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Welcome to the 16th conference of 

the Association for Machine Translation in the Americas – AMTA 2024! 

 

Dear MT & AI Colleagues and Friends, 

For this year’s conference of the Association for Machine Translation in the Americas – AMTA 2024 – 
we come together in person in metropolitan Chicago, at the Renaissance Schaumburg Convention 
Center Hotel, and online in our virtual conference application. 

2024 marks the 30th anniversary of the first AMTA conference, held in Columbia, Maryland, in 
October 1994, and 70 years since the first public demonstration of machine translation in New York 
City, a project involving IBM and Georgetown University. 

By today's standards, the demonstration was stunningly limited: a mere 250 words translated from 
Russian to English in about 60 mostly short and highly repetitive sentences. Each sentence had to be 
typed into a device that created a machine-readable punch card. Each card was then fed individually 
into a room-sized IBM 701 mainframe, hardware that cost $500,000 at the time (the equivalent of 
$5.8 million today!). 

Infamously, the experimenters predicted that usable Machine Translation in “important functional 
areas of several languages” could be “an accomplished fact” within five or maybe even only three 
years, a wildly inaccurate underestimation of the complexity of the challenge. 

But to their credit, the experimenters also recognized that they had taken but baby steps, comparing 
their accomplishment to the Wright brothers’ 1903 flight at Kitty Hawk, a single-passenger, 12-
second, 36-meter hop in a heavier-than-air vehicle along the beach in North Carolina that hardly 
hinted at the fact that safe transoceanic passenger flights would be commercially available just 36 
years later, nor that in less than the 70 years that have passed since the first demonstration of MT, 
mankind would fly to the moon, land on it, walk around, and fly back to Earth.1 

It is mind-boggling to consider how much has changed in our field since these events and yet how 
much the fundamental need for facilitating multilingual communication with technology remains. 
Here we are now, not even one full human lifetime from the 1954 demonstration and not quite two 
years since the general availability of generative AI tools, and the very words “machine translation” 
sound almost quaint in the tidal wave of news about large language models. But let’s not forget that 
transformer models, the cornerstone of the boom in generative AI, are a direct result of advances in 
machine translation. 

So, this is an appropriate time for all of us who work on or with MT or generative AI to recognize the 
giants on whose shoulders we stand and to ask ourselves what more needs to be done before we 
have reached the NLP equivalent of the moon. 

In the spirit of honoring those who have contributed to the development of MT before us, it is with 
great sadness and lasting gratitude that I report the passing of Muriel Vasconcellos, founding 
president of AMTA (1991-1996), president of IAMT (1997-1999), and IAMT Award of Honor recipient 

 
1Machine translation: from real users to research: 16th Conference of the Association for Machine Translation 
in the Americas, AMTA 2004, Washington, DC, September 28 – October 2, 2004; ed. Robert E.Frederking and 
Kathryn B.Taylor (Berlin: Springer Verlag, 2004); pp. 102-114 
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(1999), on September 14, 2024 at the age of 91, a few short months after she wrote her contribution 
to this volume. Computational linguist and ATA-certified English to Portuguese translator, Muriel 
earned a PhD in linguistics from Georgetown University and was centrally instrumental in the 
introduction of machine translation at the Pan American Health Organization/World Health 
Organization. Her passion for facilitating open and collegial communication among MT researchers, 
developers, and users is still and will remain a defining characteristic of AMTA. 

We are pleased once again with the number and quality of submissions to our conference, which 
reflect great progress in MT, not only in the scope of supporting ever more languages and in 
improving and assessing output quality, but also in the use of large language models either as 
translation systems in and of themselves or, as you will see in many of the papers and presentations 
this year, in augmenting machine translation systems with additional processing via LLMs. 

A unique aspect of AMTA conferences is that they bring together users and practitioners from across 
the MT spectrum of academia, industry, and government so that R&D personnel can learn from 
those who are using the technology and vice versa. And this year we are doubling down on this 
aspect by organizing sessions not by whether works come from researchers, users and providers, or 
government representatives, but instead by topic area so that our various constituents have even 
more opportunity to see how much their interests intersect and enjoy more direct contact. 

Another novelty this year is the first ever AMTA Best Thesis Award, a tradition that we borrowed 
from our sister organization EAMT. We congratulate its first winner, Dr. Eleftheria Briakou, for her 
thesis “Detecting Fine-Grained Semantic Divergences to Improve Translation Understanding Across 
Languages,” an abstract of which is included in this volume. 

As with all our conferences, AMTA 2024 would simply not have been possible without the selfless 
work of so many people on the AMTA board and organizing committee, all of whom are volunteers. I 
express my heartfelt thanks, respect, and admiration to each of them. They include: 

Janice Campbell, AMTA Secretary, Local Arrangements 

Alex Yanishevsky, AMTA Vice President, Conference Online Platform 

David Bishop, AMTA Treasurer 

Akiko Eriguchi, Peer-review Track and Best Thesis Award organizer 

Rebecca Knowles, Peer-review Track and Best Thesis Award organizer 

Cecilia Yalangozian, Workshops and Tutorials, Presentations Track 

Georg Kirchner, Workshops and Tutorials 

Konstantin Savenkov, Presentations Track 

Marianna Martindale, Presentations Track 

Kelly Ko, Webmaster 

Derick Fajardo, Communications and Marketing 

Lara Daly, Sponsorships 

Shivali Goel, Publications 

Steve Richardson, AMTA Councilor 
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Alon Lavie, AMTA Consultant 

 
Finally, I express my gratitude to our sponsors, whose support has helped us to mitigate the added 
cost of the hybrid format. Our Leader Level sponsors include Systran by ChapsVision and Apptek. Our 
Exhibitor-level sponsors include Star and Intento, and our Media and Marketing sponsor is Slator. 
Many of these participating companies will provide demonstrations of their systems and software 
during our Technology Exhibition sessions, and we hope that our attendees will take advantage of 
this opportunity to see the latest commercial offerings and advancements in the world of MT. 

Again, welcome to AMTA 2024! I look forward to seeing many of you in person in Chicago and to 
interacting with many others online. 

Jay Marciano 

AMTA President and AMTA 2024 General Conference Chair 
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Statements on 30 Years of AMTA Conferences by Former Presidents of the 
Association for Machine Translation in the Americas 

 

Former presidents of AMTA were invited to take part in a panel discussion at AMTA 2024 to mark 
the 30th anniversary of the first AMTA conference, held in Columbia, Maryland in early October 
1994. Those who were not able to make it in person to the event were invited to submit a written 
statement about their presidency. 

The first contribution, by the inaugural president of AMTA, Dr. Muriel Vasconcellos, provides an 
account of the founding of the Association. The other pieces (by our second president, Dr. Eduard 
Hovy, our third president, Dr. Elliott Macklovitch, and our fifth and seventh president, Dr. Mike 
Dillinger), recount major events in MT research and development during their terms of office and 
offer their current view of the future of machine translation. 

 

The Founding of AMTA 

By Muriel Vasconcellos, AMTA President (1991–1996) 

The first conversation on the founding a machine translation association took place at a dinner table. 
If memory serves me, it was in Hakone, Japan, in 1989, at a meeting convened by Dr. Makoto Nagao. 
Dr. Nagao had called the meeting of about 400 Japanese participants and had invited a few 
international speakers. At the table were Dr. Nagao, a Japanese computer scientist; Veronica Lawson, 
a patent translator from London, England; and myself, then head of the machine translation project 
at the Pan American Health Organization. 

When the topic of a machine translation association came up, Veronica said she had been thinking of 
such an association for a long time. As we continued talking, we pointed out the differences between 
projects in Asia, Europe, and the Americas (Canada and the United States), with different emphasis on 
research, commercial development, and operational applications. At that time, Japan had done 
research and had initiated a few projects. Europe was mainly into research. In the Americas, especially 
in Canada and the United States, academic research was overshadowed by commercial and 
governmental operations. The IBM MARK II Russian-English System, installed at the Wright-Patterson 
Air Force Base in 1964, has been said to be the first production application of MT. Later it was replaced 
by SYSTRAN. MÉTEO, inaugurated in 1977, was designed for broadcasting weather reports. LOGOS, 
founded in 1970, was also a player, but did not then have a significant commercial imprint. 

Taking into account the different characteristics as well as the physical distances between these 
geographical areas, we proposed three regions: Asia-Pacific, Europe, and the Americas. That 
discussion led to the formation of a local MT association in each of them. 

The Asia-Pacific Association for Machine Translation (AAMT) got started under the presidency of Dr. 
Nagao. The preparations for founding a European association were led by Margaret (Maghi) King. 

Steps were also being taken to found the Association for Machine Translation in the Americas (AMTA). 
Its organizing meeting took place in 1992 at an international machine translation meeting in 
Washington, D.C., at the Mayflower Hotel. To my surprise, I was elected president. Roberta Merchant 
was elected treasurer. Without her ongoing support, our history might have been much different.  

https://en.wikipedia.org/w/index.php?title=Asia-Pacific_Association_for_Machine_Translation&action=edit&redlink=1
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AMTA was incorporated under the laws of the District of Columbia in 1994. I quickly realized that the 
association would exist only on paper unless I organized an encounter. Our first general meeting with 
speakers took place on October 5-8, 1994, in Columbia, Maryland. 

I am so pleased that AMTA is alive and doing well thirty years later! 

 

Some thoughts from the Presidency of 1996–2000  

By Eduard Hovy, AMTA President (1996–2000) 

I was the second President, having the honor of following Muriel, and it was during this time that the 
Statistics Wars in MT really hit home in MT. Up to the early 1990s MT technology had been strictly 
‘symbolic’, meaning not using machine learning. The introduction of Statistical MT (SMT) by the IBM 
Candide team around 1989 and its rapid adoption in the research MT community was viewed 
initially with bemusement, then puzzlement, and then alarm by the commercial MT community. 
Starting in the mid-1990s, though, it was clear that SMT was not just a research fad but was here to 
stay, and when Franz Och left my group at ISI to head the Google MT team all the MT companies 
started making plans for how to respond. So, the second half of the 1990s saw a significant change in 
the nature of the research papers of the conference, followed by a slower change in the style of the 
commercial demos. Little changed for the third leg of the AMTA tripod, the translators: to them, it 
was not clear whether the still-not-perfect SMT results were more useful than the highly optimized 
commercial MT outputs, though the general cross-domain promise of SMT was attractive. The 
famous Great Debate in Montreal in 1992 with reversed affinities, in which Graeme Hirst and Ron 
Kaplan argued for SMT while Ken Church and Geoffrey Sampson argued against, lives on in the 
memories of those who were present.  

After its creation and first conference in 1994, AMTA continued to grow steadily, averaging around 
120 members by 2000 (this no doubt seems small by today’s standards!). The 1998 conference near 
Philadelphia and 1999 Summit in Singapore were high points, as were the conferences in Santiago de 
Compostela and in New Orleans a few years later.  

It is great to see now that AMTA continues to flourish. I would have liked to be present! I send 
everyone greetings. 

 

The challenges faced during my presidency 

By Elliott Macklovitch, AMTA President (2000–2004) 

MT can be used for various purposes. Our concern in Canada and at the RALI (my former research 
group) has predominantly been with high-quality translation fit for publication or widespread 
dissemination, as opposed to information gathering or gisting, where lower quality may be 
acceptable. 

Although the transition from rule-based MT to statistical MT was well underway during the period of 
my presidency, the broad MT user base at the time was very modest. Moses, an open-source toolkit 
for developing SMT systems, was available during those years, but it was far too complicated for the 
great majority of potential end users and largely remained a research vehicle. Moreover, the quality 
of the translations produced by the SMT systems that were developed back then left much to be 
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desired (particularly the fluency) and demanded extensive post-editing – work that most translators 
did not relish. This is why our group at the RALI invested in the development of various translators' 
aids, alongside parallel efforts to advance the state of the art in fully automatic MT.  

What I thought the future of MT would be back then 

Based on the technology that was available at the time, and judging from the modest gains that 
researchers were able to achieve – half a BLEU point here, half a point there – I was not overly 
optimistic that MT would ever be able to achieve widespread acceptance or use. 

The advent of neural MT some ten years later and the impressive improvement in translation quality 
that it ushered in caught me very much by surprise. 

What I now think the future of MT will be 

Allow me to reformulate the question: “Has the problem of MT finally been solved?” To which I 
would answer: From a strictly scientific point of view, yes it has, to a very large extent. 

Now if I may qualify: The problem posed by translation is not like a problem in mathematics, where 
there is only one correct solution. In translation, most source sentences admit of several acceptable 
target equivalents. In a large majority of cases, the output produced by today's NMT and GenAI 
systems does fall within the set of acceptable target-language equivalents. This is not to say that 
these machine-generated translations cannot be improved by human posteditors; very often, they 
can. But the age-old problem of automatically generating a grammatically correct target-language 
equivalent that conveys the essential meaning of the source-language sentence has by and large 
been resolved – although this is only true for the handful of "major languages" for which a training 
corpus of sufficient size and quality is available. 

In the not-so-distant future, GenAI-based machine translation will become increasingly dominant, 
largely displacing dedicated NMT systems. And machine translation will increasingly infiltrate our 
day-to-day lives, to the point that people will no longer be aware of this astounding technological 
accomplishment. 

 

MT: Then, Now, and Next 

By Mike Dillinger, AMTA President (2006–2008, 2012–2014) 

My first term as AMTA President, from 2006 to 2008, culminated in the conference at a small hotel a 
couple of blocks from the beach in Waikiki. The location turned out to be a good choice: although a 
few people moaned that they wouldn't be able to get funding for what was obviously a free 
vacation, we ended up attracting far more people than usual from Asia and Europe – about doubling 
attendance over the mean of previous meetings. So, we actually finished in the black. 

Our key goal at the time was to showcase applications of MT as a strategy to increase interest and, 
hopefully, membership. As a result, the program jumped from around 10% presentations on 
applications in industry and government to more than 50%, which is why we titled the proceedings 
MT at Work. I remember spending quite a bit of time coaching authors of the User presentations to 
provide more details, and particularly numbers, to communicate better with the Researchers. That 
usually led to more informative and more interesting presentations across the board. 
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In fact, 2008 was the first time we had similarly sized tracks for MT Users (partnering with LISA and 
the DIA) and MT Researchers. Users were pleased to see so many more use cases, and many 
researchers found themselves jumping over to hear more about the challenges that applications 
brought to the fore. And we had a solid Student Research Workshop, as well, so there was a lot 
going on. We also took the time to build bridges with the American Translators' Association 
leadership, starting a collaboration that lasted for several years – despite a few unnecessarily 
adversarial presentations in the beginning from their side and included lots of very well attended 
presentations from our side at their conferences.  

The core value that AMTA brought to the table at the time was diversity: diversity of applications, 
diversity of perspectives, and diversity of approaches. Even the Research track was by no means a 
series of reports on tweaks to the same approach: phrase-based statistical MT predominated but 
there were hybrid approaches, work on building targeted corpora or lexica, and of course on 
evaluation. The Board of Directors at the time recognized this diversity as the key differentiator of 
AMTA and we worked very hard to cultivate it. 

My take is that the overall mood was very much one of enriching statistical approaches with 
qualitative linguistic information rather than fighting about which of the two approaches one had to 
choose. People were still scratching their heads about how to bring semantics in at scale, and of 
course there was no inkling of the maelstrom that transformer-based MT would end up creating. If 
there were heated, drag-down, knock-out arguments in the corridors, I didn't hear about them. I did 
hear, though, about people sneaking off to surf and swim between sessions. The venue, I think, 
contributed significantly to a mellower, much more collaborative meeting.  

After Laurie Gerber, who also served as AMTA president from 2004 to 2006, sweet-talked me into 
joining the AMTA Board of Directors so many years ago, I ended up spending more than ten years in 
one or another leadership role at AMTA, including as President again from 2012 to 2014 for the 
Vancouver conference. I was lucky enough to study or work directly with many of the early pioneers 
of MT – from Paul Garvin and David Hays to Bud Scott and Hiroshi Uchida – and through AMTA, I got 
to collaborate with the next generations, as well.  What a privilege it's been to participate in the field 
for so long!  

As for where MT is headed, I'm totally biased:  I've always thought that our job isn't done until we 
can incorporate meaning and knowledge at scale. Data-driven MT continues to yield very powerful, 
highly scalable tools like LLMs and to open new investments and applications. But there's still a lot 
left for us to do to serve a wider range of users and use cases well. Next-gen Knowledge-driven MT 
will likely leverage knowledge graphs and hypergraphs to take these startling advances to the next 
level: translation systems that can check their own coherence and accuracy while querying human 
expertise as needed. That will always be necessary – until someone can fix the crappy source texts 
that we so often must deal with! 
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Inaugural Edition of the AMTA Best Thesis Award 

 

For the first edition of the AMTA Best Thesis Award, we had a very strong slate of eligible candidates 
and theses, resulting in a difficult decision to choose a single Best Thesis Award winner. Each thesis 
was assessed by multiple reviewers for its relevance to the field of machine translation, the past, 
current, and potential future impact of the thesis work on the field, and how challenging the thesis’s 
core problem was. To ensure fairness in this single-blind process, reviewers were assigned to avoid 
institutional or other COIs, and where necessary, members of the board recused themselves. 

A committee appointed by the AMTA Board, consisting of Akiko Eriguchi, Alon Lavie, and Rebecca 
Knowles, oversaw the process, summarized the reviews, deliberated and ultimately submitted a 
recommendation for the selected winner to the full AMTA Board for approval.  

We are pleased to announce that the 2024 AMTA Best Thesis Award is awarded to: 

Dr. Eleftheria Briakou 

for her thesis entitled “Detecting Fine-Grained Semantic Divergences to Improve Translation 
Understanding Across Languages” (University of Maryland, College Park, USA).  

This thesis provides a novel take on challenges in the field of machine translation, focusing on subtle 
meaning differences in translation, how to detect these meaning differences automatically, the 
impact they have on machine translation systems, how to mitigate this impact, and more, exploring 
the topic in both depth and breadth. The Proceedings include a short summary of the thesis’s main 
contributions, and we encourage interested readers to explore the full thesis in greater depth. Dr. 
Briakou will present her work at the 2024 AMTA conference and will receive a prize of $1000 USD 
along with a free AMTA membership and waived registration costs.  

We thank the following reviewers for their work on this process: 

Akiko Eriguchi (Microsoft) 
Alon Lavie (Phrase) 
Chi-kiu Lo (National Research Council Canada) 
Jay Marciano (AMTA) 
Kevin Duh (Johns Hopkins University) 
Konstantin Savenkov (Intento, Inc.) 
Marine Carpuat (University of Maryland) 
Michel Simard (National Research Council Canada) 
Philipp Koehn (Johns Hopkins University) 
Rebecca Knowles (National Research Council Canada) 
Stephen Richardson (Brigham Young University) 
 

We also thank the European Association for Machine Translation, especially Helena Moniz and 
Carolina Scarton, for sharing their expertise from the long-running Anthony C Clarke EAMT Best 
Thesis Award, which served as inspiration for the new AMTA Best Thesis Award. 
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Introduction to the Research Papers Volume 

 

As the Association for Machine Translation in the Americas marks 30 years since the first AMTA 
conference in 1994, we present a program of research that explores longstanding challenges in the 
field, experiments with novel approaches to machine translation, and brings new perspectives to the 
conversation. 

The Research Papers volume of the AMTA 2024 Proceedings includes 20 research and position 
papers as well as the abstract for the 2024 AMTA Best Thesis Award. Among these papers, we see a 
new rise in interest in large language models, with more than a third of the papers focusing on this 
topic. We also see interest in multimodal and multilingual translation, moving beyond text-only 
translation or translation between only two languages. There are also several papers focusing on 
topics like terminology and low-resource translation. Reflecting the broad range of interests 
represented in the AMTA research community, we see papers from perspectives rooted in 
academia, industry, government, and more. 

Given the overlap with the Presentations track in terms of many of these topics, we look forward to 
another fruitful conference that brings together a wide variety of perspectives on the past, present, 
and future of MT research. 

We thank the many reviewers, emergency reviewers, the AMTA organizing committee, and the past 
research chairs for their assistance in helping us to bring together this program of papers. 

 

Sincerely, 

Akiko Eriguchi and Rebecca Knowles 

Research Directors, 2024 
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Detecting Fine-Grained Semantic Divergences to
Improve Translation Understanding Across Languages

Eleftheria Briakou ebriakou@umd.com
Department of Computer Science, University of Maryland, College Park, MD

Abstract

In this thesis, we focus on detecting fine-grained semantic divergences—subtle meaning differences in sen-
tences that overlap in content—to improve machine and human translation understanding.

EN ... The Maple Leaf Forever served for many years as a Canadian national anthem...
FR ... The Maple Leaf Forever (en) qui est un chant patriotique pro canadien...

... The Maple Leaf Forever which is a Canadian patriotic song...

1 Introduction

A widespread hypothesis adopted by machine trans-
lation research is that a source text and its (hu-
man) translation—or parallel text—are equivalent
in meaning. In principle, this hypothesis drives the
way we think about our models when designing our
training losses and our evaluation metrics and pro-
tocols. Yet when humans translate, they make lexi-
cal decisions influenced by cultural and situational
aspects of language that break the hypothesis of
meaning equivalence in nuanced ways (Hirst, 1995;
Zhai et al., 2019). Consider the English and French
sentences above drawn from WikiMatrix (Schwenk
et al., 2021), a corpus that is routinely used to train
translation systems and is perceived as highly paral-
lel. While they share important content, highlighted
words convey meaning missing from the other lan-
guage (i.e., served for many years) or content re-
flecting fine-grained semantic divergences between
concepts that, although related, are not equivalent
(i.e., national anthem vs. patriotic song).

Regardless of why such subtle divergences ex-
ist in parallel texts, we hypothesize that they mat-
ter for machine translation systems—as they yield
challenging training samples—and for humans—
who might benefit from a nuanced understanding of

the source. Thus, in this line of work, we argue
that quantifying fine-grained divergences is crucial
to improve both machine and human translation
understanding across languages.

In what follows, we start by introducing meth-
ods for detecting fine-grained divergences in the
wild (Briakou and Carpuat, 2020). As we will see,
such methods lay the foundation for studying their
connection to machine translation models (Briakou
and Carpuat, 2021, 2022; Briakou et al., 2022) and
human evaluations pipelines (Briakou et al., 2023).

2 Detecting Fine-grained Divergences

In our first piece of work, we start our exploration
by asking: How frequent are semantic divergences
in parallel texts? Our goal is to address challenges
in detection of fine-grained divergences within bi-
texts in two settings: human annotation and auto-
matic prediction (Briakou and Carpuat, 2020).

Starting with human annotation, we contribute
the Rationalized English-French Semantic Diver-
gences corpus, based on a novel divergence anno-
tation protocol that exploits rationales to improve
annotator agreement. Annotations on the collected
dataset reveal that semantic divergences are surpris-
ingly frequent, comprising 40% of samples in a cor-
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pus consisting of Wikipedia-mined translations, and
are perceived as highly parallel.

After establishing that divergences exist, we
explore computational methods for detecting them
at scale, crucially, without assuming access to gold
supervision. To that end, we introduce a contrastive
loss designed to make a multilingual language
model sensitive to subtle cross-lingual differences
between linguistically motivated synthetic samples.
Despite being trained only on synthetic samples,
we show that our model detects fine-grained diver-
gences accurately, outperforming a strong sentence-
level similarity model (Schwenk and Douze, 2017).

3 Improving Machine Translation

Equipped with the tools that allow us to study diver-
gences at scale we now ask: How do fine-grained
divergences impact Neural Machine Translation?
We contribute a controlled empirical analysis on
several aspect of NMT models that are exposed to
different types and amounts of divergences at train-
ing time. Our findings reveal that small divergences
hurt translation accuracy and confidence of NMT
models, and crucially are one of the root causes that
lead to neural text degeneration, i.e., translation out-
puts that are incoherent or get stuck in repetitive
loops (Briakou and Carpuat, 2021).

Drawing from those findings, a natural question
arises: How can we mitigate the negative impact of
divergences on NMT? To this aim, we explore two
orthogonal strategies. Our first strategy intervenes
in the training assumption of translation equivalence
in parallel texts and aims to model divergences ex-
plicitly. Drawing from our prior work on automati-
cally detecting divergences, we propose a divergent-
aware framework—DIV-FACTORIZED—that incor-
porates token-level divergence signals into NMT
training (Briakou and Carpuat, 2021).

Our second strategy proposes an orthogonal
mitigation direction: instead of altering training to
model divergences closely, we aim to automatically
re-write divergent samples to yield more equivalent
translations. In this direction, we introduce two ap-
proaches to solve this problem in the lack of su-
pervised data. Our first approach—EQUIV SEM-
DIV—relies on synthetic translations, i.e., transla-
tions generated by MT, that selectively replace diver-
gent references under a semantic equivalence con-

dition (Briakou and Carpuat, 2022). Our extensive
evaluations on both intrinsic and extrinsic tasks for
two medium-resource languages show that this ap-
proach is capable of revising divergences in parallel
texts, given synthetic translations of sufficient qual-
ity. In our subsequent work, we address this prob-
lem in low-resource conditions via introducing—
BITEXTEDIT—an editing-based model that, given
a parallel text, edits one of the two references to
generate a refined version of the original as neces-
sary. Our editing model is trained solely on syn-
thetic supervision via leveraging recent advances in
bitext mining based on massively multilingual sen-
tence embeddings (Artetxe and Schwenk, 2019) and
is shown to utilize divergences more effectively in
heterogeneous data scenarios (Briakou et al., 2022).

4 Assisting Humans to Detect Translation
Differences in Meaning

After exploring how detecting semantic divergences
helps us improve machine translation understand-
ing, we finally turn to analyze ways of assisting hu-
mans in understanding and detecting translation dif-
ferences. Although detecting divergences in parallel
texts as a binary classification task, i.e., equivalence
vs. divergence, is found to be sufficient for augment-
ing and improving NMT, we hypothesize that other
task framings that shed more light on the nature of
divergences are needed to improve human transla-
tion understanding. In this direction, our last piece
of work asks: How can we explain semantic diver-
gences in a human-interpretable fashion?

To that end, we equip divergence detectors with
the ability to indicate not just whether divergences
exist but also tell us where the translation differ-
ences reside (Briakou et al., 2023). Drawing on
social science studies, we introduce a method to
extract contrastive phrasal highlights that explain
the predictions of our divergent detectors by ex-
plicitly modeling the relationships between the con-
trasted texts. We contribute evidence that con-
trastive phrasal highlights match human-provided
rationales of divergence better than standard high-
lighting approaches, and more importantly, they as-
sist bilingual speakers in annotating fine-grained di-
vergences, easing the need to ask for human ratio-
nales. Finally, we show that contrastive highlights
could help humans detect critical errors due to local
mistranslations in machine-translated texts.
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Abstract

In an evolving landscape of crisis communication, the need for robust and adaptable Machine Translation
(MT) systems is more pressing than ever, particularly for low-resource languages. This study presents a com-
prehensive exploration of leveraging Large Language Models (LLMs) and Multilingual LLMs (MLLMs) to
enhance MT capabilities in such scenarios. By focusing on the unique challenges posed by crisis situations
where speed, accuracy, and the ability to handle a wide range of languages are paramount, this research out-
lines a novel approach that combines the cutting-edge capabilities of LLMs with fine-tuning techniques and
community-driven corpus development strategies. At the core of this study is the development and empirical
evaluation of MT systems tailored for two low-resource language pairs, illustrating the process from initial
model selection and fine-tuning through to deployment. Bespoke systems are developed and modelled on the
recent Covid-19 pandemic. The research highlights the importance of community involvement in creating
highly specialised, crisis-specific datasets and compares custom GPTs with NLLB-adapted MLLM models.
It identifies fine-tuned MLLM models as offering superior performance compared with their LLM counter-
parts. A scalable and replicable model for rapid MT system development in crisis scenarios is outlined. Our
approach enhances the field of humanitarian technology by offering a blueprint for developing multilingual
communication systems during emergencies.

1 Credits

This work was supported by ADAPT, which is
funded under the SFI Research Centres Programme
(Grant 13/RC/2016) and is co-funded by the Eu-
ropean Regional Development Fund. The research
was also funded by the Munster Technological Uni-
versity in Cork, Ireland.

2 Introduction

The excitement surrounding LLMs stems from their
potential to revolutionise many fields, from lan-
guage translation (Costa-jussà et al., 2022) and con-
tent generation (Brown et al., 2020) to chatbots1 and
virtual assistants. Way (2024) observes that from

the very outset, machine translation (MT) capability
has been overhyped at each paradigm shift over the
past 75 years, but with their ability to ‘understand’
language and generate complex responses, LLMs
do appear capable of enhancing human communi-
cation and productivity in ways that were unimagin-
able with previous approaches, especially given that
LLMs are not restricted to text-based use-cases, and
can be used in creative applications such as generat-
ing music2 or art.

When building LLMs, the focus is on design-
ing and training the model architecture. This in-
volves selecting the appropriate neural network ar-
chitecture and hyperparameters, as well as deciding
on the training data and optimisation techniques to

1https://chatgpt.com
2https://soundraw.io
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use.
Tuning an MLLM or LLM, in contrast, in-

volves adjusting the parameters of a pre-trained
model to improve its performance on a specific task.
In neural networks such as MLLMs, the weights
and biases are parameters that the network adjusts
through training to minimise a cost function. This is
performed by training the model on a task-specific
dataset and adjusting the model’s hyperparameters
to optimise its performance. Tuning an MLLM can
be a challenging task, as the model is often very
complex and the training process can take a long
time, but Lankford et al. (2023a) offer an open-
source solution to fine-tuning pre-built MLLMs,
with a particular focus on low-resource language
pairs, thus overcoming much of this complexity.
In contrast to predictions of their imminent demise
(van der Meer, 2021), Way (2024) predicts that tools
such as adaptMLLM will instead allow translators
to gain a competitive edge, by building and tuning
their own models with their own high-quality data,
“while retaining full control over the process, lead-
ing to self-empowerment and an improved sense of
well-being”.

Given their potential, this paper investigates
whether tools such as adaptMLLM can be used to
rapidly build good-quality MLLM-based MT sys-
tems for deployment in crisis scenarios, where speed
of development is crucial, but not at the expense
of quality altogether. These deployments are con-
trasted with the development of custom GPTs and
fine-tuned LLMs. For two language pairs and four
language directions, each featuring a minority lan-
guage, we present and evaluate a pipeline that we
hope can be used as a blueprint for rapid deployment
in crisis scenarios to improve multilingual commu-
nication.

3 Background

Way et al. (2020) observe that there “have been
alarmingly few attempts to provide automatic trans-
lation services for use in crisis scenarios”. To the
best of our knowledge, the first was Microsoft’s ef-
fort (Lewis, 2010) to build Haitian Creole systems
following the devastating earthquake in 2010, as the
title makes clear “from scratch in 4 days, 17 hours,
& 30 minutes”. Estimated casualties ranged from
100,000 to over 300,000 deaths, with around a third

of all citizens affected in some way or other by the
earthquake measuring 7.0 on the Richter scale. The
main issues for the Microsoft team were a complete
lack of knowledge of the language (grammatical
structure, encoding, orthography etc), and no data
at all to train high-quality statistical MT engines.
However, the team quickly identified some available
resources (the Bible is available in most languages),
and a small number of native speakers to help with
translation and, especially, validation of the MT out-
put generated. Eventually, around 150,000 segments
of training data were collected to build the system,
which obtained a BLEU (Papineni et al., 2002) score
of almost 30 for Creole to English, and 18.3 for En-
glish to Creole, sufficiently high (especially for the
into-English direction) for the system to be deployed
for use by relief workers in the field.

This remarkable effort led to the writing of a
cookbook for MT in crisis scenarios (Lewis et al.,
2011), so that the lessons learned from the exercise
could be put into practice when other crises arose, as
they do all too commonly, regrettably. Importantly,
Lewis et al. (2011) note that “If done right, MT can
dramatically increase the speed by which relief can
be provided”. In any such scenario, translation is al-
most always needed, and despite its importance, it is
often overlooked.

In response to the need for better preparation
for translation readiness in crises, Sharon O’Brien
coordinated the Interact project3 featuring partners
from academia, industry, as well as NGOs. Fed-
erici et al. (2019) provide a set of recommendations
within that project which apply mainly to human
translation provision in crisis scenarios.

3.1 Multilingual Language Models—NLLB

MT has become a significant area of research with
the aim of eliminating language barriers worldwide.
However, the current focus is limited to a small
number of languages, neglecting the vast majority of
low-resource languages. In an effort to address this
issue, the No Language Left Behind (NLLB) initia-
tive was launched to try to overcome the challenges
of using MT for low-resource language translation
by developing datasets and models that bridge the
performance gap between low- and high-resource
languages. The NLLB team has also created archi-
tectural and training enhancements tailored to sup-

3https://sites.google.com/view/crisistranslation/home
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port MT for low-resource languages. Their work
is open source,4 and many of their models serve as
baselines for fine-tuning with adaptMLLM (Lank-
ford et al., 2023a).5 While projects like this are un-
doubtedly a step in the right direction, Ignat et al.
(2023) observe that “state-of-the-art MT models
such as NLLB-200 . . . still perform poorly on many
low-resource languages, such as African languages”
(p.3), so much work remains to be done.

3.2 Large Language Models

The increasing availability of large datasets provides
the raw material for LLM training (Radford et al.,
2019; Conneau et al., 2020; Winata et al., 2021), en-
abling performance improvement on a wide variety
of NLP tasks.

LLMs have the potential to improve the use of
technology across a wide range of domains, includ-
ing medicine, education and computational linguis-
tics. In education, LLMs may be used for person-
alised student learning experiences (Kasneci et al.,
2023), while in the medical domain, analysing large
amounts of medical files can assist doctors in treat-
ing patients (Iftikhar et al., 2023). Of particular in-
terest to our research is the manner in which LLMs
can be used within the realm of NLP, more specifi-
cally in the field of MT, and we now provide details
of some of the main candidates in this space.

3.2.1 GPT-4
The primary distinction between GPT-3.5 and GPT-
46 is that while the former is a text-to-text model,
the latter is more of a data-to-text model, exhibiting
the ability to perform tasks that its predecessor could
not. For example, GPT-4 is capable of processing
visual input as part of a prompt, such as images or
web pages, and can even generate text that explains
the humour in memes. Consequently, GPT-4 can be
classified as a “multimodal model”. Furthermore,
GPT-4 has a longer memory than its previous ver-
sions, with a short-term memory closer to 64,000
words, enabling it to maintain coherence during ex-
tended interactions. GPT-4 also enables users to se-
lect different personalities for the model’s responses.

The number of parameters utilised in the train-
ing of GPT-4 has not been disclosed by OpenAI;
however, other sources, such as AX Semantics,7

have estimated the number to be around 100 trillion,
with such a large model costing around $100 mil-
lion to build. AX Semantics maintains that such a
number makes the language model (LM) more akin
to the functioning of the human brain with respect
to language and logic.

3.2.2 Gemini
Gemini8 comes in three versions tailored for vary-
ing levels of complexity and application: Gemini
Ultra for the most demanding tasks, Gemini Pro for
a broad range of activities, and Gemini Nano for on-
device applications. The Ultra variant, in particular,
has demonstrated SOTA performance, outperform-
ing human benchmarks in massive multitask lan-
guage understanding (MMLU) across a suite of 57
subjects. Team (2024) documents the performance
of Gemini on the “Machine Translation from One
Book (MTOB)” benchmark (Tanzer et al., 2023),
essentially how good a model is at learning a lan-
guage from almost no resources. For an evaluation
of Gemini 1.5 Pro on the FLORES-200 benchmark
(Costa-jussà et al., 2022) against Google Translate,
GPT-3.5 and GPT-4, and other systems, see Akter
et al. (2023) (p.12).

