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Abstract 

Medical translation is a critical tool for overcoming the barriers of discordant cultural backgrounds and 
languages within the healthcare field. Large Language Models (LLMs) that advertise translation and 
multilingual capabilities, like ChatGPT, pose a newfound solution that could include unique abilities that 
a typical machine translation (MT) system does not exhibit (e.g. catering a translation for a specific patient, 
such as a child). This work compares the English to Spanish translation of three LLMs: ChatGPT3.5 Turbo, 
ChatGPT4o, and Aguila with the performance of Google Translate. Medical Translations were provided 
by MedlinePlus, a parallel dataset developed by the National Library of Medicine that consists of four 
categories of information for patients in English and Spanish: health topics, patient instructions, lab tests, 
and drug information. Each model translated 15,816 sentences which were scored by three automated 
metrics: BLEU, BERTscore, and METEOR. 100 sentences were also graded by three Spanish interpreters 
using metrics defined in this paper: Fluency (is the translation correct Spanish), Adequacy (does the 
translation convey the original meaning), and Patient-friendliness (is the translation written in language 
that a patient can easily understand). The human evaluated translations were then subject to qualitative 
analysis that examined frequent errors and word choice. Automated results indicated that Chat-GPT4o 
performed equivalently to Google Translate, with ChatGPT3.5 not far behind. Human rated scores found 
both Chat-GPT models to perform statistically similar to Google Translate in all three metrics. Aguila, the 
only model intended for primarily Spanish and Catalan use, surprisingly performed much worse than the 
other models. However, qualitative analysis of Aguila’s translations reveal the use of terms that may reach 
a broader audience, rendering the Spanish used more accessible than the other models. It is important, as 
MT systems are applied to the medical field, that the translations provided by these models are not only 
factually correct and patient safe, but accessible by vulnerable populations. This work provides an 
evaluation of the most recent ChatGPT model’s medical translations with a comparison to a well-
researched system, Google Translate, using verified metrics. Our work also highlights small, yet important 
disparities between the Spanish use of LLMs with English as a primary language and other LLMs that are 
intended for Spanish use. 

 



1 Introduction 

It is well-understood that in today’s increasingly 
diverse America, the healthcare field must overcome 
barriers of discordant races, ethnicities, cultures, and 
languages to deliver high-quality care to all patients. 
According to the 2020 census, approximately 8.3% of 
American residents speak English less than “very 
well” (US Census Bureau, 2020). Metropolitan areas 
are disproportionately home to a large number of 
immigrants (29% in New York City), many of them 
not proficient in English (Profile of the Foreign-Born 
Population in New York, New York, 2023). Urban 
settings experience amplified disparities in care for 
underserved populations, including immigrants, 
refugees and limited-English proficiency, or LEP, 
patients. LEP status has been linked to greater health 
disparities (e.g. via poorer preventative screening) 
and worse health outcomes (Cheng et al., 2007; Ponce 
et al., 2006; Shi et al., 2009). In such cities, medical 
education institutes and academic health centers are a 
crucial form of advocacy and social justice that 
address disparities through service-learning 
mechanisms (Rupert et al., 2022). For instance, 
several medical schools operate student-run free 
clinics (SRFC) for uninsured patients in their 
communities. However, language and medical 
literacy barriers in these patients present a challenge 
for trainees to ensure their patients, who often have 
many chronic conditions, understand their diagnosis, 
medication regime, necessary lifestyle changes, 
specialist referrals, etc. (Rupert et al., 2022). For 
SRFCs and other healthcare settings that deal with a 
large number of LEP patients, artificial-intelligence 
(AI) or machine translation (MT)-based solutions 
present a potential low-cost, convenient, and efficient 
tool to address language barriers in patients. 
However, maintaining accurate, patient-friendly 
translations without compromising medical accuracy 
is a limiting factor of such translation services. Thus, 
phone interpretation services such as CyraCom and 
Pacific Interpreters remain the standard practice for 
communicating with LEP patients. Unfortunately, 
phone interpretation itself is limited by potentially 
poor acoustics, lack of visual cues, and lack of context 
provided to the interpreter (Cho, 2023).  

