘is’ versus bák ‘was’). The 64 original
examples included 33 transitive sentences, as well
17 intransitive, 8 locative intransitive and 6 cop-
ular sentences. After the conjugations, we had a
total 1,001 example sentences, which were split as
shown in table 1. The following are the main cate-
gories used to conjugate and derive the examples:

• Polarity: Sentences can be positive or
negative.

• Verbal mood: Verbs can be conju-
gated for indicative, imperative,
adversative, exhortative and
optative moods. They can also be in the
knowledge mood, which is used when
someone “knows" how to do something, and
is similar to the potential mood in languages
like Japanese.

• Tense and aspect: Past tenses include
the anterior, perfect remote,
perfect continuous and perfect
recent. Tenses that cover the present
tense include the imperfect recent,
imperfect continuous and
imperfect habitual. Tenses that
cover the future include the potential
future and the certain future.

• Aspect: As a complement to the tense-
aspect tag, we have a macro-tag to classify
the aspect as imperfect, perfect or
inchoative.

• Voice: Verbs can be in the active or
middle voice.

• Number of the absolutive: Verbs do not have
conjugations for person. Therefore, we have
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included information for whether the abso-
lutive argument is singular, plural or
zero. We have done this because verbs can
change their conjugation for some plural ab-
solutive arguments.

• Pronoun type: Finally, we included informa-
tion for pronoun subjects, whether they were
absolutive or ergatives. Pronominal subjects
can be 1SG, 2SG, 2PL, 3SG and 3PL. The
language also has a clusivity distinction be-
tween 1PL.INCL and 1PL.EXCL pronouns.
Finally, a sentence is tagged as no pronoun
if the subject is zero or a full nominal.

4.2 Maya
In this task, we focused on the Yucatec Maya va-
riety (Glottolog yuca1254). The first version
of the data in Maya was created in 2022 at the
request of Duolingo1, an American educational
technology company that produces learning apps.
The Secretariat of Culture and the Arts of Yucatan
(SEDECULTA) served as the starting point for gen-
erating the initial Maya-Spanish aligned data. The
company requested the translation from Spanish to
Maya, as well as the alignment of tokens for some
phrases. Although the integration of Maya into
Duolingo was discarded (because the Maya did not
fit the simplistic scheme that was required), sci-
entists from The Geospatial Information Sciences
Research Center (CentroGeo, Mexico) promoted
the follow-up and resumed data generation with the
aim of creating technologies in Maya.

With the help of several Maya speakers, linguists,
NLP practitioners, and volunteers, the process of
creating aligned Maya-Spanish phrase corpora con-
tinued, part of which is included in the challenge
data. These background details are important be-
cause they explain why the data has a simple struc-
ture, covers everyday topics, and features slight
variations in grammatical characteristics. These
data were always intended as inputs for educational
materials.

As the Maya-Spanish aligned data was created
with the aim of generating an automatic transla-
tor, it includes themes of everyday contexts: greet-
ings, farewells, park, market, house, cornfield, lot,
school, weather, courtesy, family, work, town, lo-
cation, daily life, physical description, shopping,
travel, pets, birds, insects among others. At the
end of 2022, from November to December, three

1https://duolingo.com/

native-speaking Mayan scholarship recipients gen-
erated the phrases. Each one created 3,200 phrases
in Mayan and their corresponding translation into
Spanish. 9,600 parallel phrases were achieved,
which, added to those that had previously been
generated for Duolingo, reached a total of 13,873.

Before starting to create the phrases, the speak-
ers were trained giving them the instruction that,
for each assigned topic, they should consider the
most commonly used expressions in orality, mak-
ing a written version that was as natural as possible.
In this way they would be useful to learn Mayan
as a second language. The initial production went
through a testing phase and several revisions. In
the final phase, they were instructed to make sim-
ple phrases using the demonstrative, phrases with
different aspects and people, affirmative, negative,
transitive and intransitive phrases, and descriptive,
among others. Of the 13,873 phrases, 1,400 were
selected to generate the groups with labels for this
challenge.

The grammatical annotation of the corpus was
done by NLP specialists and a native speaker lin-
guist, whose invaluable help provided insights on
how Mayan grammar is very difficult to analyze
with a Eurocentric linguistic mindset. We had
hundreds of phrases in Mayan with their trans-
lation into Spanish and we had to give each one
grammatical labels that mainly indicated the type
of phrase (affirmative, negative, interrogative,...),
person (1st singular, 2nd plural,...), verbal tense
(present, past, future), among other categories. We
naively thought that it was a tedious but simple task,
believing we could rely on the Spanish version to
achieve a good classification.

Everything went through a double or triple
check, and in case of disagreement a few minutes
of discussion were enough to reach a consensus
and continue. But it was time for a complex and
fascinating situation that had no simple solution:
establishing the verb tense of Mayan phrases. This
is because the very concept of verbal tense simply
does not exist in this language, and this information
is conveyed by other means. We noticed that on
many examples there was no difference in the time
they occur, but rather the degree of completeness
of the action (mood) and the intention in carrying
it out (aspect) (Briceño Chel, 2021; Yoshida, 2016;
Chan Dzul, 2010). The tense of a phrase exists
but not as an inflection of the verb, it is introduced
with additional particles such as adverbs (Yoshida,
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2016).
Finally, we had a selection of 1,400 annotated

phrases with 12 grammatical tags: predicate_type,
statement_type, statement_subtype, mood, ac-
tion_state, verbal_aspect, adverb_tense, tense,
person, voice, transitivity, and mark. Addition-
ally, the phrases were classified into clusters with
one base and several deltas in each one. Each delta
contains one or two grammatical differences from
the base. The used split was 50% train, 20% dev
and 30% test.

4.3 Guarani

Guarani is a language belonging to the Tupian stock
with around 6 million native speakers in several
countries of South America, mainly in Paraguay
and some regions of Argentina, Bolivia and Brazil.
As many Indigenous languages of the Americas,
Guarani has a very complex noun and verbal mor-
phology, with words that change their POS accord-
ing their affixes and the way they are used in the
sentence. The verbal category is the most com-
plex one, containing prefixes that encode person
and number, many possible suffixes that encode for
voice, tense, aspect, mood and grade, and also a
circunfix to create negative forms (Academia de la
Lengua Guaraní, 2018).

In this task we focused on the Paraguayan variety
of the Guarani language (Glottolog para1311).
Although this variety is not considered immedi-
ately endangered, it is considered vulnerable due
to the massive borrowing of Spanish terms and id-
ioms (Moseley, 2010) as a result of the contact with
European languages since the 16th century (Ro-
dríguez Gutiérrez and Núñez Méndez, 2018).

For this dataset we used three sources of sen-
tences: the blogs subset of the Jojajovai cor-
pus (Chiruzzo et al., 2022); the transcriptions of
the Guarani data from Mozilla Common Voice2,
already used in (Ebrahimi et al., 2022); and a sim-
ple generator of Guarani-Spanish pairs based on
feature grammars and transfer rules (Lucas et al.,
2024). We always started with an original sentence
in Guarani annotated with their corresponding mor-
phosyntactic features, then selected a few varia-
tions in the features to create a cluster of between
5 and 10 examples, finally we wrote the modified
sentences manually. The training and development
data were collected from the generator (around 80%
of the clusters) and the Jojajovai data (around 20%

2https://commonvoice.mozilla.org/

of the clusters), plus a few examples written manu-
ally. The test data was collected from the genera-
tor (around 67% of the clusters) and the Common
Voice dataset (around 33% of the clusters). The
Common Voice sentences were the hardest to work
with, as they were much more complex than the
other sources, and often featured more than one
verbal construction.

Three annotators, two of them native speakers of
Guarani, took part in this annotation process, and
all the final sentences in the dataset were reviewed
by the native speakers. In order to make the task
more challenging, we tried as much as possible to
keep examples that use the same main verb on the
same split, so that systems need to generalize the
different inflection types to unseen examples.

The set of features used to annotate the Guarani
variations is the following:

• Person and number: Combinations of first,
second and third person, both singular and
plural. Also, Guarani distinguishes between
forms that include or exclude the interlocutor
for the first person plural (1SG, 2SG, 3SG,
1PL.INCL, 1PL.EXCL, 2PL, 3PL).

• Tense: Present, Simple future,
Recent past, Imperfect past,
Pluperfect past.

• Polarity: Affirmative or Negative
forms of the verb.