3.2.3 CoPilot
Microsoft has introduced Microsoft 365 Copilot,9 a
generative AI tool designed to enhance workplace
productivity and creativity. Copilot integrates LLMs
with user data from Microsoft Graph and Microsoft
365 apps, to allow users to utilise natural language
commands across familiar Microsoft 365 applica-
tions such as Word, Excel and PowerPoint.

Central to this announcement is the launch of
Business Chat, which synergies with the LLM, Mi-
crosoft 365 apps, and user data to generate out-
puts such as status updates from natural language
prompts, drawing from various data sources like
emails, meetings, and documents. This ensures that
users remain in control, enabling them to adjust or

4https://github.com/facebookresearch/fairseq/tree/nllb
5https://github.com/adaptNMT/adaptMLLM
6https://openai.com/product/gpt-4
7https://en.ax-semantics.com
8https://gemini.google.com
9https://copilot.microsoft.com
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refine the outputs as needed.

4 Datasets

4.1 Language Pairs

To benchmark the translation performance of
adaptMLLM in fine-tuning MLLMs for low-
resource languages, we had to choose suitable lan-
guage pairs for which appropriate datasets existed.
The English-to-Irish (EN↔GA) and English-to-
Marathi (EN↔MR) language pairs were selected
since they fulfilled the criteria of low-resource lan-
guages, and data was freely available from shared
tasks featuring these language pairs in crisis scenar-
ios. Therefore, these language pairs were very suit-
able for evaluating our proposed pipeline for rapidly
generating high-quality translations in crisis situa-
tions by fine-tuning MLLMs.

Irish is the first official language of the Repub-
lic of Ireland, and is also recognised as a minority
language in Northern Ireland. Irish is an official
language of the European Union and a recognised
minority language in Northern Ireland with an ISO
code of “GA”.10

The dominant language spoken in India’s Ma-
harashtra state is Marathi, with an ISO code of
“MR”. It has over 83 million speakers, and it is a
member of the Indo-Aryan language family. De-
spite being spoken by a significant number of peo-
ple, Marathi is considered to be relatively under-
resourced when compared to other languages used
in the region.

4.2 Shared Task Datasets

To benchmark the performance of our adaptMLLM-
trained models, datasets from the LoResMT2021
shared task (Ojha et al., 2021) were used, since the
shared task focused on low-resource languages in-
cluding both EN↔GA and EN↔MR in the specific
domain of translation of COVID-related data.

The datasets from the shared task provided
502 Irish and 500 Marathi validation sentences
whereas 250 (GA→EN), 500 (EN→GA), and 500
(EN↔MR) sentences were made available in the
test datasets. Training data consisted of 20,933 lines
of parallel data for the EN↔MR language pair and
13,171 lines of parallel data were used to train the
EN↔GA models. A detailed breakdown of all re-

sources is available in Ojha et al. (2021).

5 Approach

Figure 1: Community corpus development using
custom GPTs from a range of foundation models.

Our approach to enhancing MT in crisis situations
involves three key elements. Initially, a custom GPT
would be created on the ChatGPT platform immedi-
ately after a crisis, enabling users to contribute to a
specialised knowledge base with new terms relevant
to the crisis, effectively crowd sourcing a dataset for
crisis-specific language pairs. With this approach
both in-domain corpora and simple first iteration
models are developed in real time by disparate users
entering source and reference translations. Within
the custom GPT interface on ChatGPT the function-
ality also exists to upload relevant documents which
adds to the knowledge base of custom GPTs. An-
other interesting feature of ChatGPT is its ability to

10https://www.iso.org
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publicly share custom GPTs by sharing links. In
this manner, it is trivial to develop corpora by im-
plementing a simple link-sharing strategy that in-
vites community-wide, expert-only or an ensemble
of contributions.

As the crisis evolves, these corpora are then
used to develop more accurate MT models with new
weights tailored to the specific language needs of the
crisis by fine-tuning OpenAI models, or other LLM
foundation models.

Finally, a bespoke model could be created us-
ing an open-source tool like adaptMLLM, fine-
tuned with a custom dataset developed during the
crisis. Such a phased approach allows for a rapid
initial response and progressively more tailored MT
solutions as the crisis unfolds, leveraging commu-
nity input and specialised training to improve trans-
lation accuracy in critical situations.

Of course, a major consideration when design-
ing an MT system in crisis scenarios is the avail-
ability of suitable parallel corpora which contain
new terminology associated with the unfolding cri-
sis. However, it is precisely at these times when
the production of such datasets presents the greatest
challenge.

Figure 1 presents a structured approach to de-
veloping language corpora with community involve-
ment, using customised LMs, and preparing the data
for MT projects which are shared on GitHub. A cen-
tral coordinating body (such as ACL,11 AMTA,12

EAMT13 or an equally invested stakeholder) could
oversee the process working in conjunction with rel-
evant industry partners and other stakeholders.

There are two parallel streams in this process,
the first of which entails a community corpus devel-
opment effort, involving multiple contributors, us-
ing a collaborative, crowdsourced approach. In this
phase, selected users and language experts interact
with LLMs on an ad hoc basis by presenting text in
the source language and providing the translation in
the target language. In this manner, an in-domain
parallel dataset relevant specifically to the particular
crisis is rapidly developed for the chosen language
pair.

The second stream, LLM ensemble, incor-

porates several elements: models from ChatGPT,
Copilot, Gemini and other foundation models. The
corpus creation process is carried out by simply ex-
porting and concatenating the conversation histories
from each of the customised LLMs. Duplicate en-
tries created in the corpus development stage are re-
moved and the corpus is split into three datasets:
“Test”, “Train”, and “Validation”. The training
dataset is used to fine-tune a pre-trained (M)LLM
to create a bespoke in-domain crisis MT model. The
validation dataset is also used as part of this fine-
tuning process before the test set is used to evalu-
ate the performance of the MT system using stan-
dard BLEU, TER (Snover et al., 2006) and ChrF
(Popović, 2015) metrics.

Finally, the output of the process feeds into a
crisis MT GitHub which is the central repository for
the development of MT systems for multiple lan-
guage pairs. Models and datasets developed as part
of this process would be shared on GitHub for open-
source collaboration and distribution.

A Colab notebook has been developed to help
with this process and we have made it publicly avail-
able as part of this paper’s GitHub which is freely
available for download.14 A Gradio-based web app
is incorporated within this notebook which facili-
tates the involvement of non-technical users in cor-
pus creation. This is our first implementation of
such a notebook for aiding crisis MT corpus de-
velopment and as an open-source tool, improve-
ments and contributions from the community are
welcomed.

11https://acl.org
12https://amtaweb.org
13https://eamt.org
14https://github.com/adaptNMT/crisisMT/blob/main/communitycorpus.ipynb
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Figure 2: Model development process.

The elements of model development required
to manage MT in a crisis are highlighted in Fig-
ure 2. All models use the outputs from the cor-
pus development process. In the initial phase of
the crisis, a custom GPT is created from the crowd-
sourced corpus development. At this point, a par-
allel track is in progress where a fine-tuned LLM,
such as a pre-trained OpenAI model, is developed
and made available at a later date. Our approach
proposes a third parallel track which develops a fine-
tuned MLLM-specific model using a tool such as
adaptMLLM. Fine-tuning an open-source MLLM
using adaptMLLM has been shown to empirically
deliver the highest translation performance (see Sec-
tion 6). Subsequent phases of model development
would also benefit from the availability of a signifi-
cantly expanded crisis-relevant corpus via the ongo-
ing crowd-sourcing effort. The links to the custom
GPTs developed for both language pairs have been
open-sourced.15

6 Empirical Evaluation

After outlining the details of our approach, the qual-
ity of the models developed is evaluated by training
models for the EN↔GA and the EN↔MR language

pairs.

6.1 Infrastructure and Hyperparameters
All MLLM models were trained by fine-tuning a
3.3B parameter NLLB pre-trained model using the
adaptMLLM application with a Google Colab Pro+
subscription. The DeepSpeed library enables our
models to be loaded across both GPU and system
memory, thus reducing the required compute re-
sources. The optimal hyperparameters used for de-
veloping models for both language pairs are the
same as those identified by Lankford et al. (2023a).

Both the custom GPT models and the base-
line models used the GPT-4 model under a stan-
dard ChatGPT subscription. The OpenAI fine-tuned
models were developed using a pay-as-you-go plan.
In fine-tuning the OpenAI models, GPT-3.5-turbo-
0125 was the chosen pre-trained model since GPT-4
was unavailable for fine-tuning. Default parameters
were kept and the number of epochs was set to auto.
For inference on these models, a temperature set-
ting of 0.5 was chosen to ensure a more determin-
istic output which aligns with the requirements for
translation models.

6.2 Results: Automatic Evaluation
To determine the quality of our translations, auto-
mated metrics were employed. For comparison with
previous results, the performance of our new mod-
els was measured using three automatic evaluation
metrics: BLEU, TER, and ChrF. We report case-
insensitive BLEU scores at the corpus level. Note
that BLEU and ChrF are precision-based metrics, so
higher scores are better, whereas TER is an error-
based metric so lower scores indicate better transla-
tion quality. All models, notebooks and translations
generated as part of our experiments are freely avail-
able for download.15

6.2.1 Translation in the EN↔GA Directions
The experimental results in the EN↔GA direc-
tions are summarised in Tables 2 - 3 and are com-
pared with the baseline highest scores from the
LoResMT2021 Shared Task.16

The highest-performing EN→GA system in
the LoResMT2021 Shared Task was submitted by
ADAPT (Lankford et al., 2021). The model was
developed with an in-house application, adapt-

15https://github.com/adaptNMT/crisisMT
16https://machinetranslate.org/loresmt-2021
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NMT (Lankford et al., 2023b) using a Transformer
(Vaswani et al., 2017) architecture. It performed
well across all key translation metrics (BLEU: 36.0,
TER: 0.531 and ChrF3: 0.6).

By fine-tuning the NLLB MLLM, using the pa-
rameters outlined in Table 1, a significant improve-
ment in translation performance was achieved. The
adaptMLLM EN→GA en2ga system, shown in Ta-
ble 2, achieves a BLEU score of 41.2, which is 5.2
BLEU points higher (14% relative improvement)
than the score of the winning system in 2021.

Both the custom GPT-4 and GPT-4 baseline
models performed well compared to the GPT-3
models. However, there was a significant differen-
tial when compared to the adaptMLLM fine-tuned
NLLB models which recorded an increase of 8.4
BLEU points which corresponds to a relative im-
provement of 25%. In a crisis scenario, a GPT-4
baseline model would be available in real-time. A
custom GPT could be available within a matter of
minutes once a relevant training corpus is uploaded
to the GPT’s knowledge base. Such approaches
would be suitable for assisting translators in the im-
mediate aftermath of a crisis and would help in is-
suing bilingual press releases. However, more de-
tailed documentation would greatly benefit from the
improved translation quality of a bespoke fine-tuned
adaptMLLM solution.

For translation in the GA→EN direction, illus-
trated in Table 3, the best-performing model for the
LoResMT2021 Shared Task was developed by IIITT
with a BLEU score of 34.6, a TER score of 0.586
and ChrF3 score of 0.6. Accordingly, this serves as
the baseline score by which we can benchmark our
GA→EN MLLM model, developed by fine-tuning
a 3.3B parameter NLLB using adaptMLLM. Simi-
lar to the results achieved in the EN→GA direction,
significant improvement in translation performance
was observed using this new method. The perfor-
mance of the adaptMLLM model offers an improve-
ment across all metrics with a BLEU score of 75.1,
a TER of 0.385 and a ChrF3 result of 0.71. In partic-
ular, the 117% relative improvement in BLEU score
against the IIITT system is very significant.

The results from our GA→EN experiments re-
inforce the findings derived from translating in the
EN→GA direction. The custom and baseline GPT-
4 models immediately deliver a translation system
with good quality BLEU scores of 53 points. How-

ever, a higher-quality translation system with a 21.2
BLEU score improvement can delivered in a mat-
ter of hours once a fine-tuned adaptMLLM NLLB
sytem is put in place. The exact length of time for
system development is dependent on the quality of
the underlying training infrastructure and also, more
importantly, on how rapidly the training corpus can
be assembled.

6.2.2 Translation in the EN↔MR Directions
The experimental results from the LoResMT2021
Shared Task in the EN↔MR directions are sum-
marised in Tables 4 and 5, and are compared
with adaptMLLM. For the shared task, the highest-
performing EN→MR system was submitted by the
IIITT team. Their model used a Transformer archi-
tecture and achieved a BLEU score of 34.6, a TER
of 0.586, and ChrF3 of 0.61.

Again the approach taken by adaptMLLM in
fine-tuning a 3.3.B parameter NLLB MLLM yielded
the best performance compared with other systems
entered for the shared task. The EN→MR adaptM-
LLM en2mr system achieves the highest BLEU
score of 26.4, a 2.2 point improvement (9% rela-
tive) compared with IIITT, the winning team in the
EN→MR shared task.

The MLLM-based system, trained using
adaptMLLM, is also compared with GPT-4 and
GPT-3.5 LLM-based systems. For the purposes of
our experiments, the best-performing LLM used a
custom GPT-4 model which recorded a BLEU score
of 19.0 points in the EN→MR direction. This was
only a marginal improvement on the baseline GPT-4
model with a BLEU score of 18.5 points. Critically,
however, this solution could be delivered in real time
which makes such a model a potential starting point
for an immediate crisis response. A relative im-
provement of 42% and 7.9 BLEU points is available
once sufficient time is given to developing the fine-
tuned MLLM model.

For translation in the MR→EN direction,
the best-performing model for the LoResMT2021
Shared Task was developed by oneNLP-IIITT with
a BLEU score of 31.3, a TER of 0.58 and ChrF3 of
0.646. This serves as the baseline against which our
MR→EN model, developed using adaptMLLM, can
be benchmarked. The performance of the adaptM-
LLM model offers a significant improvement across
all metrics with a BLEU score of 52.6, a TER of
0.409 and a ChrF3 of 0.704. Again this represents a
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Hyperparameter Values
Epochs 1, 3, 5
Batch size 8, 12, 16
Gradient steps 2, 4, 8
Learning rate 1×10−5, 3×10−5, 9×10−5

Weight decay 0.01, 0.1, 1, 2
Mixed precision False, True

Table 1: HPO with optimal hyperparameters highlighted in bold

System BLEU TER ChrF3
adaptMLLM 41.2 0.51 0.48
adaptNMT 36.0 0.531 0.60
custom GPT-4 32.8 0.553 0.594
GPT-4 baseline 31.1 0.564 0.584
adaptMLLM-base 29.7 0.595 0.559
fine-tuned GPT-3.5 22.7 0.701 0.488
GPT-3.5 baseline 20.0 0.712 0.475

Table 2: EN→GA

System BLEU TER ChrF3
adaptMLLM 75.1 0.385 0.71
GPT-4 baseline 53.9 0.365 0.754
custom GPT-4 53.2 0.37 0.747
fine-tuned GPT-3.5 50.2 41.9 0.713
adaptMLLM-base 47.8 0.442 0.692
GPT-3.5 baseline 41.6 51.2 0.668
IIITT 34.6 0.586 0.61

Table 3: GA→EN

System BLEU TER ChrF3
adaptMLLM 26.4 0.56 0.608
IIITT 24.2 0.59 0.597
adaptMLLM-base 19.8 0.656 0.57
custom GPT-4 19.0 0.678 0.528
GPT-4 baseline 18.5 0.689 0.527
fine-tuned GPT-3.5 9.9 0.894 0.442
GPT-3.5 baseline 6.7 1.06 0.392

Table 4: EN→MR

System BLEU TER ChrF3
adaptMLLM 52.6 0.409 0.704
adaptMLLM-base 42.7 0.506 0.639
custom GPT-4 38.8 0.539 0.626
GPT-4 baseline 38.6 0.546 0.617
oneNLP-IIITH 31.3 0.58 0.646
GPT-3.5 baseline 27.9 0.688 0.568
fine-tuned GPT-3.5 27.6 0.716 0.501

Table 5: MR→EN

very strong relative improvement of 68% in BLEU
compared with the winning team from the shared
task.

The best-performing MLLM-based system in
the MR→EN direction is also compared with our
LLM-based systems. The highest-performing LLM
used a custom GPT-4 model which recorded a
BLEU score of 38.8 points. This was only a
marginal improvement on the baseline GPT-4 model
with a BLEU score of 38.6 points. As previously
noted, the GPT4 baseline solutions can be delivered
in real time which makes this model the ideal start-
ing point for an immediate crisis response. A rel-
ative improvement of 36% and 14 BLEU points is
available once sufficient time is given to developing
the fine-tuned MLLM model.

7 Discussion

A significant finding of this research is the demon-
strated capability to substantially improve trans-
lation quality for low-resource languages through
fine-tuning with crisis-specific datasets. The adapt-
ability and speed of deployment offered by LLMs
and MLLMs hold the promise of making such rapid
response a standard practice in future crises, ensur-
ing that linguistic barriers do not impede vital aid
and information flow.

However, this potential comes with its share
of challenges, particularly concerning the assembly
and quality of training datasets. This study’s pro-
posed solution, leveraging community input through
custom GPTs to crowd-source and refine translation
data, presents a scalable model for corpus develop-
ment in crisis scenarios. Looking ahead, this re-
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search lays the groundwork for expanding the appli-
cation of LLMs and MLLMs beyond MT to address
a wider range of NLP challenges in crisis situations.
The blueprint provided for rapid MT system deploy-
ment in emergencies, emphasising community in-
volvement and model fine-tuning, offers valuable in-
sights for future endeavours aiming to harness AI for
humanitarian purposes.

8 Conclusion

In this paper, we outlined how the advent of LLMs
has transformed our ability to rapidly develop MT
systems for low-resource languages in crisis scenar-
ios. A system for rapid corpus development was pre-
sented which adopts a collaborative approach, em-
phasising community involvement and open-source
methodologies.

The appropriate response to developing MT
systems at different phases of a crisis were high-
lighted. Using the recent Covid pandemic as a
reference crisis, MT systems were developed us-
ing custom GPTs, fine-tuned models from OpenAI
and fine-tuned MLLM models. We demonstrated
that a custom GPT delivers a functioning MT sys-
tem rapidly whereas a fine-tuned MLLM delivers a
higher-quality solution given a longer time horizon.

By highlighting how a fine-tuned MLLM can
provide SOTA accuracy during a crisis, our work
demonstrates how LLMs and MLLMs can provide
more inclusive communication. Language barriers
in crisis communication will be diminished with the
help of this approach which in turn helps minority
communities in times of real need.

Our paper introduces a pipeline which is ap-
plicable to a broader range of NLP problems. As
part of future work, the methodologies and insights
derived from our research could extend beyond the
scope of MT to other domains within NLP. Conse-
quently, a versatile framework for addressing a vari-
ety of language processing challenges in crisis sce-
narios has been put forth in this study.

Limitations of study

The proprietary nature of MLLMs and LLMs such
as NLLB and GPT-4, which do not disclose the
specifics of their training datasets presents a prob-
lem. When fine-tuning these models for specific
tasks, there is a risk of overlapping data that can-
not be easily identified or removed. This limitation

underscores a broader issue within the field of NLP
and MT research, where the exact composition of
training data in SOTA models often remains opaque.
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Abstract

While most current work in multimodal machine translation (MMT) uses the Multi30k dataset for training and
evaluation, we find that the resulting models overfit to the Multi30k dataset to an extreme degree. Consequently,
these models perform very badly when evaluated against typical text-only testing sets such as the newstest
datasets.
In order to perform well on both Multi30k and typical text-only datasets, we use a performant text-only
machine translation (MT) model as the starting point of our MMT model. We add vision-text adapter layers
connected via gating mechanisms to the MT model, and incrementally transform the MT model into an MMT
model by 1) pre-training using vision-based masking of the source text and 2) fine-tuning on Multi30k.
We achieve a state-of-the-art performance on the Multi30k 2016 en-de test set of 46.5 BLEU4 score and 0.61
CoMMuTE score via this approach while retaining the performance of the original text-only MT model against
the newstest dataset.

1 Introduction

The task of multimodal machine translation (MMT)
is to automatically translate text while using addi-
tional modalities (e.g., image, video, audio) to aid
in translation. Prior work has shown that MMT can
use contextually relevant images to aid in translation
of sentences that contain ambiguities or missing tex-
tual information (Caglayan et al., 2019; Wu et al.,
2021). For example, the noun “bank” is ambiguous
and contextually dependent in English (“financial in-
stitution” or “river edge”) but unambiguous in French
(“banque” or “rive”). The hypothesis that these am-
biguities or missing information can be resolved with
contextually relevant images is persuasive.

Much work in MMT (Yao and Wan, 2020; Yin
et al., 2020; Wu et al., 2021; Li et al., 2022) focus on

the Multi30k dataset (Elliott et al., 2016), a dataset
comprising 30,014 image captions and correspond-
ing translations in different languages.

However, compared to the domain of text-only
translation where MT models are trained using mil-
lions of examples, the Multi30k dataset is an ex-
tremely small dataset. Consequently, the MMT mod-
els will naturally overfit to the Multi30k dataset and
perform poorly against testing sets that text-only
translation models are typically evaluated against
(Section 4).

Text-only machine translation is a much larger
domain than multimodal machine translation and
many strong models have been developed in the field
(Kocmi et al., 2022). Thus, using a pre-trained text-
only model as a starting point for MMT is a promis-
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ing approach to advance the state of MMT. To demon-
strate this, we incrementally transform a text-only
MT model into an MMT model, resulting in state-
of-the-art performance against the Multi30k dataset
while retaining the performance of the pre-trained
model against text-only test sets.

We use a pre-trained Transformer-based trans-
lation model as our starting point. We evolve this
text-only translation model into an MMT model us-
ing adapters (Houlsby et al., 2019) and gating mech-
anisms such that the model learns how to use vi-
sual information while preserving its original trans-
lation performance. We do this by 1) combining a
strong pre-trained translation model and a pre-trained
vision-language model to create an MMT model, 2)
pre-training the MMT model on a dataset of cap-
tions augmented with informed visual grounding and
machine generated translations along with a dataset
collated from a text-only MT dataset, and 3) fine-
tuning against the Multi30k dataset.

Using this model architecture and training pro-
cess, we achieve high performance against the
Multi30k test sets while retaining high performance
against text-only testing sets (Table 1).

2 Related Works

2.1 Adapting pre-trained models for MMT
Caglayan et al. (2021) converted a translation lan-
guage model into a vision-based translation language
model by pre-training using Conceptual Captions
(Sharma et al., 2018), translating English captions to
German using a translation model, and fine-tuning
using Multi30k.

Futeral et al. (2023) also proposed a model that
adapts a language model into an MMT model by si-
multaneously training against the MMT objective us-
ing the Multi30k dataset and the visually-conditioned
masked language modeling objective using the Con-
ceptual Captions dataset. While they used a visual-
conditioned masked language modeling object, we
use the much simpler training process of directly op-
timizing the output using cross-entropy loss. Further-
more, while they randomly choose words for visual
grounding, we choose vision-based words selected
using an object detection method for our masking.

2.2 Masking for visual grounding
Masking words for visual grounding is a common ap-
proach employed by such works as Wu et al. (2021),

Ive et al. (2019), Caglayan et al. (2019), Wang and
Xiong (2021). We cover a subset of these works.

Ive et al. (2019) masked specific words (am-
biguous, inaccurate, and gender-neutral words) in the
English source text to force the MMT models to use
the visual information to generate target texts. They
show that the additional visual context was helpful
in text generation.

Caglayan et al. (2019) performed masking based
on color deprivation, whole entity masking, and pro-
gressive masking on source texts. However, they
found that training based on masking results in per-
formance degradation on the Multi30k testing sets,
which indicates that the vision information was not
being fully utilized by their models.

Wang and Xiong (2021) performed masking of
source text based on Flickr30k-Entities (Plummer
et al., 2016) that were vision related and used a multi-
task object to train their MMT model, where they
optimized for object-masking loss in addition to the
text generation.

2.3 Gating mechanism for MMT
Similar to our work, Wu et al. (2021), Zhang et al.
(2020), Lin et al. (2020) and Yin et al. (2020) use a
trainable gating mechanism in the context of MMT
to control the fusion between vision and text. How-
ever, our work uses two gating parameters each for
the six adapter layers that we add, totaling 12 gating
parameters, which is considerably fewer than in their
work, which uses two trainable gating matrices of
size 2048× 512 and T × 512 where T is the number
of input text tokens. Furthermore, while the average
of the gating parameters used by Wu et al. (2021)
tended towards 0.0 (consequently weighing vision
information lower) as more training is done, we show
in this work how the use of vision-based masking
allows the training of our gating mechanism to use
more of the vision information.

3 Methods

We take a similar approach that Alayrac et al. (2022)
used to create their generative vision-language model,
Flamingo, while adapting their approach for the
MMT task.

Flamingo is a generative decoder-only vision-
language model created by combining a pre-trained
generative language model and a pre-trained vision
model, where vision and text interactions are mod-
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eled by via gated vision-text cross-attention layers
inserted before each decoder layer. Then, the model
is incrementally converted from using only text infor-
mation to using both vision and text information by
freezing the pre-trained portions of the model. The
gating values are set to 0.0 at the beginning of train-
ing in order that the vision-language model initially
performs equivalently to the language model, and as
training progresses the gating values diverge from 0
via back-propagation and consequence learns to use
vision information gradually.
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Figure 1: Multimodal translation architecture,
where multimodal components are incorporated into
the Transformer translation model introduced by
Vaswani et al. (2017). The parameters in the model
bordered by red are initialized randomly and updated
for training, while the parameters in the pre-trained
vision encoder and the pre-trained Transformer trans-
lation model bordered by black are frozen. The gat-
ing parameters in the vision-text layers are updated
using back-propagation, allowing us to smoothly tran-
sition from a text-only translation model into a multi-
modal translation model.

Analogously, we start from a pre-trained
Transformer-based text-only MT model and a pre-
trained vision model to create an MMT model by
inserting a vision-text cross-attention layer before
each encoder layer. Using trainable gating parame-

ters, we incrementally convert the model from using
only text information to using both vision and text in-
formation to perform translation. We call our model
GRAM (Gating and Residual Adapter-based Model).

While trainable gating parameters have been
used in previous work for MMT (Wu et al., 2021;
Zhang et al., 2020; Lin et al., 2020; Yin et al., 2020),
our work is unique in the much lower number of gat-
ing parameters and in that it allows for the smooth
transition of the model from performing as an MT
model to performing as an MMT model.

Both the Flamingo model and our model were
trained using the next-token prediction task, as is
typical for text-only machine translation. Unlike
Flamingo, which is a decoder-only model, our model
is an encoder-decoder model. We inserted the vision-
text layers before each of the encoder layers only, as
we found it to perform better than inserting vision-
text layers before the decoder layers only or be-
fore both the encoder and decoder layers (Appendix
D.1). Aside from the perceiver resampler module
and the gated vision-text cross attention layers used
in Flamingo model, which we use to convert our
model from an MT model to an MMT model, our
GRAM model follows the original text-only Trans-
former MT model’s hyper-parameters, layers, and
training objectives as closely as possible.

3.1 GRAM model architecture

We start with a pre-trained Transformer translation
model introduced by Vaswani et al. (2017) and add
lightweight multimodal components (Figure 1). We
use a pre-trained vision encoder, CLIP, to encode the
input images (Section 3.1.1). We then link the vision
encodings to the Transformer translation model using
two components, the perceiver resampler (Section
3.1.2) and the vision-text layers (Section 3.1.3). The
vision encodings, which can come from an arbitrary
number of images, are converted into a fixed number
of vision tokens using the perceiver resampler. Then,
interactions between the vision tokens and the text
embeddings are modeled using the vision-text cross-
attention layers. The vision-text layers are incor-
porated into the Transformer layers by interleaving
the vision-text layers and the original self-attention
layers of the Transformer encoder.

In more detail, given an input sequence of text
tokens t = (t1, . . . , tn) and images I = (I1, . . . , Il)
where n and l may vary depending on the number
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of input text tokens and images, the output token
sequence is generated auto-regressively as follows.

The vision encoder maps the images I into vi-
sion encodings v = (v1, . . . , vl) where vi ∈ Re

and e is the size of the image encodings. The vision
input embedding layer maps the vision encodings
v into vision embeddings w = (w1, . . . , wl) where
wi ∈ Rd and d is the size of the text and image em-
beddings. The text input embedding layer maps the
text tokens t to text embeddings x = (x1, . . . , xn)
where xi ∈ Rd. The perceiver resampler remaps the
variable number of image embeddings to a constant
number of vision tokens p = (p1, . . . , pr) where
pi ∈ Rd, using the r learned latent queries.

Then, the encoder, consisting of a sequence of
interleaved vision-text cross-attention layers and en-
coder layers, maps the text embeddings x and vi-
sion tokens p into a sequence of representations
z = (z1, . . . , zn) where zi ∈ Rd. Given z, the
decoder generates the output probabilities for the
next output token in an auto-regressive manner, thus
producing the output token sequence, y1, . . . , ym.

3.1.1 Vision encoder
We use a pre-trained vision-language model, CLIP
(Radford et al., 2021), to encode the input images.
CLIP was trained on 400 million image-text pairs
using a contrastive image-text approach. The vision
encodings produced by CLIP contain rich semantic
information relevant to vision-language tasks, and it
has been shown to perform well on a wide variety of
these tasks. We use the vision encoder in CLIP’s best
performing ViT-L/14@336px model, which outputs
vector encodings of length 768.

3.1.2 Perceiver resampler
The perceiver resampler, used for the Flamingo
model, receives a variable number of vision embed-
dings and outputs a fixed number of vision tokens.
This concept was initially used to map a large number
of inputs to a fixed number of tokens (Jaegle et al.,
2021) and for object detection, where each of the
visual tokens corresponds to an object class (Carion
et al., 2020).

Given the vision embeddings w, let λ =
(λ1, . . . , λr) be the learned latent queries, and
let MHA and FF be the multi-head attention
layer and the feed forward layer, respectively.
Then, the first perceiver resampler layer PR is
PR(λ,w) = λ′ + FF(λ′) where λ′ = λ +

MHA(K=[w,λ], V=[w,λ], Q=λ) and [w,λ] is
the concatenation of the two vectors. Then, the per-
ceiver resampler layers continue with λ←PR(λ,w)
for R layers. The vision tokens p←λ are outputted
by the final perceiver resampler layer.

3.1.3 Vision-text layer
Similar to the Flamingo model, in order to smoothly
train our MMT model to ensure it behaves at the be-
ginning of training like the pre-trained MT model and
behaves at the end of training like an MMT model,
we insert vision-text cross-attention layers before
each of the original Transformer encoder layers and
we use a gating mechanism for each of the vision-text
layers.

Given the vision tokens p output by the per-
ceiver resampler and the input text embeddings x,
let ga and gf be the learnable gating parameters for
the multi-head attention layer MHA and the feed
forward layer FF respectively, with γa = tanh(ga),
γf = tanh(gf ). Then, the first gated cross-attention
layer GCA is GCA(x,λ) = x′ + γf FF(x′)
where x′ = x + γa MHA(K=p, V=p, Q=x).
The gated cross-attention layers then continue with
x←E(GCA(x,λ)) for N layers where E is the orig-
inal Transformer encoder layer following the cross-
attention layer.

Gating parameters are set to 0.0 at the start
of training and so it passes the text embeddings x
through without modification. As training contin-
ues and as more vision information is used, |ga| and
|gf | increases via back-propagation; consequently
|γa| = |tanh(ga)| and |γf | = |tanh(gf )| approaches
1.0, since the tanh function maps the gating parame-
ters ga and gf to be between -1.0 and 1.0

Since the gating parameters initially start at 0.0,
vision information is ignored and the model performs
as well as the text-only Transformer. During the
training process the gating parameters are updated
to gradually incorporate vision information for the
multimodal translation task. The gating parameters
can be seen as a proxy for how much vision informa-
tion is used by the model.

3.1.4 Model hyper-parameters
During training, only the multimodal components
are updated, while the vision encoder and the rest of
the parameters in the text-only Transformer are kept
frozen. For the vision encoder, we use pre-trained
weights from the CLIP vision encoder model and
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ignore CLIP’s text encoder model1. For the text-only
translation components, we use weights from the
pre-trained MT model from FAIR’s WMT19 submis-
sion2. Since our model uses FAIR’s WMT19 MT
model, we use the same byte-pair encoding (BPE)
and vocabulary used by the MT model. Since the
text-only portion of the model is frozen, training
is relatively fast, typically 3 batches/sec using two
Nvidia V100 GPUs where each batch contains 3,584
tokens.

Since we use the FAIR’s WMT19 text-only
Transformer as the starting point, we use those hyper-
parameters for our additional layers unless otherwise
specified. For the perceiver resampler, we use two
layers, i.e., R = 2, as was done for Flamingo. For
both the perceiver resampler and the vision-text cross
attention layers, we use the same parameters as in
the text-only Transformer model, except for the num-
ber of attention heads being 16 and the intermediate
feed-forward layer size being 4,096. The number of
parameters are detailed in Appendix A).

3.2 Training
Beginning with the pre-trained text-only translation
model, we add vision embedding layers and gated
adapter layers that to the translation model to create
a multimodal translation model (Section 3.1). Then,
setting the initial gating values to 0.0, which allows
our MMT model to perform equivalently to the MT
model, we freeze the text-only parameters and train
the additional vision-text parameters. We first pre-
train the vision-text parameters of our model (Section
3.2.1) and then fine-tune the vision-text parameters
using the Multi30k dataset (Section 3.2.2). During
training, the gating value diverge from 0.0 as more
vision information gets used by the model.

3.2.1 Pre-training
The intent of the pre-training step is to force the
model to use contextually relevant image informa-
tion by masking vision related words in the source
sentence while performing the translation task. We
pre-train our model on a dataset collated using vision-
based masking of source sentences that we call the
CR dataset.

First, we translate 2,878,999 of the English
captions in the Conceptual Captions (CC) dataset

(Sharma et al., 2018) that had images available to
German using FAIR’s WMT19 translation model,
and then perform vision-based masking on the En-
glish captions.

For vision-based masking, we create a list of
vision related phrases, or topic phrases, by using the
VinVL object detector (Zhang et al., 2021) against
the CC images. VinVL is able to detect 1,848 object
classes and 524 attribute classes, resulting in a much
richer possible vocabulary than other object detec-
tors. With relatively high thresholds of 0.8 for object
classes and 0.7 for attribute classes, we create a list
of 7,494 “attribute object” combinations, such
as “red car”.

Then, for each English-German sentence pair,
we search for topic phrases in the English sentence.
For each topic phrase we find, we replaced it with
the <unk> token (as we are restricted to using tokens
present in the pre-trained FAIR WMT19 model, the
<unk> token is the closest available token to a mask
token). This results in an MMT dataset of 2,663,331
(masked source text, target text, image) triplets.

In addition, we also concatenate to the CR
dataset 2,878,999 (<unk>, target text, image) triplets
created from each of the captions in the CC dataset
to further force the usage of vision information to
generate text.