Large language models (LLMs) are deep-
learning algorithms that are trained to accomplish 

various natural language processing tasks like text 
classification and text generation, among others. A 
chatbot, like ChatGPT, is a system which has been 
optimized for conversation with a user. ChatGPT, 
along with other LLMs, is reported to able to use 
multiple languages, and has anecdotally been reported 
as an effective translator between languages (Achiam 
et al., 2023). However, there has not been a formal 
study looking at the medical translation capabilities of 
LLM chatbots that were not formally trained for 
translation versus dedicated machine translation 
algorithms, like Google Translate (GT).  

The goal of this research was to quantify the 
effectiveness of various chatbot LLMs for translating 
health information from English to Spanish in a 
patient-friendly manner. At a preliminary stage, we are 
evaluating the potential of four models with 
multilingual capabilities to provide translations of 
English take-home instructions and clinical 
information into Spanish.  

2 Related Work 

Automated medical translation has benefited from 
research in the fields of both machine translation 
and LLMs. 

2.1 LLM Translation 

Over the last 5 years, LLMs have been researched 
as translators and compared with other neural MTs 
like DeepL and GT (Jiao et al., 2023). Several 
popular LLMs have been used for research without 
any fine tuning. Yao et al. compares GPT-3.5-
turbo-1106 with LLaMA2-7B alongside GT and 
NLLB on translating between English and four 
other languages. For English to Spanish 
translations, as in this paper, Yao et al. (2023) 
found GT to have a BLEU score of 42.9, GPT3.5 
Turbo to have 47.9, LLaMA2 to have 44.6, and 
NLLB to show 48.8. Yao interestingly found 
GPT3.5 to out-perform GT. Hendy et al. (2023) 
found that GPT3.5, on zero-shot translation, 
performed slightly worse than Microsoft Translator 
for a variety of languages, with GPT3.5’s BLEU 
scores ranging from 25.9 (ZH>EN) to 41.0 
(RU>EN).  

This literature shows that LLMs are 
competitive translators without any fine tuning or 
training examples. Brown et al. (2020) also found 
that GPT model architectures improve in 
performance with exposure to correct examples 



from zero-shot, one-shot, and multi-shot learning. 

2.2 Machine Medical Translation 

The medical field is especially challenging for 
translation due to an abundance of medical jargon. 
Thus, a MT system is tasked with either translating 
the medical jargon into medical jargon in the target 
language or explaining the medical term in the 
target language’s common terms. Skianis et al. 
(2020) shows that BLEU and METEOR scores 
both improve dramatically for English to French 
translations by statistical MT and neural MT 
systems when finetuned with medical terminology 
datasets. In their study, the medical terminology 
datasets were constructed from 5 datasets of 
English and French medical jargon. Pretrained 
Neural MTs (a pretrained Convolutional Neural 
Network from fairseq) had an improvement of 
BLEU score from 42.93 to 53.40 after pretraining 
with the medical terminology. However, this is 
unhelpful for low-health literacy patients.  

Electronic health records of patients are 
commonly studied with MT systems as they are a 
rich source of clinical data (Johnsi Rani et al., 
2019; Liu & Cai, 2015; Weng et al., 2019; Zeng-
Treitler et al., 2010). Again, linguistics properties 
of health records are often vastly different from 
those of conversations between clinicians and 
patients, which are often the use case for medical 
translation. Other studies therefore have focused on 
MT translation of public health education texts 
(Almahasees et al., 2021; Chen et al., 2017; Das et 
al., 2019; Dew et al., 2015; Khanna et al., 2011; 
Kirchhoff et al., 2011; Turner et al., 2015), patient 
instructions (Lester et al., 2021; Miller et al., 2018; 
Taira et al., 2021) and general patient-provider 
communication (Kapoor et al., 2022; Patil & 
Davies, 2014; Turner et al., 2019). Automatic 
evaluation was used less often than human 
evaluation. Results from these studies demonstrate 
that MTs like GT are somewhat successful at 
medical translation, though some errors, 
especially with longer sentences, may relay 
dangerously inaccurate information.  