• Aspect: Besides the base form, we included
the Imperfective (progressive or contin-
uous) and Intermittent (an action per-
formed occasionally, but not always) aspects.

These features are often marked as affixes of the
verb or as accompanying adverbs. Another impor-
tant feature in Guarani is the categorization of verbs
and other words as nasal or oral terms. This catego-
rization is based on the pronunciation of words, and
impacts the types of affixes and pronouns that could
be used, in a phenomenon called nasal/oral agree-
ment (Academia de la Lengua Guaraní, 2018).

5 Approaches and Results

This section describes the different approaches that
the participants used to solve the task, as well as
the baseline approach we implemented, and then
presents the results obtained by these approaches.
Seven teams took part in the shared task, submitting
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a total of 22 systems. All seven teams submitted
results for the Bribri and Maya languages, while
for Guarani only four teams presented results. The
methods of both systems by the anonymous sub-
mission are not known.

5.1 Baseline

Our baseline system is a simplified adaptation of
the Prefer Observed Edit Trees (POET) method
(Kann and Schütze, 2016). An edit tree (Chrupała,
2008) is a tree of edit operations which are applied
recursively to a source string (source sentence) to
obtain a target string (target sentence). There are
two types of nodes in edit trees: a substitution
node and a match node. A substitution node out-
puts a fixed target string given a fixed source string.
A match node splits a source string to a possibly
empty prefix of a fixed length, a fixed matched sub-
string, and a possibly empty suffix of a fixed length.
Prefix and suffix point to their own edit trees. An
output of a match node is a concatenation of the
output of prefix edit tree applied to the prefix, the
matched substring, and the output of suffix edit tree
applied to the suffix. Given a source and a target
strings, an edit tree is built by recursive execution
of two steps. The first step is to find the longest
common substring (LCS) (Gusfield, 1997) between
the source and target strings. If the LCS has a zero
length, create a substitution node with the source
and target strings. If the LCS length is larger than
zero, the second step is to create a match node with
the LCS as its match, and lengths of the parts of
the source string before and after the LCS as the
prefix and suffix lengths of the node. After that, the
first step is repeated for the prefix and suffix. Fig. 1
shows an example edit tree for one of the training
samples. We utilize the spaCy implementation of
the edit trees structures3.

During the training stage, we build an edit
tree for each combination of a source sentence,
a change and a target sentence in the training data,
and count numbers of occurrences of each tree for
each change. During the testing stage, we try to ap-
ply the most frequent edit tree for a given change to
a given source sentence. If the output is not empty,
we return it as a target sentence, otherwise we try
to apply the next less frequent edit tree for a given
change. If a target sentence is not defined after

3https://github.com/
explosion/spaCy/tree/
2e2334632beb0e91abc1d7820a0471a10af61489/
spacy/pipeline/_edit_tree_internals

Ye' shka' Kë̀ ye' shkö̀pa
(1, "e' shk", 2)

Y/Kë̀ y (0, "a", 1)

ε/ö̀p '/ε

Figure 1: Edit tree for the training sample
Bribri0315, from Ye’ shka’ ‘I walked’ to Kë̀ ye’
shkö̀pa ‘I won’t walk’. The root node is a match node
with the match "e’ shk", prefix length 1 and suffix length
2. Its prefix node is a substitution node that replaces
"Y" with "Kë̀ y". Its suffix node is a match node with
the match "a", prefix of length 0, and suffix of length
1. Both prefix and suffix trees are substitution nodes
replacing an empty string (ϵ) with "ö̀p" for the prefix,
and "’" with an empty string for the suffix.

trying all edit trees observed in the training data
for the given change, we return the source sentence
without changes.

5.2 JAJ (/dZæz/)

The JAJ team (Vasselli et al., 2024) experimented
with several LLMs and submitted predictions for
Bribri and Maya languages from the system based
on GPT-4 (OpenAI et al., 2024), which performed
best on the development set. The LLM was given
the prompt adapted from the one (Vamvas, 2022)
used for the Rosetta Stone Puzzles. The prompt
integrates the examples from the training set, part
of speech tags generated with a dictionary based
method, and some language specific hints. Lan-
guage specific hints include short summaries of
grammatical rules related to the changes extracted
from textbooks, and, for Bribri, possible target verb
form generated with a rule-based verb conjugator.
Besides that, the team applied such preprocessing
steps to the data, as duplicate removal and cap-
italization normalization, tag collapsing for the
changes that mostly appear together, generation
of additional training samples by labeling from the
target back to source, and decomposition of certain
compound changes to simple changes for sequen-
tial execution.

5.3 Meenzer Team

The Meenzer team (Bui and von der Wense, 2024)
submitted predictions of four different ensem-
bles of models for all three languages. System
1 incorporates the largest combination of mod-

229

https://github.com/explosion/spaCy/tree/2e2334632beb0e91abc1d7820a0471a10af61489/spacy/pipeline/_edit_tree_internals
https://github.com/explosion/spaCy/tree/2e2334632beb0e91abc1d7820a0471a10af61489/spacy/pipeline/_edit_tree_internals
https://github.com/explosion/spaCy/tree/2e2334632beb0e91abc1d7820a0471a10af61489/spacy/pipeline/_edit_tree_internals
https://github.com/explosion/spaCy/tree/2e2334632beb0e91abc1d7820a0471a10af61489/spacy/pipeline/_edit_tree_internals


els: 10 character-level pointer-generator LSTMs
(Bahdanau et al., 2015; See et al., 2017; Vinyals
et al., 2015), 12 finetuned Mixtral 8x7B (Instruct)
(Jiang et al., 2024) models, and 2 GPT-4 (OpenAI
et al., 2024) based systems. System 2 incorpo-
rates LSTMs and Mixtral models only, system 3
incorporates LSTMs only, and system 4 incorpo-
rates Mixtral models only. The LSTMs are selected
from the pool of 100 models trained with various
hyperparameters, first on the training data for all
three languages combined, and subsequently fine-
tuned for each language separately. The desired set
of grammatical changes is encoded as a sequence
containing one token per change, combined with
a language tag, and is fed to a separate LSTM en-
coder. The Mixtral models are finetuned using the
unsupervised in-context learning (SICL) method
(Li et al., 2023) with 5, 10, or 20 examples per
prompt for 10 or 20 epochs, resulting in 6 different
models. Each Mixtral model and GPT-4 system are
used in 2 ways, differing with the order of exam-
ples in the prompt. The ensemble output is decided
with majority voting.

5.4 Giving it a Shot
The Giving it a Shot team (Haley, 2024) submit-
ted predictions of three systems based on three
LLMs, namely Command R+ from Cohere (sys-
tem 1), and GPT-3.5 Turbo and GPT-4 (OpenAI
et al., 2024) from OpenAI (systems 2 and 3 respec-
tively). The prompt simply listed several lines of
the training data in CSV format, the instruction to
fill in the column, and a line with a test sample hav-
ing the missing last column. Examples are selected
from the training data according to the grammatical
change in the test sample. In cases when more than
10 samples are available, examples are selected
for the highest sum of BLEU and chrF scores of
source sentence with the test sample. In cases when
a compound grammatical change does not have any
examples in the training data, this change is split
and examples are searched for the resulting simple
changes.

5.5 LECS Lab
The LECS Lab team (Ginn et al., 2024) submitted
predictions of nine systems, one of which does not
include Maya, and eight other include all three lan-
guages. System 1 is based on GPT-4 (OpenAI et al.,
2024), which is prompted with the complete train-
ing set and chunks of 20 testing samples. System
8 is based on mBART (Liu et al., 2020). All other

systems are based either on a standard encoder-
decoder LSTM (Bahdanau et al., 2015) (systems 2,
3, 4, and 9) or pointer-generator LSTM (See et al.,
2017) (systems 5, 6, and 7), and utilize different
data augmentation methods.

The team develops a variation of the lemma copy-
ing technique (Liu and Hulden, 2022; Yang et al.,
2022), which they name sentence copying. The
idea is to create additional training samples by
copying same sentence as both source and target
with an empty change field. All LSTM systems
except of system 9 use the external sentence copy-
ing for data augmentation, where the copied sen-
tences are taken from external datasets, namely
transcriptions from the Yucatec Maya DoReCo
dataset (Skopeteas, 2022) for Maya, Guarani por-
tion of the CC-100 dataset (Conneau et al., 2020)
for Guarani, and Bribri portion of the Americas-
NLP2024 Shared Task 1 data for Bribri. System
3 additionally performs the sentence copying with
all sentences from the training data.