Furthermore, so that the model does not over-
fit to inputs that always contain image information
while still maintaining the capacity to translate com-
plex sentences, we concatenate to the CR dataset
1,183,301 (source text, target text, ∅) triplets created
from the RAPID 2019 (Kocmi et al., 2022) dataset.

We train our GRAM model using the typical
cross-entropy loss for machine translation. The op-
timization details for the pre-training step are de-
scribed in Appendix C.1.

3.2.2 Training against Multi30k
Fine-tuning. We use the same vision-based masking
described in Section 3.2.1 for the source sentences in
the Multi30k training set, which resulted in 29,000
masked source text, target text, and image triplets.
We refer to this resulting dataset as M30k. Since
the Multi30k dataset contains only 29,000 examples,
fine-tuning after the above pre-training step resulted
in much better performance compared to directly

1 See https://github.com/openai/CLIP to download weights.
2 The weights are from the transformer.wmt19.de-en single model located in the pytorch/fairseq torch hub. See
https://github.com/facebookresearch/fairseq for details.
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training against the M30k dataset (Section 4).
Note that we train our model using a concate-

nation of the Multi30k training set with images and
the Multi30k training set without images. This is
to account for evaluation artifacts where the model
performance when given both text and image input is
higher than model performance with only text input,
but the result is only due to the model overfitting on
training data that only has (source text, target text,
image) triplets and no examples of (source text, tar-
get text, ∅) triplets. We also explore fine-tuning of
three other dataset variations including the original
unmasked Multi30k dataset, which we discuss in Ap-
pendix E. The optimization details are described in
Appendix C.2.

Direct training. We also directly training us-
ing the above described Multi30k dataset without the
pre-training step for comparison. Due to its small
size, we also explored directly training against the
Multi30k dataset using smaller perceiver resampler
and vision-text layers, and found performance to be
similar (Appendix D.2). Thus, we show performance
results using the same model sizes.

4 Results and Discussion

We use the evaluation framework proposed by Vi-
jayan et al. (2024), where they argued that MMT
models should be evaluated by measuring both 1)
their use of visual information to aid in the trans-
lation task and 2) their ability to translate complex
sentences as is done for text-only machine transla-
tion.

We evaluate model performances against 1) the
CoMMuTE (Futeral et al., 2023) test set, 2) the
Multi30k (Elliott et al., 2016) test sets, and 3) the
WMT news translation task (Kocmi et al., 2022) test
sets (newstest) using CoMMuTE score and BLEU4
calculated using SacreBLEU (Post, 2018).

The main evaluation results are shown in Ta-
ble 1 and two examples from the CoMMuTE test
dataset are shown in Figure 2. The label FAIR-
WMT19 shows our model’s performance before our
training process, i.e., the original text-only Trans-
former’s performance. MCR is our GRAM model pre-
trained on the CR dataset (Section 3.2.1). MCR,M30k
is our model pre-trained on CR and fine-tuned on
Multi30k (Section 3.2.2). MM30k is our model trained
on Multi30k without the pre-training step (Section
3.2.2). We compare against the Gated Fusion and

RMMT models (Wu et al., 2021), which are both
trained solely on the Multi30k dataset, as well as
the reported performance of VGAMT (Futeral et al.,
2023), which was introduced along with the CoM-
MuTE test set.

Label CoMMuTE Multi30k newstest

2016 2017 2019 2020
Score BLEU4

Multimodal inputs
MCR 0.57 39.2 36.8

MCR,M30k 0.61 46.5 43.6
MM30k 0.50 45.9 42.7

Gated Fusion 0.50 42.0 33.6
VGAMT 0.59 43.3 38.3

Text inputs only
FAIR-WMT19 0.50 40.7 37.7 40.6 36.2

MCR 0.50 40.2 37.8 40.6 35.4
MCR,M30k 0.50 46.4 42.9 42.7 36.2
MM30k 0.50 45.9 42.8 36.1 26.8
RMMT 0.50 41.5 33.0 1.3 0.8

Non-matching inputs
MCR 0.51 39.0 36.7 42.1 35.6

MCR,M30k 0.51 46.6 43.2 42.0 36.2
MM30k 0.50 45.9 42.8 36.1 26.8

Gated Fusion 0.50 42.0 33.6 1.3 0.6

Table 1: Performance results for English to German
(en-de) translations. The label FAIR-WMT19 shows
our model’s performance before our training process,
i.e., the original text-only Transformer’s performance.
MCR is our model pre-trained on the CR dataset;
MCR,M30k is our model pre-trained on CR and fine-
tuned on Multi30k; MM30k is our model trained on
Multi30k without the pre-training step; Gated Fusion
and RMMT are our evaluations of the models pub-
lished by Wu et al. (2021); VGAMT is the reported
performance of the model published by Futeral et al.
(2023). “Text inputs only” shows performance of
when only the source text is given. “Multimodal in-
puts” shows the performances when both source text
and image is used as input. “Non-matching inputs”
shows performance when source text along with a
random image is used as input.

4.1 Pre-training using vision-based masking

Since we begin with a performant MT model, we
expect that our model will retain the high text-only
performance of the MT model while transforming
into an MMT model. In order to ensure this, we fol-

Proceedings of the 16th Conference of the Association for Machine Translation in the Americas,

Chicago, USA, September 30 - October 2, 2024. Volume 1: Research Papers



lowed the work by Alayrac et al. (2022), where they
incrementally transformed a language model into a
vision-language model which retaining text-only per-
formance, both in terms of the design of our model
architecture and our training process (Section 3).

Input: Get away from the float!

Ref: Weg vom Schwimmer! Ref: Weg vom Karnevalswagen!
Output: Weg vom Schwimmer! Output: Weg vom Festwagen!

Input: A biker on the road.

Ref: Ein biker auf der Straße. Ref: Ein Radfahrer auf
der Straße.

Output: Ein Motorradfahrer auf
der Straße.

Output: Ein Radfahrer auf
der Straße.

Figure 2: Examples from the CoMMuTE test dataset
of our model (the MCR,M30k model from Table 1) re-
solving ambiguous input text when given contextual
images. The ambiguous words in the input sentences
and the resolved ambiguities in the output and refer-
ence sentences are in italics.

Similar to Alayrac et al. (2022), we found that
a pre-training step is necessary to successfully trans-
form the model without performance loss. When
we pre-train our model and then fine-tune against
the Multi30k dataset, this results in state-of-the-art
performance against the Multi30k test sets and CoM-
MuTE score (Table 1, label MCR,M30k), as well as
little to no degradation of performance against the
newstest datasets.

However, when we train against the Multi30k
dataset without pre-training, we achieve good per-
formance in the Multi30k test sets but only 0.5 for
the CoMMuTE score (Table 1, MM30k), which indi-
cates that image information is not being used by the
model, and degraded performance on the newstest
datasets (e.g., 36.2 BLEU4 on newstest2020 for the
text-only FAIR-WMT19 model compared to 26.8
BLEU4 for MM30k).

While our pre-training step does degrade perfor-
mance slightly on the newstest datasets compared to
the original text-only Transformer (e.g., 36.2 BLEU4

on newstest2020 for the text-only FAIR-WMT19
model compared to 35.4 BLEU4 for the MCR model),
we note that our pre-training process is relatively
rudimentary (Section 3.2.1) while FAIR-WMT19 is
a model that was fine-tuned specifically for the news
translation task using the news commentary dataset
(Ng et al., 2019). Interestingly, and contrary to ex-
pectations, fine-tuning on the Multi30k dataset after
pre-training improves performance against the new-
stest2019 and newstest2020 datasets, which might
indicate that the FAIR-WMT19 model is overfitted
to the news commentary dataset.

4.2 Training against Multi30k without
pre-training

Due to the small size of the Multi30k training set, it is
expected that models trained against Multi30k with-
out pre-training would perform badly against testing
sets such as the newstest datasets. For comparison,
in the text-only translation domain, MT models such
as FAIR-WMT19 are trained on millions of exam-
ples and then evaluated against the newstest dataset.
We evaluated the Gated Fusion and RMMT MMT
models, introduced by Wu et al. (2021) and trained
solely on Multi30k, against the newstest datasets. As
expected, there is a drastic drop in performance when
the models are evaluated against the newstest datasets
(Table 1).

For the Gated Fusion model, we evaluate by
associating random images to the source text and
evaluate against the newstest datasets. Since the asso-
ciated images are not necessarily related to the source
text, this can be considered non-matching evaluation.
For the RMMT model, which takes as input only
the source text, and uses the source text to perform
image retrieval for the translation task, we simply
use the source text to evaluate against the newstest
datasets. As shown in Table 1, while the models per-
form well against the Multi30k test sets, they perform
very badly against the newstest datasets.

In contrast, since our model uses a performant
text-only MT model as the starting point, our model
performs well when given non-matching inputs while
still having high performance against CoMMuTE and
the Multi30k testsets.

4.3 Text-only translations in Multi30k
One point to note when evaluating against the
Multi30k test sets is that most of its captions do not
require the image in order to be correctly translated
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due to the captions being unambiguous. Specifically,
Futeral et al. (2023) analyzed the Multi30k Test2016
and Test2017 and showed that only 2.1% and 2.0%,
respectively, of the examples in the test sets have am-
biguous source sentences that can be resolved using
the associated images. Thus, we expect that correct
translations can be achieved with the text alone with-
out the associated images for the vast majority of the
remaining examples. Fitting our expectations, we see
that state-of-the-art performance on the Multi30k test
sets can be achieved without making use of image
information at all (Table 1, “Text inputs only” rows).

Since high performance can be achieved on the
Multi30k test sets without the use of contextual im-
ages, it is important that an evaluation framework
such as the CoMMuTE evaluation framework that
can confirm that visual information is being used to
aid in the translation task should always be used in
conjunction with the Multi30k test sets when evalu-
ating MMT models.

4.4 Gating parameters

As in the Flamingo model, our model uses gating
parameters to transform from a model that uses only
text information to a model that uses both vision and
text information to produce outputs. The gating pa-
rameters, explained in Section 3.1, can be viewed as
how much the model weighs the image information
compared to the text information. Since the gf can
potentially solely use text information in the training
set, the ga values should be interpreted as the main
proxies that indicate how much image information
influences the output of the model.

Gating parameters have been used previously
for MMT, with Wu et al. (2021) having explored in
detail how gating parameters that weighed vision and
text information are affected in MMT models. For
their model, as training progressed, the average value
gating parameters tended towards 0.0, indicating that
their model learned to not use image information as
training progressed.

In contrast, our gating parameters did not trend
towards 0.0 as training progressed (Figure 3), primar-
ily due to the pre-training approach that we employ
(as indicated by the difference in the progress of the
gating values in pre-training vs. direct training in

Figure 3). However, unlike in the Flamingo model,
where the maximum of the attention gating values
|γa| = |tanh ga| reaches around 0.8 towards the end
of training, and the maximum of the feed-forward
gating values |γf | = |tanh gf | reaches 0.95, our gat-
ing values reach 0.035 for |γa| and 0.2 for |γf |. This
suggests that image information is not necessarily as
important for the multimodal translation task com-
pared to the Flamingo model, which can perform a
wide variety of tasks including visual question an-
swering. On the other hand, improvements in the
training datasets and processes may increase the gat-
ing values to be closer to that of the Flamingo model.

5 Conclusion

Text-only machine translation is a much larger do-
main than multimodal machine translation and many
strong models have been developed in the field.
The approach of transforming a language model
into a vision-language model was successful demon-
strated via Flamingo, and thus have a high probabil-
ity of working well in the similar task of machine
translation. Following this idea, we designed an
MMT model that began as a performant text-only
MT model and incrementally transformed it into
a MMT model by 1) pre-training using informed
vision-based masking of the source text and 2) fine-
tuning on Multi30k. We achieved a state-of-the-art
performance on the Multi30k 2016 test set of 46.5
BLEU4 score via this approach while retaining high
performance against CoMMuTE and the newstest
datasets. There are many approaches for improving
our model including the training process, where the
pre-training dataset can be improved using more text-
only datasets or augmenting text-only datasets using
image retrieval, and model architecture, where tech-
niques such as VMLM can be used to further enforce
the use of image information in the model.
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a) Pre-training.
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b) Fine-tuning.
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c) Direct training.
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Figure 3: Gating values during a) pre-training over
the CR dataset, b) fine-tuning over the Multi30k
dataset, and c) directly training on the Multi30k
dataset. Layer 1 is the vision-text adapter layer that
is closest to the input. Note that some of the gating
values overlap in some of the plots.
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A Number of parameters in the GRAM
model

The number of parameters in the original text-only
Transformer is 269,746,176. While there are also
304,293,888 parameters in the ViT-L/14@336px
CLIP vision encoder model that we use, the vision en-
coder is not used during training since we cache the
image encodings to file. We add 68,051,980 parame-
ters via the perceiver resampler and the six vision-text
layers, which are that parameters that we optimize
over. Thus, the entire model contains 337,798,156
parameters. If we include the vision encoder as well,
then the entire model contains 642,092,044 parame-
ters.

B Datasets

Dataset Only text With image Total

CR 1,183,301 5,542,330 7,725,631
M30k 29,000 29,000 58,000

Table 2: Training datasets used in this work. CR is
the augmented Conceptual Captions and RAPID2019
datasets described in Section 3.2.1 that we use for pre-
training. M30k is the augmented Multi30k dataset
used for fine-tuning and is described in Section 3.2.2.
“Only text” is the number of examples in the dataset
with no associated image. “With image” is the num-
ber of examples with one or more associated images.
“Total” is the total number of examples in the dataset.

C Optimization details

C.1 Pre-training
We use the same optimization hyper-parameters as
FAIR’s WMT19 model (Ng et al., 2019) with Fairseq
(Ott et al., 2019) as the training and evaluation frame-
work. For pre-training, we use the Adam optimizer
with β1 = 0.9, β2 = 0.98, with a warm-up phase of
4,000 steps where we linearly increase the learning
rate from 10−7 to 0.0007. Each training batch con-
tains 3,584 source/target tokens and we train for 20
epochs. We use the checkpoint from the last epoch
for fine-tuning.

C.2 Training against Multi30k
Fine-tuning. When we perform fine-tuning, we
lower the learning rate to 0.0002 and train for 20

epochs. Since the Multi30k dataset is small, we use
a warm-up phase of 240 steps where we linearly in-
crease the learning rate from 10−7 to 0.0002. We
select the checkpoint that performs best against the
Multi30k validation set with respect to BLEU4 score.

Direct training. When we directly train, we set
the learning rate to 0.0007 and train for 20 epochs
using a warm-up phase of 240 steps.

D Model variations

D.1 Where to insert the vision-text adapter
layers

For the GRAM model, vision-text cross-attention
adapter layers can be added before each of the lay-
ers in the Transformer model. Since we modify an
encoder-decoder Transformer in order to transform
it from an MT model to an MMT model, there are
three options for where we add the vision-text layers.
One is to insert the vision-text layers before each
layer in the Transformer encoder (MCR). Second is
to insert the vision-text layers before each layer in
the Transformer decoder (DOCR). Third is to insert
the vision-text layers before each layer in both the
Transformer encoder and decoder (EDCR).

We compare the performance of the three op-
tions, the results which are in Table 3. We selected
the MCR for fine-tuning since the CoMMuTE score
was 0.57 compared to CoMMuTE score of 0.55 for
DOCR and 0.52 for EDCR.

D.2 Smaller model variations when directly
training against Multi30k

We also explored smaller models when directly train-
ing against Multi30k due to the small size of the
dataset. For the first smaller model, we set the num-
ber of attention heads to 8 and intermediate feed-
forward layer size to 2,048 of the vision-text cross-
attention layers (SM30ko and SM30k). For the second
smaller model, we set the number of attention heads
to 4 and intermediate feed-forward layer size to 1,024
of the vision-text cross-attention layers (TM30ko and
TM30k). As shown in Table 4, we found performance
to be similar.
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Label PT FT CoMMuTE Multi30k newstest

2016 2017 coco 2018 2019 2020

Score BLEU4

Multimodal inputs
MCR CR 0.57 35.08 39.17 36.79 31.45 35.72
DOCR CR 0.55 32.59 41.16 37.54 33.46 36.64
EDCR CR 0.52 34.14 39.56 37.45 31.34 35.94

Text inputs only
FAIR-WMT19 0.50 32.63 40.66 37.70 33.97 36.45 40.62 36.20

MCR CR 0.50 31.98 40.22 37.75 32.81 36.41 40.56 35.35
DOCR CR 0.50 30.01 40.85 37.19 33.36 35.84 38.36 33.79
EDCR CR 0.50 30.61 40.03 37.80 32.34 36.11 40.18 34.15

Non-matching inputs
MCR CR 0.51 30.37 39.01 36.73 32.10 35.35 42.09 35.62
DOCR CR 0.50 33.07 41.02 37.72 33.54 36.59 42.17 36.20
EDCR CR 0.50 34.02 39.67 37.44 31.19 35.74 40.84 34.95

Table 3: Performance results of our model under various pre-training and fine-tuning conditions for English
to German (en-de) translations. The label FAIR-WMT19 shows our model’s performance before our training
process, i.e., the original text-only Transformer’s performance. MCR is our model pre-trained on the CR
dataset. DOCR and EDCR are variations where the vision-text layers are inserted before the decoder layers
only (DOCR) and inserted before both the encoder and decoder layers (EDCR), while the MCR model is the
variation where the vision-text layers are inserted before the encoder layers only. “Text inputs only” shows
the performances of our model when only the source text is given and a zero vector is given as the vision
encoding. “Multimodal inputs” shows the performances of our model when both source text and image is
used as input. The model is evaluated against the CoMMuTE (Futeral et al., 2023) testing set, the Multi30k
(Elliott et al., 2016) sets, and the newstest (Kocmi et al., 2022) testing sets using BLEU4, calculated using
SacreBLEU (Post, 2018). Both CoMMuTE score and BLEU4 scores against the CoMMuTE test dataset are
shown for completeness; since the CoMMuTE sentences are very short, the BLEU4 score for CoMMuTE
should be weighed lightly. PT indicates pre-training and FT indicates fine-tuning. The datasets used for
pre-training and fine-tuning are described in Table 2.

E Dataset variations

We explore four variations of our model where
we fine-tune against four datasets: M30ko, M30k,
M30ko/ncv14, and M30k/ncv14 (Table 6). The re-
sults are shown in Table 6.

M30ko is the original Multi30k dataset. How-
ever, we train our model using a concatenation of the
Multi30k training set with images and the Multi30k
training set without images. This is to account for
evaluation artifacts where the model performance
when given both text and image input is higher than
model performance with only text input, but the re-
sult is only due to the model overfitting on training
data that only has (source text, target text, image)

triplets and no examples of (source text, target text,
∅) triplets.

M30k is the Multi30k dataset with vision-based
masking of the source sentences as done in Section
3.2.1. For each (source text, target text, image), we
search for topic phrases (see Section 3.2.1) in the
source sentence and replace each instance of the topic
phrase with the <unk> token. We also concatenate the
original Multi30k dataset with the (source text, target
text, image(s)) triplets and the Multi30k dataset with
images removed (source text, target text, ∅) to this.

M30ko/ncv14 and M30k/ncv14 are the concate-
nation of M30ko and M30k, respectively, to the news
commentary v14 dataset. The news commentary
v14, a news translation dataset comprising X sen-
tence pairs, has been used by Ng et al. (2019) in their
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Label PT FT CoMMuTE Multi30k newstest

2016 2017 coco 2018 2019 2020

Score BLEU4

Multimodal inputs
MM30ko M30ko 0.50 31.99 45.52 42.20 37.51 39.30
MM30k M30k 0.50 27.12 45.93 42.76 37.64 38.82
SM30ko M30ko 0.50 33.61 46.41 42.29 37.83 39.71
SM30k M30k 0.50 29.70 46.09 41.61 38.58 38.98
TM30ko M30ko 0.50 33.06 46.74 42.44 38.06 39.32
TM30k M30k 0.50 27.12 45.93 42.76 37.64 38.82

Text inputs only
MM30ko M30ko 0.50 31.99 45.52 42.20 37.51 39.30 37.77 28.30
MM30k M30k 0.50 27.12 45.93 42.76 37.64 38.82 36.09 26.81
SM30ko M30ko 0.50 33.61 46.41 42.29 37.83 39.71 37.75 27.59
SM30k M30k 0.50 29.70 46.09 41.61 38.58 38.98 36.71 27.89
TM30ko M30ko 0.50 33.06 46.74 42.44 38.06 39.32 37.09 28.12
TM30k M30k 0.50 29.38 46.21 42.20 38.08 38.88 37.37 28.21

Non-matching inputs
MM30ko M30ko 0.50 31.99 45.52 42.20 37.51 39.30 37.77 28.30
MM30k M30k 0.50 27.12 45.93 42.76 37.64 38.82 36.09 26.81
SM30ko M30ko 0.50 33.61 46.41 42.29 37.83 39.71 37.75 27.59
SM30k M30k 0.50 29.70 46.09 41.61 38.58 38.98 36.71 27.89
TM30ko M30ko 0.50 33.06 46.74 42.44 38.06 39.32 37.09 28.12
TM30k M30k 0.50 29.38 46.21 42.20 38.08 38.88 37.37 28.21

Table 4: Performance results of our model under various pre-training and fine-tuning conditions for English
to German (en-de) translations. The label FAIR-WMT19 shows our model’s performance before our training
process, i.e., the original text-only Transformer’s performance. MCR is our model pre-trained on the CR
dataset; MCR,M30k is our model pre-trained on CR and fine-tuned on Multi30k; MM30k is our model trained
on Multi30k without the pre-training step. SM30k and TM30k are smaller variations of the MM30k model. The
datasets used for pre-training and fine-tuning are described in Table 2.

fine-tuning step in order to perform well against the
newstest testing sets.

Optimization details for the dataset variants.
When we perform fine-tuning, we lower the learning
rate to 0.0002 and train for 20 epochs. Since the
Multi30k dataset is small, for M30ko and M30k we
use a warm-up phase of 240 steps where we linearly
increase the learning rate from 10−7 to 0.0002. We
select the checkpoint that performs best against the
Multi30k validation set with respect to BLEU4 score.
For M30ko/ncv14 and M30k/ncv14, we use a warm-
up phase of 1200 steps where we linearly increase
the learning rate from 10−7 to 0.0002. We create a
validation set from the concatenation of the WMT19
validation set and the Multi30k validation set and
select the checkpoint that performs best against the

validation set with respect to BLEU4 score.

E.1 Simultaneously fine-tuning Multi30k and a
text-only dataset

Since the pre-training step does degrade performance
on the newstest datasets (e.g., 36.2 BLEU4 on new-
stest2020 for the text-only FAIR-WMT19 model
compared to 35.4 BLEU4 for the MCR model), and
fine-tuning against Multi30k alone only slightly im-
proves this performance, we explore how to fine-tune
our model such that we preserve the performance on
the Multi30k test sets and improve the performance
on the newstest datasets.

Ng et al. (2019) used the news commentary
dataset (Kocmi et al., 2022), a news translation
dataset, as the final fine-tuning step in order to
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improve performance against the newstest datasets.
Similarly, we perform fine-tuning on a concatenation
of the Multi30k and news commentary v14 dataset,
which resulted in improvements in both the newstest
datasets and the Multi30k test sets (e.g., 35.4 BLEU4
on newstest2020 for the MCR model compared to
36.2 BLEU4 for the MCR,M30k/ncv14 model).

E.2 Fine-tuning without vision-based masking
of source text

Since most of the captions in Multi30k do not require
the image in order to be correctly translated due to
the captions being unambiguous (Futeral et al., 2023),
MMT models tend to ignore visual information dur-
ing the training process (Caglayan et al., 2019; Wu
et al., 2021). We are able to quantitatively see this
when directly training against the original Multi30k

dataset (for MM30ko , the CoMMuTE score is 0.5).
So we ask ourselves how we may preserve

CoMMuTE performance along with newstest and
Multi30k test performances. Since vision-based
masking of source sentences was used to improve
performance during the pre-training stage, we ex-
plore whether it can improve performance during the
fine-tuning stage as well.

Thus, we create the M30k and the M30k/ncv14
datasets as described above. The M30k contains
masked source sentences from the Multi30k dataset
and the M30k/ncv14 dataset is a concatenation of
the M30k and the text-only news commentary v14
datasets. We see that fine-tuning using these datasets
preserve the CoMMuTE score much better than when
not using informed masking (Table 6) while only
slightly decreasing BLEU4 scores.
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Label PT FT CoMMuTE Multi30k newstest

2016 2017 coco 2018 2019 2020

Score BLEU4

Multimodal inputs
MCR CR 0.57 35.08 39.17 36.79 31.45 35.72

MCR,M30ko CR M30ko 0.58 33.03 47.11 43.75 39.48 40.94
MCR,M30k CR M30k 0.61 35.03 46.50 43.57 39.10 40.40

MCR,M30ko/ncv14 CR M30ko/ncv14 0.58 33.99 47.38 42.95 39.83 40.92
MCR,M30k/ncv14 CR M30k/ncv14 0.63 34.88 46.57 43.58 39.78 41.03

MM30ko M30ko 0.50 31.99 45.52 42.20 37.51 39.30
MM30k M30k 0.50 27.12 45.93 42.76 37.64 38.82

Text inputs only
FAIR-WMT19 0.50 32.63 40.66 37.70 33.97 36.45 40.62 36.20

MCR CR 0.50 31.98 40.22 37.75 32.81 36.41 40.56 35.35
MCR,M30ko CR M30ko 0.50 31.25 47.10 43.08 38.48 40.82 42.64 36.00
MCR,M30k CR M30k 0.50 32.11 46.43 42.88 37.88 40.35 42.66 36.22

MCR,M30ko/ncv14 CR M30ko/ncv14 0.50 31.17 47.40 43.30 38.86 40.70 41.80 36.44
MCR,M30k/ncv14 CR M30k/ncv14 0.50 32.95 46.65 43.06 38.95 40.73 41.86 36.46

MM30ko M30ko 0.50 31.99 45.52 42.20 37.51 39.30 37.77 28.30
MM30k M30k 0.50 27.12 45.93 42.76 37.64 38.82 36.09 26.81

Non-matching inputs
MCR CR 0.51 30.37 39.01 36.73 32.10 35.35 42.09 35.62

MCR,M30ko CR M30ko 0.52 32.17 47.08 42.97 38.55 41.12 42.31 36.12
MCR,M30k CR M30k 0.51 31.22 46.56 43.19 37.94 40.75 42.04 36.18

MCR,M30ko/ncv14 CR M30ko/ncv14 0.50 29.39 47.24 43.44 39.48 41.11 41.82 36.52
MCR,M30k/ncv14 CR M30k/ncv14 0.51 31.69 46.37 43.06 38.90 40.72 41.78 36.27

MM30ko M30ko 0.50 31.99 45.52 42.20 37.51 39.30 37.77 28.30
MM30k M30k 0.50 27.12 45.93 42.76 37.64 38.82 36.09 26.81

Table 6: Performance results of our model under various pre-training and fine-tuning conditions for English
to German (en-de) translations. The label FAIR-WMT19 shows our model’s performance before our training
process, i.e., the original text-only Transformer’s performance. MCR is our model pre-trained on the CR
dataset; MCR,M30k is our model pre-trained on CR and fine-tuned on Multi30k; MM30k is our model trained
on Multi30k without the pre-training step. The datasets used for pre-training and fine-tuning are described in
Table 2.
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Abstract

The challenge of visual grounding and masking in multimodal machine translation (MMT) systems has en-
couraged varying approaches to the detection and selection of visually-grounded text tokens for masking. We
introduce new methods for the detection of visually and contextually relevant (concrete) tokens from source
sentences, including detection with natural language processing (NLP), detection with object detection, and
a joint detection-verification technique. We also introduce new methods for selection of detected tokens,
including shortest n tokens, longest n tokens, and all detected concrete tokens. We utilize the GRAM MMT
architecture to train models against synthetically collated multimodal datasets of source images with masked
sentences, showing performance improvements and improved usage of visual context during translation tasks
over the baseline model.

1 Introduction

The challenge of multimodal machine translation
(MMT) is to design a system that automatically
translates text from one language to another while
utilizing other modalities (e.g., image, video, au-
dio) as inputs to assist in translation (Caglayan et al.,
2016).

Prior work has shown that translation ambigui-
ties and missing textual information can be supplied
by contextually-relevant images, aiding in multilin-
gual translation (Lala and Specia, 2018; Caglayan
et al., 2019; Wu et al., 2021). For example, the noun
“bank” is ambiguous and contextually dependent
in English (“financial institution” or “river edge”)
but unambiguous in French (“banque” or “rive”)
(Futeral et al., 2023). The hypothesis for MMT re-
search is that these translation ambiguities can be
resolved with the inclusion of image context.

In practice, not every sentence has semantic
ambiguities, missing information, or relevant visual
context; it is therefore beneficial to ensure that am-
biguous text is visually and contextually relevant to
an associated image (Zhou et al., 2018).

To enforce reliance on image context for trans-
lation tasks, some MMT models mask tokens from
text inputs (Caglayan et al., 2019; Sato et al., 2023).
While most early masking iterations randomly se-
lected tokens for masking, more recent efforts have
sought to mask tokens based on contextual relevance
to a given image (Tan and Bansal, 2020), increasing
the usefulness of the image in resolving ambiguity.
Still, those methods tend to ignore deterministic se-
lection of relevant tokens, opting to randomly select
from a pool of viable tokens.

While these approaches have displayed per-
formance improvements over text-only and random

* Now doing business as Booz Allen Hamilton Corporation.
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masking models, these methods generally do not
take into account the relevance of a masked token.
Therefore, we hypothesize that more intentional se-
lection and masking of concrete (i.e., visually and
contextually relevant) text tokens will improve vi-
sual grounding and increase model usage of multi-
modal context.

In order to select visually and contextually rel-
evant tokens, we explore a combination of natural
language processing (NLP) techniques and object
detection models and examine deterministic meth-
ods for token selection from the set of available de-
tections.

Using these techniques, we collate multimodal
datasets based on the Multi30k dataset (Elliott et al.,
2016); the resulting datasets are triplets of source
sentences with masked concrete tokens, unmasked
target sentences, and associated images.

When masking concrete text tokens from
source sentences, we find improvements in both us-
age of visual information in translation and in per-
formance on evaluation challenges, including CoM-
MuTE scores of up to 0.67 and BLEU scores of up
to 46.2.

2 Related Works

2.1 Masking for Visual Grounding
In a text-only modality, Devlin et al. (2019) ran-
domly masked text tokens during pre-training of
a bidirectional transformer encoder-decoder and
found performance improvements against other text-
only models.

Zhou et al. (2018) utilized jointly-encoded un-
masked text and image embeddings to visually
ground entire source sentences to images. Using a
visual-text attention mechanism on the embeddings,
they extracted words that shared semantic context
with the images.

Ive et al. (2019) combined these approaches,
randomly and manually masking ambiguous and
gender-neutral words from source texts to force their
MMT model to utilize visual information on evalu-
ation tasks. This work showed that the model was
able to use image context to recover from missing,
inaccurate, or ambiguous textual context.

Caglayan et al. (2019) used image descriptions
from the Flicker30k-Entities dataset (Plummer et al.,
2015) to dynamically mask “visually depictable en-
tities” and color descriptors from source sentences,

but noted a degradation in performance on the
Multi30k test sets (Elliott et al., 2016). In contrast,
Wang and Xiong (2021) found that masking irrele-
vant objects improved performance on MMT eval-
uation tasks, suggesting that state-of-the-art MMT
models are ineffectively utilizing visual information.

A meta-analysis by Wu et al. (2021) found
that many reported improvements in MMT perfor-
mance are the result of regularization effects, not
model interpolation of multimodal features; simi-
larly, Zhuang et al. (2023) found that while visual
grounding can improve performance in word learn-
ing, these improvements are only marginal. How-
ever, they also found that training sets with less tex-
tual information and fewer direct co-occurrences of
visual words more effectively utilize visual informa-
tion, suggesting that the relationship between text
and image context is still viable.

2.2 Token Selection for Visual Grounding

In practice, many sentences have more than one vi-
sually grounded token; in these cases, available to-
kens must be dynamically selected for masking. The
standard method is to randomly select viable to-
kens (Devlin et al., 2019); however, recent work in
masked language modeling (MLM) has shown that
informed selection of masked tokens may improve
performance (Sato et al., 2023).

Other work has given consideration to the
length of source segments in text masking (Xiao
et al., 2023) and to the number of tokens selected
(Joshi et al., 2020), but little work has been done
to select tokens deterministically (e.g., by token
length).

3 Approach

We perform improved visual grounding by detect-
ing concrete tokens in source sentences. We explore
three detection techniques to identify concrete text
tokens (Section 3.1) and four selection techniques
to appropriately select the identified concrete text to-
kens (Section 3.2.1). We then collate permutations
of synthetic MMT datasets by masking the selected
concrete tokens from source sentences and aligning
each sentence with its original dataset image pair.
We then train an MMT model (Section 3.3) on these
datasets, expanding on work by Vijayan et al. (2024)
and Caglayan et al. (2019).
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SRC: A girl in sunglasses walks by a red car.

DT1: girl, red car, sunglasses, girl

DT2: sunglasses, A girl

DT3: girl, red car, sunglasses, girl

MSK: A girl in <unk> walks by a red car.

SRC: A construction worker fits metal pipes together.

DT1: construction worker, worker, pipes

DT2: construction worker, worker, construction, pipes

DT3: construction worker, worker, pipes

MSK: A <unk> <unk> fits metal pipes together.

SRC: Young boy kicks a red and white soccer ball on a grassy field.

DT1: field, young boy, ball, young, white soccer ball, boy, grassy field

DT2: soccer, field, young boy, grassy field, young, boy, white soccer ball, ball

DT3: field, young boy, ball, young, white soccer ball, boy, grassy field

MSK: Young boy kicks a red and <unk> <unk> <unk> on a grassy field.

Figure 1: Multi30k source pairs (image, SRC) with results from each detection technique (DT) and an exam-
ple masked source text (MSK). DT1 represents the NLTK technique; DT2 represents the MDETR Detection
technique; DT3 represents the Joint Detection technique. The masked sentence MSK represents a possible
masked sentence based on the bold tokens in the DT3 detections.

3.1 Detection of Concrete Tokens

As Caglayan et al. (2019) found, masking visu-
ally relevant objects from a source text can force
the model to utilize image context to fill in the
artificially-created gap in lexical/semantic under-
standing. We hypothesize that for a given text-image
pair, the masking of text tokens that are directly rel-
evant to the image (i.e., “concrete” tokens), will im-
prove visual grounding, increasing model correla-
tion of image inputs during downstream translation
tasks.

We present three techniques for detection of
concrete tokens: NLP with NLTK (Section 3.1.1),
object detection with MDETR (Section 3.1.2), and
joint NLTK/MDETR detection and grounding (Sec-
tion 3.1.3). While techniques one and two respec-
tively use text and image context, method three
uses contextual information from both modalities
to make decisions about which text tokens are con-
crete.

3.1.1 Detection with NLTK
The first concrete token detection approach is to
parse sentences for nouns and noun phrases that are
likely to represent visual context. By masking to-

kens that are critical to comprehension and transla-
tion of the text, we can encourage the model to learn
with visual context.