3 Novel Contributions 

To our knowledge, this is the first work that 

examines the most recent ChatGPT model, GPT4o, 
on medical translation from English to Spanish. 
This work also contributes to the literature by 
comparing neural MTs with translation by LLMs 
using commonly used automated scoring metrics, 
and newly applies these metrics to evaluate patient-
provider communication. Finally, our study looks at 
LLMs developed with primarily English usage 
compared with one LLM that is intended for 
Spanish chat. Our qualitative analysis finds small 
yet important differences in the Spanish word 
choice among different models and highlights areas 
where medical MTs fall short. 

4 Methods 

In this section we will discuss the selection and 
cleaning of the dataset, methods applied for 
automated scoring and human evaluation, and the 
models tested and corresponding prompts. 

4.1 Dataset 

The MedlinePlus English-Spanish corpus encompasses 
7,033 articles with information in four categories--health 
topics (e.g. strokes, diabetes, etc.), patient instructions, lab 
tests, and drug information--provided by the US National 
Library of Medicine. The dataset contains free health 
information for patients in both English and Spanish 
written in a patient-friendly manner. This corpus is 
representative of the types of conversations that a clinical 
Spanish interpreter may encounter. The Spanish articles are 
exact translations of the English articles and used as 
reference translations for human and automatic evaluation 
of all LLM translations. 

4.2 Data Preparation 

The articles were chosen from each category at random, to 

Category Sentences Translated 

Patient instructions 3,014  
Health topics 3,289  
Lab tests 3,259  

Drug information 6,254 

Total 15,816 

 
Table 1: Sentences translated for each category of 

information in the MedlinePlus dataset. 



translate a minimum of 3000 lines per category. The total 
amount of lines translated was proportional to the size of 
each category. After a file was selected for translation, 
each sentence was separated and paired with its Spanish 
counterpart. Files that did not have the same number of 
sentences between English and Spanish were not used. 
After the file was parsed into sentences, formatting 
symbols and speaker designations were stripped. 

4.3 Models 

Three LLMs models were used. GPT3.5 turbo 
version gpt-3.5-turbo-0125 and GPT4o version 
gpt-4o-2024-05-13 (Achiam et al. 2023) These 
GPT models were selected since they did not 
require a paid OpenAI subscription and were more 
accessible to patients and providers. GPT4o is also 
reported to have translation capabilities. These 
models were both accessed through the OpenAI 
API. The prompt used mirrored that in He (2024) 
and is shown below: 

messages= [ 

    {"role": "system", "content": "You are a 
medical translator. Translate the following into 
Spanish while preserving the file format"}, 

    {"role": "user", "content": SENTENCE TO 
TRANSLATE'}] 

The third LLM is Aguila, an LLM finetuned 
with 26 billion tokens of Spanish and Catalan data 
that was designed for chat in Spanish and Catalan. 
Aguila was developed by the Barcelona 
Supercomputing center by finetuning Falcon-7B 
with a dataset that was approximately 40% 
Spanish, 40% Catalan, and 20% English 
(mapama247 2023). 455 million words in the 
dataset were medical terms. The prompt used for 
translations is shown below: 

'The sentence "SENTENCE TO TRANSLATE'" 
translated into Spanish is' 

The final MT used was GT, a neural MT 
system based on a transformer architecture. GT is 
a common benchmark for translation tasks and has 
been shown to be effective with translating 
medical Spanish (Khoong et al. 2019). GT was 
accessed through the Google Translate API and no 
prompt was used (Googletrans). 

4.4 Scoring metrics 

Three automated scoring metrics and three human 
evaluation metrics were used for this paper. The 
automated scoring metrics used in this paper 
include BLEU, METEOR, and BERTscore 
(Papineni et al., 2002; Banerjee & Lavie, 2005; 
Zhang et al; 2020). The METEOR metric is an n-
gram based metric that is proven to correlate better 
than BLEU with human judgements on sentence-
level translations, as it also better accounts for 
synonyms and morphological variants. 
BERTscore, a more recently developed metric, 
uses a pretrained BERT model to assess the cosine 
similarity between model embeddings of the 
translation and the reference, better accounting for 
paraphrases and distant clause dependencies. 
These three-scoring metrics have been used often 
when evaluating MTs as evidenced by the 
metareviews by Zappatore & Ruggeiri (2024) and 
Dew et. al. (2018). 