Another data augmentation method is called
stem permutation and it is based on the idea to
replace stems with random characters (Silfverberg
et al., 2017; Anastasopoulos and Neubig, 2019). In-
stead of identifying which parts of words are stems,
the team randomly changes one or two characters
in a source sentence and relies on the edit tree built
from the original source and target sentences to see
if the change is valid. If the edit tree still applies to
the modified source sentence, then this sentence is
added to the training data with the original target
sentence. The stem permutation method is used to
augment data for systems 4 and 7.

Training data for system 7 also uses concatena-
tion data augmentation, which finds pairs of train-
ing samples with exactly same grammatical change
and creates a new sample by concatenating source
sentences and target sentences from such pair.

Training data for system 6 is augmented with
transitive transformations method. This method
utilizes pairs of training samples sharing same
source sentence while having grammatical changes
with same attributes, but different values. One of
the target sentences from such pair can be used as
a source sentence to another target sentence in a
new training sample, because it can be inferred that
these target sentences share all grammatical and
lexical content except of the attributes specified in
the change.

System 9 works with byte-pair encoding sub-
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Team System Bribri Maya Guarani Average Acc.
Acc. BLEU chrF Acc. BLEU chrF Acc. BLEU chrF (Rank)

JAJ (/dZæz/) 1 54.17 71.72 82.78 53.55 78.41 91.53 0.00 0.00 0.00 35.91 (1)
Meenzer Team 4 19.38 46.93 73.02 53.87 77.68 90.94 23.90 36.94 79.48 32.38 (2)

1 17.50 44.20 70.09 38.39 66.81 83.70 34.62 49.60 84.93 30.17 (5)
2 17.50 44.20 70.09 38.39 66.81 83.70 23.08 35.95 79.71 26.32 (7)
3 8.54 32.50 61.24 27.74 58.59 79.29 12.64 20.01 71.61 16.31 (11)

Giving it a Shot 3 17.71 39.48 69.28 53.87 78.54 91.66 25.00 40.55 81.71 32.19 (3)
2 11.67 33.80 65.51 50.97 75.09 89.76 18.13 31.94 79.36 26.92 (6)
1 7.08 31.68 62.45 49.03 73.09 88.54 9.34 22.64 73.40 21.82 (8)

LECS Lab 1 12.08 36.95 66.75 51.61 76.82 90.29 30.77 45.18 82.33 31.49 (4)
7 2.50 14.65 41.51 30.00 65.22 83.28 12.09 22.73 72.11 14.86 (13)
8 0.83 9.90 36.47 35.16 68.11 86.04 3.30 13.84 61.46 13.10 (14)
5 0.21 3.34 21.78 24.19 56.05 77.64 7.69 20.53 71.26 10.70 (15)
3 2.29 10.87 37.35 15.16 50.77 74.38 9.34 13.08 66.93 8.93 (17)
6 0.21 2.01 18.80 12.90 43.31 69.27 11.81 17.62 68.88 8.31 (18)
2 1.67 11.49 41.00 15.48 55.22 76.58 7.69 17.80 70.54 8.28 (19)
4 2.29 11.88 42.76 13.55 52.83 75.94 8.24 15.59 66.90 8.03 (21)
9 0.83 7.91 47.76 0.00 0.00 0.00 0.55 3.80 56.21 0.46 (22)

UF_NLP 2 26.88 48.71 74.83 33.23 74.36 86.59 0.00 0.00 0.00 20.04 (9)
1 9.79 37.92 65.33 37.42 69.59 85.77 0.00 0.00 0.00 15.74 (12)

Arizona Linguistics 1 9.38 17.13 55.07 25.81 50.36 79.46 14.84 22.55 73.18 16.67 (10)
Anonymous 1 12.50 31.51 57.20 16.45 54.20 77.87 0.00 0.00 0.00 9.65 (16)
submission 2 9.79 29.91 56.99 14.52 51.28 76.06 0.00 0.00 0.00 8.10 (20)

Baseline (edit trees) 8.75 22.11 52.73 25.81 53.69 80.23 14.84 25.03 76.10
Max 54.17 71.72 82.78 53.87 78.54 91.66 34.62 49.60 84.93

Table 2: Results over the test set. The last column shows the average accuracy over the three languages and the rank
of each submission. Teams are ordered according to their best performing submissions.

words, unlike the other LSTM models, which work
with characters. System 9 uses only one data
augmentation that aims to replace frequent non-
inflection subwords with their synonyms in both
source and target sentences. The synonyms are
identified using separate word2vec models, which
are trained on external data for Guarani and Bribri
languages.

5.6 UF_NLP
The UF_NLP team (Su et al., 2024) submitted
predictions of two systems for Bribri and Maya
languages. System 1 is NLLB-200-3.3B model
(NLLB Team et al., 2022) finetuned separately
for each language. Its input is concatenation of
a source sentence and a grammatical change tag.
System 2 is Claude 3 Opus LLM. Its prompt con-
tains all training samples with sample IDs replaced
with row numbers.

5.7 Arizona Linguistics
The Arizona Linguistics team (Hammond, 2024)
submitted predictions from one system for all three
languages. This system adopts the baseline and
relaxes the requirement of strict match of gram-
matical change for selection of candidate edit trees.
More precisely, if none of originally selected edit

trees could be applied to the test source sentence,
then the system considers the full list of edit trees
from the training data and attempts to apply them in
the order of similarity of their grammatical changes
to the testing grammatical change.

5.8 Task Results
Table 2 shows the results of the different systems
for our task. The JAJ team got the first position in
the task according to average accuracy, although
none of the teams was a clear winner for the three
languages: the JAJ team obtained the best perfor-
mance for Bribri, the Giving it a Shot team for
Maya, and the Meenzer Team for Guarani. The
JAJ team obtained on average the best accuracy
results, even considering they did not submit their
results for the Guarani language. This accuracy
metric was very strict, and we can see that it was
the metric for which the participants got the lowest
results.

The results in terms of chrF were very high, but
this was expected as the target sentences in general
share many words and morphemes with the source
sentence, so the character n-gram overlap between
them should already be very high. The language
that got on average the worst results was Guarani,
having only 34% accuracy and 49.6 BLEU score.
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It was also the language that was tackled by fewer
teams: only four out of seven. One possible ex-
planation for the lower results is the division of
clusters with different verbs in the different splits,
or the fact that a different (more difficult) combina-
tion of sources was used for the test set.

6 Conclusions

We presented the results of the first task on the
creation of educational materials for Indigenous
languages of the Americas. In this task, the partici-
pants had to create systems that could transform a
source sentence into a target sentence by changing
some linguistic feature, usually associated to the
main verb (e.g., negation, aspect or tense). These
pairs of sentences can be used to create grammar
exercises for students of the Indigenous languages.

The languages targeted in this task were Bribri,
Maya and Guarani, three Indigenous languages of
the Americas with different characteristics. Seven
teams took part in the task, submitting 22 systems.
Different teams obtained the best results for each
language: JAJ for Bribri, Giving it a Shot for Maya,
and Meenzer Team for Guarani. The results in
general were very promising, obtaining high scores
in terms of the generative task metrics BLEU and
chrF, but still with a lot of room for improvement
in terms of the main accuracy metric.

Notably, most of the teams used neural methods,
in particular LLMs like GPT-4 or Mixtral, often
with some strategies for data augmentation. This is
interesting because such models have often shown
worse performance on lower-resource languages
than those with higher resources, but in this case
where the systems did not need to generate a full
sentence but make some localized changes, they
seem to work quite well.
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Maja Popović. 2015. chrf: character n-gram f-score for
automatic mt evaluation. In Proceedings of the tenth
workshop on statistical machine translation, pages
392–395.

Juan Diego Quesada. 2007. The Chibchan Languages.
Editorial Tecnológica de Costa Rica.

YV Rodríguez Gutiérrez and E Núñez Méndez. 2018.
Language contact and the indigenous languages of
Uruguay. Biculturalism and Spanish in contact: so-
ciolinguistic case studies, pages 217–238.