The Natural Language Toolkit (NLTK) (Loper
and Bird, 2002) includes the WordNet corpus (Fell-
baum and Miller, 1998), an English-language lex-
ical database that provides structured relationships
between cognitive synonyms (“synsets”) for nouns,
verbs, adjectives, and adverbs. Specifically, Word-
Net defines a directed acyclic graph (DAG) for each
of these parts of speech (POS), containing syn-
onyms, troponyms, antonyms, and meronyms (Fig-
ure 2). Critically, these relational graphs estab-
lish affiliations between English words, their defi-
nitions, and their related parent categories (i.e., “hy-
pernyms”).

Starting with specific synonyms and troponyms
(e.g., “sedan”, “hatchback”, “SUV”) and traversing
the DAG upwards, WordNet collapses definitions
and synsets into their associated hypernym classes
(e.g., “car”, “vehicle”) until it reaches a root hy-
pernym (e.g., “physical entity”, “entity”). Us-
ing recursive graph traversal, we can select any node
in the DAG and parse its hypernyms upward until
we reach either a root hypernym or a parent hy-
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pernym on which we can base an estimate of the
root hypernym (e.g., “object” generally maps to
“physical entity”).

sedan

car
vehicle

litter

artifact

whole

object

physical entity

entity

conveyance

instrumentality

motor vehicle

self-propelled vehicle

wheeled vehicle

container

1

Figure 2: An example hypernym graph. The orig-
inal token, sedan, its three synset entries (labeled
in blue), and its associated concrete hypernyms (la-
beled in red).

Concrete Hypernyms Abstract Hypernyms

physical entity abstract entity

physical object abstraction

stuff

object

person

unit

whole

Table 1: Labeled WordNet (Fellbaum and Miller,
1998) hypernyms. A token is classified as concrete
or abstract if any of the above hypernyms are in its
DAG.

Given that there exists only a small cluster of
root and high-level parent hypernyms for nouns in
WordNet, we can classify the hypernym DAG of any
noun or noun phrase as “concrete” or “abstract”
based on these high-level hypernyms (Table 1).

While this method provides a simple con-
crete/abstract classifier for text tokens, it introduces
additional complications. Although most DAG
nodes have multiple child hyponyms (e.g., “car”
may have “sedan” and “hatchback”), some have
multiple cognitive synonyms, as English words of-
ten have multiple equally likely definitions. For a

given node, each of its “definitions” will appear as
an entry into its synset; for example, the English
noun “link” has nine values in its WordNet synset,
ranging from “URL” to “channel for communica-
tion” to “element of a chain.” These varied defini-
tions may branch to different root hypernyms, im-
pacting the classification based on which definition
is chosen (Table 1).

To compensate, we consider each entry in a
word’s synset and extract a ratio of concrete/abstract
definitions, which more comprehensively projects a
token’s likelihood of being concrete. We perform re-
cursive graph traversal for each entry and retain the
percent of concrete entries as a “concreteness score.”
To then classify the original word as abstract or con-
crete, we establish a threshold of 33% likelihood and
only accept words above that concreteness score.

3.1.2 Detection with MDETR
While the NLTK approach can quickly and effi-
ciently select concrete tokens from a sentence, it in-
correctly assumes that every concrete token in the
sentence is relevant to its associated image. Contex-
tually linking an irrelevant concrete token to a given
image could negatively impact model performance,
especially if the token has high commonality in a
dataset. As a second approach to concrete token de-
tection, we utilize an object detection model to se-
lect concrete tokens. Rather than relying solely on
the text processing for detection, we inspect the im-
age itself for object classes relevant to the text.

For this approach, we use MDETR (Kamath
et al., 2021), an end-to-end object detection model.
Rather than relying exclusively on pre-defined ob-
ject classes, MDETR uses NLP techniques along-
side a pre-trained detection model (Carion et al.,
2020) to perform object detection and image clas-
sification based on the input tokens. Given a text-
image pair (Figure 3), the model assigns each text
token an object classification, confidence score, and
bounding box. To maximize the number of de-
tectable tokens, we pass an entire Multi30k sen-
tence into the MDETR model and filter out detec-
tions with low confidence scores, retaining only the
tokens with a high confidence of correlation to the
image. While Kamath et al. (2021) filter all outputs
with confidence less than 0.7, we filter at 0.85; af-
ter analyzing performance at threshold increments
between 0.5 and 0.95, we found that this threshold
ensured the most balanced object confidence.

Proceedings of the 16th Conference of the Association for Machine Translation in the Americas,

Chicago, USA, September 30 - October 2, 2024. Volume 1: Research Papers



SRC: Cooking hot peppers in the cold winter!

DT2: “cooking hot peppers in the cold winter”

DT3: “pepper”

Figure 3: Multi30k source pair (image, SRC) with
results from the MDETR (DT2, top image) and
Joint (DT3, bottom image) detection techniques.
MDETR query strings, bounding boxes, and confi-
dence scores are shown. In this example, supply-
ing the entire source sentence as text input to the
MDETR object detection model incorrectly identi-
fies the peppers being cooked, while querying only
the word “pepper” increases the model’s confidence
and more closely identifies the region containing the
query.

3.1.3 Detection with Joint Visual Grounding
While the MDETR technique is less likely than the
NLTK technique to improperly select text tokens as
visually-grounded, the pre-trained MDETR model
will always attempt to assign a bounding box to
some text token, often resulting in outputs with high
confidence but incorrect alignment. In practice, pro-
viding extended textual context (i.e., entire captions

or sentences) further exacerbates this problem (Fig-
ure 3).

Therefore, we are left with two techniques
with contrasting weaknesses: NLTK ignores image
context, and MDETR misinterprets textual context.
To mitigate these issues, we present a conjoined
detection technique that “verifies” the presence of
NLTK-detected concrete tokens within an image us-
ing MDETR, ensuring that concrete tokens are visu-
ally grounded in the image.

Like the MDETR technique, the joint tech-
nique parses text-image pairs (unlike the NLTK
technique, which is image-agnostic). The source
sentence is first processed by the NLTK technique,
which returns the noun and noun phrase tokens that
met or surpassed the concrete threshold. Each of
those tokens is paired with a copy of the source im-
age and passed into the MDETR technique, which
performs object detection and filters out all tokens
whose resulting confidence is below the confidence
threshold. This simultaneously reduces the prob-
ability of incorrect alignment by the object detec-
tion model and ensures that text tokens are visually
grounded, resulting in a set of linguistically concrete
and visually-grounded text tokens with high prob-
ability of relevance to the source image. Masking
these explicitly-relevant tokens will force model re-
liance on image context.

3.2 Synthetic Dataset Collation
Because most current work in MMT focuses on the
Multi30k dataset (Elliott et al., 2016), an image-
caption dataset consisting of 30,014 images with
English sentences and corresponding multilingual
translations, we collate synthetic datasets of masked
sentence-image pairs from Multi30k.

We use each detection technique (Section
3.1) to detect concrete tokens and align them to
their original dataset image. From these masked
sentence-image pairs, we collate a series of MMT
datasets in which a maximum of two concrete to-
kens are masked from each sentence and associated
with the relevant image from the original dataset, re-
sulting in training and validation sets that are at most
twice as large as the original Multi30k sets.

3.2.1 Token Selection Techniques
During the dataset collation process, a single sen-
tence may have n > 2 available concrete tokens;
in this case, additional consideration must be given

Proceedings of the 16th Conference of the Association for Machine Translation in the Americas,

Chicago, USA, September 30 - October 2, 2024. Volume 1: Research Papers



to which tokens are selected for inclusion in the
dataset. The standard method has generally been to
randomly select from the available tokens (Devlin
et al., 2019), but recent work in masked language
modeling (MLM) has shown that more informed se-
lection of masked tokens may actually improve per-
formance (Sato et al., 2023).

To examine this, we implement two deter-
ministic token selection techniques, selecting the n
longest and shortest tokens (by number of charac-
ters) respectively for each sentence. We compare
these techniques to a random selection of n tokens
and an unrestricted selection which ignores the n=2
normalization and accepts all available concrete to-
kens.

3.3 GRAM Model

As the basis for our multimodal translation ar-
chitecture, we utilize the GRAM architecture
(Vijayan et al., 2024). GRAM modifies the
FAIR WMT19 (Ng et al., 2019) text-only model,
an encoder/decoder-based transformer architecture
(Vaswani et al., 2017), by adding additional multi-
modal components to create an MMT model.

To process text input, GRAM uses the same
byte-pair encoding (BPE) and vocabulary dictio-
nary as the FAIR WMT19 model (Ng et al., 2019).
Masked sentences are BPE-encoded and fed as stan-
dard text inputs to the MMT model. We mask by
replacing each token with an <unk> token, as that
token is the closest to a mask token available in the
FAIR WMT19 model (Ng et al., 2019). Our method
expands on prior work by Tang et al. (2022) and Wu
et al. (2021) while increasing the requirements for a
token to be visually grounded to an image.

To process image input, the GRAM model
uses CLIP, a pre-trained text-only translation model
alongside a pre-trained vision encoder, a perceiver
resampler, and vision-text cross-attention layers
(Radford et al., 2021). While the original GRAM
paper utilizes the ViT-L/14@336px CLIP model, we
noted better results within our evaluation framework
when using the RN50x4 CLIP model; we present
those results below (Section 4.2). This vision en-
coder converts input images into image embeddings,
enabling the perceiver resampler to convert those
embeddings into a fixed number of vision tokens.
Vision tokens and corresponding text embeddings
are interleaved into vision-text cross-attention lay-

ers within the transformer encoder, creating map-
pings from both the text and the image embeddings
onto a sequence of joint representations. Finally, the
transformer decoder ingests this sequence and out-
puts probabilities for the next output text token in
the target sequence.

The number of parameters in the original text-
only Transformer is 269,746,176; the number of
parameters in the RN50x4 CLIP vision encoder is
101,520,396, for a total of 371,266,572 parameters
in our GRAM model. Additionally, our GRAM per-
ceiver resampler contains 87,137,080 parameters.

4 Results and Discussion

4.1 Experimental Framework

We train the GRAM models on unique permu-
tations of synthetically collated datasets repre-
senting each combination of detection (NLTK,
MDETR, Joint) (Section 3.1) and selection
(unrestricted, restricted-long, restricted-short,
restricted-random) (Section 3.2.1) techniques. We
compare the resulting trained versions to the GRAM
model trained on a unmasked dataset of original sen-
tences.

Most current work in MMT focuses on the
Multi30k dataset; because of its prevalence in other
MMT works, we utilize the Multi30k dataset for col-
lation of our training datasets. We then evaluate the
GRAM models on the Multi30k 2016, 2017, and
COCO test sets using BLEU4 scores.

We also evaluate the GRAM model with an
additional metric, Contrastive Multilingual Multi-
modal Translation Evaluation (CoMMuTE). Futeral
et al. (2023) proposed the CoMMuTE dataset to
evaluate both performance on translation tasks and
usage of visual information by MMT models. In the
ensemble CoMMuTE evaluation, the model is given
two images, a lexically or semantically ambiguous
English sentence, and a target language translation
that resolves the ambiguity according to one of the
two images. The task involves determining which of
the two images the sentence pairs best match. The
evaluation is made using the perplexity of the model
output, and the resulting CoMMuTE score is calcu-
lated using the model’s determination of accuracy
across 100 text-image pairs.
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Detection Selection Score

CoMMuTE Multi30k BLEU4 (en-de)

2016 2017 COCO

Futeral et al. (2023) 0.59 43.3 38.3 35.7
Vijayan et al. (2024) 0.61 46.5 43.6 39.1

Unmasked 0.5 45.0 42.0 38.2

NLTK Unrestricted 0.55 45.7 41.9 39.2
NLTK Restricted-Longest 0.62 46.0 42.5 37.8
NLTK Restricted-Shortest 0.63 46.0 42.0 37.9
NLTK Restricted-Random 0.67 46.2 41.4 37.8

MDETR Unrestricted 0.56 46.0 42.4 38.4
MDETR Restricted-Longest 0.63 45.7 41.7 38.0
MDETR Restricted-Shortest 0.63 45.0 41.2 36.9
MDETR Restricted-Random 0.63 45.6 42.2 37.6

Joint Unrestricted 0.52 45.5 42.4 38.9
Joint Restricted-Longest 0.63 45.8 42.6 38.8
Joint Restricted-Shortest 0.61 45.4 42.0 37.9
Joint Restricted-Random 0.61 45.5 42.4 37.5

Table 2: Selected performance results of our model against the CoMMuTE and Multi30k test sets. The best
result by column is indicated in bold; the best result for each detection technique is underlined. Results as
reported by GRAM (Vijayan et al., 2024) and VGAMT (Futeral et al., 2023) are included for reference.

Detection Concrete % Unique Detections

NLTK 99.51 5,393
MDETR 99.92 6,674
Joint 99.49 4,761

Table 3: Unique concrete token detections and per-
cent of Multi30k sentences with detected tokens by
detection technique.

4.2 Results

We review the performance of the model variants
trained using the synthetic Multi30k datasets (Sec-
tion 3.2) on the above evaluation metrics. We train
13 variants, consisting of one unmasked baseline
and 12 models representing each combination of de-
tection (Section 3.1) and selection (Section 3.2.1)
techniques.

4.3 Detection Results

We introduced three distinct methods for detection
of concrete text tokens: the NLTK technique (Sec-
tion 3.1.1), which parses nouns and noun phrases
from sentences, the MDETR technique (Section

3.1.2), which inputs sentences as queries to an object
detection model, and the Joint technique (Section
3.1.3). Each technique generates the same output
structure: multimodal datasets of sentences masked
concrete tokens and matching images. We hypoth-
esize that masking concrete tokens with these tech-
niques will improve performance on evaluation met-
rics. We further hypothesize that the Joint technique
will be more selective with its detections than its
component NLTK and MDETR techniques, and will
thus utilize image context more efficiently and criti-
cally.

We found that all three techniques consistently
extracted relevant tokens from the text: each tech-
nique extracted concrete tokens from over 99% of
Multi30k sentences (Table 3). The MDETR de-
tection technique was the most successful, extract-
ing 23.8% and 40.2% more unique concrete tokens
than the NLTK and Joint techniques, respectively.
This resulted in the MDETR technique masking
the highest concentration of original Multi30k sen-
tences (114 and 120 sentences more than NLTK and
Joint, respectively).
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Increased rates of detection did not correlate
with better performance, though. All tested mod-
els outperformed the unmasked (baseline) dataset
in CoMMuTE and BLEU scores, but in contrast to
our hypothesis the NLTK technique outperformed
both the MDETR and Joint techniques both in CoM-
MuTE and BLEU score (Table 2). The Joint tech-
nique, which we hypothesized would improve on
its component techniques, consistently underper-
formed against the others. This is especially true
in the Joint Unrestricted model, which only im-
proved its CoMMuTE score by 0.02 and its BLEU
score 0.5 over the baseline. We suggest that the Joint
technique was actually hindered by its strict selec-
tion process, leading to a much smaller pool of ob-
jects to mask from. Conversely, the MDETR tech-
nique tended to over-select longer, rarely-used, or ir-
relevant tokens (Figure 3), contributing to the larger
masking percentages but the lower overall perfor-
mance. The success of the NLTK technique over
the others was its “middle ground” approach, clas-
sifying concrete tokens more liberally than the Joint
technique but more consistently than the MDETR
technique.

23% of tested models underperformed the orig-
inal GRAM model (Vijayan et al., 2024) on CoM-
MuTE metrics, 15.4% performed identically, and
the remaining 53.8% outperformed. All tested mod-
els underperformed the original GRAM model in
Multi30k 2016/2017 BLEU metrics. One model
(NLTK Unrestricted) outperformed the original
GRAM model in the Multi30k COCO metric, but
the improvement is well within a margin for nor-
malization effects. We suggest that the perfor-
mance disparity between models in these Multi30k
BLEU metrics is due to dataset size: the original
GRAM model was pre-trained trained on the Con-
ceptual Captions dataset (Sharma et al., 2018) of
2, 878, 999 text-image pairs, resulting in synthetic
datasets nearly 100 times larger than those used
here. Despite this, the majority of models outper-
formed GRAM in CoMMuTE metrics, achieving
scores of up to 0.67.

In general, we also note an inverse relation-
ship between CoMMuTE and BLEU performance:
that is, when CoMMuTE scores increase, BLEU
scores tend to decrease. For example, the MDETR
Unrestricted model notched the highest average
BLEU score across all three Multi30k metrics, but

had the second-lowest CoMMuTE score.

4.4 Selection Results

Critical to the synthetic dataset collation system is
the process of selecting concrete tokens for mask-
ing. Prior efforts have generally selected tokens at
random (Ive et al., 2019); we introduced three addi-
tional techniques (Section 3.2.1), longest-token se-
lection, shortest-token selection, and unrestricted se-
lection, and test each against a baseline of randomly-
selected concrete tokens. We hypothesize that the
presented token selection techniques will outper-
form the baseline of random selection; specifically,
we hypothesize that longest-token and unrestricted
selection will encourage additional usage of visual
context and thus improve CoMMuTE score, and that
shortest-token selection will minimize the number
of token predictions required by the model (Section
3.3) and thus improve BLEU score.

We found that while all tested selection tech-
niques (Section 3.2.1) outperformed the unmasked
baseline, comparative performance between tech-
niques are less conclusive. When paired with the
NLTK detection technique, the random selection
technique outperformed the others in CoMMuTE
and Multi30k 2016 BLEU scores. When paired with
the MDETR metric, none of the restricted selection
techniques had any impact on CoMMuTE score.
When paired with the Joint detection technique, the
longest-token selection technique improved CoM-
MuTE and Multi30k 2016/2017 BLEU scores.

Contrary to our hypothesis, the deterministic
token selection techniques did not consistently out-
perform the random selection technique. The most
consistent results were with the unrestricted selec-
tion technique, which significantly degraded CoM-
MuTE performance but tended to improve BLEU
performance (especially in the COCO BLEU met-
ric, where it outperformed all other tested models).
Shortest-token selection also tended to follow these
patterns of performance degradation, but not as sub-
stantially: its NLTK and Joint detection variants per-
formed identically on the Multi30k 2017 and COCO
BLEU metrics and performed near the bottom of re-
sults for the CoMMuTE and 2016 BLEU metrics
across all three detection techniques.

Each of these findings runs counter to our hy-
potheses in this area, suggesting that token selec-
tion at this scale has less impact on model perfor-
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mance than we expected; in fact, random or pseudo-
random token selection of the identified concrete to-
kens may actually improve performance over deter-
ministic methods.

4.5 Future Work

Given the high percentage of visually-grounded to-
kens in the Multi30k training set, future work should
consider the techniques against both larger MMT
datasets and MMT datasets with lower concentra-
tions of visually-grounded tokens (e.g., Concep-
tual Captions). Similarly, future work should con-
sider synthetically collated datasets that combine el-
ements of multiple multimodal datasets (e.g., im-
ages from Conceptual Captions, sentences from
Multi30k), including synthetic datasets created from
text-only datasets.

Additionally, future work should compare
baseline scores for tokens selected completely at
random to more accurately gauge the efficacy of ob-
ject token selection.

Finally, future work should consider a more
deterministic way to classify the concreteness of a
token with NLP, including selection of definitions
based on contextual awareness.

5 Conclusion

The continued challenge of visual grounding and
masking in MMT systems has encouraged vary-
ing approaches to the detection and selection
of visually-grounded text tokens for masking
(Caglayan et al., 2019; Wu et al., 2021).

We introduced three new techniques for detec-
tion of concrete tokens from source sentences: de-
tection with natural language processing (NLP), de-
tection with object detection, and joint NLP/object
detection. We also introduced deterministic meth-
ods for the selection of detected tokens, including
longest and shortest n tokens.

Finally, we utilized the GRAM MMT architec-
ture (Vijayan et al., 2024) to train models against
synthetically collated datasets of masked sentences
and associated images. We showed performance im-
provement over the baseline models and elevated us-
age of visual context during translation tasks.
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Abstract

Translation memories (TMs) are the backbone for professional translation tools called computer-aided trans-
lation (CAT) tools. In order to perform a translation using a CAT tool, a translator uses the TM to gather
translations similar to the desired segment to translate (s′). Many CAT tools offer a fuzzy-match algorithm
to locate segments (s) in the TM that are close in distance to s′. After locating two similar segments, the
CAT tool will present parallel segments (s, t) that contain one segment in the source language along with its
translation in the target language. Additionally, CAT tools contain fuzzy-match repair (FMR) techniques that
will automatically use the parallel segments from the TM to create new TM entries containing a modified
version of the original with the idea in mind that it will be the translation of s′. Most FMR techniques use
machine translation as a way of “repairing” those words that have to be modified. In this article, we show that
for a large part of those words which are anchored, we can use other techniques that are based on machine
learning approaches such as Word2Vec. BERT, and even ChatGPT. Specifically, we show that for anchored
words that follow the continuous bag-of-words (CBOW) paradigm, Word2Vec, BERT, and GPT-4 can be
used to achieve similar and, for some cases, better results than neural machine translation for translating
anchored words from French to English.

1 Introduction

Professional translators use computer-aided transla-
tion (CAT) tools (Bowker, 2002) to translate text
from one language called the source language (SL)
to a target language (TL). Most CAT tools have an
option known as fuzzy-match repair (FMR) (Kranias
and Samiotou, 2004; Hewavitharana et al., 2005;
Dandapat et al., 2011; Ortega et al., 2016; Bulté
et al., 2018; Tezcan et al., 2021), which is backed
by a parallel translation memory (TM) that contains
sentences (called segments) in the SL and TL. Each
pair, or unit, of parallel segments in the TM is known
as a translation unit (TU). A TU contains a source
segment (s) along with a target segment (t). When
a professional translator attempts to translate a seg-
ment in the SL (denoted as s′) a fuzzy-match lookup
is performed using a word-based Levenshtein dis-

tance (Levenshtein, 1966) between s′ and s where a
100% match means that the words from s′ are iden-
tical to the words in s. It is often the case that a pro-
fessional translator uses matches from FMR to only
translate a few words (called sub-segments) from the
entire segment. In this article, we focus on improv-
ing those cases where there exists only one word to
translate, known as an anchored word, whose posi-
tion is in between two words that are already cap-
tured. In our studies, the anchored word is a com-
mon case that professional translators often use. We
experiment with four techniques to translate the an-
chored word: (1) Neural Machine Translation, (2) a
BERT-based (Sanh et al., 2019) implementation, (3)
Word2Vec (Mikolov et al., 2013) and (4) OpenAI
GPT-4 prompting (Achiam et al., 2023).

The prediction of an anchored word has been
presented in many contexts and can be considered
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the main objective of a language model. Several
models based on attention allow a weight to be as-
signed to certain words within a context window so
that surrounding words that strongly influence the
overall context can have a greater impact on the pre-
diction made. This could potentially be used in or-
der to improve predictions made for anchored text
by taking longer contexts into account than the sur-
rounding words. We discuss this approach in the
context of generative models, where such systems
could be harnessed to generate highly accurate pre-
dictions.

The rest of this article is structured as fol-
lows. The next section discusses related work by
accentuating the differences between FMR based
on MT and anchored-word prediction. Section 3
then presents the BERT, Word2Vec, and GPT-4 ap-
proaches used for translating anchored words. In
Section 4, we describe the corpus and configura-
tions used for our experiments whose results are re-
flected in Section 5, followed by concluding remarks
in Section 6.

2 Related Work

For the majority of FMR approaches, MT is used
to translate mismatches, regardless if they are an-
chored words or not. Generally, MT techniques for
FMR are focused on the decoding process where
statistical-based systems (Biçici and Dymetman,
2008; Simard and Isabelle, 2009; Zhechev and Gen-
abith, 2010; Koehn and Senellart, 2010; Li et al.,
2016; Liu et al., 2019) or neural-based systems (Or-
tega et al., 2014, 2016; Gu et al., 2018; Bulté et al.,
2018; Bulte and Tezcan, 2019) are used in such a
manner to “repair” either the MT system or the mis-
matched sub-segments between s′ and s. This ar-
ticle is focused on repairing the mismatched sub-
segments in specific situations where sub-segments
of s are common in s′ with the exception of one
word (e.g. s=‘the brown dog’ and s′=‘the red
dog’).

Previous work (Ortega et al., 2016; Bulté et al.,
2018) can be considered identical to this article as
it uses FMR to first find mismatches between s′ and
s and then translates the missing words with differ-
ent MT systems. However, their system uses con-
text around all mismatches where we only consider
mismatches with anchored words, similar to Kra-
nias and Samiotou (2004). While other techniques

(Hewavitharana et al., 2005; Dandapat et al., 2011)
are based on probabilistic MT models or employ dif-
ferent algorithms for aligning s′ and s, we use a
word-based edit distance (Levenshtein, 1966; Wag-
ner and Fischer, 1974) that marks the mismatched
sub-segments and discards non-anchored words.

Tezcan and Bulté (2022) investigate a wide
range of automatic quality estimation (QE) met-
rics in order to assess what effect integrating fuzzy
matches can have on a number of aspects of trans-
lation quality, in addition to performing manual MT
error analysis. They further evaluate what influence
fuzzy matches have on a translation and how fur-
ther quality improvements can be made by quanti-
tative analyses that focus on the specific characteris-
tics of a retrieved fuzzy match. Neural Fuzzy Repair
(NFR) outperforms baselines in all automated eval-
uation metrics. There was not a discernable differ-
ence between NFR and Neural Machine Translation
(NMT) error in manual evaluation, but different er-
ror profiles emerged in this study, highlighting some
of the strengths and weaknesses of each method.
Namely, NFR produced more errors in the category
of “semantically unrelated”, whereas the baseline
NMT system produced more errors in the categories
of “word sense” and “multi-word expression”. The
NFR system made more accuracy errors, but pro-
ducing fluent output was its strong suit. Meanwhile,
in terms of lexical choices, NMT produced more
“non-existing/foreign” errors, which was not an is-
sue for NFR. The baseline system performed better
on grammar and syntax. Our study differs in that it
focuses specifically on anchored text and on lever-
aging the strengths of language models in next word
prediction in order to fill in single-word gaps.

Esplà-Gomis et al. (2011) attempt to improve
CAT via the TM using pre-computed word align-
ments between source and target TUs in the TM.
When a user is translating s′ with a fuzzy match
score greater than or equal to 60%, the proposed sys-
tem marks the words that need to change as well as
those that must remain the same in order to obtain
t′. Alignments are obtained from GIZA++ (Brown
et al., 1993; Vogel et al., 1996) and take both a sta-
tistical and syntactic approach to detecting where
changes need to occur. The experiments offer in-
sight into how human decisions to keep/change text
during translation can be integrated into FMR. Our
approach differs in that we specifically locate an-
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chored text and, following that, continue on to a
prediction step, providing the content needed to per-
form fuzzy match repair in the translation step.

İrsoy et al. (2020) compare performance of pre-
trained word embeddings in use in language mod-
els such as BERT with continuous bag of words
(CBOW) embeddings trained with Word2Vec. The
authors claim that, while BERT embeddings are use-
ful and effective, they often offer only marginal
gains as compared to Word2Vec embeddings trained
using Gensim (Řehřek et al., 2011). The latter are
much less computationally expensive to obtain; 768-
dimensional vectors were trained in one epoch in
1.61 days on a 16-CPU machine. CBOW embed-
dings are trained by using surrounding context to
predict a center word. While training via CBOW
has often shown inferior performance to training
via skipgram (SG), this paper shows that with a
proper implementation, performance of CBOW em-
beddings can be on par with SG. Our work puts the
CBOW prediction objective to good use, harnessing
it to predict anchored text in source language seg-
ments.

3 Methodology

Neural MT systems have been shown by previous
work (Bulte and Tezcan, 2019) to be the state-of-the-
art for FMR. In this article, we experiment on the
one hand with word-based language models that are
trained using context around a word, like those that
use the continuous bag of words (CBOW) model
(Mikolov et al., 2013) (Word2Vec) or masked lan-
guage modeling (Sanh et al., 2019) (BERT). On the
other hand, it is our belief also that generative lan-
guage modeling techniques may be a good candidate
for accomplishing this task. To explore this avenue,
we also compare output from these models with pre-
dictions obtained from prompting GPT-4 and find it
to be competitive with the other methods. An exam-
ple of a source sentence and the output from each
method is provided in Table 1 with predicted (or ref-
erence) word in bold. In our experiment, the two
language modeling techniques as well as the genera-
tive approach are compared against machine transla-
tion and measured using character rate and accuracy
against sets of anchored words from the test set. A
prediction or translation was deemed correct when

the center word from a tri-gram of anchored words
was correctly found. In the following sub-sections,
we discuss each approach. In Section 4 we provide
further details about the corpora and configuration.

3.1 Machine Translation
We train the neural MT system with Open-NMT
(Klein et al., 2020) using the default transformer
configuration. In order to get a wider range of
difference with the MT system, we translate using
two methods: (1) the translation of the s′en segment
to t∗fr then translation from t∗fr to s∗en; and, (2)
the translation of the three-word sub-segment only
(i.e. the anchored tri-gram with the center word
to be translated) from s′trigram-en to t∗trigram-fr
then translation from t∗trigram-fr to s∗trigram-en.
For both methods, correctly translated center words
from tri-grams were counted in the overall evalu-
ation. Predictions by the other two methods were
scored similarly. Further details on parameters and
configuration are found in Section 4.2.

3.2 Word2Vec

Figure 1: An illustration of predicting a word given
the context around it (denoted as anchored words
in this article), called Continuos Bag of Words
(CBOW) by Mikolov et al. (2013).

We used a pre-trained language model (PLM) for
experimentation with Word2Vec (Mikolov et al.,

1We use the pre-trained word news vectors from Google found here:https://github.com/mmihaltz/
word2vec-GoogleNews-vectors?tab=readme-ov-file.
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Method Output
Original French “Afin d’évaluer si l’établissement identifie toutes

les situations qui doivent être considérées comme
des défauts, conformément à l’article 178,

paragraphes 1 à 5, du règlement (UE) no 575/2013...”
Reference Translation “In order to assess whether the institution

identifies all situations which are to be considered
defaults in accordance with Article 178 (1)
to (5) of Regulation (EU) No 575/2013...”

Reference tri-gram assess whether the
BERT assess whether the

Word2Vec assess commission the
MT assess obligatory the

GPT-4 assess and the

Table 1: Anchored tri-gram reference and predictions (predicted word in bold)

2013).1 The hope is that through the use of a PLM
we can capture context in several different domains,
specifically the corpus that we use which is parlia-
mentary in nature.

The PLM weights from Word2Vec were used
as a manner to predict anchored words due to the
fact that the training method for them is based on
a CBOW model. CBOW was selected because, as
shown in Figure 1, its training objective most closely
resembles the task we are trying to accomplish—the
prediction of a word surrounded by anchored text
(one word on the left and one word on the right).

As a first step, the PLM was downloaded and
experimented as-is in its out-of-the-box state which
consists of 300 dimensions and a default vocabulary.
Then, in order to fine-tune the model, we adapted it
to our parliamentary corpus. After the fine-tuning of
the model, anchored tri-grams were extracted from
s′ and used as input to the PLM where the center
word is used for prediction and the left and right
“anchors” are used as input one-hot encoded embed-
dings, similar to the training exercise from Mikolov
et al. (2013). Further details on parameters and con-
figuration are found in Section 4.3.

3.3 BERT

Models based on the BERT (Kenton and Toutanova,
2019) algorithm are used frequently in modern
times. They use an attention mechanism (Vaswani
et al., 2017) and are known to be capable of cap-
turing information better than previous implementa-

tions such as Word2vec. Therefore, in order to com-
pare both algorithms to MT for predicting anchored
words, we experiment with DistilBERT (Sanh et al.,
2019), a BERT-based model that uses masked lan-
guage modeling that in theory captures more param-
eters than the Word2Vec CBOW model.

Similar to the Word2Vec method, we fine-tune
our DistilBERT model on the parliamentary corpus
with a masked language modeling objective. We
chose the masked language modeling objective as it
is the most similar objective to CBOW. Further de-
tails on parameters and configuration are found in
Section 4.4.

3.4 GPT-4

We experiment with prompting GPT-4 to predict an-
chored text using a temperature of 0 and the fol-
lowing prompt: “You are an expert lexicographer
and natural language processing assistant. Addi-
tionally, you are highly specialized in parliamentary
proceedings. Given a trigram I provide with a ’?’
character in the center word, I need you to predict
the ’?’ character with the most likely single-word to-
ken. Please return one predicted token without any
text except the predicted token in your response. Do
not provide the surrounding text or any additional
information. Do not include the text ’predicting’,
’predict’, ’prediction’, ’predicted’ ’the predicted to-
ken is’ or ’The predicted token is’ in your response.
Do not include any extra characters such as apos-
trophes, commas, colons, or semicolons in your re-
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sponse. Do not include any newline characters in
your response.”.

4 Experimental Settings

4.1 Corpus

The corpus consists of 393,371 SL-TL pairs of Eu-
ropean parliamentary proceedings, a freely avail-
able translation memory (Steinberger et al., 2012)
obtained from the European Commission DGT-
Translation Memory repository.2 The corpus is di-
vided randomly with a random state of 42. We di-
vide the corpus up into 70% train, 20% dev, and 10%
test sets as shown in in Table 2.

4.2 Machine Translation

As mentioned previously, we use the Open-NMT
(Klein et al., 2020) framework to build our French
to English (FR–EN) and English to French (EN–
FR) MT system. The system is based on a trans-
former architecture model with the following hyper-
parameters: A maximum sequence length of 500,
an early stopping parameter of 4, 7,800 train steps,
1,000 validation steps, a bucket size of 262,144, a
batch size of 4,096, and a validation batch size of
2,048. The optimizer is an Adam (beta2 of 0.998)
optimizer with with fp16 activated, a learning rate of
2, noam decay, label smoothing of 0.1, a hidden size
of 512, word vector size of 512, 8 attention heads, a
dropout of 0.1, and an attention dropout of 0.1. The
choice of parameter selection is inspired by previous
work from Yasmin Moslem.3

In order to verify that the NMT system is on-
par with the latest MT systems for FR–EN and EN–
FR, we first test the system in both directions on the
test set. During test, we achieved a BLEU score of
55.84 for FR–EN and 62.60 for EN-FR. Nonethe-
less, as we show in Section 5, the translation of an-
chored words as measured by character rate and ac-
curacy was not remarkable.

4.3 Word2Vec

The CBOW algorithm for Word2vec is a well-
known algorithm performed as a way of capturing
semantics via a language model (Mikolov et al.,
2013). We describe our Word2Vec CBOW imple-
menation. Before fine-tuning, the Word2Vec model
has 300 dimensions with a window size of 2 and
a minimum word count of 1. Additionally, pre-
defined vocabulary is used in the Google News Vec-
tors that contains billions of words. The model is
fine-tuned with our training set which is tokenized
using the NLTK RegexpTokenizer4. The embed-
dings created from the training set use lockf at 1.0
and a window size of 3, similar to Zarrar Shehzad.5

4.4 BERT

Our BERT model is based on a PLM called Distil-
BERT6. (Sanh et al., 2019) We train DistilBERT us-
ing the HuggingFace PyTorch Trainer with 10 train-
ing epochs, a learning rate of 2e-5, weight decay of
0.01, and FP16 mixed precision set to true. Hyper-
parameters are inspired by HuggingFace.7

4.5 GPT-4

GPT-4 was prompted using the gpt-4-turbo variant
and queried repetitively through the OpenAI API.
Due to newline mismatches that occurred during
batch processing, we opted to run an API call for
every line in the dataset.