 Human evaluation metrics are still considered 
best practice despite being subjective and labor-
intensive, as it allows application of cultural and 
contextual knowledge that reference-based 
methods lack. The human rated metrics we used 
were adapted from metrics used in the Workshop 
on Machine Translation. These metrics include 
Adequacy and Fluency scoring (WMT06-07), 
relative ranking (WMT07-16), and average score 
and z score (WMT17). Adequacy and Fluency are 
scores of translation accuracy and language 
accuracy, respectively. A high Adequacy score 
reflects a translation that contains all the semantic 
meaning of the reference text. A high Fluency 
score reflects a translation that is grammatically 
correct. Average and z score are the Fluency and 
Adequacy rankings after being normalized within 
each scorer (Harison, 2023).  
 
These metrics were all ordinal and scored on a scale 
of 1-5. The definitions provided to human scorers 
are below: 

Fluency score: Is it fluent Spanish? 5 is completely 
fluent, 1 is not fluent at all. 

Adequacy score: Does it convey the original 
meaning? 5 is conveys original meaning perfectly, 
1 is doesn't convey original meaning at all. 

Patient-friendliness score: Is it written in language 
that a patient can easily understand? 5 is 
completely patient-friendly, 1 is not patient-
friendly at all. 



All the human scorers are interpreters at a 
student run free clinic associated with the Icahn 
School of Medicine. Scorers were provided with 
all translations from one model at a time. After 
completing all the evaluations, the scorers 
reported patterns and observations of frequent 
errors and model differences, which are discussed 
in the qualitative analysis. 

5 Results 

The results of MT translation will be presented 
first as automated metrics, human evaluation 
metrics, and qualitative analysis respectively. 
Following will be an analysis of human evaluation 

quality. Patient-friendliness was a new metric 
defined in this paper to capture how understandable 
a medical translation is for the general patient 
population. This metric is especially important for 
medical translation where medical terminology 
provides a unique challenge and patient 
understanding is especially critical.  

5.1 Automated Evaluation Scores 

The number of sentences translated per category of 
information is presented in Table 1. Score 
distributions from all three metrics were tested for 
normalcy and equal variance with the Shapiro Wilk 
Test and Levene's Test respectively. All the data 

 

Figure 1: Distribution of Automated Scores by model. Scores for Aguila (green) are significantly lower 
while the other three models are almost identical. Google Translate is orange, GPT3.5 is blue and GPT4o is 

red. 



was found to be significantly non-normal and to 
have significantly non-equal variance with p = 
0.05. The score distribution is shown in a set of 
histograms in Figure 1. The means of each score 
and significant difference are reported in Table 2. 
All models were significantly different from each 
other except GPT4o and GT, the two top 
performing models. Interestingly, GPT3.5 Turbo 
and GPT4o are significantly different. Aguila 
performed much worse than the other models in 
all scoring metrics. 

5.2 Human Evaluation Scores 

Due to a strong right-skew in the human scored 

data (Appendix B), analysis assumed non-normal 
distributions. The Kruskal-Wallis Test, a non-
parametric test for significance between multiple, 
non-normally distributed distributions of ordinal 
data, was used. The test was performed for the 
Fluency, Adequacy, and Patient-friendliness scores 
to assess differences between the models. These are 
all less than the alpha (p = 0.05) indicating that 
there are significant differences between models, 
which was individually assessed with a Games-
Howell post hoc test (Table 3).  GPT3.5 Turbo, 
GPT4o, and GT all scored similarly, with GPT4o 
scoring slightly better than the other two. Aguila 
again scored the worst in all metrics. 