Carlos Sánchez Avendaño. 2013. Lenguas en peligro en
Costa Rica: vitalidad, documentación y descripción.
Revista Káñina, 37(1):219–250.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational

234

https://doi.org/10.18653/v1/P16-2090
https://doi.org/10.18653/v1/P16-2090
https://doi.org/10.18653/v1/P16-2090
http://www.haakonkrohn.com/bribri/
http://www.haakonkrohn.com/bribri/
http://www.haakonkrohn.com/bribri
http://www.haakonkrohn.com/bribri
http://arxiv.org/abs/2312.13772
http://arxiv.org/abs/2312.13772
http://arxiv.org/abs/2312.13772
https://doi.org/10.18653/v1/2022.acl-short.84
https://doi.org/10.18653/v1/2022.acl-short.84
https://doi.org/10.18653/v1/2022.acl-short.84
https://doi.org/10.18653/v1/2023.findings-emnlp.372
https://doi.org/10.18653/v1/2023.findings-emnlp.372
https://doi.org/10.18653/v1/2023.findings-emnlp.372
http://arxiv.org/abs/2207.04672
http://arxiv.org/abs/2207.04672
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2303.08774
https://aclanthology.org/E17-3013
https://aclanthology.org/E17-3013
https://aclanthology.org/E17-3013
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099


Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Miikka Silfverberg, Adam Wiemerslage, Ling Liu, and
Lingshuang Jack Mao. 2017. Data augmentation for
morphological reinflection. In Proceedings of the
CoNLL SIGMORPHON 2017 Shared Task: Univer-
sal Morphological Reinflection, pages 90–99, Van-
couver. Association for Computational Linguistics.

Stavros Skopeteas. 2022. Yucatec Maya DoReCo
dataset.

Jim Su, Justin Minh Ho, George Aaron Broadwell,
Sarah Moeller, and Bonnie J. Dorr. 2024. A com-
parison of fine-tuning and in-context learning for
morphological inflection. In Proceedings of the 4th
Workshop on Natural Language Processing for In-
digenous Languages of the Americas (AmericasNLP).
Association for Computational Linguistics.

Abhijit Suresh, Jennifer Jacobs, Margaret Perkoff,
James H. Martin, and Tamara Sumner. 2022. Fine-
tuning transformers with additional context to clas-
sify discursive moves in mathematics classrooms. In
Proceedings of the 17th Workshop on Innovative Use
of NLP for Building Educational Applications (BEA
2022), pages 71–81, Seattle, Washington. Associa-
tion for Computational Linguistics.

Carlos Sánchez Avendaño, Alí García Segura, et al.
2021a. Se’ Dalì Diccionario y Enciclopedia de la
Agricultura Tradicional Bribri. Editorial de la Uni-
versidad de Costa Rica.

Carlos Sánchez Avendaño, Alí García Segura, et al.
2021b. Se’ Má Diccionario-Recetario de la Ali-
mentación Tradicional Bribri. Editorial de la Univer-
sidad de Costa Rica.

Jannis Vamvas. 2022. Translation Puzzles are
In-context Learning Tasks.

Justin Vasselli, Arturo Martínez Peguero, Junehwan
Sung, and Taro Watanabe. 2024. Applying linguistic
expertise to llms for educational material develop-
ment in indigenous languages. In Proceedings of the
4th Workshop on Natural Language Processing for
Indigenous Languages of the Americas (Americas-
NLP). Association for Computational Linguistics.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. Advances in neural infor-
mation processing systems, 28.

Sebastian Wollny, Jan Schneider, Daniele Di Mitri,
Joshua Weidlich, Marc Rittberger, and Hendrik
Drachsler. 2021. Are we there yet?-a systematic
literature review on chatbots in education. Frontiers
in artificial intelligence, 4:654924.

Changbing Yang, Ruixin (Ray) Yang, Garrett Nicolai,
and Miikka Silfverberg. 2022. Generalizing mor-
phological inflection systems to unseen lemmas. In
Proceedings of the 19th SIGMORPHON Workshop

on Computational Research in Phonetics, Phonology,
and Morphology, pages 226–235, Seattle, Washing-
ton. Association for Computational Linguistics.

Shigeto Yoshida. 2016. Un análisis morfosintáctico so-
bre el tiempo y el aspecto en la lengua maya yucateca.
Latin American and Caribbean Studies, 23(1):39–51.

235

https://doi.org/10.18653/v1/K17-2010
https://doi.org/10.18653/v1/K17-2010
https://nakala.fr/10.34847/nkl.9cbb3619
https://nakala.fr/10.34847/nkl.9cbb3619
https://doi.org/10.18653/v1/2022.bea-1.11
https://doi.org/10.18653/v1/2022.bea-1.11
https://doi.org/10.18653/v1/2022.bea-1.11
https://vamvas.ch/translation-puzzles-are-in-context-learning-tasks
https://vamvas.ch/translation-puzzles-are-in-context-learning-tasks
https://doi.org/10.18653/v1/2022.sigmorphon-1.23
https://doi.org/10.18653/v1/2022.sigmorphon-1.23


Proceedings of the 4th Workshop on Natural Language Processing for Indigenous Languages of the Americas (AmericasNLP), pages 236–246
June 21, 2024 ©2024 Association for Computational Linguistics

Findings of the AmericasNLP 2024 Shared Task on
Machine Translation into Indigenous Languages

Abteen Ebrahimi♢∗ Ona de Gibert♠∗ Raúl Vázquez♠∗ Rolando Coto-SolanoΩ∗

Pavel Denisov∇ Robert Pughψ Manuel Mager♣ Arturo Oncevay♡

Luis ChiruzzoΦ Katharina von der Wense♢♯ Shruti Rijhwani≁
♢University of Colorado Boulder ♠University of Helsinki ΩDartmouth College

∇University of Stuttgart ψIndiana University ♣Amazon AWS AI
♡Pontificia Universidad Católica del Perú ΦUniversidad de la República, Uruguay

♯Johannes Gutenberg University Mainz ≁Google Deepmind
abteen.ebrahimi@colorado.edu

Abstract

This paper presents the findings of the third iter-
ation of the AmericasNLP Shared Task on Ma-
chine Translation. This year’s competition fea-
tures eleven Indigenous languages found across
North, Central, and South America. A total of
six teams participate with a total of 157 sub-
missions across all languages and models. Two
baselines – the Sheffield and Helsinki systems
from 2023 – are provided and represent hard-
to-beat starting points for the competition. In
addition to the baselines, teams are given access
to a new repository of training data which con-
sists of data collected by teams in prior shared
tasks. Using ChrF++ as the main competition
metric, we see improvements over the baseline
for 4 languages: Chatino, Guarani, Quechua,
and Rarámuri, with performance increases over
the best baseline of 4.2 ChrF++. In this work,
we present a summary of the submitted systems,
results, and a human evaluation of system out-
puts for Bribri, which consists of both (1) a
rating of meaning and fluency and (2) a qual-
itative error analysis of outputs from the best
submitted system.

1 Introduction

Though the field of natural language processing
(NLP) has seen a steep increase in interest and
impressive performance improvements over the
past decade, a large performance gap still remains
between a handful of so-called “high-resource,"
mostly colonial, languages and the remaining ma-
jority of the world’s languages (Blasi et al., 2022).
The Indigenous languages of the Americas exem-
plify this reality, representing nearly 15% of the
world’s linguistic diversity (Eberhard et al., 2024)
and yet, until recently, receiving little attention in
NLP research.

∗ Equal contribution.

Language Family Train Extra Syn. Dev.

Asháninka (cni) Arawak 3,883 - 13,195 883
Aymara (aym) Aymaran 6,531 24,331 16,750 996
Bribri (bzd) Chibchan 7,508 - - 996
Chatino (ctp) Oto-Manguean 357 2,246 - 499
Guarani (gn) Tupi-Guarani 26,032 42,186 40,516 995
Nahuatl (nah) Uto-Aztecan 16,145 2,493 9,222 672
Otomí (oto) Oto-Manguean 4,889 9,012 - 599
Quechua (quy) Quechuan 125,008 6,469 60,399 996
Rarámuri (tar) Uto-Aztecan 14,720 2,254 - 995
Shipibo-Konibo (shp) Panoan 14,592 16,721 23,595 996
Wixarika (hch) Uto-Aztecan 8,966 2,653 511 994

Table 1: Languages of the shared task, their ISO codes,
language families, and dataset statistics.

The AmericasNLP Shared Task on Machine
Translation (MT), now in its third iteration (2021,
2023, and 2024), is focused on pushing the perfor-
mance of MT on this group of languages through
two main avenues: by applying modeling and archi-
tectural advancements, and through the creation of
new linguistic resources which support the training
and evaluation of these systems.