5 Results

In this section, we compare the results obtained from
running four approaches for predicting the anchored
word: (1) Neural Machine Translation (NMT) (2)
Word2Vec (3) BERT and (4) GPT-4. NMT is di-
vided into the two approaches mentioned in Sec-
tion 3.1 (sentence-level and tri-grams). Accuracy
measurements are performed and reported for all
holes8. Additionally, we report on character matches
for each approach after dividing the segments into
fuzzy-match thresholds, common practice for FMR
work (see (Ortega et al., 2016; Bulte and Tezcan,

2https://joint-research-centre.ec.europa.eu/language-technology-resources/dgt-translation-memory en
3https://github.com/ymoslem/OpenNMT-Tutorial
4https://www.nltk.org/ modules/nltk/tokenize/regexp.html
5https://czarrar.github.io/Gensim-Word2Vec/
6https://github.com/huggingface/transformers/tree/main/examples/research projects/distillation
7https://huggingface.co/learn/nlp-course/en/chapter7/3
8A hole is a span of a tri-gram where the center word is predicted.
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Data set Segment Size
Train 275,317
Development 77,877
Test 40,117
Total 393,371

Table 2: Experimental sets from the European Commission DGT Translation memory used for creating and
evaluating the three approaches.

60–69% 70–79% 80–89% 90–100%
BERT 8.97 9.61 7.98 7.87
GPT 4.82 5.58 3.85 2.74
W2V 3.39 3.46 2.89 3.02
NMT-1 0.15 0.14 0.28 0.19
NMT-2 3.75 4.36 4.16 6.35

Table 3: Accuracy scores for various fuzzy-match threshold on five deep-learning approaches.

2019)).
First, we report on character match rates for the

three approaches. Character match is defined as the
number of characters in the output token that corre-
spond to characters in the desired string. In Figure
2, we report the average character match for GPT-
4, BERT, Word2Vec, NMT-1 (segment-level MT)
and NMT-2 (tri-gram MT). We observe a marked
improvement in average character match with lan-
guage modeling approaches (BERT and Word2Vec)
and GPT-4 performs competitively in most cases.
BERT outperforms all approaches across all fuzzy-
match thresholds. From an MT standpoint, the sec-
ondary approach (called NMT-2 in Figure 2) outper-
forms the primary approach; it appears that in our
experiments the translation of anchored tri-grams is
better than translating the entire segment.

Figure 2: Average character match (y-axis) by
fuzzy-match rate percentage (x-axis) by segment
of the four experimental approaches: BERT, GPT,
Word2Vec, Neural Machine Translation 1 and Neu-
ral Machine Translation 2 systems for different
segment-level fuzzy-match thresholds.

Additionally, we measured the accuracy for the
three approaches in order to better understand the
hole span coverage. For accuracy, we measure only
if prediction was correct or not; we do not take into
account other predictions like blank, extra words, or
others. To this end, we present accuracy scores in
Table 3.

In our experiments, we notice that the NMT
systems perform better on stop words and digits
such as the phrase: “beyond 90 ghz”. Both the
BERT and NMT systems were found to perform
well in those situations. However, the MT system
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oftentimes did not replace one word only—in sev-
eral cases it aggregated several words more. BERT
performed well on average when compared with the
other approaches. GPT remains competitive on all
fuzzy match ranges except 90–100.

6 Conclusion

In this article, we have illustrated that via the use of
a language model, predicting anchored words per-
formed better in our experiments. The BERT model
outperforms other approaches including neural ma-
chine translation (with two approaches) when mea-
sured via character match and tri-gram anchored
word coverage.

We also demonstrate how generative models
might be prompted to aid in predicting anchored
text. It is our belief that this work could assist CAT
tools backed by TMs and MT systems.
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Abstract

The typical workflow for a professional translator to translate a document from its source language (SL) to
a target language (TL) is not always focused on what many language models in natural language process-
ing (NLP) do – predict the next word in a series of words. While high-resource languages like English and
French are reported to achieve near human parity using common metrics for measurement such as BLEU
and COMET, we find that an important step is being missed: the translation of technical terms, specifically
acronyms. Some state-of-the art machine translation systems like Google Translate which are publicly avail-
able can be erroneous when dealing with acronyms – as much as 50% in our findings. This article addresses
acronym disambiguation for MT systems by proposing an additional step to the SL–TL (FR–EN) translation
workflow where we first offer a new acronym corpus for public consumption and then experiment with a
search-based thresholding algorithm that achieves nearly 10% increase when compared to Google Translate
and OpusMT.

1 Introduction

With the myriad of artificial intelligence tools avail-
able for professional translators, it can be hard for
translators to select solutions that address their core
needs. Ideally, translation approaches based on ma-
chine learning techniques should improve transla-
tor proficiency and achieve higher overall quality.
One such approach focuses on technical terminol-
ogy (TT) where domain-specific terms in the form of
acronyms in a source language (SL) must be trans-
lated into their target language (TL) counterpart.

TT is considered important to translators as it
is one of the main sources of error a professional
translator might encounter on a daily basis. The
importance of TT is further displayed by the lat-

est machine translation (MT) workshops (Semenov
et al., 2023; Molchanov et al., 2021; Hasler et al.,
2018) that stress the importance of correctly ad-
dressing terminology issues—including correctness
of technical terms. While modern MT systems do
not seem to focus on acronym and term disam-
biguation1, workshops like the “Machine Transla-
tion using Terminologies” workshop2 (Jon et al.,
2021) clearly state that they focus on both transla-
tion accuracy and consistency. Since the dominant
metric used (BLEU) for most MT approaches does
not center so much on terminology expansion with
acronyms and other mechanisms, we present in this
article a novel method that hones in specifically on
the day-to-day work in terminology that a profes-
sional translator may encounter, which has not been

1MT research generally use metrics such as BLEU (Papineni et al., 2002) or COMET (Rei et al., 2020).
2https://www.statmt.org/wmt21/terminology-task.html
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addressed by most of the recent literature.
In this article, we present two main novelties

that are based on the translation of acronyms: (1) the
introduction of a new corpus made publicly avail-
able for others to use and (2) a fact-checking step
that is used to verify the combination of a technical
term and its acronym (long form (LF) and short form
(SF)). We do this for several published articles in the
TL, which is English. We aim to show that acronym
disambiguation can improve term error rate by re-
ducing the risk of default MT models that generally
do not have an acronym approach. Our claim is that
translators can use this method as a novel verifica-
tion step in the normal translation pipeline. We also
believe that other automated work such as generative
MT may be able to include this step as a mechanism
for evaluation.

To that end, we present the following sequence.
First, we introduce relevant work in Section 2. Sec-
ond, we describe our motivation and high-level pro-
posal methodology in Section 3. We then cover the
details of our corpus creation in Section 4.4. After-
wards, we show the results of our SF/LF method in
Section 5 and finally we conclude our work in Sec-
tion 6.

2 Related Work

In the WMT 2023 Shared Task on Machine Transla-
tion with Terminologies, Semenov et al. (2023) em-
phasize the effectiveness of incorporating terminol-
ogy dictionaries and respecting domain-specific ter-
minology constraints. The authors also distinguish
terminology incorporation from general MT meth-
ods.

Post et al. (2019) explore the use of masking to
properly isolate and translate specific named entities
such as terminology spans. Their findings show that
masking solves some problems, but relies entirely
on the masks being properly aligned.

Ghazvininejad et al. (2023) propose a method
for translating rare words such as technical termi-
nology. The method, called DiPMT, is a prompt-
ing technique that provides an LLM with multiple
translation choices from a dictionary as well as hints
about their meaning for a subset of input words. It
outperforms baselines for low resource and out-of-
domain MT. The authors also extract bilingual dic-
tionaries from the training data to assist in this pro-

cess. Doing so allows for fine-grained control over
the use of domain-specific terminology.

Anastasopoulos et al. (2021) stress the impor-
tance of taking terminology into account in neu-
ral MT and propose metrics to measure MT output
consistency with regard to domain constraints. Da-
gan and Church (1994) propose a system to identify
technical terms in a source text as well as their trans-
lations. The system uses part-of-speech tagging and
word alignment techniques to assist translators dur-
ing the translation process. Smadja et al. (1996) ad-
dress the issue of translating collocations in a variety
of domains.

Grefenstette (1999) offers an example-based
method for dealing with terminology problems in
translation as well as other NLP tasks. The method
proposed uses search to find the most statistically
likely translation of an entire noun phrase. Lee and
Kim (2002) provide a knowledge-based approach
to translation that includes using word-sense disam-
biguation to semantically derive the meaning of a
word before seeking a target translation correspond-
ing to that meaning.

Skadiņš et al. (2013) demonstrate the use of a
cloud-based terminology search system that fully in-
tegrates with statistical methods to address the need
for domain-specific terms and their integration into
neural MT systems. Meanwhile, Bosca et al. (2014)
stress the importance of term verification and con-
sistency in the translation process and propose us-
ing external terminological databases to assist in fact
checking and correcting domain-specific terminol-
ogy.

3 Background and Motivation

In order to better understand how ineffective
acronym disambiguation may be for translators, we
investigate the performance of LFs and their SF
acronyms within the realm of commercial MT sys-
tems. We perform this necessary step in order to
confirm our hypothesis that: acronym disambigua-
tion in the current state-of-the-art French MT
systems is not being addressed properly. In Ta-
ble 1, we provide a specific agreement comparison
that uses a widely-used commercial MT system –
Google translate3. For both cases (LFs and SFs)
agreement is between 54% and 63%, giving way to a
high amount of room for improvement. We illustrate

3https://translate.google.com/
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Type of Term Agreement
Long Forms (LFs) 62.1%
Short Forms (SFs) 54.3%

Table 1: Google Translate agreement for long- and short-form acronyms.

Input French Output English
Google Gold

indice
moteur

engine
index

motricity
index

fréquence
cardiaque

cardiac
frequency

heart
rate

roue
polaire

polar
wheel

claw
pole

Table 2: Erroneous Google Translate examples on long forms (LFs).

Input French Output English
Google Gold

AOMI PAAD PAD
DE DE EE
ICMI CIMI CLI

Table 3: Erroneous Google Translate examples on short forms (SFs).

this with further analysis in Tables 2 (long forms)
and 3 (short forms).

As a way of mitigating the room for improve-
ment, we propose the following novel method for
MT that decomposes translation into four high-level
steps by taking into account that Google Translate
is more successful on LFs than SFs. For other MT
systems, this may not be the case; we focus solely
on Google Translate here as the oracle for our ex-
periment.

1. Use Google Translate to translate each LF from
French (FR) to English (EN).

2. Extract the LF from Google Translate’s EN pair
output (using a simple split command).

3. Generate several SF hypotheses using the ex-
tracted LF from Step 2.

4. Use a search technique to verify and evaluate
certainty of hypotheses.

To better describe Steps 1 through 4, we pro-

vide the following in-depth description. A term such
as “acide désoxyribonucléique (adn)” would first be
translated in Step 1 from French to English as “de-
oxyribonucleic acid (dna)”. We then extract the En-
glish LF (deoxyribonucleic acid) and SF (dna) for
use in the next steps. Step 3 consists of the use of
AB3P4 (Sohn et al., 2008; Church and Liu, 2021),
an acronym tool that provides LFs in English cre-
ated by the United States government and contains
acronyms from crawls of PubMed5 and arXiv6. If
a sufficient number of documents is not found that
contain the English LF and SF together, we then
generate a list of acronym hypotheses translations
from the translated LF. Each hypothesis is generated
using a fine-tuned version of the Scibert (Beltagy
et al., 2019) model described in section 4.

Step 4 consists of the verification process, also
known as “Fact Checking”. Typically, the trans-
lation process for technical terms involves a sig-
nificant component of researching the meaning of

4https://github.com/ncbi-nlp/Ab3P
5https://pubmed.ncbi.nlm.nih.gov/
6https://arxiv.org
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a source language term, identifying multiple target
language candidate terms, and finally, proceeding
through the n-best list in order and seeking out the
use of a chosen term in context in similar target lan-
guage texts, written by experts in the field in ques-
tion.7 According to Bowker (2021), professional
translation term verification is done on the basis of
observed frequency in a corpus; if enough experts
use the selected term in context, it is considered to
be valid. Domain expertise from professional trans-
lation trade unions such as the ATA8 point to two
or three sources being sufficient to substantiate use
of a given term. We replicate that process using the
search method below.

We implement a Boolean retrieval system that
contains acronyms extracted from AB3P output on
a crawl of arXiv and Pubmed along with the long
forms they map to and source paper ID. If a suf-
ficient number of sources have been found to em-
ploy the desired term-acronym pair (in the form car-
diopulmonary resuscitation (CPR)), term validation
is deemed to be successful and the term pair is re-
turned to the user alongside the list of sources for
verification. This re-appropriates the term verifica-
tion method employed by professional translation
agencies in the field (and facilitates verification by a
reviewer, who may need to fact check term sources
at a later stage).

The translation of acronyms is further compli-
cated by non-English languages opting to adopt a
better known English acronym alongside a transla-
tion of the term. The French translation for “large
language model” (grand modèle de langue) is con-
densed using the English acronym “LLM,” even
though the acronym does not correspond to the first
letters of each word. Despite this limitation, our
search step allows for the verification of such cases,
as the pairing of term and acronym is likely to occur
in the literature if they have found consensus in the
field. Thus, verification would succeed and the dis-
ambiguation step would not be performed. Further-
more, fine tuning on corpora such as Pubmed was
foregone due to the non-compositionality of many
technical terms; boolean search ensures that the term
is verified as a fixed unit.

While an exact match (e.g. ‘RCP’ to ‘CPR’) is
the objective of our system, it is important to note
that for evaluating the system we distinguish be-
tween agreement (an exact match) and verification
(verified by a search) as noted:

Agreement – The candidate SF is an exact match
with the gold SF.

Verification – The candidate SF was found near the
LF in at least two published papers in the target
language (English).

4 Experimental Settings

4.1 Translation Models
For Google Translate, experiments were performed
using the Google API9 as available to the public on
October 14, 2023. For Opus MT, the vanilla model
was used without any fine tuning. The French-to-
English language variant from Hugging Face10 was
downloaded for this purpose.

4.2 Baselines
We compare the inclusion of our method against
several baselines that are executed with and with-
out our proposed step. Our experiments are per-
formed on the acronym corpus that we created and
allow for public consumption. Our first set of exper-
iments focuses on three main baseline approaches
found in Table 5 that we call: (1) Identity, (2) Re-
verse, and (3) Google/Opus11. The Identity base-
line is the most straightforward experiment which is
when the English SF output is equal to the French
SF input (e.g. ADN in French is equal to ADN in
English). The Reverse baseline is when the English
SF output is the reverse of the French SF input (e.g.
ADN in French is equal to NDA in English). The
Google/Opus baseline takes the LF and SF in French
and outputs an SF in English.

4.3 Hypothesis Generation
For the disambiguation of acronyms, we use a SciB-
ERT (Beltagy et al., 2019) model that is fine-tuned
on 1.8M term-acronym pairs in the target language
(English) with these parameters: Adam as the opti-
mizer, an initial learning rate of 2e-5, 1,000 warmup

7https://www.technitrad.com/how-to-perform-terminology-research/
8https://www.atanet.org/growing-your-career/terminology-management-what-you-should-know/
9https://cloud.google.com/translate

10https://huggingface.co/Helsinki-NLP/opus-mt-fr-en
11We use the OpusMT system for an extra comparison https://huggingface.co/Helsinki-NLP/opus-mt-fr-en
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Input: LF ([MASK]) Gold SF
cardiopulmonary resuscitation
([MASK])

CPR

deoxyribonucleic acid ([MASK]) DNA
Organization of the Petroleum Ex-
porting Countries ([MASK])

OPEC

Table 4: Training data for SF candidate generation.

Baseline Input Output
Identity ADN ADN
Reverse ADN NDA
Google/Opus acide

désoxyribonucléique
(ADN)

DNA

Table 5: Examples of our three baseline methods.

steps, and a weight decay of 0.01. We use data
downloaded from arXiv12 and then processed by
AB3P for fine-tuning as shown in Table 4. The final
model accepts input in the form: “LF ([MASK])”
and outputs an n-best list of SF candidates.

4.4 Acronym Corpus

A new test set13 (called the acronym corpus here)
has been created for evaluating machine translation
systems on acronyms. The test set consists of 437
LF-SF pairs obtained from a corpus of 13,500 ab-
stracts crawled from HAL14, a repository of French
academic papers, many of which are from medicine
and science. The pairings contain an LF and SF for
each term in both French (source) and English (tar-
get). Examples were selected such that no offensive
content or personal information was to be included.

The HAL repository provides abstracts in both
French and English. These abstracts contain many
technical terms. An example of an abstract is
“[...] 42/194 patients (21%) did not want cardiopul-
monary resuscitation (CPR) and 15/36 (41%) did
not prefer intensive care unit (ICU) admission [...].”
When the abstract introduces an acronym, the gold
labels in the test set specify the long form (LF) and
the short form (SF) in both French and English. An
example of the acronym translation task is to input a

French LF such as réanimation cardiopulmonaire
and its corresponding SF, in this case RCP. The out-
put should be the correct translation of the SF: CPR.

5 Results

We compare the baselines first in Table 6. We pro-
vide both agreement and verification for consistency
purposes, which show that verification is generally
much lower than agreement for all systems.

When compared, our proposed technique,
which includes search and verification, achieves
9.9% improvement (43.9%) for agreement and
17.8% improvement (32.7%) for verification com-
pared to the baseline when using the OpusMT sys-
tem. Google translate scores are also markedly
higher, with 8.3% improvement (62.6%) and 13.6%
(42.8%), respectively. It is clear that through the
use of our proposed system, the acronym resolution
is much higher for both agreement and verification.

Additionally, we illustrate the comparisons in
more detail from a precision and recall perspective
in Table 7 for all experimental systems. Our exper-
iments show that through the use of our proposed
step which uses agreement and verification, profes-
sional translators that use the Annotated Corpus will
have more success using our system. Precision is
presented here as the portion of agreed terms that are

12https://info.arxiv.org/help/bulk data/index.html
13https://github.com/rtotheich/acronym corpus/tree/main
14https://theses.hal.science/?lang=en
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Method Agreement Verified
Identity Baseline 21.5% 0.06%
Reverse Baseline 28.5% 14.6%
Opus Baseline 34% 14.9%
Google Baseline 54.3% 29.2%
Gold Labels 100% 42%

Table 6: Agreement and verification for the baseline experiments on the Acronym Corpus.

Method Precision Recall
Identity Baseline 0.28 0.06
Reverse Baseline 0.51 0.15
Opus Baseline 0.43 0.15
Google Baseline 0.54 0.29
Gold Labels 0.42 0.42
Proposed (Opus) 0.75 0.33
Proposed (Google) 0.68 0.43

Table 7: Precision and recall comparisons for all experimental systems.

verified and recall as the portion of verified terms.

6 Conclusion

Professional translators must be well versed in the
source and target languages that they are translat-
ing. Translating technical terminology can be so
important that it has been compared to the job of
a terminologist (Cabré, 2010). Quality translations
will take into account several units of measurement
such as fluency, adequacy, and more. However,
it has been the case in the past that, more often
than not, terminology, specifically the translation of
acronyms, is not included as a major improvement
to a translator’s pipeline. Domain-specific stan-
dards (GHENŢULESCU, 2015), nonetheless, have
been set such that verification of terminology like
acronyms is considered an important step in transla-
tion.

Translators and AI practitioners could benefit
highly from the use of a system like the one pre-
sented in this article. We believe that our corpus and
findings provide sufficient evidence and materials to
reproduce a benefit to warrant future work on the
topic.

7 Limitations

The results of applying our method may not trans-
fer to languages that are very different from English

in orthography (e.g., Chinese, Japanese) and/or mor-
phology. The working languages of the authors be-
ing French and English, hand curating a corpus was
limited to these only. Our solution also may not
scale to longer texts; the method is based on working
with term-acronym pairs and working on a full text
would require a pre-processing step to identify term
pairs as well as inference time for each acronym.
Training a model for this task also requires access to
GPU resources.

8 Ethics Statement

In line with the concept of professional transla-
tor ethics presented by Lambert (2020), it is of
paramount importance to guard against translations
that “represent their source texts in unfair ways.”
This refers to unfaithful translations that do not cor-
rectly transfer the true meaning in the source lan-
guage, a prime example being incorrect or unverifi-
able terminology. Our system upholds this doctrine
of translation ethics and adheres to ethics policies
outlined by the translation community.
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Abstract 

Humans outperform large language models (LLMs) on sophisticated tasks because human cognition involves a 

range of cognitive functions and their dynamic interactions. This study explores how integrating human 

cognition through concept-guided instruction and few-shot teaching in the prompt can guide LLMs to improve 

translation outcomes. We first demonstrate that for simple and widely used concepts, concept-guided prompting 

approaches offer significant benefits. We then test prompt engineering with Chinese-to-English translation 

examples, using hypothetical spaces—generated by GPT4—to estimate the complexity of various concepts and 

Likert scores—generated by human experts—to evaluate the translation performance. Our findings show that 

LLM translation performance declines as concept complexity increases. We also identify additional challenges: 

LLMs struggle with continuity in explaining and practicing sophisticated concepts due to the lack of human-

like cognitive functions, such as cognitive dissonance. Additionally, LLMs lack a graceful speed-accuracy 

tradeoff because they do not possess the dynamic information processing, response strategies, and performance 

assessment that humans do. However, LLMs can mitigate some of these challenges by using Chain-of-Thought 

(CoT) reasoning, which is especially effective for problems requiring consistent, well-structured reasoning steps. 

Despite this, LLMs can only represent the effects of complex human cognitive functions through (often) 

fragmented linguistic descriptions, whereas humans excel at understanding critical and broader contexts and the 

interconnections between cognitive aspects.  

1 Introduction 

Humans possess superior capabilities compared to 

large language models (LLMs) because human 

cognition emcompasses a range of mental 

functions: language processing, perception, 

attention, memory, reasoning, problem-solving, 

planning, decision-making, and executing actions. 

According to triadic cognition theory (Cook 2018), 

dual process theory (Chaiken 1999; Daniel 2017), 

embodied cognition (Shapiro 2014), and cognitive 

psychology (Neisser 2014), human cognition arises 

from the dynamic interaction of these functions, 

yielding a more nuanced, multifaceted 

understanding of real-world contexts than a 

simplistic and static computational model.   

Recent advancements in large language models 

(LLMs) have shown that while these models still do 

not match the full breadth of human cognition, they 

are making significant strides in specific areas such 

as machine translation (Fan 2020 and Zhu 2023). 

Unlike traditional machine translation (MT) tools 

such as Google Translate and DeepL, which rely 

solely on the source language text, LLMs possess 

the ability to follow instructions and can even learn 

from bilingual training examples provided within 

the prompt. This capability allows LLMs to provide 

context-sensitive translations with improved 

performance, making them as a more adaptable and 

user-friendly option to traditional methods (Qian 

and Kong, 2024A and 2024B). 
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Concepts serve as a common entity used across 

multiple cognitive functions, both in human minds 

and large language models. John McCarthy's insight, 

"To understand natural language is to understand the 

concepts in the language, not just the words," 

(McCarthy 2007) captures the fundamental 

cognitive principle that language is a tool for 

conveying and manipulating concepts, and true 

understanding requires engaging with those 

underlying mental constructs rather than simply 

processing linguistic symbols. 

One important approach to guide the LLM-

based translation outcome is to provide concept 

definitions and examples through prompt 

engineering. In section 2, by experimenting with 

many examples associated with common sense 

concepts (e.g., systems of measurement such as the 

metric system and the imperial system) and cross-

cultural conceptualization, we show that, given 

proper prompts in the form of pre-editing analysis, 

concept-guided translation prompt instruction, and 

post-editing revision, LLMs can successfully 

reflect the relevant concepts in the translation 

outcome. 

On the other hand, for more sophisticated 

translation concepts, we want to test whether 

performance of the concept-guided approach 

degrades as the concepts become more complex.  In 

section 3, we test prompt-engineering-based 

implementations of multiple translation-related 

concepts using Chinese-to-English translation 

examples. By using hypothetical spaces to 

represent the complexity levels of various 

concepts, we verify that LLMs' translation 

performance degrades as concept complexity level 

increases. Also in section 3, we identify and 

analyze several challenges faced by the concept-

guided approach: LLMs lack continuity to explain 

and practice sophisticated concepts; and compared 

with humans, LLMs lack graceful speed-accuracy 

tradeoff. These challenges stem from the 

fundamental differences between LLMs and 

human cognition. As artificial systems designed 

solely for generating text, LLMs' internal processes 

do not mimic or engage the complex cognitive 

functions and dynamic interactions typical of the 

human brain. Consequently, these limitations in 

simulating human-like cognition contribute to the 

observed deficiencies. 

Nevertheless, LLMs have been shown to 

exhibit human-like cognitive functions such as 

reasoning patterns (Lampinen 2024; Hagendorff 

2023). Section 4 demonstrates that LLMs can use 

Chain-of-Thought (CoT) reasoning (Wei 2022) to 

overcome some challenges and enhance the 

performance. This is particularly effective for sub-

problems that benefit from well-formed, consistent 

reasoning steps, ultimately leading to the correct 

conclusion. However, while humans use multiple 

cognitive functions to solve complex problems, 

LLMs can only project this complexity, often in 

fragmented form, as linguistic descriptions. Again, 

these broader perspectives and interconnections are 

critical strengths of the complex cognitive functions 

and dynamic interactions typical of the human brain. 

Section 5 concludes our findings. 

2 Advantages of Concept-guided Pre-

editing Analysis, Translation Instruction, 

and Post-editing Revision 

The role of concepts across multiple cognitive 

functions is multifaceted and central to human 

cognition: facilitating reasoning and generalization 

(William 2010), guiding decision-making by 

providing a framework for understanding and 

categorizing new information (Snowden 2007),  

integrating multiple features and dimensions of 

information (Villani 2019) to support flexible 

cognition (Ionescu 2006, Johnsson 2021), bridging 

episodic and semantic memory (Morton 2013), and 

creating functionally unitary representations that can 

be accessed and used across different cognitive tasks 

(Mahon 2009). 

In this section, we showcase several examples 

where concept-guided prompting has significant 

advantage by using LLM-based pre-analyses, 

translation instructions and post-editing revisions. 

2.1 LLMs Leverage Pre-editing Style Analysis as 

Translation Instructions 

LLMs can generate style analysis reports for 

narratives. Table 1 presents an example using GPT4 

to analyze an English narrative's style. In (Qian 

2023), we compared these results with analyses by 

two human professional translators on the same text. 

GPT4's analysis was not only more comprehensive 

and accurate but also faster than human analysts. 

Subsequently, a GPT4 prompt could use this pre-editing 

style analysis as a guide. For example, the prompt might be: 

"Translate the following text from English to Chinese, 
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incorporating applicable styles such as humor, self-

deprecation, conversational tone, vivid descriptions, casual 

language and slang, honesty, anecdotal use, exaggeration 

for effect, direct address, and rhetorical questions." Using 

pre-editing auto-analysis as a translation style guide can 

significantly improve upon current methods that do not 

support style instruction. 

User (Prompt) 

Please read the story at 

https://www.thecut.com/2020/03/book-excerpt-

samantha-irbys-wow-no-thank-you.html and 

derive a list of the author's writing style. 

ChatGPT (Used Link Reader) 

Based on the excerpt from Samantha Irby's essay 

collection "Wow, No Thank You.", here are some 

characteristics of her writing style: 

1. Humorous and Self-deprecating: Irby 

often uses humor and self-deprecation to engage 

her readers. She makes fun of herself and her 

situations, which adds a light-hearted tone. 

2.  Conversational Tone: Her writing style 

is conversational, feeling personal and relatable. 

3. Vivid Descriptions: Irby uses vivid and 

detailed descriptions to paint a clear picture of her 

experiences. This helps to immerse the reader in 

her stories. 

4. Casual Language: She uses casual 

language, slang, and colloquialisms, which 

contributes to the conversational/informal tone. 

5. Honesty and Authenticity: Irby's writing 

is characterized by its honesty and authenticity. 

She doesn't shy away from discussing personal 

and sometimes uncomfortable topics. 

6. Anecdotes: She uses anecdotes to 

illustrate points and make writing more relatable. 

7. Exaggeration for Effect: Irby often uses 

exaggeration to emphasize her points. 

8. Direct Address: She frequently addresses 

the reader directly, which helps to establish a 

connection between her and the reader. 

9. Use of Rhetorical Questions: Irby often 

uses rhetorical questions to engage the reader. 
10.         … 

Table 1: GPT4 analyzed the discourse-level 

writing style, with human-identified entries 

highlighted in bold (more details on this 

example can be found in Qian 2023). 

2.2 LLMs Utilize Concept-guided Prompts to 

Guide Translation and Post-editing 

Concepts are crucial in human cognition, allowing 

us to mentally group similar objects, events, and 

ideas. Unlike traditional machine translation and 

editing methods, which focus on sentence-by-

sentence and word-by-word changes, an LLM-based 

approach can leverage various concepts to guide 

translations and revisions more effectively. 

For example, Table 2 illustrates how a GPT-4 

prompt describes converting units of measure from 

the imperial system to the international system of 

units (SI) to enhance machine translation revisions. 

This allows for converting multiple types (such as 

inches, pounds, and gallons to meters, kilograms, 

and liters) across multiple sentences in a single 

instruction. This method represents a significant 

improvement, demonstrating that concept-guided 

instructions are major advancements over traditional 

approaches. 

User (Prompt) 

Translate the following text segment from 

English to Chinese: 

Original English: … 

ChatGPT 

The Chinese translation is: 

…他的身高是 5 英尺 10 英寸 (His height is 

5 feet and 10 inches)…    

User (Prompt) 

Revise the translation to reflect the following 

concepts: 

“convert the units of measure to the 

international system of units (SI)”  

ChatGPT 

The Revised Chinese translation is: 
… 他的身高是 1.78 米  (His height is 1.78 

meters)…   

Table 2:   GPT-4 prompt uses concept 

descriptions to automatically revise machine 

translation results, such as converting units 

from inches to meters. 

Table 3 showcases an instance where GPT4 

introduces a cultural difference issue in the prompt 

and guides a revision effort to address the issue.  In 

such situations, human translators might only be 

able to fix one issue at a time. However, we can 

leverage concept-guided translation memory that 

can identify similar text segments based on concept 

similarity so that (conceptually) similar sentences 

can be processed in similar fashion (Qian and Kong, 

2024B). 

User (Prompt) 

Translate the following text segment from 

English to Chinese: 
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Original English: The last time I wore a 

Halloween mascot was in the second-grade 

costume parade at Lincoln Elementary School 

in 1986 (go dolphins). 

The Chinese translation is:  

ChatGPT 

上一次我穿万圣节服装是在1986年林肯小学

的二年级服装游行中（加油， 海豚）。 
User (Prompt) 

Keep in mind that “dolphins” in this context 

refer to the school mascot.  Since most 

Chinese schools do not have mascot, please 

modify the translation to make the meaning 

more clear to Chinese audience. 

ChatGPT 

上一次我穿万圣节服装是在1986年林肯小学

的二年级服装游行中(加油，林肯小学的吉

祥物海豚）。 

Table 3: GPT4 Instructed translation revision: 

to reflect a cultural difference (most Chinese 

schools do not have mascot), GPT4 revision 

provides further elaboration (“林肯小学的吉

祥物”—Lincoln elementary school’s mascot) 

in front of the word “海豚”. 

2.3 Summary 

For simple and straightforward concepts, concept-

guided approaches, supported by prompt-

engineering using LLMs, show significant benefits.   

In the next section, we evaluate translation 

concepts with various complexities to evaluate the 

challenges faced by the concept-guided approaches. 

3 Challenges Faced by the Concept-guided 

Approach 

In this section, we test Chinese-to-English 

translation concepts with varying levels of 

difficulty. We found that while LLMs perform well 

with simple and straightforward concepts, they 

encounter significant challenges when handling 

more sophisticated concepts (Qian and Kong 

2024A, Qian and Kong 2024B). 

3.1 LLMs’ Performance Declines with 

Increasing Concept Complexity 

In cognitive linguistics and mental spaces theory, a 

hypothetical space is a dynamically constructed 

partial and temporary conceptual domain used 

during thinking and speaking (Nolan, 2001). These 

mental spaces facilitate the representation of 

complex scenarios, counterfactuals, and 

hypothetical situations. 

Two translation concepts are compared for 

illustration: 

"Subject omission" describes a linguistic 

phenomenon where a language permits the omission 

of subject if they can be inferred pragmatically or 

grammatically.  

"Changing subject selection" involves 

choosing a different subject than the original one in 

the source language to enhance readability and 

fluency in the target language. 

Applying concept 2 generally requires a larger 

hypothetical space than concept 1, as it often 

involves selecting from multiple possible subjects—

nouns, noun phrases, or clauses—making it more 

complex. 

We had used GPT4 to analyze the hypothetical 

space of ten translation concepts: (1) The term "pro-

drop" describes a linguistic feature where a language 

permits the omission of subjects (and occasionally 

other pronouns) if they can be inferred 

pragmatically or grammatically. (2) The linguistic 

term "dislocation" describes the occurrence where 

the placement of words or phrases within a sentence 

varies considerably between two languages. (3) The 

concept of implicit conjunctions and the use of 

linking or transition words in Chinese contrasts with 

English. Chinese frequently omits conjunctions that 

are essential in English. (4) The practice of 

amalgamating clauses and brief sentences in 

Chinese to form an extended English sentence is 

noteworthy. (5) Deverbalization, a key concept in 

translation studies related to abstract meaning from 

the source language to effectively convey the 

intended message in the target language,  becomes 

especially pertinent when translating between 

languages with markedly different structures, such 

as from Chinese to English. (6) Eliminating 

redundancy is a common practice in translating 

Chinese, enhances the readability and clarity of the 

target text. (7) Changing subject selection involves 

selecting a different subject than the one in the 

source text to enhance the readability and fluency of 

the English translation. (8) Changing perspective in 

the context of translating from Chinese to English 

involves altering the viewpoint or approach when 

converting text from one language to the other. (9) 

Changing parts of speech is essential to faithfully 

convey the meaning of the original while ensuring 
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adherence to English expressions, regardless of the 

corresponding parts of speech in Chinese. (10) 

Cultural translation aims to retain the intended 

meaning of a culturally sensitive message while 

considering cultural differences, in order to avoid 

confusion that may result from a direct translation.  

GPT4 was used to generate a normalized score 

(ranged between 0 and 1) towards each concept in 

terms of the hypothetical spaces. A detailed 

concept description plus three examples prepared 

by human experts are provided in the prompt to set 

up the context for evaluation.  Table 4 shows an 

example on deverbalization and the related 

complexity evaluation results generated by GPT4; 

The detailed GPT prompt and GPT-generated 

hypothetical space evaluation on all ten translation 

concepts are listed in Appendix 1. 

User (Prompt) 

Deverbalization is a concept in translation 

studies, particularly relevant in the context of 

translating between languages with 

significantly different structures, such as 

Chinese to English. The core idea of 

deverbalization is to move away from a direct, 

word-for-word translation, which often leads to 

awkward or inaccurate results due to the 

differences in grammar, syntax, and cultural 

contexts. … 

… 

Three examples are listed below to illustrate the 

Chinese-to-English translation reflecting the 

concept above： 

Chinese: 过去带动高增长的主要是高投资，

而高投资主要是三大需求来源，出口、基础

建设、房地产。 

English: The key driver of rapid growth has been 

investment, which is needed in three areas/goes 

to three areas, export, infrastructure, and real 

estate. 