Automated 
Scores 

BLEU METEOR BERTscore 

Model 
A 

Model 
B 

Mean 
of 

Model 
A 

Mean 
of 

Model 
B 

P value 

Mean 
of 

Model 
A 

Mean 
of 

Model 
B 

P value Mean of 
Model A 

Mean of 
Model B 

P value 

Aguila 
Google 
Transla

te 

0.0564 
+/- 

0.029 

0.493 
+/- 

0.111 

3.82 e-
14 

0.215 
+/- 

0.069 

0.697 
+/- 

0.0828 
0.00 

0.729 
+/- 

0.031 

0.915 
+/- 

0.0249 
0.00 

Aguila ChatG
PT3.5 

0.0564 
+/- 

0.029 

0.449 
+/- 

0.118 

9.13 e-
14 

0.215 
+/- 

0.069 

0.678 
+/- 

0.084 
0.00 

0.729 
+/- 

0.031 

0.908 
+/- 

0.026 

3.28 e-
13 

Aguila GPT4o 
0.0564 

+/- 
0.029 

0.482 
+/- 

0.120 

1.69 e-
13 

0.215 
+/- 

0.069 

0.709 
+/- 

0.076 

2.18 e-
13 

0.729 
+/- 

0.031 

0.914 
+/- 

0.024 

5.62 e-
13 

Google 
Transla

te 

ChatG
PT3.5 

0.493 
+/- 

0.111 

0.449 
+/- 

0.118 

9.58 e-
09 

0.697 
+/- 

0.0828 

0.678 
+/- 

0.084 

1.67 e-
03 

0.915 
+/- 

0.0249 

0.908 
+/- 

0.026 

2.91 e-
05 

Google 
Transla

te 
GPT4o 

0.493 
+/- 

0.111 

0.482 
+/- 

0.120 

4.06 e-
01 

0.697 
+/- 

0.0828 

0.709 
+/- 

0.076 

5.86 e-
02 

0.915 
+/- 

0.0249 

0.914 
+/- 

0.024 

9.24 e-
01 

ChatG
PT3.5 GPT4o 

0.449 
+/- 

0.118 

0.482 
+/- 

0.120 

6.85 e-
05 

0.678 
+/- 

0.084 

0.709 
+/- 

0.076 

2.39 e-
09 

0.908 
+/- 

0.026 

0.914 
+/- 

0.024 

2.30 e-
04 

Table 2: Automated score means, standard deviations, and P values from the Games Howel Post Hoc 
Significance Test. BERTscore reported as F1 score. The only non-significant difference (p=0.05) is 

between Google Translate and ChatGPT4o and highlighted in green. The maximum scores are 
highlighted yellow.  

 



5.3  Human Evaluation Qualitative Analysis 

Qualitative feedback from scorers reported that 
GT, GPT3.5, and GPT4o produce very similar 
translations, and both GPTs capture and translate 
meaning as well as GT. All three were also very 
good at providing patient-friendly translations, 
provided that the input itself is patient-friendly. 
One scorer noted that any drop in Patient-
friendliness score would be due to the input itself 
containing some jargon (this may be due to the 
random selection of individual sentences without 
their surrounding context). Another scorer noted 
that the only consistent error made by all three of 

these models is the dropping of articles in front of 
certain words, i.e. glucosa en sangre o azúcar en 
sangre instead of la glucosa en sangre o el azúcar 
en sangre. Aguila would make errors quite 
frequently, including adding inaccurate 
information, conjugating incorrectly, including 
Catalan words, and altering crucial semantic 
relationships within sentences. Table 3 provides a 
list of common errors with examples. However, 
two scorers noted that amongst its few successful 
translations, Aguila’s word choice was more 
accessible and patient-friendly compared to the 
other models. For instance, the GPTs and GT used 
revestimiento del estómago in contrast to Aguila’s 
usage of mucosa estomacal to translate stomach 