This year’s shared task continues to focus on
the eleven Indigenous languages from the last com-
petition. While this year’s competition does not
feature new data for evaluation, competitors are
given access to a new repository of training data
which extends the original set of parallel examples
with additional data collected by teams in prior
years. This repository represents the first step in
creating a new living source of data which can
grow through contributions from teams participat-
ing in future iterations of the shared task. This
year’s competition also features two baselines: the
University of Sheffield (Gow-Smith and Villegas,
2023) and University of Helsinki (De Gibert et al.,
2023) systems which each achieved the best perfor-
mance for a subset of languages in 2023 (Ebrahimi
et al., 2023). These baselines are strong and hard-
to-beat; across 157 submissions from 6 different
teams, we see improvements for only 4 of the 11
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languages: Chatino, Guarani, Quechua, and Rará-
muri. As two of these four languages are the rela-
tively highest-resourced, this finding may indicate
that we are approaching a plateau in performance
gains achievable purely through modeling and ar-
chitectural approaches; therefore, a focus on col-
lecting additional training data may yield the most
future improvements.

The paper is structured as follows. In Section
2, we provide a brief overview of the data and
languages provided by the organizers at the be-
ginning of the competition. Section 3 contains
summary descriptions of the approaches used by
each team. Section 4 discusses the results of the
competition. In Section 5, we conduct a human
evaluation of system outputs for Bribri. In the first
part of this evaluation, we follow the prior shared
tasks in quantitatively rating a sample of outputs
on two axes: meaning and fluency. For the sec-
ond part, we conduct a qualitative error analysis,
comparing baseline systems to the best submitted
system. In Section 6, we conclude with a brief
discussion of future directions in improving MT
quality for Indigenous languages of the Americas.

2 Data and Languages

The shared task features 11 Indigenous languages
of the Americas. The language direction we are
interested in is from Spanish into the low-resource
language.

We use the AmericasNLP 2021 data for devel-
opment and evaluation. It consists of a multi-way
parallel dataset of the Spanish XNLI test set into
10 languages of the Americas (Asháninka, Aymara,
Bribri, Guarani, Nahuatl, Otomí, Quechua, Rará-
muri, Shipibo-Konibo, and Wixarika). The task
also includes Chatino, for which the data comes
from Mexican court proceedings. Chatino was in-
troduced as a surprise language in last year’s edi-
tion (Ebrahimi et al., 2023). For an in-depth review
of development and evaluation data, please refer to
Ebrahimi et al. (2022) and Mager et al. (2021).

For training data, besides the data used in previ-
ous editions, this year we include the data collected
by De Gibert et al. (2023) as part of their Helsinki-
NLP submission. This consists of extra data,
made up of different sources listed in their system
description paper, as well as syn, which refers to
synthetic data obtained through backtranslation. Ta-
ble 1 provides an overview of the languages, their
linguistic families, and the total number of parallel

sentences with Spanish. While there is no new data
for Bribri, this year’s data sizes increased consid-
erably for Shipibo-Konibo, Aymara, Quechua and
Guarani, with over 40k added sentences (although
the majority comes from backtranslations). The
test data for all languages consists of 1,003 sen-
tences, except for Chatino, which contains 1,000
sentences.

We publicly release the training and develop-
ment data in our Github repostitory.1

3 Metrics

For evaluation, we use the automatic metric ChrF++
(Popović, 2017) as implemented in SACREBLEU
(Post, 2018). It is an overlap-based metric at the
character-level, which is adequate for our task since
most languages are morphologically rich.

While teams are not required to submit a system
for all languages, the final score for each submis-
sion (ChrF++ column in Table 3) is calculated by
taking an average over all eleven languages; if there
is no model output for a given language, the score
is taken as 0.

4 Baselines and Submitted Systems

In this section, we describe the 2024 baseline sys-
tems and each team’s approach. We present a sum-
mary of all approaches in Table 2.

4.1 Baselines
This year, we consider two different baselines,
based on the strongest submissions of the previous
edition of our shared task, shown to be competitive
among each other. The overall winning team in the
previous edition was Sheffield (Gow-Smith and Vil-
legas, 2023). They exploited the knowledge from
different distilled versions of NLLB (Costa-jussà
et al., 2022), a large pretrained model. We use their
Submission 3, which chooses a single checkpoint
with best average ChrF across all languages.

We also include Helsinki-NLP’s Submission 6
(De Gibert et al., 2023), given that it outperforms
the previous system on several language pairs.
Their winning model is a multilingual one-to-many
system, pretrained on Spanish–English data.

4.2 Submitted Systems
BSC The BSC team submitted systems for two
languages: Quechua and Guarani, and followed the

1https://github.com/AmericasNLP/
americasnlp2024/tree/master/ST1_
MachineTranslation
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Team Models Data Overview

BSC
Gilabert et al.
(2024)

• NLLB-200 (1.3B) • Length-based data filtering
• Train set deduplication
• Embedding-based sentence
similarity

• Multilingual and bilingual fine-tuning of NLLB-200
• Low-Rank Adaptation (LoRA; 15% trainable params.) and full finetuning achieves

NordicAlps
Attieh et al. (2024)

• From-scratch trans-
former encoder–decoder
models

Various tokenizations:
• Byte-level BPE
• SentencePiece
• Redundancy-driven tokeniza-
tion

2 stage training:
• First focus on Spanish-English data
• Second, reduce Spanish-English to 50% with the other 50% sampled to equal amounts from the 11 TGT
languages

DC_DMV
DeGenaro and
Lupicki (2024)

• NLLB-200 (600M,
distil.)
• State-space model
(Mamba) from scratch

• Partition data into three stages,
with deduplication

• Fully fine-tune a distilled NLLB-200 model using two data stages
• Train a 3-layered Mamba network from scratch followed by a language model head using three data
stages

Edinburgh
Iyer et al. (2024)

• Llama-2 (7B)
• Mistral (7B)
• MaLA-500

• Collect additional data
through OCR
• Grammar and Education
books, Scientific Papers, Dictio-
naries, and Books as sources

• Fine-tune LLama-2, Mistral and MaLA-500 models using a 2-stage training
• LoRA fine-tuning with monolingual data first, then continue with instruction tuning
• Regularize outputs using model averaging of the 4 last checkpoints

Table 2: Summary overview of each team’s approach.

prior year’s baseline approach of finetuning NLLB-
200. In addition to the data provided by the orga-
nizers, the team collected new data from multiple
sources, including the Monolingual-Quechua-IIC
dataset (Zevallos et al., 2022), Flores-200 (Team
et al., 2022), and other online datasets.2 After col-
lection, the data is cleaned in a multi-step process
to remove duplicates and filter sentences. In the
first step, sentences with more than 150 tokens and
sentence pairs with a length ratio greater than 3 are
removed. Next, various libraries are used to further
clean the data, including Bifixer (Ramırez-Sanchez
and Zaragoza-Bernabeu, 2020) and NLPDedup.3

Finally, an embedding-based approach is used to
calculate similarities between the source and tar-
gets side of a sentence pair; similarity scores are
used with various thresholds to determine the final
training examples.

NLLB is finetuned separately for each target
language, and parallel sentences between each tar-
get and English, Portuguese, and Spanish are used.
Two model sizes are considered: the 3.3B and 1.3B
parameter version. Interestingly, the larger model
only shows improvements for Quechua while per-
formance decreases for Guarani; this relationship
depends on the finetuning method used. Increasing
the similarity score threshold offers better perfor-
mance up to a point, after which performance be-
gins to decrease, likely due to the greatly reduced
amount of available data for finetuning. Overall,
the best performance is found by using NLLB 1.3B
with full finetuning for Guarani, improving over

2https://huggingface.co/
datasets/somosnlp-hackathon-2022/
spanish-to-quechua

3https://github.com/saattrupdan/
NLPDedup

the prior best model by 1.91 ChrF++. For Quechua,
NLLB 1.3B + LoRA (Hu et al., 2021) finetuning
improves over the prior best score by 4.2 ChrF++.
For these two languages, both systems achieved the
highest performance across all submitted systems
in this year’s shared task.