Chinese: 本土化人才了解中国市场上的需求

和消费者的心理。 

English: Local talents understand the market 

needs in China and know what customers want. 

Chinese: 中国现在很多地区复工率很高。 

English: Many areas in China have reopened 

their economies. 

 

Evaluating the size of the "hypothetical 

space" for each of these translation concepts 

involves considering the range of 

interpretations, adaptations, and choices a 

translator might need to navigate when 

applying these concepts from Chinese to 

English. This hypothetical space represents 

the complexity and variability inherent in 

each concept, indicating the level of 

creativity, cultural understanding, and 

linguistic expertise required. Here's a rating 

for each concept, on a scale from 0 (minimal 

complexity) to 100 (maximum complexity), 

reflecting the size of their hypothetical spaces: 

ChatGPT 

Deverbalization (80/100): This concept 

requires deep understanding of both source 

and target languages, along with the ability to 

abstract and reconceptualize ideas in 

culturally appropriate ways. It involves a 

significant hypothetical space due to the need 

for creative interpretation and expression. 

Changing Subject Selection (70/100): Adapting 

the subject for better readability and fluency 

can involve moderate to high complexity, 

especially when ensuring that the shift does not 

alter the intended meaning of the original text. 

… 

Table 4: GPT4 prompt and hypothetical space 

evaluation scores for the ten concepts (detailed 

prompt and GPT4-generated evaluation results 

are listed in Appendix 1). 

Machine translation evaluation employed 

human experts to assign 5-point Likert scores to 

GPT-4's English-to-Chinese translation outcomes of 

ten concepts. The scale scores used were; Strongly 

Disagree = -2; Disagree = -1; Neither Agree nor 

Disagree=0; Agree=1; Strongly Agree = 2. The 

experiment used a dataset of 40 English-Chinese 

sentence pairs, with four pairs per concept (detailed 

in Appendix 2). Using 1-in-4 leave-one-out cross-

validation, the GPT-4 model was given three 

Chinese-English sentence pairs (as few-shot training 

examples) and the concept definition in the prompt, 

and then generated the English translation for the 

fourth pair's Chinese sentence. This process was 

repeated to produce four distinct translations for 

each Chinese sentence, all of which were subject to 

human evaluation. 
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 Figure 1 displays human-generated Likert 

scores for concept-guided machine translations 

(top plot) and GPT-4-generated scores for 

hypothetical space complexity (bottom plot). 

Generally, GPT-4 translation performance declines 

as the complexity of the concepts increases, 

indicating that LLMs struggle with more 

sophisticated concepts involving larger 

hypothetical spaces. An exception is the "cultural 

translation" concept, which, unlike others focused 

on syntax and semantics, falls into a unique 

category. This suggests that GPT-4's complexity 

scores for hypothetical space may not accurately 

reflect challenges in cultural translation. 

3.2 LLMs Lack Continuity 

The "continuity" of AI models, particularly LLMs, 

refers to their ability to maintain coherent memory, 

reasoning, and contextual understanding over time. 

The lack of continuity in LLM models is a 

significant challenge that raises concerns about 

their ability to achieve human-like intelligence and 

self-awareness (Lieberman, 2024).  

Table 5 presents an example where GPT4 

contradicts itself. The concept under focus is “Pro-

drop” that refers to the grammatical feature where 

subjects/pronouns are omitted if their meaning can 

be inferred from context. In the example, GPT4 

shows that it has epistemological knowledge about 

the concept. In addition, with the help of the 

definition and few-shot examples, GPT4 identifies 

that the concept should be applied and states that the 

subject is missing in the original Chinese text, yet it 

identifies a subject in its direct translation and 

retains this subject in the final translation, where it 

also claims to add a subject absent from the Chinese 

version. This example highlights the inconsistencies 

and logical flaws of large language models (LLMs) 

when dealing with complex concepts. 

User (Prompt) 

What is the concept of “Pro-drop” in the context of 

Chinese-to-English translation? 

ChatGPT 

The concept of "Pro-drop" (short for pronoun 

dropping) refers to the grammatical feature in 

certain languages where pronouns that are 

syntactically expected can be omitted if their 

meaning is understood from context. This 

characteristic is particularly relevant in the context 

of translating from Chinese to English because 

Chinese is a Pro-drop language, whereas English 

generally is not. 

In Chinese, speakers often omit subjects and 

sometimes objects when these are clear from the 

context or previously mentioned in the 

discourse… 

User (Prompt) 

The concept of "pro-drop" refers to the ability of a 

language to omit subjects (and sometimes other 

pro-nouns) when they are pragmatically or 

grammatically inferable. Chinese is a pro-drop 

language, meaning that subjects can be and often 

are omitted when they are un-derstood from 

context. In contrast, English is a "non pro-drop" 

language, meaning that subjects are almost always 

explicitly stated, as English need the presence of 

subjects for clarity and grammatical correctness. 

Three examples are listed below to illustrate the 

Chinese-to-English translation reflecting the 

concept above: 

Chinese: 对传统那些没有比较优势和竞争优势
产业，继续给予必要保证。 

English: Traditional industries without 

comparative advantage and competitiveness 

should be given the support. 

Figure 1: As GPT4's hypothetical 

space evaluation scores increase 

(normalized from 0 to 1), its 

performance (Likert Scores generated 

by human evaluators) degrades. The 

X-axis lists ten concepts, from left to 

right: eliminating redundancy, 

prodrop, implicit conjunction and 

linking, combining clauses and short 

sentences, dislocation, cultural 

translation, changing part of speech, 

subject selection, perspective, and 

deverbalization. 
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Chinese：要重视发挥家庭、学校和社区作
用，帮助儿童抵御恐怖极端思想侵蚀。 

English：Attention should be paid to the roles of 

families, schools, and communities in preventing 

children from being influenced by extreme 

terrorism. 

Chinese: 需要货币政策传导机制来保证资金流
动到位。 

English: We need transmission mechanism of 

monetary policy to ensure the availability of capital 

flows. 

If you are an expert-level translator, do you think 

we should apply the same concept on the following 

Chinese text segment?  

Chinese: 各地积极性高涨。 

Please give a score between 0 and 100 (0 means the 

concept definitely should not be applied on 

translating the sentence while 100 means that the 

concept definitely should be applied on translating 

the sentence.  

If the score is above 75, what should be the proper 

translation reflecting the concept. Please generate 

a proper English translation reflecting the concept. 

ChatGPT 

The Chinese sentence "各地积极性高涨" can be 

translated while considering the pro-drop concept. 

This sentence, when directly translated, means 

"Enthusiasm is high everywhere." In a non pro-

drop language like English, it's necessary to 

specify the subject for clarity. However, in this 

Chinese sentence, the subject is dropped because 

it's understood from the context. 

In this case, I would give a score of around 85, 

indicating that the pro-drop concept should be 

applied in translation. The English translation, 

reflecting this concept and the inherent meaning of 

the sentence, could be: 

"Enthusiasm is high in all regions." 

Here, the subject "enthusiasm" is explicitly stated 

to maintain clarity in English, which is a non pro-

drop language. The translation captures the 

essence of the original Chinese sentence while 

adhering to the syntactic requirements of English. 

Table 5: GPT-4 "understands" the “pro-drop” 

concept; with the help of concept definition 

and few-shot examples, it identifies that the 

concept should be applied (a subject needs to 

be added for English) but it contradicts itself 

by keeping the same subject. 

Cognitive dissonance, a psychological theory 

proposed by Leon Festinger (Festinger 1962), 

suggests that individuals experience discomfort 

when holding conflicting beliefs, attitudes, or 

behaviors. This discomfort, known as dissonance, 

drives individuals to seek consistency between their 

beliefs and actions to reduce the associated stress. 

Cognitive dissonance involves several cognitive 

functions: detecting discrepancies (attention and 

memory), experiencing physiological arousal and 

discomfort (emotion regulation), perception and 

confirmation (perception), and rationalization and 

justification (decision making).  

LLMs are powerful tools for generating text 

and understanding language, but they lack the 

ability to leverage human cognitive functions, such 

as cognitive dissonance, to maintain consistency. 

3.3 LLMs Lack Graceful Speed-Accuracy 

Tradeoff 

The speed-accuracy tradeoff, as described in (Heltz, 

2014), refers to the intricate relationship between an 

individual's preference for responding slowly with 

fewer errors versus responding quickly with more 

errors. 

Compared to humans, LLMs were found 

unable to manage the speed-accuracy tradeoff as 

effectively (Goodman, 2024). In the context of 

translation, we tested multiple concepts and had 

similar findings. Table 6 presents a case study where 

GPT-4 was taught the concept of "changing subject 

selection"—selecting a subject different from the 

one in the source text (e.g., Chinese) to improve the 

readability and fluency of the target language (e.g., 

English) translation—using an instruction followed 

by three examples. In theory, any noun, noun phrase, 

or noun clause can serve as the subject in English. 

However, the training examples emphasized the 

initial possessive noun phrases in Chinese, 

consistently selecting the possessor noun as the 

English subject. Most human translators, upon 

reviewing these examples, would likely choose the 

possessor noun (迁移-migration) as the subject in 

their English translation. In contrast, GPT-4 failed 

to make this choice. Unlike humans, who can make 

a well-judged speed-accuracy tradeoff based on a 

few examples, LLMs' performance appears less 

adept and sometimes even seems irrational or 

confused. 

 

Proceedings of the 16th Conference of the Association for Machine Translation in the Americas,

Chicago, USA, September 30 - October 2, 2024. Volume 1: Research Papers



User (Prompt) 

For Chinese-to-English translation, changing subject 

selection involves selecting a subject different from the 

one in the source text to improve the readability and 

fluency of the English translation. 

Below are three examples: 

1. 技术的进步极大地改变了我们的生活方式。(direct 

translation: The advancement of technology has greatly 

changed our way of life.) 

English translation: Technology have greatly advanced 

to change our way of life. 

2. 老年人本身的免疫功能就相对于年轻人要弱一

些。(direction translation: The immune function of the 

elderly is weaker than that of the young.) 

English translation: Unlike younger people, the elderly 

have weaker immune systems. 

3. 未来20年气候变化的威胁将超过恐怖主义。(direct 

translation: The threat of climate change will be more 

than terrorism in the next 20 years.) 

English: In the next two decades, climate change will 

pose a greater threat than terrorism. 

 

… Please generate a proper Chinese-to-English 

translation, and a proper English translation reflecting the 

concept and the few-shot examples : 

Chinese: 迁移的流向和形式也都发生了很大的变化。
(direct translation: The patterns and forms of migration 

have also undergone great changes.) 

ChatGPT 

English: The patterns and forms of migration have 

undergone significant changes.  

Table 6: GPT-4 shows less graceful speed-

accuracy tradeoff by not following the patterns 

illustrated by the three teaching examples. 

Human’s ability to have graceful speed-

accuracy tradeoff is supported by several cognitive 

functions such as information processing dynamics 

(involving perception, attention, memory, and 

problem-solving), response strategy (decision 

making), and performance assessment 

(metacognition).  

LLMs are powerful tools for generating text 

and understanding language, but they lack the 

ability to leverage human cognitive functions to 

achieve graceful speed-accuracy tradeoff. 

3.4 Summary 

This section highlights three challenges in the 

concept-guided approach: (1) LLMs’ performance 

declines as the complexity of the required 

conceptual space increases; (2) LLMs struggle with 

continuity in explaining and practicing advanced 

concepts; and (3) LLMs lack the ability of graceful 

speed-accuracy tradeoff. The challenges stem from 

the absence of comprehensive human-like cognitive 

functions in LLMs. 

4 Chain-of-Thought (CoT) Reasoning 

Provides a Structured Way for LLMs to 

Support Sophisticated Concepts 

In this section, we explore methods to address the 

limitations identified previously. We focus on 

Chain-of-Thought (CoT) reasoning prompting as a 

solution and evaluate the pros and cons of this 

approach. 

4.1 CoT Demonstrates Detailed Reasoning 

Steps 

Reasoning is a fundamental cognitive function that 

involves drawing conclusions, solving problems, 

and making decisions and encompasses various 

cognitive functions. Chain-of-thought (CoT) 

prompting can improve the performance of large 

language models (LLMs) on complex reasoning 

tasks (Wei 2022).  The key idea behind CoT is to 

provide the LLM with examples that demonstrate 

step-by-step reasoning (intermediate reasoning 

steps) towards the final results, rather than just 

giving the final answer directly. This guides the 

LLM to construct a logical pathway from the 

original input to the final solution, rather than 

relying solely on its internal knowledge base which 

may have gaps or biases. 

Compared to simple prompting without step-

by-step reasoning, CoT prompting proves itself as 

effective solutions to complex translation concepts. 

Below are some examples in which CoT prompting 

shows significant benefits. 

4.2 CoT Addresses the Issue of Lacking 

Continuity 

Although fully implementing human-like 

cognitive dissonance is challenging, the linguistic 

part of its rationalization and justification 

component can be implemented through CoT 

reasoning to address the issue of continuity. 

Table 7 shows that CoT prompting solves the 

“lack of continuity” example we described in 

section 3.2 and Table 5 related to the “Pro-drop”. An 

additional reasoning step is added to reflect the 
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omitted subject in each teaching examples, and 

during the generation phase, GPT4 is able to infer 

the omitted subject for the test example and 

generate the correct translation outcome that 

reflects the “pro-drop” concept correctly. 

 

User (Prompt) 

The concept of "pro-drop" refers to the ability of a 

language to omit subjects (and sometimes other pro-

nouns) when they are pragmatically or grammatically 

inferable. Chinese is a pro-drop language, meaning that 

subjects can be and often are omitted when they are 

understood from context. In contrast, English is a "non 

pro-drop" language, meaning that subjects are almost 

always explicitly stated, as English need the presence of 

subjects for clarity and grammatical correctness. 

Three examples are listed below to illustrate the Chinese-

to-English translation reflecting the concept above: 

Original Chinese: 对传统那些没有比较优势和竞争优

势产业，继续给予必要保证。 

Omitted subject: 传统产业 (traditional Industries) 

English Translation: Traditional industries without 

comparative advantage and competitiveness should be 

given the support. 

Original Chinese：要重视发挥家庭、学校和社区作

用，帮助儿童抵御恐怖极端思想侵蚀。 

Omitted subject: 注意力（attention or extra attention） 

English ： Attention should be paid to the roles of 

families, schools, and communities in preventing 

children from being influenced by extreme terrorism. 

Original Chinese: 需要货币政策传导机制来保证资金

流动到位。 

Omitted subject: 我们 （we）or 中央银行 （central 

bank） 

English: We need transmission mechanism of monetary 

policy to ensure the availability of capital flows. 

If you are an expert-level translator, do you think we 

should apply the same concept on the following Chinese 

text segment?  

Chinese: 各地积极性高涨。 

Please give a score between 0 and 100 (0 means the 

concept definitely should not be applied on translating the 

sentence while 100 means that the concept definitely 

should be applied on translating the sentence.  

If the score is above 75, what should be the omitted 

subject and the proper translation reflecting the concept. 

Please generate a proper English translation reflecting the 

concept. 

ChatGPT 

I would score this 90. The concept of "pro-drop" should 

indeed be applied here as the subject is contextually 

inferable. 

Omitted subject: 各地人民 (People in various regions) 

Proper Translation: "People in various regions are highly 

enthusiastic." 

Table 7: By incorporating an additional CoT 

reasoning step, GPT4 addresses the issue of lacking 

continuity. 

4.3 CoT Addresses the Issue of Lacking Speed-

Accuracy Tradeoff  

Although fully implementing human-like speed-

accuracy tradeoff is challenging, the linguistic part 

of its information processing and response strategy 

components can be implemented through CoT 

reasoning to address the issue of continuity. 

Table 8 shows that CoT prompting solves the 

“lacking speed-accuracy tradeoff” example we 

described in section 3.3 and Table 6 related to the 

“subject changing”. In each teaching example, 

multiple reasoning steps are added to reflect the 

direct translation, the subject phrase, and the 

alternative subject selection using the possessor 

noun in the subject phrase. Then during the 

generation phase, GPT4 is able to infer the same 

reasoning steps for the test example and have 

human-like speed-accuracy tradeoff and generate 

the corresponding translation outcome. 

User (Prompt) 

For Chinese-to-English translation, changing subject 

selection involves selecting a subject different from 

the one in the source text to improve the readability 

and fluency of the English translation. 

Below are three examples: 

1. Original Chinese: 技术的进步极大地改变了我们

的生活方式。 

Direct translation: The advancement of technology 

has greatly changed our way of life. 

The subject phrase: The progress of technology 

English translation with alternative subject selection 

using the possessor noun in the subject phrase: 

Technology have greatly advanced to change our way 

of life. 

2. Original Chinese: 老年人本身的免疫功能就相对

于年轻人要弱一些。 

Direction translation: The immune function of the 

elderly is weaker than that of the young. 

The subject phrase: The immune function of the 

elderly 
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English translation with alternative subject selection 

using the possessor noun in the subject phrase: 

Unlike younger people, the elderly have weaker 

immune systems. 

3. Original Chinese: 未来 20 年气候变化的威胁将

超过恐怖主义。 

Direct translation: The threat of climate change will 

be more than terrorism in the next 20 years. 

The subject phrase: The threat of climate change 

English translation with alternative subject selection 

using the possessor noun in the subject phrase: In the 

next two decades, climate change will pose a greater 

threat than terrorism. 

Please follow the same pattern to translate the 

following Chinese sentence: 

Original Chinese: 迁移的流向和形式也都发生了

很大的变化。 

ChatGPT 

The sentence "迁移的流向和形式也都发生了很大

的变化" directly translates to "The directions and 

forms of migration have also undergone significant 

changes." Here, the subject phrase is "The directions 

and forms of migration." 

 

Applying the pattern of using the possessor noun as 

the subject, the translation would be: "Migration has 

changed significantly in its directions and forms." 
Table 8: GPT4 achieves a more effective speed-

accuracy tradeoff through the application of Chain 

of Thought (CoT) reasoning, as demonstrated by 

three illustrative teaching examples. In each 

teaching example, multiple reasoning steps are 

added to reflect the direct translation, the subject 

phrase, and the alternative subject selection using 

the possessor noun in the subject phrase. Then 

during the generation phase, GPT4 can infer the 

same reasoning steps and generate the correct 

result. 

4.4 Summary 

We show that LLMs can use Chain-of-Thought 

(CoT) reasoning to overcome some challenges and 

enhance the performance of the concept-guided 

approach. This is particularly effective for 

problems that benefit from well-formed, consistent 

reasoning steps, ultimately leading to the correct 

conclusion. 

On the other hand, while humans use multiple 

cognitive functions to solve complex problems, 

LLMs can only model this complexity, often in 

fragmented form, as linguistic description. This 

approach may work for some challenges but falls 

short for others. It demands unrealistic expectations 

to predefine linguistic solution steps and risks 

overlooking the broader context and 

interconnections between cognitive aspects—areas 

where human cognition excels. 

5 Conclusion 
Humans outperform large language models 

(LLMs) because human cognition involves a range 

of cognitive functions and their dynamic interaction. 

This study explores how integrating human 

cognition through concept-guided instruction and 

few-shot teaching can guide LLMs to improve 

translation outcomes. We first demonstrate that for 

simple and widely used concepts, concept-guided 

approaches offer significant benefits. We then tested 

prompt engineering with Chinese-to-English 

translation examples, using GPT-4 to estimate the 

complexity of various concepts and human experts 

to evaluate translation outcomes’ quality. Our 

preliminary findings show that LLM translation 

performance declines as concept complexity 

increases. 

We also identify several challenges in the 

concept-guided approach: LLMs struggle with 

continuity in explaining and practicing sophisticated 

concepts due to the lack of human-like cognitive 

functions, such as cognitive dissonance. 

Additionally, LLMs lack a graceful speed-accuracy 

tradeoff because they do not possess the cognitive 

functions such as dynamic information processing, 

response strategies, and performance assessment 

that humans do. 

However, LLMs can mitigate some of these 

challenges by using Chain-of-Thought (CoT) 

reasoning, which is especially effective for 

problems requiring consistent, well-structured 

reasoning steps. Despite this, LLMs can only model 

cognitive complexity as fragmented linguistic 

descriptions, unlike humans, who excel at 

understanding broader contexts and 

interconnections between cognitive aspects. This 

limitation makes it unrealistic to expect LLMs to 

effectively define solution steps automatically, a 

task that humans can accomplish by naturally 

considering critical context. 

The findings from this preliminary study on the 

English-to-Chinese language pair indicate that 

further research is necessary to validate the key 

results. 
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Appendix 1: Complexity Evaluation on the 

Ten Translation Concepts Using 

Hypothetical Spaces 

Below are the GPT-4 analyses on the hypothetical 

spaces (complexity), the black/regular font words 

are the prompt and red/italicized font words are the 

generated outcomes by the GPT4. 

Below are definitions and few-shot examples of 

ten concepts related to Chinese-to-English 

Translation: 

1.          Deverbalization is a concept in translation 

studies, par-ticularly relevant in the context of 

translating between languages with significantly 

different structures, such as Chinese to English. 

The core idea of deverbalizatio is to move away 

from a direct, word-for-word translation, which 

often leads to awkward or inaccurate results due to 

the differences in grammar, syntax, and cultural 

contexts. Instead, the translator interprets the 

meaning of the source text at a deeper, more 

abstract level, and then re-expresses this meaning 

in the target language. 

Three examples are listed below to illustrate the 

Chinese-to-English translation reflecting the 

concept above： 

Chinese: 过去带动高增长的主要是高投资，而

高投资主要是三大需求来源，出口、基础建

设、房地产。 

English: The key driver of rapid growth has been 

investment, which is needed in three areas/goes to 

three areas, export, infrastructure, and real estate. 

Chinese: 本土化人才了解中国市场上的需求和

消费者的心理。 

English: Local talents understand the market needs 

in China and know what customers want. 

Chinese: 中国现在很多地区复工率很高。 

English: Many areas in China have reopened their 

economies. 

2.          For Chinese-to-English translation, 

changing subject selection involves selecting a 

subject different from the one in the source text to 

improve the readability and fluency of the English 

translation. 

Three examples are listed below to illustrate the 

Chinese-to-English translation reflecting the 

concept above： 

Chinese: 资源环境约束边界临近，最典型的例

子就是雾霾。 

English: Resources and environment almost reach 

the limit with smog being the biggest concern. 

Chinese: 老年人本身的免疫功能就相对于年轻

人要弱一些。 

English: Unlike younger people, the elderly have 

weaker immune systems. 

Chinese: 迁移的流向和形式也都发生了很大的

变化。 

English: Migration was happening in different 

directions and ways. 

3.          The concept of "pro-drop" refers to the 

ability of a language to omit subjects (and 

sometimes other pro-nouns) when they are 

pragmatically or grammatically inferable. Chinese 

is a pro-drop language, meaning that subjects can 

be and often are omitted when they are understood 

from context. In contrast, English is a "non pro-

drop" language, meaning that subjects are almost 

always explicitly stated, as English need the 

presence of subjects for clarity and grammatical 

correctness. 

Three examples are listed below to illustrate the 

Chinese-to-English translation reflecting the 

concept above: 

Chinese: 各地积极性高涨。 

English: There is a lot of discussion and 

enthusiasm on this issue. 

Chinese：要重视发挥家庭、学校和社区作用

，帮助儿童抵御恐怖极端思想侵蚀。 
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English: Attention should be paid to the roles of 

families, schools, and communities in preventing 

children from being influenced by extreme 

terrorism. 

Chinese: 对传统那些没有比较优势和竞争优势

产业，继续给予必要保证。 

English: Traditional industries without 

comparative advantage and competitiveness 

should be given the support. 

  

4.          Changing the perspective in the context of 

Chinese-to-English translation refers to adapting 

the viewpoint or approach when translating text 

from Chinese into English. This concept is crucial 

due to significant differences be-tween the two 

languages in terms of grammar, syntax, idiomatic 

expressions, and cultural contexts. 

Three examples are listed below to illustrate the 

Chinese-to-English translation reflecting the 

concept above： 

Chinese: 中国经济已经触底，中速增长平台初

步确定，将来会逐步进入中速增长期，也就

是由高速增长阶段转向高质量发展阶段。 

English: China's economy has touched the bottom. 

It is set for medium-speed growth, which will last 

for a period of time. There will be more focus on 

quality instead of speed. 

Chinese: 随着经济发展，可能是不同时期有不

同热门的行业。 

English: Along with economic development, 

sectors could become popular at different times. 

Chinese: 本地化产生了多语言的需求。 

English: Location involves translation into 

multiple languages. 

5.          For Chinese-to-English translation, 

Changing parts of speech is to faithfully convey 

the meaning of the original at the same time 

accords with English means of expression 

irrespective of the part of speech of a word in 

Chinese.  

Three examples are listed below to illustrate the 

Chinese-to-English translation reflecting the 

concept above： 

Chinese: 存货、出口和生产性投资逐步进入回

升期，将对基础设施投资减速形成对冲。 

English: Investments in inventory, export, and 

manufacturing are bouncing back, offsetting the 

decline in infrastructure investment. 

Chinese: 我是研究农村经济开始的。 

English: I started my career as a researcher in rural 

economy. 

Chinese: 委员们提出了许多很有操作性、针对

性的意见建议。 

English: Members of the committee have made a 

number of suggestions that are specific and easy to 

implement. 

6.          The linguistic concept dislocation refers to 

the phenomenon where the positioning of words or 

phrases in a sentence differs significantly between 

two languages. This can pose challenges in 

translation, particularly between languages with 

distinct syntactic structures, like Chinese and 

English. 

Chinese: 常态化防控和应急处置放松了要求。 

English: The requirements for daily prevention and 

control, as well as emergency response, have been 

relaxed. 

Chinese: GDP比重，非典时期才影响26%，这(

次)是占到74%。 

English: 26% of the GDP was affected during the 

SARS outbreak. But this time, the proportion is 

74%. 

Chinese: 我知道这个目标目前在国际上是很多

国家所没有制定的。 

English: I’m aware that many countries around the 

world have not yet set this goal. 

  

7.          The concept of implicit conjunctions and 

linking/transition words for Chinese-to-English 

translation: Chinese often omits conjunctions that 

would be necessary in English. This is because 

Chinese relies heavily on context and the inherent 

logic of the sentence structure. For instance, two 
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clauses might be placed side by side without a 

conjunction, yet a native Chinese speaker would 

understand their relationship based on the context. 

That usually is not the case for English. 

Three examples are listed below to illustrate the 

Chinese-to-English translation reflecting the 

concept above： 

Chinese: 学校决定精简机构，减少系科。 

English: The school decided to streamline the 

administration by reducing the number of 

departments. 

Chinese: 比如，欧洲老龄化程度高、死亡率高

。 

English: For instance, the death rate in Europe is 

very high due to a large aging population. 

Chinese: 提炼出中国智慧，总结出中国方案。 

English: Draw some lessons so that we can come 

up with Chinese wisdoms and solutions. 

8.          The concept of combining clauses and short 

sentences in Chinese to create a longer English 

sentence. English allows for complex sentences 

with multiple clauses, often linked by 

conjunctions, which can express detailed nuances 

and conditions. Chinese, on the other hand, favors 

brevity and conciseness. 

Three examples are listed below to illustrate the 

Chinese-to-English translation reflecting the 

concept above： 

Chinese: 跨国公司的生产经营是在本土，但是

它的经营生产战略是全球化的。 

English: Multinational corporations are based in 

their home countries but with global operations 

and strategies. 

Chinese: 本轮疫情呈现出多地暴发、波及范围

广、确诊人数多等特点。 

English: Recently, the pandemic took place in 

many locations with extensive scale and cases. 

Chinese: 俄罗斯的改革比中国晚起步10年左

右，但他们的金融抑制指数已经到了0.4，时

间跨度更短、下降速度更快。 

English: Russia started its reform 10 years later 

than China, but it has already reached a financial 

repression index of 0.4 in a shorter period of time 

and at a faster pace. 

9.          Eliminating redundancy is a common 

practice for Chinese-to-English because 

redundancy is commonly seen in the Chinese 

language. Although some redundancies may serve 

as emphasis, many could be eliminated without 

compromising the intended meaning. Removing 

unnecessary repetition during translation could 

improve the readability and clarity of the target 

text. 

Three examples are listed below to illustrate the 

Chinese-to-English translation reflecting the 

concept above： 

Chinese: 全世界气候变化的原因来看，大概主

要就是有两个原因。 

English: Climate change has two factors. 

Chinese: 水电是包含在可再生能源当中的，世

界各国都把水电作为可再生能源的一部分。 

English: Hydropower is considered a source of 

renewable energy by all countries. 

Chinese: 从需求侧来讲，中国经济过去长时间

的高增长，主要是高投资在支撑，而高投资

主要有三大需求在支撑，也就是基础设施建

设、房地产和出口。 

English: On the demand side, the driver of China’s 

economic growth has long been high investment 

required in three key areas: infrastructure, real 

estate, and exports. 

10.        Cultural translation aims to show the 

cultural differences while respecting the source 

culture as well. 

Chinese: 有“歇歇脚、缓一缓”的心态。 

English: Some people tend to let down their guard. 

Chinese: 美联储把利率降到零，弹药全部用完

。 

English: There isn't much space as the Fed has 

lowered interest rate to zero. 

Chinese: 我要是不来，那也是非常遗憾的。我

这次来，即使被打得鼻青脸肿也在所不惜。 
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English: I would regret it if I didn't come, so I'm 

here today no matter what happens. 

  

  

These concepts (constrained by both definitions 

and examples) have different levels of complexity 

when they are applied.  Can you provide a rating 

evaluation (minimum 0 and maximum 100) in 

terms of the size of typical “hypothetical spaces” 

that need to be considered when the concepts are 

applied? 

  

Evaluating the size of the "hypothetical space" for 

each of these translation concepts involves 

considering the range of interpretations, 

adaptations, and choices a translator might need 

to navigate when applying these concepts from 

Chinese to English. This hypothetical space 

represents the complexity and variability inherent 

in each concept, indicating the level of creativity, 

cultural understanding, and linguistic expertise 

required. Here's a rating for each concept, on a 

scale from 0 (minimal complexity) to 100 

(maximum complexity), reflecting the size of their 

hypothetical spaces: 

  

Deverbalization (80/100): This concept requires 

deep understanding of both source and target 

languages, along with the ability to abstract and 

reconceptualize ideas in culturally appropriate 

ways. It involves a significant hypothetical space 

due to the need for creative interpretation and 

expression. 

  

Changing Subject Selection (70/100): Adapting 

the subject for better readability and fluency can 

involve moderate to high complexity, especially 

when ensuring that the shift does not alter the 

intended meaning of the original text. 

  

Pro-drop (60/100): Translating from a pro-drop 

language like Chinese to a non-pro-drop language 

like English requires careful addition of explicit 

subjects without making the text feel redundant or 

altering its meaning, presenting a moderate 

hypothetical space. 

  

Changing the Perspective (75/100): Adapting the 

viewpoint requires a strong grasp of cultural and 

contextual nuances as well as linguistic fluency. 

The hypothetical space is large because it involves 

rethinking and sometimes reimagining the original 

message from a different angle. 

  

Changing Parts of Speech (65/100): This task 

involves creatively maintaining the original's 

meaning while changing the grammatical 

structure, which can be complex due to the 

flexibility required in reconceptualizing the 

message. 

  

Dislocation (60/100): Addressing syntactic 

differences involves understanding the functional 

and positional flexibility of elements in both 

languages. The hypothetical space is moderate, as 

it often has clear-cut rules but also requires 

attention to readability and flow. 

  

Implicit Conjunctions and Linking (50/100): While 

the concept itself may seem straightforward, 

applying it effectively requires a nuanced 

understanding of how ideas are connected in 

English, presenting a moderate hypothetical 

space. 

  

Combining Clauses and Short Sentences (55/100): 

This concept requires skill in creating complex 

sentences that are still clear and coherent, 

involving a moderate level of complexity in the 

hypothetical space due to the need to balance 

detail with readability. 

  

Eliminating Redundancy (40/100): While often 

technical, this task requires less creative 

interpretation than others, presenting a smaller 

hypothetical space. The challenge lies in 

discerning which redundancies are stylistic versus 

those adding unnecessary repetition. 
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Cultural Translation (85/100): This concept 

encompasses a vast hypothetical space due to the 

need to convey cultural nuances and contexts 

accurately and respectfully, requiring deep 

cultural knowledge and sensitivity. 

  

These ratings reflect the relative complexity and 

breadth of choices translators must navigate 

within each concept, acknowledging that 

individual translation tasks might present unique 

challenges that could affect these evaluations. 

 
Table 9: Hypothetical spaces (complexity) 

Analyses for the ten translation concepts using 

GPT-4. 

Appendix 2: English-Chinese sentence pairs 

(four pairs per concept) used for 1-in-4 leave-

one-out cross-validation evaluation 

Below is a dataset of 40 English-Chinese sentence 

pairs (four pairs per concept) that was used for 1-

in-4 leave-one-out cross-validation evaluation of 

GPT-4 generated translation. 

Pro-drop 

Chinese: 各地积极性高涨。 

English: There is a lot of discussion and 

enthusiasm on this issue. 

Chinese：要重视发挥家庭、学校和社区作用，

帮助儿童抵御恐怖极端思想侵蚀。English: 

Attention should be paid to the roles of families, 

schools, and communities in preventing children 

from being influenced by extreme terrorism. 

Chinese: 对传统那些没有比较优势和竞争优势

产业，继续给予必要保证。 

English: Traditional industries without 

comparative advantage and competitiveness 

should be given the support. 

Chinese: 需要货币政策传导机制来保证资金流

动到位。 

English: We need transmission mechanism of 

monetary policy to ensure the availability of 

capital flows. 

Dislocation 

Chinese: 常态化防控和应急处置放松了要求。 

English: The requirements for daily prevention 

and control, as well as emergency response, have 

been relaxed. 

Chinese: GDP比重，非典时期才影响26%，这(

次)是占到74%。 

English: 26% of the GDP was affected during the 

SARS outbreak. But this time, the proportion is 

74%. 

Chinese: 我知道这个目标目前在国际上是很多

国家所没有制定的。 

English: I’m aware that many countries around 

the world have not yet set this goal. 

Chinese: 当地语言以前中国公司不太注重。 

English: Chinese companies didn’t pay enough 

attention to local languages. 

Implicit conjunctions and linking/transition 

words 

Chinese: 学校决定精简机构，减少系科。 

English: The school decided to streamline the 

administration by reducing the number of 

departments. 

Chinese: 比如，欧洲老龄化程度高、死亡率高

。 

English: For instance, the death rate in Europe is 

very high due to a large aging population. 

Chinese: 提炼出中国智慧，总结出中国方案。 

English: Draw some lessons so that we can come 

up with Chinese wisdoms and solutions. 

Chinese: 本地化是跨国公司进驻中国，打通语

言通道的关键。 

English: Localization is an im-portant tool to 

break the language barrier as they enter the 

Chinese market. 

Combining clauses and short sentences in 

Chinese to create a longer English sentence 

Chinese: 跨国公司的生产经营是在本土，但是

它的经营生产战略是全球化的。 

English: Multinational corporations are based in 

their home countries but with global operations 

and strategies. 