Human Evaluation 
Scores Fluency Patient-friendliness Adequacy 

Model A Model B 

Mean 
of 

Model 
A 

Mean 
of 

Model 
B 

P 
value 

Mean 
of 

Model 
A 

Mean 
of 

Model 
B 

P 
value 

Mean 
of 

Model 
A 

Mean 
of 

Model 
B 

P 
value 

Aguila Google 
Translate 

3.38 
+/- 

1.43 

4.89 
+/- 

0.37 
0.0 

2.91 
+/- 

1.40 

4.90 
+/- 

0.37 

8.25 
e-14 

3.64 
+/- 

1.45 

4.72 
+/- 

0.59 
0.0 

Aguila ChatGPT3.5 
3.38 
+/- 

1.43 

4.81 
+/- 

0.52 

4.39 
e-14 

2.91 
+/- 

1.40 

4.92 
+/- 

0.31 

1.57 
e-13 

3.64 
+/- 

1.45 

4.76 
+/- 

0.54 

2.02 
e-14 

Aguila ChatGPT4o 
3.38 
+/- 

1.43 

4.95 
+/- 

0.25 

9.33 
e-15 

2.91 
+/- 

1.40 

4.97 
+/- 

0.21 

7.92 
e-14 

3.64 
+/- 

1.45 

4.79 
+/- 

0.47 
0.0 

Google 
Translate ChatGPT3.5 

4.89 
+/- 

0.37 

4.81 
+/- 

0.52 

1.41 
e-01 

4.90 
+/- 

0.37 

4.92 
+/- 

0.31 

8.13 
e-01 

4.72 
+/- 

0.59 

4.76 
+/- 

0.54 

8.88 
e-01 

Google 
Translate ChatGPT4o 

4.89 
+/- 

0.37 

4.95 
+/- 

0.25 

9.31 
e-02 

4.90 
+/- 

0.37 

4.97 
+/- 

0.21 

4.66 
e-01 

4.72 
+/- 

0.59 

4.79 
+/- 

0.47 

2.60 
e-02 

ChatGPT3.5 ChatGPT4o 
4.81 
+/- 

0.52 

4.95 
+/- 

0.25 

2.09 
e-04 

4.92 
+/- 

0.31 

4.97 
+/- 

0.21 

9.48 
e-01 

4.76 
+/- 

0.54 

4.79 
+/- 

0.47 

1.02 
e-01 

Table 3. Human evaluated score means, standard deviation, and P values from the Games Howel Post 
Hoc Significance Test. The only non-significant differences (p = 0.05) are between Google Translate 

and both ChatGPT4o and ChatGPT3.5 and is highlighted in green. The maximum scores are 
highlighted in yellow.  

 



lining. Mucosa is more descriptive and can be 
understood even if a person does not know what 
the stomach lining is, while understanding 
revestimiento is dependent on whether the patient 
knows this less frequently used term.  

GPT3.5 and GPT4o also sometimes used the 
more patient-friendly term with Aguila, whereas 
GT consistently used less accessible, more formal 
terms. For instance, Aguila and GPT3.5 used la 
parte inferior de la espalda and la parte baja de 
la espalda, respectively, instead of zona lumbar, 
which GT used, to translate lower back. GT’s 
word choice is dependent on understanding the 
names of the zones of the back, which many 
patients likely do not. Finally, while GT and 
GPT3.5 use the word afección to translate 
condition, Aguila and GPT4o use condición. 
While afección can be used, it has another 
meaning that means attachment, so the use of this 
word can be slightly confusing. A more widely 

understood translation, and the actual direct 
translation of the word condition, is condición. 

5.4 Human Evaluation Metrics Validation 

To gain insight into the consistency of each scoring 
metric across judges to judge each metric’s 
validity, we evaluated each scoring metric across 
judges with intraclass correlation (Appendix A) 
and visually (Appendix B). 

In Appendix A, the ICC was calculated for 
Random Fixed rates and was reported as a single 
ICC where each rater is evaluated compared to 
their own mean, and an average where each rater is 
evaluated compared to the group mean. The highest 
ICCs were found with the Adequacy score and with 
the set containing all the scores. The ICC was 
recalculated after normalizing each scorer's 
responses with z-score normalization and all the 
ICCs increased. The final ICCs were all above 0.7 
and were significant with p value = 0.05. Patient-
friendliness had the lowest ICC. 

Type of Error Example 

Added additional 
information not 

present in original 
sentence 

funciona cambiando el nivel de ciertos neurotransmisores en el cerebro", que se 
traduce a "cambiando el nivel de neurotransmisores en el cerebro"; es 

decir no es literal, sino más bien metafórico, ya que el cerebro es una red 
neuronal y no una "cantidad" de sustancias sino de conexiones y 

neurotransmisores. 