NordicAlps The NordicAlps team submitted sys-
tems for all eleven languages of the shared task,
building on the Helsinki system (De Gibert et al.,
2023) from the 2023 shared task. The final models
are one-to-many, trained to output translations in
any of the competition languages as well as En-
glish. Target language tags are used to specify the
output language. Data used is similar to the prior
year’s system, but this year’s submission does not
include Bible data. Preprocessing steps include
whitespace normalization, Unicode normalization,
and punctuation tokenization; these steps were im-
plemented using the Moses tokenizer as well as
through handwritten rules. The models do not
make use of additional meta-data tags describing
the language variant or quality on the input side. Of
the three submitted systems, the main difference
lies in the tokenization: a traditional byte-level
BPE tokenization, SentencePiece tokenization, and
BPE-MR tokenization, which consists of a BPE
subword tokenizer trained using only 300 merges.
BPE-MR tokenization is motivated by prior work
on text compression through tokenization, and the
finding that monolingual text can be compressed
optimally using a small number of merge opera-
tions. Model training is carried out in stages, with
the first stage covering a high-resource language
pair (Spanish–English), and the second stage intro-
ducing more Indigenous language pairs (up to 50%
of the examples used for training). Of the three sub-
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RANK TEAM VER. COUNT TOT. BLEU TOT. CHRF TOT. CHRF++ AVG. BLEU AVG. CHRF AVG. CHRF++ BLEU CHRF CHRF++

1 NordicsAlps 1 11 55.48 321.69 287.60 5.04 29.24 26.15 5.04 29.24 26.15
2 DC_DMV 4 11 40.14 288.67 256.51 3.65 26.24 23.32 3.65 26.24 23.32
3 DC_DMV 3 11 39.63 287.64 255.49 3.60 26.15 23.23 3.60 26.15 23.23
4 DC_DMV 1 11 38.97 284.66 252.38 3.54 25.88 22.94 3.54 25.88 22.94
5 DC_DMV 5 11 37.84 284.26 252.21 3.44 25.84 22.93 3.44 25.84 22.93
6 DC_DMV 6 11 37.95 284.04 251.77 3.45 25.82 22.89 3.45 25.82 22.89
7 DC_DMV 2 11 34.15 272.59 243.83 3.10 24.78 22.17 3.10 24.78 22.17
8 NordicsAlps 2 11 27.28 265.46 232.41 2.48 24.13 21.13 2.48 24.13 21.13
9 UEdin 3 11 23.41 236.36 208.56 2.13 21.49 18.96 2.13 21.49 18.96
10 UEdin 1 11 24.04 235.42 208.34 2.19 21.40 18.94 2.19 21.40 18.94
11 UEdin 2 11 19.62 224.50 198.44 1.78 20.41 18.04 1.78 20.41 18.04
12 NordicsAlps 3 11 18.03 195.03 171.81 1.64 17.73 15.62 1.64 17.73 15.62
13 Z-AGI_Labs 1 4 8.35 103.03 87.32 2.09 25.76 21.83 0.76 9.37 7.94
14 DC_DMV 9 11 2.08 96.67 83.69 0.19 8.79 7.61 0.19 8.79 7.61
15 BSC 3 2 16.48 85.68 76.95 8.24 42.84 38.47 1.50 7.79 7.00
16 BSC 4 2 16.10 84.56 75.83 8.05 42.28 37.91 1.46 7.69 6.89
17 BSC 2 2 16.09 84.56 75.73 8.04 42.28 37.86 1.46 7.69 6.88
18 BSC 1 2 15.89 84.42 75.63 7.95 42.21 37.82 1.44 7.67 6.88
19 BSC 5 1 11.53 38.37 35.73 11.53 38.37 35.73 1.05 3.49 3.25
20 ND-NAIST 1 1 2.60 38.51 32.88 2.60 38.51 32.88 0.24 3.50 2.99

Table 3: Main ranking of all submitted systems. COUNT denotes the number of languages a particular system was
submitted for, with the AVG.* columns showing the average metric score across submitted systems. The final three
columns represent the average over all 11 languages of the shared task, with CHRF++ being used to calculate the
overall ranking.

missions, the model using BPE-MR tokenization
offered the best performance and achieved the best
result for 5 of the shared task languages, and 2nd
for 2 other languages.

DC_DMV The DC_DMV team submitted a sys-
tem for each of the eleven languages, and followed
two main approaches: finetuning a single version
of the distilled 600m version of NLLB-200 for all
the languages, as well as using a state-space model
based on the Mamba architecture (Gu and Dao,
2023). Similar to the BSC team, duplicate exam-
ples are filtered, and the data is split into mutually
exclusive stages. Stage 1 contains the largest set of
data with over 700k examples, while Stages 2 and 3
have 100k and 200k examples, respectively. For the
NLLB approach, the model is fully finetuned us-
ing data from the latter two stages, and the various
submitted systems following this approach differ in
the amount of training done using data from each
stage. For the Mamba approach, a model is trained
from scratch using all available data. While this
approach did not yield strong results, likely due to
the lack of pretraining, an NLLB-based submission
achieved the best result across all submitted sys-
tems for Aymara, Shipibo-Konibo, and Rarámuri,
while a different NLLB model achieved the best
results for Bribri.

University of Edinburgh The University of Ed-
inburgh participated with three system submissions

for each of the eleven languages. These are the
best performing systems in a series of experiments
where the authors explore finetuning three well-
known open-source LLMs: Llama-2 7B (Touvron
et al., 2023), Mistral 7B (Jiang et al., 2023) and
MaLA-500 (Lin et al., 2024). The finetuning con-
sists of a two-stage training process employing
Low-Rank Adaptation (LoRA) (Hu et al., 2021)
and instruction tuning. In a nutshell, the first stage
consists of finetuning LoRA adapters by continued
pretraining on the LLM monolingual data, to adapt
the models to specific linguistic features of each of
the target languages. This setup includes using di-
verse data sets such as MADLAD-400 (Kudugunta
et al., 2023) and Glot500 (ImaniGooghari et al.,
2023). The second stage focuses on instruction
tuning where models are finetuned using a com-
bination of human-annotated and synthetic cross-
lingual data, which helps improve the models’ ef-
ficiency in real translation tasks. Furthermore, the
authors explore n-last checkpoint averaging, with
different beam search, and sampling setups to boost
model performance at inference time.

5 Results

The overall ranking for the shared task can be found
in Table 3, and the best per-language performance
for each team can be found in Table 4. The full
results for all submissions and teams can be found
in Table 6.
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TEAM

LANG. AYM BZD CNI CTP GN HCH NAH OTO QUY SHP TAR

Baseline - Helsinki 29.36 23.47 24.92 29.84 37.02 28.67 22.78 13.32 28.81 30.21 16.98
Baseline - Sheffield 31.84 25.58 24.76 37.05 35.76 28.28 23.28 12.87 34.01 30.06 16.25

BSC - - - - 38.93 - - - 38.21 - -
DC_DMV 30.97 23.47 22.98 16.52 33.31 26.46 21.63 12.63 36.02 29.37 17.03
ND-NAIST - - - - - - - - 32.88 - -
NordicsAlps 29.39 23.32 23.20 37.38 36.23 27.64 22.87 12.98 32.98 27.04 14.57
UEdin 21.89 16.54 14.82 20.70 29.20 24.41 18.98 9.19 25.23 22.86 9.65
Z-AGI_Labs 11.89 - 22.65 - - - 21.71 - 31.07 - -

Table 4: The best CHRF++ scores for each team (across all submitted systems) across all languages. Bold values
represent the best performing system overall, while underlined values are the best performing submission to this
year’s shared task.

The first place in the shared task, across all
eleven language pairs, is awarded to the Nordi-
cAlps team (Submission 1). Their overall score sig-
nificantly surpasses those of the second and third
place teams, DC_DMV and UEdin, respectively.
Notably, only three of the six teams submit entries
for all eleven languages.

NordicAlps secures the top performance on five
language pairs (Spanish to Asháninka, Chatino,
Wizarika, Nahuatl, and Otomí), although they only
exceed the baseline for Chatino. Similarly, the
second-ranked team, DC_DMV, leads for four lan-
guage pairs (Spanish to Aymara, Bribri, Shipibo-
Konibo, and Rarámuri) but surpasses the baselines
solely for Rarámuri. These results highlight the
importance of meticulous pipeline design for data
preprocessing and segmentation, as implemented
by NordicAlps and the use of large multilingual
models (NLLB) for finetuning, as employed by
DC_DMV, for achieving robust results across most
language pairs.

Finally, the BSC team, which participates for
only two language pairs, Spanish to Guarani and
Quechua, achieves the highest performance on
both, surpassing the established baselines. Their
strategic focus on finetuning a large multilingual
model (NLLB) and gathering new data for these
languages is key to their success.