Chinese: 本轮疫情呈现出多地暴发、波及范围

广、确诊人数多等特点。 

English: Recently, the pandemic took place in 

many locations with extensive scale and cases. 

Chinese: 俄罗斯的改革比中国晚起步10年左

右，但他们的金融抑制指数已经到了0.4，时

间跨度更短、下降速度更快。 

English: Russia started its reform 10 years later 

than China, but it has already reached a financial 

repression index of 0.4 in a shorter period of time 

and at a faster pace. 
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Chinese: 说到可再生能源，首先是可再生，就

说明它是资源量非常大的，可以永续利用，同

时它的污染很小、分布很广。 

English: Speaking of renewable energy, the word 

“renewable” suggests that these energy sources 

are abundant, sustainable, and widely distributed 

with very little pollution. 

Deverbalization 

Chinese: 过去带动高增长的主要是高投资，而

高投资主要是三大需求来源，出口、基础建

设、房地产。 

English: The key driver of rapid growth has been 

investment, which is needed in three areas/goes to 

three areas, export, infrastructure, and real estate. 

Chinese: 本土化人才了解中国市场上的需求和

消费者的心理。 

English: Local talents understand the market 

needs in China and know what customers want. 

Chinese: 中国现在很多地区复工率很高。 

English: Many areas in China have reopened their 

economies. 

Chinese: 中国对外开放的步伐也在不断加快，

我们要向外商提供更开放、更透明的、更有力

的投资环境。 

English: As China further opens up to the outside 

world, we should pro-vide a more open, 

transparent, and helpful investment environment. 

Eliminating redundancy 

Chinese: 全世界气候变化的原因来看，大概主

要就是有两个原因。 

English: Climate change has two factors. 

Chinese: 水电是包含在可再生能源当中的，世

界各国都把水电作为可再生能源的一部分。 

English: Hydropower is considered a source of 

renewable energy by all countries. 

Chinese: 从需求侧来讲，中国经济过去长时间

的高增长，主要是高投资在支撑，而高投资主

要有三大需求在支撑，也就是基础设施建设、

房地产和出口。 

English: On the demand side, the driver of 

China’s economic growth has long been high 

investment required in three key areas: 

infrastructure, real estate, and exports. 

Chinese: 我们需要的是强劲的反弹，所以需要

10倍的努力来推动反弹。 

English: We need to achieve a robust rebound 

through ten times of effort. 

Changing subject selection 

Chinese: 资源环境约束边界临近，最典型的例

子就是雾霾。 

English: Resources and environ-ment almost 

reach the limit with smog being the biggest 

concern. 

Chinese: 老年人本身的免疫功能就相对于年轻

人要弱一些。 

English: Unlike younger people, the elderly have 

weaker immune sys-tems. 

Chinese: 迁移的流向和形式也都发生了很大的

变化。 

English: Migration was happening in different 

directions and ways. 

Chinese: 未来20年气候变化的威胁将超过恐怖

主义。 

English: In the next two decades, climate change 

will pose a greater threat than terrorism. 

Changing the perspective 

Chinese: 中国经济已经触底，中速增长平台初

步确定，将来会逐步进入中速增长期，也就是

由高速增长阶段转向高质量发展阶段。 

English: China's economy has touched the 

bottom. It is set for medium-speed growth, which 

will last for a period of time. There will be more 

focus on quality instead of speed. 

Chinese: 随着经济发展，可能是不同时期有不

同热门的行业。 

English: Along with economic development, 

sectors could become popular at different times. 

Chinese: 本地化产生了多语言的需求。 

English: Location involves translation into 

multiple languages.  

Chinese: 大多数国家对创业投资都是采取一种
比较鼓励的政策。 

English: Many countries have policies that 

encourage venture capital investment. 

Changing Parts of Speech 

Chinese: 存货、出口和生产性投资逐步进入回

升期，将对基础设施投资减速形成对冲。 

English: Investments in inventory, export, and 

manufacturing are bouncing back, offsetting the 

decline in infrastructure investment. 

Chinese: 我是研究农村经济开始的。 

English: I started my career as a researcher in 

rural economy. 

Chinese: 委员们提出了许多很有操作性、针对

性的意见建议。 

English: Members of the committee have made a 

number of suggestions that are specific and easy 

to implement. 
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Chinese: 城镇化就是阶段性的，到了一定阶段

一定会减速。 

English: Urbanization takes place in different 

stages. It will slow down at a certain stage. 

Cultural translation 

Chinese: 有“歇歇脚、缓一缓”的心态。 

English: Some people tend to let down their 

guard. 

Chinese: 美联储把利率降到零，弹药全部用

完。 

English: There isn't much space as the Fed has 

lowered interest rate to zero. 

Chinese: 我要是不来，那也是非常遗憾的。我

这次来，即使被打得鼻青脸肿也在所不惜。 

English: I would regret it if I didn't come, so I'm 

here today no matter what happens. 

Chinese: “大干快上”本身没有错，关键是干什

么、上什么。 

Table 10: A dataset of 40 English-Chinese 

sentence pairs (four pairs per concept) was 

used for 1-in-4 leave-one-out cross-validation 

evaluation. 
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Abstract

Recent works have shown that prompting large language models (LLMs) is effective for translation with
markup where LLMs can simultaneously transfer markup tags while ensuring that the content, both inside
and outside tag pairs is correctly translated. However, these works assume the existence of high-quality
parallel sentences with markup for prompting, which may not always be available. Furthermore, the impact
of instruction fine-tuning (IFT) in this setting is unknown. In this paper, we provide a study, the first of its
kind, focusing on the effectiveness of synthetically created markup data and IFT for translation with markup
using LLMs. We focus on translation from English to five European languages, German, French, Dutch,
Finnish and Russian, where we show that regardless of few-shot prompting or IFT, synthetic data created via
word alignments, while leading to inferior markup transfer compared to using original data with markups,
does not negatively impact the translation quality. Furthermore, IFT mainly impacts the translation quality
compared to few-shot prompting and has slightly better markup transfer capabilities than the latter. We hope
our work will help practitioners make effective decisions on modeling choices for LLM based translation
with markup.

1 Introduction

While a significant majority of machine translation
(MT) research has been conducted on translating
plain sentences from one language to another, much
of the web and proprietary or business documents
requiring translation come in structured formats like
HTML pages or Microsoft Office files containing
markup. Therefore, practical MT systems should
be adept not only at translating plain sentences but
also sentences with markup (see Figure 1 for an ex-
ample), where the task is to translate content in the
source language while simultaneously ensuring that
markup tags wrap the appropriate content in the tar-
get language. Until the advent of deep learning, the
most commonly used approach for handling markup
was the detag-and-project approach (Hanneman and

Dinu, 2020a), which is not end-to-end and is prone
to error compounding from individual components
such as the MT system, word-aligner and projection
algorithms. Therefore, using end-to-end neural net-
works for translation with markup (Cho et al., 2014)
makes a more attractive solution.

Recently, researchers have shown that trans-
former (Vaswani et al., 2017) based large language
models (LLMs) (Brown et al., 2020) can seam-
lessly translate sentences with markup despite not
explicitly being trained to do so (Buschbeck et al.,
2022; Dabre et al., 2023). They show that few-shot
prompting (Brown et al., 2020) enables LLMs to
transfer markup tags when translating from source
to target languages. Surprisingly, despite being
general purpose, their markup transfer capabilities
approach, if not surpass, highly optimized models
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English Click <uicontrol>Prepayment</uicontrol>.
German Klicken Sie <uicontrol>Vorauszahlung</uicontrol>.
French Cliquez <uicontrol>Prépaiement</uicontrol>
Japanese <uicontrol>前払</uicontrol>をクリックします。

Figure 1: Examples with inline markup,
inspired by (Buschbeck et al., 2022).

Synthetic Data 
Creation

Few-shot
Prompting

Instruction 
Fine-Tuning

Parallel Data 
w/ Tags

Parallel Data 
w/o Tags

General
LLM

MT-specific 
LLM

Word Alignment
Based Approach

LLM
Based Approach

Figure 2: Our framework.

trained specifically for this purpose. However, they
assume the existence of high-quality parallel cor-
pora with markup when prompting, and this kind
of data may not always be available. Furthermore,
while they utilize pre-existing generic instruction
fine-tuned (IFT) models, they do not IFT their own
MT models, the effectiveness of which remains un-
known. In this paper, we fill this gap via a two-
pronged exploration on the effectiveness of syn-
thetic data and IFT for translation with markup.

We take the case of translation from English to
five European languages, German, French, Dutch,
Finnish and Russian, and first establish the effi-
cacy of zero- and few-shot prompting on a popu-
lar open-source LLM, namely BLOOM (Le Scao
et al., 2022). Following this, we explore approaches
for synthetically creating parallel data with markup
to understand its efficacy for prompting. We fur-
ther deepen our investigation by performing IFT of
BLOOM with both clean and synthetic data and at-
tempt to discern settings in which synthetic data
can be useful. We show that regardless of few-shot
prompting or IFT, synthetic data created via word
alignments leads to slightly inferior markup transfer
compared to high-quality human-curated data; how-
ever, it does not negatively impact the translation
quality. Furthermore, somewhat surprisingly, we
find that IFT itself mainly improves the translation
quality compared to few-shot prompting and has
only slightly better markup transfer capabilities than
the latter. We hope our findings will act as guide-
lines for practitioners to make effective decisions on
modeling choices for translation with markup.

2 Related Work

Our work focuses on machine translation with
markup, LLMs and synthetic data.

2.1 MT Model Based Approaches
Detag-and-project is a prevalent technique for
translating sentences with markup comprising two
steps: 1) stripping tags from the source sentence and
translating the plain text, and 2) reinserting tags into
the translations. Joanis et al. (2013) utilize a Sta-
tistical Machine Translation (SMT) model to trans-
late sentences with markup using a set of tag rein-
sertion rules in the project phase. Similarly, re-
searchers compared various strategies for handling
markup using SMT techniques and found that in-
volving complex rules achieves the highest tag pro-
jection accuracy (Müller, 2017). More recent works
use NMT as the translation model and apply a trans-
lation management system to handle the document
structure (Hanneman and Dinu, 2020b).
End-to-end approach becomes possible with NMT
models. They are often enhanced with data augmen-
tation strategies to optimize the large number of pa-
rameters. Synthetic data can be created by inserting
tags into corresponding fragments in the source and
target plain text parallel sentences (Hanneman and
Dinu, 2020b). However, aligned phrases are iden-
tified through an exhaustive search, which is com-
putationally expensive. To address this, researchers
use efficient word alignments for tag augmentation
during the project phase (Ryu et al., 2022).

2.2 LLM Based Approaches
LLMs such as GPT-3 (Brown et al., 2020),
BLOOM (Le Scao et al., 2022), BLOOMZ (Muen-
nighoff et al., 2022), XGLM (Lin et al., 2022)
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and Llama-2 (Touvron et al., 2023) with few-shot
in-context-learning (Brown et al., 2020) are well
known for their ability to tackle diverse tasks ow-
ing to having seen vast amounts of data. Due to their
flexibility, LLMs can be directly applied to the struc-
tured document translation task without further fine-
tuning (Dabre et al., 2023). They apply retrieval-
augmented (Lewis et al., 2020) few-shot prompting,
which assumes the training set contains numerous
parallel sentences with markup in hand. However,
for most translation directions, there is usually no
dataset with markups available. To this end, we pro-
pose to generate synthetic data. Furthermore, rather
than prompting, we apply IFT, which our experi-
ments show can achieve higher performance.

2.3 Datasets

Datasets are crucial in advancing structured text
(usually with markup) translation. Hashimoto
et al. (2019a) create a high-quality multilingual
dataset comprising structured web pages designed
for the documentation domain translation. Like-
wise, Buschbeck et al. (2022) develop a multilingual
and multi-way evaluation dataset for structured doc-
ument translation, focusing on Asian languages but
only providing evaluation sets.

3 Methodology

Figure 2 presents an overview of the methodology
followed in this paper: few-shot prompting in Sec-
tion 3.1, instruction fine-tuning (IFT) in Section 3.2,
and our methods for creating synthetic parallel data
with markup in Section 3.3.

3.1 Few-shot Prompting

For our experiments, we use the N -shot approach,
selecting N translation pairs (Si, Ti) from an ex-
ample pool to prompt the LLM. Like Dabre et al.
(2023), unless (plain) data without markup is used,
we use structure-aware prompting, where we use
examples containing markup tags for test sentences
with tags, and examples without markup tags for test
sentences without tags. The specific template is in

Appendix A.1.

3.2 Instruction Fine-tuning (IFT)
IFT is simply fine-tuning a pre-trained LLM with
parallel data to enable it to translate from a source
language to a target language without needing to
provide demonstrations (or shots). The specific tem-
plate is in Appendix A.3. As is common prac-
tice (Wei et al., 2022), we only consider the loss
computed on the completion part of the sequence.

3.3 Synthetic Data Creation
We consider two approaches for synthetic data cre-
ation: using word alignment and LLMs.
Word Alignment Based Approach
The overview of the word alignment based approach
is shown in Figure 3 and we call the resultant data
Alignment-Synthetic-Tagged (AST). This approach
involves the following steps:
1. Obtain word alignments for a parallel corpus
without markup.
2. Randomly sample a phrase of a maximum size
from the source sentence.
3. Use the word alignments with the min-max algo-
rithm1 (Zenkel et al., 2021) to identify the aligned
phrase in the target sentence.
4. Uniformly2 sample a tag from a pre-defined set.
5. Wrap both the source and target sentence phrases
with the sampled markup tag.

Our approach is mainly motivated by the detag-
and-project methods (Hanneman and Dinu, 2020b)
and the idea of grouping words into phrases in
phrase-based SMT (Och, 1999), and the results of
data augmentation (Ryu et al., 2022). However,
ours is more efficient than the one by Hanneman
and Dinu (2020a), which relied on a more compu-
tationally expensive approach by exhaustively cov-
ering multiple phrase spans and translations via MT
to identify high-quality aligned phrases.
LLM Based Approach
Random sampling in the word-alignment-based ap-
proach often results in unnatural phrases.3 To this
end, we propose utilizing LLMs to select natural
phrases for inserting markup, as shown in Figure 4.

1If we have the source phrase si...sN , word alignments A = {i : j}, then the aligned target words are L = ∪N
x=iA(x) and the

aligned target phrase is tmin(L)...tmax(L).
2Although it might seem unnatural to consider all tags appearing with the same probability, in practice there is no way to know the

tag distribution in a realistic setting so we make no assumptions and rely on uniform sampling of tags.
3Unnatural means that those phrases are unlikely to be surrounded by tags in the real structured data, resulting in the mismatch of

the distribution of training data and test data.
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1. Word Alignment
Click Login next to a user name

Klicken Sie neben einem Benutzernamen auf Anmelden

Click Login <uicontrol>next to a user name</uicontrol>
Klicken Sie <uicontrol>neben einem Benutzernamen</uicontrol> auf Anmelden

3. Adding Markups

Click Login next to a user name

Klicken Sie neben einem Benutzernamen auf Anmelden

2. Phrase Alignment

Figure 3: The overview of the word-alignment-based
synthetic data creation method. It generates word
alignments in the first stage, samples a phrase in the
second stage, and inserts a randomly sampled tag pair
in the final stage.

Output:
English: Click <uicontrol>Login</uicontrol> next to a user name
German: Klicken Sie neben einem Benutzernamen auf <uicontrol>Anmelden</uicontrol> 

Insert tag pairs to parallel sentences in English and German.
Here is a list of possible tags: <ph> <uicontrol> <parmname> …

Input:
English: Click Prepayment
German: Klicken Sie Vorauszahlung
Output:
English: Click <uicontrol>Prepayment</uicontrol>
German: Klicken Sie <uicontrol>Vorauszahlung</uicontrol>

Input:
English: Click Login next to a user name
German: Klicken Sie neben einem Benutzernamen auf Anmelden

……

Few-shot Examples

Test Input

Test Output

Task Description

Figure 4: The overview of the LLM-based synthetic
data creation method. We prompt the LLM with few-
shot examples, and the model directly generates par-
allel sentences with tag pairs.

We called the resultant data as LLM-Synthetic-
Tagged (LST). We prompt the LLMs (BLOOM 7B
in our experiments) with few-shot examples, and
the model takes source and target sentences without
markup as input and outputs source and target sen-
tences with markup. The hand-crafted and fixed 5-
shot examples (prompt in Appendix A.2) show how
a sentence pair without markup can be transformed
into a pair with markup.

4 Experimental Settings

This section describes datasets, implementation de-
tails, and various settings for analysis.

4.1 Datasets and Languages
We consider the Salesforce Localization Dataset
(Hashimoto et al., 2019b) which spans English and
seven languages, out of which we choose five Eu-
ropean target languages, namely, German, French,
Dutch, Finnish and Russian. The data for each lan-
guage pair consists of approximately high-quality
100k training, 2k development and 2k testing high-
quality sentence pairs of which 26% of the pairs
naturally contain markup. We use the development
set of 2,000 sentence pairs as the test set because
the test set is hidden. Furthermore, since LLM IFT
is computationally expensive, and our objective is
to study the efficacy of synthetic data and IFT, we

choose a subset of the training data for our experi-
ments. Specifically, we choose the first 2,000 sen-
tence pairs for development (instead of the official
development set), and the next 20,000 sentence pairs
for few-shot prompting or IFT. We create a version
of the 20,000 pairs by removing all markup infor-
mation and call this Plain data, whereas the corre-
sponding version with 26% of the sentences natu-
rally containing (high-quality/gold) markup is called
Clean data.
Synthetic Data Settings
When creating synthetic sentence pairs with markup
using word alignment (Alignment-Synthetic-
Tagged or AST), we experiment with maximum
source (English) spans of size 4 and 6 tokens, where
we randomly choose one source phrase whose token
length is less or equal to this number.4 For synthetic
data created with LLMs (LLM-Synthetic-Tagged or
LST), we cannot control maximum spans and leave
it to the model to wrap phrases with markup tags
as it sees fit. We prompt the model with 5 man-
ually constructed shots, which are fixed for each
language pair. For the decoding algorithm, we ap-
plied greedy search with a temperature of 0. As for
the percentage of sentence pairs with markup tags in
the training data, we experiment with 1%, 2%, 5%,
15% and 26% of examples with synthetic markup
where 26% is analogous to the amount of naturally

4The aligned target spans may be longer or shorter, but this is not something that can be controlled.
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occurring markup in Clean data. For LST, due to
reasons explained in Section 5.3, we were only able
to generate a maximum of 24% and 14% tagged data
with synthetic markup only for English-German
and English-Russian, respectively. For these pairs,
henceforth 26% actually implies 24% and 14% re-
spectively. Unless explicitly mentioned, we use the
data containing 26% pairs with markup for AST and
LST when experimenting with prompting and IFT.

4.2 Implementation, Training, and Evaluation

We implement the code for creating synthetic data
and prompting in Python. For word alignment, we
used FastAlign5 (Dyer et al., 2013) with default
settings for forward, reverse, and we symmetrize
alignments with grow-diag-final-and. We use open-
instruct6 (Wang et al., 2023) for IFT. We use the
7.1 billion parameter variant7 of the BLOOM model
(Le Scao et al., 2022). We choose this model
over more recent ones like Llama (Touvron et al.,
2023) since the latter is not explicitly suited for non-
English generation.8 Due to our low-resource set-
ting, we use LoRA (Hu et al., 2021) for fine-tuning,
with a rank of 4 and an alpha of 8, and a LoRA
dropout of 0.05. We use a total batch size of 32 with
gradient accumulation. We train for a maximum of 4
epochs, evaluate every epoch, and choose the check-
point corresponding to the lowest loss.9 Our exper-
iments are performed on 40GB A100 GPUs. For
decoding the test sets, we perform greedy decoding.

For evaluation, while Hashimoto et al. (2019b)
propose XML-BLEU, we consider XML-chrF as
a measure of overall translation quality, including
both, content as well as markup transfer quality.
They use multi-bleu,10 however, since Post (2018)
have shown that using multi-bleu is not reliable, we
switch to sacrebleu11 and following recent trends,
chrF scores (Popović, 2015) to report XML-chrF.
Additionally, just as Hashimoto et al. (2019b) do,
we report XML-Structure-Match, henceforth XML-
Match, as a measure of purely the markup transfer

capabilities, with details explained in Appendix B.

4.3 Prompting Settings
For few-shot prompting on the test set, we use 0-
, 1- and 4-shot prompting when the base BLOOM
model is used. After performing IFT, we only use
0-shot prompting. The 1- and 4-shot prompting ex-
amples are chosen randomly. We perform three runs
and report the mean scores.

5 Results

We structure the results in two major sections: the
first focusing on synthetic data and using it for
prompting, and the second focusing on IFT along
with synthetic data.

5.1 Synthetic Data for Prompting
Table 1 gives the results for 0-, 1- and 4-shot
prompting with plain, clean and synthetic data. Per-
haps the most surprising result is that 0-shot prompt-
ing has very high XML-Match indicating that the
markup structure is almost always correctly trans-
ferred from source to target language. However, the
XML-chrF scores are rather low, except for English
to French, indicating that while the LLM can trans-
fer markup, it cannot translate content well. Increas-
ing the number of shots has a marked improvement
on the XML-chrF scores. On the other hand, the
XML-Match scores do not vary much regardless of
the data used for prompting.

Although Dabre et al. (2023) used different
metrics for evaluation, their tag metric is analo-
gous to XML-Match and they always reported very
low scores for the same. Note that they focused on
Japanese, Chinese and Korean, which are a. Not
well-supported in BLOOM and b. are linguistically
distant from English. On the other hand, we focus
on European languages which are better supported
in BLOOM and are linguistically closer to English.
This results in the following finding:

5https://github.com/clab/fast_align
6https://github.com/allenai/open-instruct/
7https://huggingface.co/bigscience/bloom-7b1
8While these models are known to be able to generate in non-English models, our main goal is not obtaining SOTA results but to

study how LLMs behave in the context of synthetic data in conjunction with IFT. Therefore, we rely on BLOOM in our experiments.
9This is different from typical MT experiments where early stopping is done on the downstream metric itself. Since this is expensive

for LLMs, we rely on loss, which can be computed non-autoregressively.
10https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
11https://github.com/mjpost/sacrebleu
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Prompting XML-chrF XML-Match
Data Type en→ de en→ fi en→ fr en→ nl en→ ru Avg. en→ de en→ fi en→ fr en→ nl en→ ru Avg.

0-shot
Baseline 33.6 18.3 54.3 33.3 24.1 32.7 96.5 95.6 95.3 95.3 94.4 95.4

1-shot
Plain 39.0 17.2 58.6 38.6 30.9 36.9 96.2 89.9 96.4 95.8 94.1 94.5
Clean 39.5 17.6 59.0 38.6 30.9 37.1 96.3 90.0 96.0 95.6 94.0 94.4
AST-4 39.3 17.7 58.6 38.8 30.8 37.0 96.1 90.5 96.2 95.6 93.3 94.3
AST-6 39.4 17.6 58.2 38.8 30.6 36.9 96.2 90.3 95.9 95.6 92.9 94.2
LST 39.5 17.2 58.4 38.7 30.9 36.9 95.8 88.4 95.7 95.5 92.6 93.6

4-shot
Plain 41.5 19.3 61.3 40.7 32.9 39.1 96.9 90.9 96.8 96.1 94.1 95.0
Clean 41.1 18.9 61.5 40.7 32.9 39.0 96.1 89.7 96.6 93.4 94.3 94.1
AST-4 41.0 18.9 61.2 40.9 32.1 38.8 95.9 89.6 96.5 96.1 92.3 94.1
AST-6 40.9 19.0 61.4 40.7 32.3 38.9 96.0 90.0 96.7 95.8 92.6 94.2
LST 41.3 18.0 60.7 40.3 32.3 38.5 96.0 86.6 96.3 95.4 92.6 93.4

Table 1: XML-chrF and XML-Match of different types of data for few-shot prompting. Best results in each
direction are bolded. Plain refers to data w/o markup, and Clean means markup data created by humans
from the dataset.

Prompting XML-chrF XML-Match
Data Type en→ de en→ fi en→ fr en→ nl en→ ru Avg. en→ de en→ fi en→ fr en→ nl en→ ru Avg.

Reference: Prompting Results
Plain
4-shot 41.5 19.3 61.3 40.7 32.9 39.1 96.9 90.9 96.8 96.1 94.1 95.0

Instruction Fine-Tuning Results
Plain 57.5 46.5 72.1 59.4 45.4 56.2 94.0 95.2 96.7 95.0 88.5 93.9
Clean 60.1 47.9 75.3 60.7 50.0 58.8 97.2 96.8 98.7 96.4 95.4 96.9
AST-4 58.5 46.3 72.7 59.3 47.5 56.9 96.2 95.0 96.6 95.4 93.5 95.3
LST 55.9 44.9 73.6 59.2 46.4 56.0 91.8 92.1 97.0 94.8 89.6 93.1

Table 2: XML-chrF and XML-Match of different types of data for instruction fine-tuning. Best results are
bolded. Plain refers to data w/o markup, and Clean means markup data created by humans from the dataset.

Finding 1: Base LLMs are fairly good at markup
transfer of well-supported languages, and demon-
strations (or shots) mainly affect the content trans-
lation quality.

5.1.1 Does Synthetic Data Even Matter for
Prompting?

Comparing the 1- and 4-shot results in Table 1, it
is clear that there is no notable difference in per-
formance between using examples with (Clean,
AST, LST) and without (Plain) markup for trans-
lating sentences with markup. Among synthetic
data (AST-4, AST-6 and LST), the approach for
synthetic data does not matter. This leads to the fol-
lowing finding:

Finding 2: The LLM likely sees markup tags as to-
kens to be transferred from source to target and does
not distinguish them from regular words/tokens, and
it uses shots only to know how to translate.

5.2 Synthetic Data for Instruction Fine-Tuning

Having shown the impact of various types of data
with and without markup for prompting, we now
show results for using the aforementioned data for
instruction fine-tuning. Table 2 shows the fine-
tuning results, and in-context-learning results as a
reference, where we prompt the LLM with 5-shot
translation samples in the target domain without
markup.

Different from few-shot prompting, the im-
pact of different types of data is visible. While
fine-tuning using data without markup (Plain) sig-
nificantly improves XML-chrF, the markup transfer
itself (XML-match) is negatively affected. In fact,
few-shot prompting does better. Since we want our
model to translate as well as transfer markup, fine-
tuning on data without markup is not viable. On
the other hand, fine-tuning with human-created data
(Clean) not only has better markup transfer but also
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Figure 5: Results of IFT using varying percentages of data with markup. We show XML-chrF (left figure)
scores and XML-Match scores (right figure) of randomly choosing X percentage of pairs with markup from
the original data (Clean), and data generated by our AST (with max span of 4) and LST approaches. X
ranges from natural max, that is the markup data percentage in Clean of 26%, to 15%, 5%, 2% and 1%.

has better content translation quality, mostly indi-
cated by the significant increase in chrF by about
5 points. However, it’s not always possible to have
human created data with markup, but in this case
synthetic data appears to be useful. Comparing
AST-4,12 and Clean, we see that while the former
is expectedly slightly inferior to the latter, the gap
is rather small. Although we expected LST to be
better than AST, its performance was disappointing.
Our analysis in the following subsection will shed
some light on this. Our finding is:

Finding 3: IFT requires high-quality data with
markup for the best performance, however syntheti-
cally generated data is certainly a viable option.

5.2.1 Does Synthetic Data Quantity Matter?

Previously, we did not focus on the ratio of data
without and with markup and created as much syn-
thetic data as was present in the human created ver-

sion. However, it is not clear what the optimal ratio
is. To this end, we explore varying markup data
ratios in the training set. Figure 5 shows the result
for English to German and Finnish. Here, we have
3 important observations: a. Clean data is almost
always better than synthetic data, but the gap keeps
diminishing as the amount of markup data drops.
b. Even having 1% data with markup is still better
than having no data with markup. c. LST is infe-
rior to AST in most settings. We put the full table
of five language pairs in Appendix C. The finding is:

Finding 4: High-quality markup data is always use-
ful at any scale even if it forms 1% of the overall IFT
data, however synthetic data generated using align-
ment is a viable alternative at all scales.

5.3 Evaluation of Synthetic Data

We briefly evaluate synthetic data to understand its
quality. Consider the following Clean, AST and

12In our preliminary experiments for IFT, we did not notice any difference between AST-4 and AST-6, so we only report results for
AST-4.
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Figure 6: Maximum number of sentence pairs with tags, out of 20,000, that could be generated using LST.
Of this, we select pairs corresponding to a maximum of 26% of the training/prompting data. We also show
the number of pairs with tags surrounding entire sentences (tags only at the beginning and the end).

LST variations of the same English-German pair:
Clean (En): From Setup, enter <userin-
put>Salesforce Classic Configurations</userinput>
in the <parmname>Quick Find</parmname> box,
then select <uicontrol>Salesforce Classic Configu-
rations</uicontrol>.
Clean (De): Geben Sie unter “Setup” im
Feld <userinput>Schnellsuche</userinput> den
Text <parmname>Konfigurationen für Salesforce
Classic</parmname> ein und wählen Sie dann
<uicontrol>Konfigurationen für Salesforce Clas-
sic</uicontrol> aus.
AST (En): From Setup, enter <uinola-
bel>Salesforce Classic Configurations in the Quick
Find</uinolabel> box, then select Salesforce Classic
Configurations.
AST (De): Geben Sie unter “Setup” im Feld <uino-
label>Schnellsuche den Text Konfigurationen für
Salesforce Classic ein</uinolabel> und wählen Sie
dann Konfigurationen für Salesforce Classic aus.
LST (En): From Setup, enter <uicontrol>Salesforce
Classic Configurations</uicontrol> in the Quick
Find box, then select <uicontrol>Salesforce Classic
Configurations</uicontrol>.
LST (De): Geben Sie unter “Setup” im Feld
Schnellsuche den Text <uicontrol>Konfigurationen
für Salesforce Classic</uicontrol> ein und wählen
Sie dann <uicontrol>Konfigurationen für Salesforce
Classic</uicontrol> aus.

It is clear that LST data is more similar to Clean
data in which shorter phrases corresponding to key-
words are wrapped with tags, whereas AST covers a

longer phrase. Although not evident in this example,
AST can tag unnatural phrases and given discrep-
ancies compared to Clean data, it makes sense that
models trained with AST data will always underper-
form those trained with Clean data. However, the
confounding factor is why models trained on LST
data are worse than on AST, despite LST data look-
ing similar to Clean data. We found that LST tends
to wrap entire sentences with tags more often than
AST, with examples in Appendix D.

As shown in Figure 6, many of the LST exam-
ples are with tag pairs surrounding the entire sen-
tence. For English to German, of 4,898 LST tagged
examples, 3,926 are entire sentences. Whereas in
the AST data, out of 5,235 tagged examples, only
460 are entire sentences. For reference, in Clean,
out of 5,235 tagged sentences, only 60 are entire
sentences. This large proportion of entire tagged
sentences appears to have a larger impact than hav-
ing non-keyword or unnatural phrases. For the sen-
tences with tags but not surrounding the entire sen-
tence, the average number of words surrounded by
one tag pair is approximately 2 for all languages
which is reasonable. Furthermore, despite our best
efforts, we could not compel BLOOM to gener-
ate the desired number of tagged sentences. Fi-
nally, there is a significant variation in the num-
ber of sentences with tags across different language
pairs, which contributes to the variation in MT per-
formance, implying the need for future study.
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6 Conclusion

In this paper, we have studied the effectiveness of
synthetic data and instruction fine-tuning for trans-
lation with markup. We observed that an LLM with-
out few-shot prompting or IFT already has impres-
sive markup transfer capabilities, but suffers from
low translation ability in the document domain. Al-
though few-shot prompting can help improve trans-
lation quality, IFT is more effective, while also im-
proving markup transfer capabilities regardless of
whether high-quality or synthetic data was used. In
the future, we would like to explore more control-
lable and scalable ways to generate synthetic data
and eliminate the need for human curated data.
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Limitation

One limitation of this work is that we only used
BLOOM-7B1, thus the performance of different
LLM families such as Llama-3 or Gemma, or
LLMs with different amounts of parameters such as
BLOOM-560M or Llama-3 70B, is not verified. It is
possible that larger language models can have higher
markup transfer capability, have higher translation
capability on data in structured document domain,
generate better synthetic data, and are more control-
lable.

A Prompting Details

A.1 Few-shot prompting for MT
The prompting template is as follows:

Translate the following sentence from E to F . The
translation should be in F and no other language.
E: [ S1 ]
F : [ T1 ]
· · ·
E: [ SN ]
F : [ TN ]
E: [ St ]
F :

In the template above, E is the source lan-
guage, F is the target language, and St is the test
example for which we want to obtain a translation.
Note that in the template, each source and target lan-
guage sentence is wrapped in opening and closing
square brackets ([, ]). After the model produces out-
puts, we remove the prompted prefix and retain the
first segment produced by the model within the [ and
] brackets as the model’s translation.

A.2 Few-shot prompting for synthetic data
creation

This section formats the prompt, and the real prompt
with five demonstrations is shown in Table 4.
Insert tag pairs to parallel sentences in E and F .
Here is a list of possible tags: <ph> <uicontrol>
<parmname> <b> <codeph> <xref> <userinput>
<varname> <filepath> <i> <li> <systemoutput>
<term> <title> <p> <note> <cite> <indexterm>
<fn> <u>.
Input:
E: Si

F : Ti

Output:
E: S′

i

F : T ′
i

· · ·
Input:
E: St

F : Tt

Output:

In the template above, E is the source and F
is the target language. (Si, Ti) is parallel sentences
without markup and (S′

i, T
′
i ) is parallel sentences

with markup. (St, Tt) is the test example which con-
tains parallel sentences without markup. After gen-
erating the parallel sentences, we post-process the
output to extract S′

t and T ′
t , and verify whether there

are tags in both of them and whether the detagged
version of them equal to St and Tt. We only use the
outputs that passed these verification processes.

A.3 IFT prompt template

The data format fed to the LLM for IFT is as fol-
lows:

Translate the following sentence from E to F . The
translation should be in F and no other language.
E: [ S ]
F : [ T ]

Here, [ T ] consists of the completion and every-
thing before it is the prompt.

B Details of Evaluation Metrics.

We explain the calculation details of XML-Match
and XML-chrF metrics. We first use etree to ex-
tract the XML structure of the output and reference.
The XML-Match is the percentage of outputs that
have exactly the same XML structures as their ref-
erences. If the XML structures of an output and its
reference match, then the translation and reference
are split by the XML tags and we evaluate the chrF
score by comparing each split segment. If the struc-
tures do not match, the chrF score is counted as zero
to penalize the irrelevant outputs. We leave COMET
score reporting (Rei et al., 2020) for the future.
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C Full Results of IFT using Varying
Percentages of Tagged Data

We present the results of instruction fine-tuning us-
ing varying percentages of data with markup for all
five language pairs in Figure 7. As per the explana-
tion in Section 5.3 and Appendix D, we were un-
able to control the amount of sentence pairs with
synthetic markup for LST. Corresponding to Clean
which naturally has 26% data with markup and AST
where we can generate the exactly 26% of pairs
with markup, LST was unable to generate more
than 24% pairs with markup for English-German.
For English-Russian, a maximum of 14% pairs with
markup could be generated. Since we have no con-
trol over this, for English-German, the scores corre-
sponding to 26% synthetic markup pairs using LST
are actually scores for 24% synthetic markup pairs
using LST. For English-Russian, the scores corre-
sponding to 26% as well as 15% synthetic markup
pairs using LST are actually scores for 14% syn-
thetic markup pairs using LST.