Added irrelevant 
commentary in 

English 

"LASIK is unable to permanently change the shape of the cornea. The 
translator was not perfect, but his translation is very good." 

Inaccurate translation ""tu puedes prevenir la gastroenteritis bebiendo liquido" should have been “tu 
puedes prevenir la enfermedad por calor bebiendo liquido" 

Conjugation errors “si se los ingiera” should have been “si se los ingiere” 

Formality errors “Toma moxifloxacino” should have been “Tome moxifloxacino” 

Incorrect use of 
articles 

“la chance” should have been “el chance” 

Impaired semantic 
relationships 

“No se absorbe bien en el estómago vacío y lleno” should have been “se absorbe 
bien en el estómago vacío y lleno” 

Table 3. Frequent errors made by Aguila. 
 



6 Discussion 

The automated evaluation results demonstrate that 
GPT3.5 and GPT4o perform similarly to GT for 
medical translation accuracy across all scoring 
metrics: BLEU, METEOR, and BERTscore 
(Table 2). Analysis with the Games-Howell non-
parametric post hoc test highlights that all three 
automated scoring metrics were not significantly 
different between GT and GPT4o (P = 0.05). 
GPT3.5 scored slightly, but significantly lower on 
all three metrics. Aguila performed worse than the 
other models for all scoring metrics.  

Human evaluation also corroborated the 
pattern discerned by automated metrics. GPT4o 
was the top performing model for all categories. 
Notably, GPT4o scored significantly higher than 
GT for Adequacy and significantly higher than 
GPT3.5 in Fluency (Table 3). Otherwise, there 
were no significant differences in the scores for 
GT, GPT4o, and GPT3.5. Once again, Aguila 
performed worse than the other models in all 
categories. However, out of all metrics, it scored 
best in patient-friendliness.  

Aguila was notably inconsistent with its 
translation accuracy. Despite some successful 
translations, the qualitative analysis found that the 
Spanish model made grammatical errors as well as 
translation errors. For instance, Aguila often 
added new information to the sentence and often 
incorrectly translated semantic relationships (e.g. 
This medication can be taken vs This medication 
cannot be taken) (Table 3). Both types of errors 
pose dangers to patients if the information 
transmitted to the patient is distorted. However, 
two scorers reported that Aguila occasionally 
utilized the most patient-friendly lexicon of the 
three models (e.g. mucosa estomacal instead of 
revestimiento del estómago). The lexicon of 
Aguila in these instances were described as ‘more 
conversational language’ and words that are suited 
for a larger audience. We hypothesize this may 
result from Aguila’s development as a LLM fine-
tuned with mostly Spanish/Catalan as opposed to 
an LLM used predominantly in English that is able 
to translate into other secondary languages like 
ChatGPT. More research is required to identify 
why the existences between the word choice of 

Aguila and the other two models differed. These 
results highlight the need for medical MT systems 
to be evaluated for the accessibility in terms of 
word choice in addition to the quality of their 
translations.  GPT4o also used more patient-
friendly and conversational terms, such as 
condición instead of afección, when compared to 
GT and GPT3.5.  

Overall, despite some miniscule grammatical 
errors GT, GPT3.5, and GPT4o translated 
effectively without dangerously changing the 
original meaning of the sentence. One limitation of 
this study is that the translations were not graded 
by patients or bilingual physicians, but by medical 
students who interpret for the free clinic associated 
with the Icahn School of Medicine. Clinical 
research with patients and/or physicians is needed 
to determine if the ChatGPTs and GT are effective 
medical translators. 

The human evaluation metrics were verified 
using ICC scores. High ICC scores above 0.7 for 
Fluency, Adequacy, Patient-friendliness 
demonstrate a strong similarity between scorers for 
each metric. While Fluency and Adequacy were 
human evaluation metrics adapted from the 
Workshop on Machine Translation in 2006, the 
Patient-friendliness metric was created in this 
study for the purpose of discerning differences in 
word choice. However, Patient-friendliness was 
not significantly higher for the ChatGPTs 
compared to GT as hypothesized.  