6 Human Evaluation

Following prior AmericasNLP shared tasks (Mager
et al., 2021; Ebrahimi et al., 2023), we also conduct
a human evaluation of system outputs, focusing on
Bribri.

6.1 Quantitative Analysis
As the test set has remained consistent across these
competitions, we extend the prior evaluation using
the best performing system from this year’s shared
task: Submission 4 by DC_DMV (DeGenaro and
Lupicki, 2024). We consider the same 50 test inputs
as in the prior analysis for this experiment, and a
speaker of Bribri rates the system output on two
axes: meaning and fluency. We consider a 5-point
scale for evaluation, with a score of 5 being the
best, and present results in Figure 1.

Similar to the pattern shown by the automatic
metrics, we see a decrease in the perceived qual-
ity of translations from the best 2024 system as
compared to the baseline (Gow-Smith and Villegas,
2023); i.e., scores suffer more, with a larger propor-
tion being rated with a score of 1. For both metrics,
scores of 5 are non-existent, showing a decrease
in top-end performance as well. To further gain
insights into the errors, we qualitatively look at the
system outputs from the best 2024 system.

6.2 Qualitative Analysis
Table 5 shows examples of Bribri sentences trans-
lated by the best performing submission, organized
by their score for meaning. The sentence with a
score of 4 is readable and the original meaning
is understandable, but there are parts that are not
quite correct. In this example, "Yes, you know she
was great", the hypothesis is very good, but it has
at least one spelling mistake (*ujchen instead of
ujchén for "it’s known"), and the word ‘good’, bua’,
is missing the intensifier {-ë} that it would need in
order to become bua’ë ‘great’. In the case of the
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Figure 1: Results of the human evaluation for Bribri.
Figure presents the proportion of evaluated example
for each rating classification, with 1 representing the
lowest quality and 5 representing the best. Values for
the Baseline 2021, Best 2021, and Best 2023 systems
are taken from (Ebrahimi et al., 2023).

sentence with the score 3, the words in the hypothe-
sis still allow for an understanding of the meaning,
but there are more mistakes. The example "Hm,
afterwards we moved to a new house", has at least
one spelling mistake: *pâali instead of one of the
other documented spellings of ‘new’, for example
pàali or páli. More importantly, it has a reflexive
pronoun e’ which does not belong in the sentence,
and the verb is missing the plural marker {-yal} in
the verb mìneyal ‘went.PL’.

The remaining hypotheses from Table 5 have
more significant issues in their meanings. The ex-
ample for meaning score 2, "I spoke to Ramona
again", has some words correct, but there are errors
and entire components missing. The translation is
missing the postposition ta ‘with’, which would be
necessary to link the oblique argument ‘Ramona’ to
be verb ujté ‘spoke’. It is possible that the system
hallucinated the word tamalé, which resembles the
word tamáli ‘cuajiniquil fruit, Inga spuria’ because
the word starts with the same letters as the post-
position ta. But, in doing so, the system changed
the meaning of the translation. A factor that might
contribute to the hallucination is that there is an iter-

ative morpheme, {-male}, which can mean ‘again’
when it is attached to verbs (e.g. ie démale ‘he
came again’ (Constenla et al., 2004, 119)). Un-
fortunately this morpheme is only found attached
to verbs, not to postpositions,4 and this makes the
system hypothesis more difficult to understand.

Finally, the example for meaning score 1 can
be translated, in its gold-standard version, as "I
am finishing with my project for next week". The
hypothesis produced by the system can be trans-
lated approximately as "I am working[sic], finish,
other[sic] weapon". The verbs in the Bribri version
are not connected properly, and the meaning of
‘week’ is not present in the translation. Moreover,
the system hallucinated the word móköl ‘weapon,
rifle’, and it used the wrong numerical classifier to
describe the rifle, *ië̀k ‘another [round] one’, when
it should have used the classifier for long objects
(e.g. rifles): ië̀töm. These errors combined make it
so that the meaning of the original sentence cannot
be inferred from the system’s translation.

In summary, while we have made considerable
progress as a community in the translation of In-
digenous languages of the Americas, there is still
much work ahead of us, both in terms of data col-
lection and algorithm development.

7 Future Directions

In this section, we briefly discuss several possible
future directions for the AmericasNLP shared task,
given the results from the current as well as prior
competitions.

Evaluation Data One bottleneck in the advance-
ment of language technologies for low-resource,
and particularly Indigenous, languages is the avail-
ability of evaluation data. High quality, gold stan-
dard data in target low-resource languages supports
many important roles in the NLP research pipeline.
First, and most importantly, it is the single resource
which is necessary for experimentation; without
held out data for evaluation, there cannot be any
idea of how well a system performs for a given
language. Second, the domain and source of data
is important, as, over time, models are created to
perform best on the data they are evaluated on. Par-
ticularly for low-resource languages, where there
may not be great diversity in available data, it be-
comes vital to consider what data is used for evalu-

4There is a Bribri iterative morpheme, {-ne}, which can
be attached to adverbs and verbs, but it has not been observed
with postpositions either.
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MS Bribri English translation

4
Tö́, be’ én a iàna tö ie’ dör bua’ë. Yes, you know she was great.
Tö́, be’ wa i ujchen tö ie’ bák bua’. Yes, you know[sic] that she was good.

3
Hum, ukö̀ki sa’ mìneyal ù páli a. Hm, afterwards we moved to a new house.
Um, e’ ukö̀ki sa’ e’ mìne ù pâali a. Hm, after that we went us to a new[sic] house.

2
Ramona ta ye’ ujté skàne I spoke to Ramona again.
Ye’ ujté Ramona tamalé. I spoke, Ramona, [cuajiniquil] fruit [sic].

1
Ye’ tso’ kanè maúk èwewa semana ië̀t wa. I am finishing with my project for next week.
Ye’ tso’ kanèbalök ènuk móköl ië̀k. I am working[sic]. Finish. Other[sic] weapon.

Table 5: Examples of Bribri sentences for each of the meaning scores (MS), accompanied by their translations in
English. The first sentence is the gold standard, and the second sentence is the hypothesis by the best performing
system.

ation. Future shared tasks should strive to continue
creating new evaluation sets, both for currently sup-
ported languages (in order to increase diversity) as
well as for new languages. Evaluation sets which
contain data which is relevant to speakers and con-
tain minimal biases increases the chances that good
performance on the evaluation set is correlated with
good real-world performance.

Additional Training Data This iteration of the
shared task marks the first where performance did
not increase for the majority of languages in the
shared task. Of the four languages which did see
improvements, two are relatively high-resource and
have recently been included in large pretrained
models (Costa-jussà et al., 2022). As such, ad-
ditional data for training likely plays a large role
in improving the performance for these languages.
While teams continue to find new digital data for
training, other non-digital sources may need to be
considered for future systems.

Language Identification One of the main bot-
tlenecks for gathering additional data is that every
process of collecting resources from online sources
starts with a good language identifier. Investing
efforts into developing a language identification
system for the shared task languages could boost
the collection of additional training data.

New Language Pairs The performance of low-
resource language pairs in multilingual MT models
can benefit from incorporating additional data from
other language pairs. Furthermore, our goal is to
expand the scope of our shared task in future edi-
tions to include more underserved languages of
the Americas. To achieve this, we plan to engage
more researchers who have developed and pub-
lished resources for the Indigenous languages of

the Americas, both at our workshop and in other
venues.

