@inproceedings{manzur-2024-predict,
title = "{PREDICT} Methodology - Machine Translation Eligibility Criteria",
author = "Manzur, Paula",
editor = "Martindale, Marianna and
Campbell, Janice and
Savenkov, Konstantin and
Goel, Shivali",
booktitle = "Proceedings of the 16th Conference of the Association for Machine Translation in the Americas (Volume 2: Presentations)",
month = sep,
year = "2024",
address = "Chicago, USA",
publisher = "Association for Machine Translation in the Americas",
url = "https://aclanthology.org/2024.amta-presentations.5",
pages = "45--74",
abstract = "Enterprises in the localization sector handle diverse content types, requiring precise localization solutions. Options range from raw machine translation to transcreation. But how can they ensure the best match between content and localization method? Traditionally, the decision relied mostly on human judgment. The PREDICT Methodology, crafted by Booking.com{'}s localization central team, offers a systematic framework for assessing MT suitability, aligning content type with the optimal localization solution. By integrating risk tolerance weights into binary queries about a source content and use case, PREDICT provides a score and recommended solution, from raw MT to human-only translation. This approach enables our business to provide the right quality for that specific content type, boost translation efficiency and reduce costs. Looking ahead, the methodology envisions integrating LLMs for automation and guidance, utilizing prompts to identify risk-mitigating strategies.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="manzur-2024-predict">
<titleInfo>
<title>PREDICT Methodology - Machine Translation Eligibility Criteria</title>
</titleInfo>
<name type="personal">
<namePart type="given">Paula</namePart>
<namePart type="family">Manzur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th Conference of the Association for Machine Translation in the Americas (Volume 2: Presentations)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Martindale</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Janice</namePart>
<namePart type="family">Campbell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Konstantin</namePart>
<namePart type="family">Savenkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shivali</namePart>
<namePart type="family">Goel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Machine Translation in the Americas</publisher>
<place>
<placeTerm type="text">Chicago, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Enterprises in the localization sector handle diverse content types, requiring precise localization solutions. Options range from raw machine translation to transcreation. But how can they ensure the best match between content and localization method? Traditionally, the decision relied mostly on human judgment. The PREDICT Methodology, crafted by Booking.com’s localization central team, offers a systematic framework for assessing MT suitability, aligning content type with the optimal localization solution. By integrating risk tolerance weights into binary queries about a source content and use case, PREDICT provides a score and recommended solution, from raw MT to human-only translation. This approach enables our business to provide the right quality for that specific content type, boost translation efficiency and reduce costs. Looking ahead, the methodology envisions integrating LLMs for automation and guidance, utilizing prompts to identify risk-mitigating strategies.</abstract>
<identifier type="citekey">manzur-2024-predict</identifier>
<location>
<url>https://aclanthology.org/2024.amta-presentations.5</url>
</location>
<part>
<date>2024-09</date>
<extent unit="page">
<start>45</start>
<end>74</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T PREDICT Methodology - Machine Translation Eligibility Criteria
%A Manzur, Paula
%Y Martindale, Marianna
%Y Campbell, Janice
%Y Savenkov, Konstantin
%Y Goel, Shivali
%S Proceedings of the 16th Conference of the Association for Machine Translation in the Americas (Volume 2: Presentations)
%D 2024
%8 September
%I Association for Machine Translation in the Americas
%C Chicago, USA
%F manzur-2024-predict
%X Enterprises in the localization sector handle diverse content types, requiring precise localization solutions. Options range from raw machine translation to transcreation. But how can they ensure the best match between content and localization method? Traditionally, the decision relied mostly on human judgment. The PREDICT Methodology, crafted by Booking.com’s localization central team, offers a systematic framework for assessing MT suitability, aligning content type with the optimal localization solution. By integrating risk tolerance weights into binary queries about a source content and use case, PREDICT provides a score and recommended solution, from raw MT to human-only translation. This approach enables our business to provide the right quality for that specific content type, boost translation efficiency and reduce costs. Looking ahead, the methodology envisions integrating LLMs for automation and guidance, utilizing prompts to identify risk-mitigating strategies.
%U https://aclanthology.org/2024.amta-presentations.5
%P 45-74
Markdown (Informal)
[PREDICT Methodology - Machine Translation Eligibility Criteria](https://aclanthology.org/2024.amta-presentations.5) (Manzur, AMTA 2024)
ACL