Our results were limited by using only one 
prompt for each model without an exhaustive 
search for the optimal prompt. Additionally, as 
human scorers evaluated translations from one 
model at a time, they could have developed a bias 
for a certain score for each model. Still, this method 
of scoring was chosen so that scorers could discern 
patterns in the translations of each model. Finally, 
noting that Patient-friendliness had the lowest ICC 
score, it is possible that a clearer description of this 
measurement could better standardize evaluator 
interpretations, a suggestion that was also reflected 
by testimonies from human scorers. One scorer 
interpreted Patient-friendliness as primarily 
accounting for word choice, while another scorer 
mentioned they gave higher Patient-friendliness 



scores when a model explained a medical term 
instead of just translating to the corresponding 
Spanish medical term. These two views differ yet 
both can be interpreted as patient-friendliness.  

7 Conclusion 

This study sought to quantify the translation 
capabilities of LLM chatbots like GPT3.5, 
GPT4o, and Aguila for use in healthcare contexts. 
These models are not specifically designed for 
translation, but have capabilities that typical MTs 
lack, such being tasked with translating for a 
particular target audience. To our knowledge, this 
is the first study to employ automated evaluation 
metrics to translate a large test set representing 
clinical patient-provider communication. This is 
also the first to evaluate the newest ChatGPT 
model, GPT4o, in this manner and context. This 
work’s findings confirm that the widely accessible 
LLM chatbots GPT3.5 Turbo and GPT4o indeed 
have medical MT capabilities on par with GT to 
translate clinical communication from English to 
Spanish. They hold promise for use in a variety of 
healthcare settings, from creating public health 
education texts to explaining physical 
examinations and inquiring about symptoms to 
providing take-home patient instructions. The 
Spanish chatbot Aguila was less successful at 
translating from English to Spanish, although 
when successful, its Spanish lexicon was much 
more conversational and accessible than the other 
models. Further studies should seek to evaluate 
LLM chatbots’ performances at completing 
various clinical translation tasks in a real clinical 
setting, as well as explore more translation 
prompts. 
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ICC Scores 
[95% CL] 

Patient-
friendliness 

p 
value Adequacy 

p 
value Fluency 

p 
value Total 

p 
value 

Single 
Random, Fixed 

Raters 
0.409[0.27-

0.54] 
1.370 
e-13 

0.497[0.36-
0.62] 

1.641 
e-19 

0.397[0.21-
0.55] 

1.400 
e-15 

0.49[0.30-
0.64] 

7.69 
e-22 

Average 
Random, Fixed 

Raters 
0.675[0.53-

0.78] 
1.370 
e-13 

0.748[0.63-
0.83] 

1.641 
e-19 

0.664[0.45-
0.79] 

1.4 e-
15 

0.742[0.57-
0.84] 

7.693 
e-22 

Rater-
Normalized 

Single Raters 
0.443[0.32-

0.56] 
2.02 
e-13 

0.549[0.44-
0.65] 

3.272 
e-20 

0.491[0.37-
0.60] 

3.201 
e-16 

0.579[0.47-
0.68] 

1.188 
e-22 

Rater-
Normalized 

Average 
Raters 

0.705[0.59-
0.79] 

2.02 
e-13 

0.785[0.70-
0.85] 

3.273 
e-20 

0.743[0.64-
0.82] 

3.201 
e-16 

0.804[0.73-
0.86] 

1.189 
e-22 

 
Appendix A.  Intra-class correlation (ICC) scores for each score and for entire model. ICCs all increased 
when scores were normalized with z-score normalization within each judge group. The maximum score 
occurred in normalized average raters and was 0.785, indicating strong coherence across evaluators. 



 

 

 

Appendix B. Score Variance for Human Evaluations for each model and Human Evaluator. 
Human evaluated scores shown for each human evaluator and model. Notice the strong right 
sided skew for each model, which is slightly more evenly distributed for Aguila. The strong 
skew of the results shows that the GPTs and GT performed much more consistently well than 
Aguila. 

 