8 Conclusion

In this work, we present the results of the Americ-
asNLP 2024 Shared Task on Machine Translation.
Overall, 6 teams participated in the shared task, and
submitted a combined 157 submissions across all
eleven supported languages. Prior to the start of the
competition, the organizers provided two strong
baselines and a training data set which includes
data collected from prior submissions. While there
were improvements for four languages in this year’s
shared task, the majority of languages did not see
any performance gains over the baselines, which
were the strongest systems from 2023.
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Appendix
Lang. Team Ver. BLEU ChrF ChrF++

aym DC_DMV 2 3.49 35.43 30.97
aym NordicsAlps 1 3.23 33.46 29.39
aym DC_DMV 4 2.74 32.36 28.32
aym DC_DMV 3 2.52 32.24 28.12
aym DC_DMV 6 2.24 31.43 27.48
aym DC_DMV 1 2.27 31.26 27.36
aym DC_DMV 5 2.37 30.91 27.09
aym NordicsAlps 2 1.99 30.37 26.37
aym UEdin 3 1.13 25.14 21.89
aym UEdin 1 1.14 24.94 21.77
aym UEdin 2 1.06 24.56 21.37
aym NordicsAlps 3 1.10 17.55 15.77
aym Z-AGI_Labs 1 0.74 13.30 11.89
aym DC_DMV 9 0.15 9.51 8.69

bzd DC_DMV 4 4.84 22.23 23.47
bzd DC_DMV 5 4.56 22.15 23.41
bzd DC_DMV 3 4.63 22.02 23.32
bzd NordicsAlps 1 5.00 22.27 23.32
bzd DC_DMV 1 4.68 21.97 23.19
bzd DC_DMV 6 4.75 21.99 23.15
bzd DC_DMV 2 3.44 18.11 19.60
bzd NordicsAlps 2 1.72 15.98 17.23
bzd UEdin 1 2.21 15.43 16.54
bzd UEdin 2 1.89 15.17 16.32
bzd UEdin 3 1.75 14.53 15.56
bzd NordicsAlps 3 1.39 13.17 12.24
bzd DC_DMV 9 0.09 4.36 4.72

cni NordicsAlps 1 2.41 27.76 23.20
cni DC_DMV 6 3.49 26.15 22.98
cni DC_DMV 3 3.56 26.05 22.87
cni Z-AGI_Labs 1 3.22 26.75 22.65
cni DC_DMV 5 3.41 25.63 22.53
cni DC_DMV 4 3.51 25.53 22.46
cni DC_DMV 1 3.56 25.48 22.44
cni DC_DMV 2 3.52 22.13 19.89
cni NordicsAlps 2 0.06 20.13 15.45
cni NordicsAlps 3 1.68 17.30 15.23
cni UEdin 1 0.41 17.54 14.82
cni UEdin 3 0.43 17.08 14.50
cni UEdin 2 0.37 16.26 13.68
cni DC_DMV 9 0.14 11.83 9.81

ctp NordicsAlps 1 13.44 40.37 37.38
ctp NordicsAlps 2 4.65 26.61 23.64
ctp UEdin 2 4.30 23.01 20.70
ctp UEdin 1 3.35 19.50 17.66
ctp UEdin 3 3.38 19.50 17.57
ctp DC_DMV 1 1.73 20.58 16.52
ctp DC_DMV 3 1.68 20.18 16.17
ctp DC_DMV 5 1.68 20.06 16.11
ctp DC_DMV 6 1.75 19.90 16.04
ctp DC_DMV 4 1.74 19.59 15.78
ctp NordicsAlps 3 1.78 14.97 12.96
ctp DC_DMV 2 0.96 9.72 8.06
ctp DC_DMV 9 0.00 3.38 2.62

gn BSC 3 12.04 41.81 38.93
gn BSC 4 11.28 40.66 37.64
gn BSC 2 11.37 40.69 37.63
gn BSC 1 11.04 40.38 37.42
gn NordicsAlps 1 8.82 39.36 36.23
gn BSC 5 11.53 38.37 35.73
gn DC_DMV 2 5.46 36.78 33.31

Lang. Team Ver. BLEU ChrF ChrF++

gn DC_DMV 3 6.30 35.72 32.58
gn DC_DMV 4 6.42 35.51 32.44
gn NordicsAlps 2 6.81 35.23 32.32
gn DC_DMV 6 5.82 34.69 31.66
gn DC_DMV 1 5.97 34.66 31.58
gn DC_DMV 5 5.66 34.18 31.22
gn UEdin 1 3.38 32.22 29.20
gn UEdin 3 3.21 32.31 29.13
gn UEdin 2 1.78 27.61 24.61
gn NordicsAlps 3 1.60 16.11 14.80
gn DC_DMV 9 0.32 10.10 8.91

hch NordicsAlps 1 10.08 31.13 27.64
hch DC_DMV 1 9.62 29.83 26.46
hch DC_DMV 4 8.51 29.54 26.23
hch DC_DMV 5 8.64 29.21 25.97
hch DC_DMV 6 8.83 28.95 25.66
hch DC_DMV 3 8.85 28.75 25.60
hch UEdin 1 9.87 27.40 24.41
hch UEdin 3 9.60 27.50 24.37
hch NordicsAlps 2 6.46 26.92 23.47
hch UEdin 2 7.03 24.51 22.03
hch DC_DMV 2 3.29 22.36 19.56
hch NordicsAlps 3 1.35 18.43 15.97
hch DC_DMV 9 0.49 8.10 7.12

nah NordicsAlps 1 2.30 26.91 22.87
nah Z-AGI_Labs 1 1.09 26.29 21.71
nah DC_DMV 1 1.79 25.58 21.63
nah DC_DMV 4 1.73 25.41 21.44
nah DC_DMV 5 1.86 25.35 21.43
nah DC_DMV 6 1.78 25.24 21.41
nah DC_DMV 3 1.85 24.84 21.07
nah NordicsAlps 2 1.52 24.84 20.77
nah UEdin 3 0.44 22.86 18.98
nah DC_DMV 2 1.75 21.69 18.52
nah UEdin 1 0.48 21.75 18.12
nah UEdin 2 0.37 20.78 17.21
nah NordicsAlps 3 1.64 17.08 14.57
nah DC_DMV 9 0.12 13.14 10.46

oto NordicsAlps 1 1.42 14.95 12.98
oto DC_DMV 1 1.55 14.61 12.63
oto DC_DMV 3 1.66 14.30 12.42
oto DC_DMV 4 1.50 14.34 12.42
oto DC_DMV 5 1.52 14.29 12.40
oto DC_DMV 6 1.36 14.14 12.20
oto NordicsAlps 2 0.20 13.80 11.63
oto DC_DMV 2 1.46 13.05 11.50
oto NordicsAlps 3 1.41 13.14 11.22
oto UEdin 3 0.44 10.87 9.19
oto UEdin 1 0.43 10.56 8.91
oto UEdin 2 0.21 9.32 7.81
oto DC_DMV 9 0.04 4.39 3.63

quy BSC 1 4.85 44.04 38.21
quy BSC 4 4.83 43.91 38.19
quy BSC 2 4.72 43.87 38.10
quy BSC 3 4.44 43.86 38.02
quy DC_DMV 2 5.41 41.43 36.02
quy DC_DMV 4 4.32 39.67 34.29
quy DC_DMV 3 4.13 39.49 34.08
quy DC_DMV 5 3.91 39.33 33.94
quy DC_DMV 1 4.01 39.24 33.91
quy DC_DMV 6 4.05 38.95 33.56
quy NordicsAlps 1 4.08 37.92 32.98
quy ND-NAIST 1 2.60 38.51 32.88
quy Z-AGI_Labs 1 3.29 36.69 31.07
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quy NordicsAlps 2 2.65 33.36 28.81
quy UEdin 1 1.32 29.54 25.23
quy NordicsAlps 3 2.77 28.99 25.15
quy UEdin 3 1.31 29.37 25.04
quy UEdin 2 0.94 26.69 22.77
quy DC_DMV 9 0.40 13.08 11.42

shp DC_DMV 2 4.45 32.95 29.37
shp NordicsAlps 1 4.14 30.55 27.04
shp DC_DMV 4 3.90 27.77 24.74
shp DC_DMV 3 3.44 26.86 23.84
shp DC_DMV 5 3.17 26.58 23.59
shp DC_DMV 6 3.07 25.91 23.05
shp UEdin 3 1.55 25.90 22.86
shp UEdin 2 1.56 25.52 22.43
shp DC_DMV 1 2.95 25.04 22.25
shp NordicsAlps 2 1.09 25.68 22.20
shp UEdin 1 1.34 25.08 22.04
shp NordicsAlps 3 2.60 23.83 21.28
shp DC_DMV 9 0.27 11.13 9.67

tar DC_DMV 2 0.92 18.94 17.03
tar DC_DMV 3 1.01 17.20 15.42
tar DC_DMV 4 0.93 16.72 14.92
tar DC_DMV 6 0.81 16.69 14.57
tar NordicsAlps 1 0.55 17.03 14.57
tar DC_DMV 5 1.04 16.58 14.51
tar DC_DMV 1 0.86 16.41 14.39
tar NordicsAlps 3 0.73 14.49 12.63
tar NordicsAlps 2 0.12 12.54 10.53
tar UEdin 1 0.11 11.46 9.65
tar UEdin 2 0.11 11.07 9.49
tar UEdin 3 0.15 11.32 9.48
tar DC_DMV 9 0.07 7.65 6.64

Table 6: Full results of the shared task.
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