Comparing different methods, we found that
clean data is almost always better than synthetic
data, and LST is inferior to AST in all directions
except English→French, where LST showed higher
performance even than clean data using 26% of
tagged data. This may be because, for French,
there is a large number of normal tagged sentences
(not tags surrounding the entire sentence). For
English→Dutch, which also has a large number of
normal tagged sentences, the XML-chrF scores are

better than AST using 15% and 2% of tagged data.
However, for language pairs where LST generates
low-quality tagged data, such as English→German,
the final performance is also low. Compared to
LST, AST is more stable where the gap between
Clean data is small (or comparable) for all language
directions. Furthermore, we observed that AST
performed better than Clean using 1% tagged in
English→German and English→Dutch directions,
and the gap with using 26% tagged data is small.
This shows that we can achieve high-quality transfer
learning by AST with a tiny amount of noisy data.

D LLM is not Always Controllable.

LLM-based (to be specific, BLOOM7B1-based)
synthetic data creation is not stable because it does
not always generate output with tags even if we al-
ways prompt the model to do so. In fact, English-
German and English-Russian were especially hard.
For English-German we were unable to generate
more than approximately 24% and for English-
Russian more than approximately 14% sentences
with markup. What’s worse, it simply added tags at
the beginning and the end of one sentence in many
cases. We show examples in Table 3 and statis-
tics in Figure 6, from which we can observe that
for English-Finnish, English-French, and English-
Dutch, a large percentage of the tagged data are not
helpful with tag pairs only at the beginning and the
end. In the future, we will explore larger LLMs such
as Llama-3-70B-Instruct, which may generate more
natural tagged sentence pairs.
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Figure 7: Results of IFT using varying percentages of data with markup for all five language pairs. We show
XML-chrF (left column) scores and XML-Match scores (right column) of randomly sampling X percentage
of tagged data from the original data (Clean), and data generated by our AST (with max span of 4) and LST
approaches. X ranges from natural max, that is the tagged data percentage in Clean of 26%, to 15%, 5%,
2% and 1%.
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English: <xref>Size of the work items in the queue based on its routing configuration.</xref>
German: <xref>Die Größe der Arbeitselemente in der Warteschlange basierend auf ihrer Weiterleitungskonfiguration.</xref>

English: <codeph>Only included if you choose to import campaigns data to Sales Analytics through the configuration wizard.</codeph>
Finnish: <codeph>Sisällytetään vain, jos päätät tuoda kampanjadataa Sales Analyticsiin ohjatun määritystoiminnon kautta.</codeph>

English: <ph>Support for macros is different in Salesforce Classic and Lightning Experience.</ph>
French: <ph>La prise en charge des macros diffère entre Salesforce Classic et Lightning Experience.</ph>

English: <parmname>Ability to manage all case comments</parmname>
Dutch: <parmname>Mogelijkheid tot beheer van alle caseopmerkingen</parmname>

English: <userinput>Running user does not have permission to access report type.</userinput>
Russian: <userinput>Текущий пользователь не имеет права доступа к типу отчета.</userinput>

Table 3: Examples of sentence pairs with tags that only appear at the beginning and the end outputted by
BLOOM.

Insert tag pairs to parallel sentences in English and German.
Here is a list of possible tags:
<ph> <uiontrol> <parmname> <b> <codeph> <xref> <userinput> <varname> <filepath> <i> <li> <systemoutput> <term> <title> <p> <note> <cite>
<indexterm> <fn> <u>
Input:
English: For more information, see Using the Agent Console List View.
German: Weitere Informationen finden Sie unter Verwenden der Listenansicht der Agentenkonsole.
Output:
English: For more information, see <xref><ph>Using the <ph>Agent Console</ph> List View</ph></xref>.
German: Weitere Informationen finden Sie unter <xref><ph>Verwenden der Listenansicht der <ph>Agentenkonsole</ph></ph></xref>.
Input:
English: In the Folders pane on the Reports tab, select Opportunity Reports.
German: Wählen Sie im Fenster Ordner auf der Registerkarte "Berichte" die Option Opportunity-Berichte.
Output:
English: In the <parmname>Folders</parmname> pane on the Reports tab, select <uicontrol>Opportunity Reports</uicontrol>.
German: Wählen Sie im Fenster <parmname>Ordner</parmname> auf der Registerkarte "Berichte" die Option <uicontrol>Opportunity-Berichte</uicontrol>.
Input:
English: Measure – Choose a measure for the metric chart
German: Maßeinheit: Wählen Sie eine Maßeinheit für das metrische Diagramm aus
Output:
English: <b>Measure</b> – Choose a measure for the metric chart
German: <b>Maßeinheit</b>: Wählen Sie eine Maßeinheit für das metrische Diagramm aus
Input:
English: On your profile page, click Update under your photo (or Add Photo if you haven’t added a photo yet), then select Show in
communities with publicly accessible pages.
German: Klicken Sie auf Ihrer Profilseite unter Ihrem Foto auf Aktualisieren (bzw. auf Foto hinzufügen, wenn Sie noch kein Foto
hinzugefügt haben) und wählen Sie dann die Option In Communities mit öffentlich zugänglichen Seiten anzeigen.
Output:
English: On your profile page, click <uicontrol>Update</uicontrol> under your photo (or <uicontrol>Add Photo</uicontrol> if you haven’t
added a photo yet), then select <parmname>Show in communities with publicly accessible pages</parmname>.
German: Klicken Sie auf Ihrer Profilseite unter Ihrem Foto auf <uicontrol>Aktualisieren</uicontrol> (bzw. auf <uicontrol>Foto hinzufügen</uicontrol>,
wenn Sie noch kein Foto hinzugefügt haben) und wählen Sie dann die Option <parmname>In Communities mit öffentlich zugänglichen Seiten anzeigen</parmname>.
Input:
English: Salesforce supports the open-standard cross-domain identity management SCIM specification 1.1, and provides a few extensions
to the spec so you can edit and manage user properties using the REST API.
German: Salesforce unterstützt die Open-Standard-SCIM-Spezifikation 1.1 (System for Cross-domain Identity Management) und stellt einige
Erweiterungen für die Spezifikation bereit, sodass Sie Benutzereigenschaften mit der REST-API bearbeiten und verwalten können.
Output:
English: <ph>Salesforce</ph> supports the open-standard cross-domain identity management SCIM specification 1.1, and provides a few
extensions to the spec so you can edit and manage user properties using the <ph>REST API</ph>.
German: <ph>Salesforce</ph> unterstützt die Open-Standard-SCIM-Spezifikation 1.1 (System for Cross-domain Identity Management) und
stellt einige Erweiterungen für die Spezifikation bereit, sodass Sie Benutzereigenschaften mit der <ph>REST-API</ph> bearbeiten und verwalten können.
Input:
English: ${English Sentence}
German: ${German Sentence}

Table 4: The full prompt for LLM to generate tagged sentences in English and German.
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Abstract

The quality of output from large language models (LLMs), particularly in machine translation (MT), is
closely tied to the quality of in-context examples (ICEs) provided along with the query, i.e., the text to
translate. The effectiveness of these ICEs is influenced by various factors, such as the domain of the source
text, the order in which the ICEs are presented, the number of these examples, and the prompt templates used.
Naturally, selecting the most impactful ICEs depends on understanding how these affect the resulting trans-
lation quality, which ultimately relies on translation references or human judgment. This paper presents a
novel methodology for in-context learning (ICL) that relies on a search algorithm guided by domain-specific
quality estimation (QE). Leveraging the XGLM model, our methodology estimates the resulting translation
quality without the need for translation references, selecting effective ICEs for MT to maximize translation
quality. Our results demonstrate significant improvements over existing ICL methods and higher translation
performance compared to fine-tuning a pre-trained language model (PLM), specifically mBART-50.

1 Introduction

Pre-trained large language models (LLMs) quickly
gained popularity (and continue to do so) due to
their performance on a large set of natural language
processing (NLP) tasks, including machine transla-
tion (MT) (Zhu et al., 2023; Xu et al., 2024). How-
ever, the accuracy of their outputs is significantly
influenced by the quality of the in-context exam-
ples (ICEs) provided to them (Jiang et al., 2020;
Alves et al., 2023).1 If these examples do not align
well with the specific task and source domain, the
LLMs’ outputs can be inaccurate. Therefore, there
is a critical need to develop (better) methods for se-
lecting appropriate examples that match the task and
source domain being translated. These methods col-
lectively fall under the umbrella of in-context learn-
ing (ICL) (Liu et al., 2022).

Traditionally, creating ICEs for MT involves
either random selection (Sia and Duh, 2023) or us-

ing a strategy such as maximizing an evaluation met-
ric like BLEU, to choose examples that improve the
metric (Agrawal et al., 2023). The former was ini-
tially used for its simplicity and ease of implemen-
tation. However, relying on randomness can lead
to inconsistent results and pose significant compu-
tational costs (Lu et al., 2022). Recent state-of-
the-art (SOTA) ICL approaches focus on retrieving
training examples that are closely relevant to the
context of source sentences of test sets using unsu-
pervised retrievers, such as BM25 (Robertson and
Zaragoza, 2009). Recent studies have also shown
that a range of factors, such as order (Lu et al.,
2022), template (Jiang et al., 2020), domain, and
number of ICEs, significantly impact the perfor-
mance (Agrawal et al., 2023; Raunak et al., 2023a).

Naturally, the most effective ICEs for a given
source text are the ones that would impact the result-
ing translation quality, which would ultimately de-

1For simplicity, we sometimes refer to it as “example(s)” throughout this paper.
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pend on translation references or human judgment.
In MT, quality estimation (QE) has become a stan-
dard approach for evaluating an MT system’s output
without relying on reference translations Blain et al.
(2023). Recently, Lee (2020), Ye and Li (2023),
and Sharami et al. (2023) showed the effectiveness
of domain-specific QE when it comes to domain-
specific MT (in contrast to the ineffectiveness of
generic QE). Building on this and to address the
aforementioned challenges, our work proposes to
leverage domain-specific QE to assist in the selec-
tion of ICEs, with the goal of determining the subop-
timal number and combination of ICEs to maximize
MT quality, all without reference translations. As
QE would assess the impact of different ICE combi-
nations and sequences, we hypothesize that this inte-
gration has the potential to not only improve transla-
tion performance but also reduce processing time, as
QE could result in smaller sets of ICEs, which would
reduce the inference times (Petrov et al., 2023). This
is particularly crucial considering the limited num-
ber of ICEs that can be fed into LLMs (Agrawal
et al., 2023). Therefore, our study aims to investi-
gate the feasibility of selecting ICEs on a per-source
basis. Specifically, we aim to answer the following
research question (RQ): How effective are domain-
specific QE models in determining ICEs for transla-
tion tasks in an LLM?

Our proposed ICL methodology for MT com-
bines an unsupervised retriever to select ICEs with
QE to assess their impact on the translation quality,
determining which ICE combination to include. In-
stead of feeding all selected examples, we only se-
lect examples whose QE points to maximizing the
LLM translation quality.

Our findings on German-English translations
demonstrate that our proposed approach outper-
forms the current SOTA ICL methods for MT as
well as a fine-tuned mBART-50 (Tang et al., 2020).

2 ICL Using Quality Estimation for MT

To utilize LLMs for effective MT, as noted in Sec-
tion 1, what is needed is a set of examples to pro-
vide the context (and thus guide or steer the LLM to-
ward a correct, context-specific translation) –– that
is, a set of ICEs –– and what is further important
is the number of ICEs and their combination.2 Ul-
timately, what is required is that the ICEs provide

context that is neither too specific nor too broad and
can effectively boost the translation. Our goal with
this work is to develop a methodology that optimizes
both these aspects in order to deliver high-quality
MT. Our methodology for identifying effective ICEs
involves two key components: (1) an unsupervised
retriever that locates examples closely related to the
sentence to be translated and (2) a search algorithm
that uses QE to select a combination of examples
that leads to the improvement of translation quality,
i.e., aiming to maximize the BLEU score.

2.1 Unsupervised Retriever Ranking

We employ the BM25 ranking algorithm (Trotman
et al., 2014) due to the effective utilization of un-
supervised retriever methods demonstrated in previ-
ous research, such as (Agrawal et al., 2023). BM25
sorts training pairs (source text and their transla-
tions) based on their relevance to a given query, i.e.
the sentence to be translated. Subsequently, we se-
lect the top K sentence pairs ranked by the algo-
rithm, where K is a hyperparameter that controls the
number of pairs to be fed into the search algorithm.

2.2 Search Algorithm Coupled with QE

Our search algorithm comprises three main phases:
Selection, Translation, and Estimation. During the
Selection phase, the algorithm selects the highest-
ranked training example from the initial ICEs pro-
vided by the unsupervised retriever ranking method
(out of K ICEs). This selected example is then con-
catenated with the previously selected ICEs. In the
first iteration, no ICEs have been selected before. In
the Translation phase, the selected ICE is translated
by the model. In the Estimation phase, the LLM
output (translated text) and the original source text
are inputted into the domain-specific QE model to
estimate the quality of the translation. Our proposed
methodology relies on sentence-level QE.

Next, the selected ICE, together with its esti-
mated quality and the LLM translation output, are
appended to an intermediate list. To track the high-
est quality obtained thus far, the algorithm sorts the
list in descending order based on the estimated qual-
ity. To avoid duplication, the selected ICE is re-
moved before the next iteration. This iterative pro-
cess continues until the best-estimated translation
quality no longer improves within the specified pa-

2The question of the order of examples is not specifically discussed in this paper but is left for future work.
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tience threshold. Alternatively, the process termi-
nates once all K ICEs have been selected.

This methodology allows for the systematic
selection of ICEs that improve translation quality
compared to previous ICL methodologies while ef-
ficiently managing the computational resources re-
quired for the search process. This efficiency is
achieved by integrating early stopping conditions
with predetermined patience. Notably, we do not ex-
plore permutations of initial ICEs, as doing so would
require a large number of attempts, leading to high
computational costs during the search process.3

3 Experiments Setup

We conducted four main experiments to test the ef-
fectiveness of our methodology. Three of these ex-
periments compare our methodology to existing ICL
ones in different settings, or Modes. The fourth ex-
periment compares our methodology to a fine-tuned
mBART-50, aiming to assess which method is pre-
ferred (with respect to obtaining better translations).

It is important to note that we do not fine-tune
the LLM. The process of building the QE model
used in our experiments is detailed in Section 3.2.

3.1 Search Algorithm

We conducted experiments using the search algo-
rithm outlined in Section 2.2 across three opera-
tional modes:

Mode 1: This mode uses QE with ICEs ordered
by BM25 to assess the effectiveness of combining
BM25 and QE in the proposed ICL methodology.

Mode 2: This mode investigates the impact of or-
dering ICEs by n-gram overlap, particularly uni-
grams, alongside QE, on the proposed methodology.
Given the success of ordering ICEs based on their
n-gram overlap match with the source, as demon-
strated in (Agrawal et al., 2023), we assess how this
ordering, based on ICEs’ n-gram overlap with the
source text, influences the translation quality. This
involves reordering ICEs according to their n-gram
overlap, which is calculated using the NLTK word
tokenizer. Higher overlap matches prioritize ICEs
in the list and feed them into LLMs earlier.

Mode 3: Instead of relying on QE, in this mode,
we compute the BLUE score on the existing test
set. This approach is not a realistic case, but it is the
most favorable scenario, and we use it as the highest
bound to compare with Mode 1.

The search algorithm generates up to 16 can-
didates. In each mode, we conducted experiments
using three early stopping patience values (3, 8, and
16), determining the maximum number of ICEs (K)
generated. We included Patience 16, which implies
no early stopping, to evaluate the model’s perfor-
mance with the maximum ICEs. Additionally, the
search process halts if the estimated label reaches or
exceeds 100, preventing further evaluations.

3.2 Quality Estimation
Following (Ranasinghe et al., 2020; Lee, 2020;
Sharami et al., 2023), we develop a domain-specific
QE model. First, we trained a QE model us-
ing out-of-domain (OOD) data (as detailed in Sec-
tion 3.2.1) to ensure generalizability; and second,
we fine-tuned the model using the training set de-
scribed in Section 3.4 to provide domain-specific
QE model and address domain mismatch, which is
critical (Koehn and Knowles, 2017).

In our experiments, we used BLEU as the qual-
ity label because our study focused on translation
performance rather than post-editing effort, which
is typically evaluated using (H)TER (Specia and
Farzindar, 2010). We employed the “MonoTran-
sQuest” architecture from the TransQuest frame-
work (Ranasinghe et al., 2020), known for its suc-
cess in prior QE studies. However, instead of em-
ploying softmax computation, we directly utilized
logits to estimate the quality labels. This strategy
saves computation time, as softmax computation
can be resource-intensive (Ruder, 2016).

3.2.1 QE data
We utilized the German-English “EuroPat” dataset,
accessed through Opus (Tiedemann, 2012), to de-
velop our generic QE model. We chose this dataset
because it provides ample data samples, ensuring
broad coverage of vocabulary –– a critical aspect in
developing generic models.

However, as MT datasets like EuroPat typically
consist of pairs of source and translated text, it was
necessary to synthetically create post-editing text

3A pseudocode outlining the search methodology can be found in Algorithm 1 in the Appendix. The phases of translating a source
text of a test set using our methodology are depicted in Figure 2.
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(since the QE data creation process requires a triplet
input: source text, machine-translated text, and post-
edited text). To accomplish this, we used a pre-
trained multilingual MT model, namely mBART-
50 that supported the language pair used in our ex-
periment. This involves translating 1M randomly
chosen source texts from EuroPat. Afterward, the
resulting translations were considered as machine-
translated text, with the corresponding reference
translations acting as post-edited text.

Using SacreBLEU, we calculated the BLEU
score, comparing the translated text with its cor-
responding post-edited text. This approach, which
has been demonstrated to be effective in QE (Negri
et al., 2018; Lee, 2020; Sharami et al., 2023), en-
abled us to use the source and (machine-) translated
text as input and the BLEU score as the target value
for the QE model. For building domain-specific QE,
we utilized the training set detailed in Section 3.4
and applied the aforementioned approach to synthet-
ically generate BLEU scores for the entire dataset.

3.3 Multilingual Large Language Model
For our experiments and hypothesis validation, we
used XGLM (Lin et al., 2022). This choice stems
from the outstanding performance of the model in
the MT field. This also ensures a fair comparison of
our proposed methodology with previous research,
such as (Agrawal et al., 2023), which introduced
SOTA approaches in ICL for MT.

We used the 7.5 billion-parameter XGLM im-
plementation and tokenizer by Hugging Face4, con-
sistent with previous research. We employed a tem-
plate from Lin et al. (2022) to maximize translation
performance. < /s > serves as the ICE separator
in this template. “BLANK” denotes an empty string
within the template.

{source text1} = {target text1} < /s >

{source text2} = {target text2} < /s >

. . . = . . . < /s >

{source textn} = BLANK

3.4 Dataset and Evaluation Metrics
We used a dataset comprising German-to-English
translation pairs within the IT domain, sourced
from (Aharoni and Goldberg, 2020). This dataset

was chosen due to the challenges that MT systems
and LLMs face when translating out-of-domain con-
texts, particularly in specialized fields, as noted
in previous studies (Koehn and Knowles, 2017;
Agrawal et al., 2023). The specialized and con-
strained nature of the IT domain provided an ideal
setting for evaluating our methodology’s perfor-
mance under these conditions.

The dataset utilized in this study consisted of
approximately 222k training sentences, 2k devel-
opment sentences, and 2k test sentences. To as-
sess the translation effectiveness of the models,
we employed metrics such as BLEU from Sacre-
BLEU (Post, 2018) and COMET (Rei et al., 2020).

3.5 Number of ICEs
We use between 1 and 16 ICEs. These may originate
either from a random approach or from an advanced
(guided) selection. To keep these separated in our
analysis, we designate two different counts – p and
q. This choice and naming convention is grounded
by previous research exploring the impact of vary-
ing ICE numbers. While our study explicitly caps
the upper limit of q at 16, values spanning from 1 to
16 remain feasible options –– unlike the fixed value
in the compared systems.

3.6 Compared Systems
We conducted a comparative analysis with methods
from previous studies; random and task-level sam-
pling, BM25, R-BM25, and fine-tuned mBART-50.

Random: We conducted three random trials, gen-
erating random numbers based on parameter p.
These numbers, ranging from 1 to the size of
the training set, selected corresponding translation
pairs. To create the prompt5, in addition to the train-
ing examples (i.e., ICEs), we need the source side
intended for translation. We utilize the source from
the development set, in contrast to the advanced
methods in ICL, where the source text from the test
set is typically employed. The reason for selecting
the development set over the test set in this approach
is that development sets are generally from the same
distribution, domain, and context as the test set. This
similarity increases the likelihood that the examples
in the development set will better match the content
and context of the test set, thereby enhancing the rel-

4https://huggingface.co/docs/transformers/model doc/xglm
5In the literature, the term “prompt” is frequently used interchangeably with “ICE”
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evance and effectiveness of the prompts.
The generated prompt is inputted into the LLM

for translation. Then, the BLEU score of the devel-
opment set is computed. The random number that
produces the highest score among the trials is se-
lected, and the training examples linked to this num-
ber are concatenated with the test set’s source text.

Task-level: Based on the work of Agrawal et al.
(2023), the task-level approach is similar to the ran-
dom approach but differs in the number of trials
used. We employ 100 trials for the task-level ap-
proach, a significantly higher number than the ran-
dom approach. The reason for using more trials is
to generate a greater variety of ICEs, aiming to en-
hance the performance of LLMs in the translation
task. However, this results in longer execution times
compared to the random approach.

BM25: Using the Moses Tokenizer (Koehn et al.,
2007), we first tokenize the training set’s source
samples. Then, a BM25 model is created for the
tokenized corpus by employing the BM25Okapi im-
plementation within the rank bm25 package.6

Next, the test set is tokenized using the tok-
enized source. The algorithm then searches for sim-
ilar training samples based on BM25 criteria, select-
ing the top q matches for the model. This method-
ology utilizes the test set as opposed to random and
task-level approaches using the development set.

Re-rank BM25 (R-BM25): BM25 aims to find
translation examples with the highest n-gram over-
lap with the source sentence (Luo et al., 2023).
However, since retrieved examples score indepen-
dently, top matches may lack coverage of all source
n-grams. This poses an issue in ICL due to LLM
input size limitations. To address this, Agrawal
et al. (2023) proposed R-BM25. R-BM25 employs
a recall-based n-gram overlap (Agrawal et al., 2023)
to extract word n-grams and their numbers from the
test source and BM25 retrieved examples.

Fine-tuning mBART-50: Different ICL method-
ologies, including our own, are assessed in compar-
ison to the process of fine-tuning a pre-trained mul-
tilingual MT model, specifically mBART-50. The
selection of mBART-50 is based on its alignment
with the language specifications of the experiment

and its proven track record of achieving success in
MT tasks through the utilization of pre-trained mod-
els (Yuan et al., 2022; Pham et al., 2022). The fine-
tuning of mBART-50 is carried out using the training
data outlined in Section 3.4.

3.7 Computational Costs

We monitored and reported the computational costs
of the models utilized in our experiments using the
carbontracker package.7 This involved calculating
the carbon footprint (CO2eq) emissions, time to pre-
diction (TTP), and electricity consumption (kWh)
associated with our experiments. Our experiments
were conducted using NVIDIA A40 GPUs.

The script for running our experiments is pub-
licly available at anynomous.com.

4 Experiments Results

This section presents the results of our experiments.
To ensure a fair comparison, we conducted a statis-
tical analysis test (t-test) to determine if our models
significantly outperformed the baseline.

Comparing to previous work, the results shown
in Table 1, indicate that R-BM25 with 16 ICEs out-
performs other methods. It is notable that there is
a positive correlation between the number of ex-
amples and evaluation scores (consistent through
all methods – Random, Task-level, BM25, and R-
BM25), although at the expense of prediction time
(i.e., TTP). Employing 16 examples significantly
improved performance compared to using only one
example in the random approach.

Analyzing the performance of our methods in
Mode 1 (referred to as “M 1”, with P = 3, 8, or 16 in
Table 1), we observe that our proposed methodology
with different patience thresholds consistently out-
performs all previous methods, including the base-
line. This trend holds for both the COMET and
BLEU metrics across all the methods. Specifically,
our method exhibits a minimum improvement of
0.52 points in the BLEU score (from 45.20 to 45.72)
with patience threshold of 3 and a maximum im-
provement of 1.58 points in the BLEU score (from
45.20 to 46.78) with a patience threshold of 16 com-
pared to R-BM25 with 16 examples.

6https://github.com/dorianbrown/rank bm25
7https://github.com/lfwa/carbontracker
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Method p + q BLEU COMET TTP CO2 GPU
(hh:mm) (kg) (kWh)

Random 1 + 0 10.38 0.6895 01:51 00.13 00.39
Random 16 + 0 31.65 0.7844 02:20 00.19 00.58
Task-level 1 + 0 29.17 0.7586 62:50 09.83 29.10
Task-level 16 + 0 32.88 0.8083 78:30 12.80 35.91
BM25 0 + 1 39.24 0.7833 00:56 00.06 00.19
BM25 0 + 16 44.50 0.8120 00:58 00.07 00.19
R-BM25 0 + 1 40.88 0.7990 01:01 00.06 00.21
R-BM25 0 + 16 45.20 0.8218 01:04 00.07 00.21
M 1, P = 3 0 + 16 45.72 0.8395 01:49 00.22 00.67
M 1, P = 8 0 + 16 46.43 0.8501 03:48 00.50 01.51
M 1, P = 16 0 + 16 46.78 0.8554 05:11 00.68 02.05
M 2, P = 3 0 + 16 46.05 0.8400 01:30 00.21 00.64
M 2, P = 8 0 + 16 46.59 0.8518 03:52 00.51 01.52
M 2, P = 16 0 + 16 46.52 0.8564 05:00 00.66 02.01
M 3, P = 3 0 + 16 49.89 0.8532 01:36 00.22 00.66
M 3, P = 8 0 + 16 52.63 0.8725 03:14 00.45 01.40
M 3, P = 16 0 + 16 53.50 0.8791 04:08 00.55 01.65
mBART-50 N/A 42.76 0.8659 11:20 01.88 04.82

Table 1: Method Performance in BLEU and
COMET Scores. M 1 to 3 denotes Mode 1 to 3;
P is the patience value; p and q are as defined in
Section 3.5. “N/A” (not applicable) indicates that
fine-tuning does not use ICEs. Bold font represents
the highest translation performance. Two numbers
are in bold if they are statistically similar (t-test,
p value = 0.05).

Consequently, our methods in Mode 1 are
ranked based on their performance, with patience 3
being the least effective model, followed by patience
8, and finally patience 16, representing the most ef-
fective method. This ranking indicates that increas-
ing the patience threshold can significantly enhance
the translation performance. However, the improve-
ment with patience 16 is not statistically signifi-
cant compared to patience 8, suggesting that more
ICEs do not necessarily enhance translation perfor-
mance. Similarly, while more substantial contextual
improvement (as indicated by the COMET) is ob-
served at the maximum patience threshold (16), it is
not statistically significant compared to patience 8.

The Mode 2 results demonstrate that all three
patience thresholds surpass the methods in the liter-
ature. However, this improvement is not statistically
significant when compared with the respective ex-
periments in Mode 1. This suggests that ordering
the examples according to n-gram (unigram) simi-

larity does not enhance the translation performance
in our methodology.

When it comes to Mode 3, we should stress that
this is an unrealistic scenario, but used as the high-
est bound. The results indicate that with a patience
of 3, the BLEU score is 4.17 points lower (49.89-
45.72). With a patience of 8, this gap increases to
6.2 points (52.63-46.43), and with a patience of 16,
it widens further to 6.72 points (53.50-46.78). These
differences arise from the QE model estimations in
our experiment compared to the scenario where ref-
erence labels are available to the search algorithm.

4.1 Time to Prediction (TTP)

Among the methods examined, task-level execution
required the most time, with approximately 62 hours
for one example and 78 hours for 16 examples. Our
method (Mode 1) with a patience value of 16 is rela-
tively time-intensive, taking approximately 5 hours,
while a patience value of 3 is comparable to the
baseline method, differing by only around 50 min-
utes. Mode 2 is nearly equivalent to Mode 1 in terms
of TTP, whereas Mode 3, where the reference labels
are accessed, requires less time than Modes 1 and
2. In addition, the search algorithm incorporates a
termination condition, and given that QE estimation
rarely triggers this condition, numerous ICEs are left
unattempted, resulting in significant time savings.

It is also important to note the time required to
train the QE models used in the prediction process.
As provided in Appendix 3, the training time for
the generic QE model is +/− 5 hours and 55 min-
utes, while the specific QE model takes about +/− 6
hours and 54 minutes. Although these training times
are significant, it is crucial to recognize that QE
models, similar to MT models, can be reused for the
same language pair and domain, thereby amortizing
the initial training cost over multiple predictions.

The last row of Table 1 shows the scores
of the translations obtained with the mBART-50
model fine-tuned on the same training set as in ICL.
Despite mBART-50 being tailored for MT across
50 languages, it did not outperform the R-BM25
method with 16 examples (best from the existing
methods); it was better only than Random, Task-
level, BM25, and R-BM25, each with only 1 exam-
ple. However, when considering translation perfor-
mance from a contextual perspective, the COMET
results indicate that fine-tuning mBART-50 leads to
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superior performance compared with lexical over-
lap. Nevertheless, fine-tuning took significantly
longer than identifying ICEs and obtaining infer-
ences from the XGLM.

Compared to our methodology, especially
when considering the least performing method (M
1, P = 3), it is significantly worse – 6.47% (42.76
to 45.72). This highlights the substantial efficacy
of ICL compared to fine-tuning. Nonetheless, it is
noteworthy that various factors might contribute to
this observation: e.g., the model’s size might be a
critical factor, especially during deployment, where
larger models like XGLM could pose challenges.

5 Analysis

Output analysis Pre-trained LLMs often exhibit
over-generation, i.e., the generation of a larger num-
ber of tokens than expected by a human (in com-
parison to a reference), necessitating extensive post-
processing (e.g., post-editing) (Bawden and Yvon,
2023). Figure 1 shows the tokenized output lengths
(translations) for our model (Mode 1, patience 8),8

alongside the R-BM25 with 16 examples. The anal-
ysis shows that the length distributions for both
models align with the reference distribution, sug-
gesting that the models do not over-generate.

To quantitatively compare these distributions
to the reference, we employed the Kolmogorov-
Smirnov (KS) test (Kolmogorov, 1933). The re-
sults indicate that for R-BM25 versus the reference,
the KS statistic is relatively high (0.0749), reflect-
ing a significant difference between the translation
lengths of R-BM25 and the reference distribution.
The extremely low p-value (2.39 × 10−5) further
confirms this significant discrepancy. Conversely,
for Mode 1 with P=8 versus the reference, the KS
statistic is considerably lower (0.0232), indicating a
much smaller difference in translation lengths. The
higher p-value (0.6451) suggests no significant dif-
ference, implying that the distribution of Mode 1,
P=8 is similar to the reference distribution.

These findings suggest that our proposed
methodology could yield translations closer in
length to the reference, potentially reducing the need
for labor-intensive post-processing efforts and en-
hancing computational efficiency.

Figure 1: Tokenized Translation Lengths compar-
ison between R-BM25, our Mode 1, P=8, and the
reference. “KS” denotes the Kolmogorov-Smirnov
test, with the p-value indicating significance.

ICE Number Analysis The number of selected
ICEs holds a significant importance within the ICL
algorithm, as it directly impacts the token processing
time and the capacity of LLMs to handle additional
ICE instances. We analyzed the number of ICEs that
our algorithm selected across all three modes. The
results (Table 2) show that the minimum number of
ICEs selected is 1, while the maximum is: 12 for
Mode 1, 16 for Mode 2, and 16 for Mode 3. The
average (mean) number of ICEs is found to be low-
est in Mode 3 and highest in Mode 1. In addition,
Mode 2 results in a reduction in the number of ICEs
within our proposed algorithm. The notably lower
average number of ICE instances in Mode 3 can be
attributed to its access to the test set, allowing for
the selection of optimal ICE combinations based on
test set performance and activating an early stopping
condition if the score exceeds 100. Contrarily, while
Mode 1 exhibits similarities to Mode 3, its relatively
higher average can be linked to inaccuracies in QE
estimation. Moreover, our analysis shows that QE
estimations rarely reach a score of 100, thus render-
ing the early stopping condition inactive.

Mode Min Mean Max
#1 [1, 1, 1] [2.25, 3.76, 4.84] [12, 16, 16]
#2 [1, 1, 1] [2.20, 3.70, 4.74] [12, 16, 16]
#3 [1, 1, 1] [2.15, 3.47, 4.47] [12, 16, 16]

Table 2: Number of ICEs selected for each mode
at different patience thresholds. Labels [x, y, z]
correspond to patience values 3, 8, and 16.

8Our other models in Mode 1 exhibited similar distributions.
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CO2 Emissions Our analysis reveals that using
XGLM for translation yields lower CO2 emissions
than fine-tuning mBART-50, making it a more envi-
ronmentally sustainable choice. In Mode 1 of our
proposed methodology, with patience 16, XGLM
emitted 0.68 KG of CO2, while fine-tuning mBART-
50 emitted 1.88 KG. Interestingly, the task-level
method with 16 ICEs emitted the highest amount
of CO2, totaling 12.80 KG. Our proposed approach
leads to higher CO2 emissions than R-BM25.

6 Related Work

ICL for MT. ICL9 represents a relatively new
paradigm in natural language understanding. Unlike
traditional fine-tuning approaches, where a PLM un-
dergoes parameter updates using a specific dataset,
ICL typically directly generates the output without
any modification to its parameters (Radford et al.,
2019; Brown et al., 2020). This is achieved by solely
providing the model with a few examples, known as
ICEs, which prime the PLM to enhance its perfor-
mance for the given task (Jiang et al., 2020).

As shown by Vilar et al. (2023), the quality
of translation is directly proportionate to the qual-
ity of ICEs, where quality refers to ICEs being rel-
evant, clear, accurate, and domain-specific. How-
ever, considering all ICEs during processing is com-
putationally demanding (Alves et al., 2023). Hence,
it is crucial to selectively choose ICEs that can en-
hance MT quality. Goyal et al. (2022) conducted
a study where ICEs were randomly selected. De-
spite finding that this random selection of ICEs re-
sulted in good translation performance, the neglect
of their order, which was identified as important (Liu
et al., 2022; Lu et al., 2022), was a drawback in
this approach. To address this, methodologies such
as (Agrawal et al., 2023) introduced a re-ranking
technique (R-BM25). However, their methodology
relies solely on n-grams to order examples, which
can enhance fluency but may overlook contextual
factors. In our approach, we investigated the uni-
gram order of initial ICEs provided by the BM25
algorithm. We leave the in-depth analysis of ICE
order for future work. Additionally, Kumar et al.
(2023) highlighted the advantages of using multi-
ple features in ICE selection to improve transla-
tion quality, while our QE-based approach simplifies
ICE selection without needing to generate additional

features, ensuring efficiency.

QE in MT Evaluation. QE models offer a quick
solution to the assessment of the overall usefulness
of translated text. These models do not rely on refer-
ence translations, thereby reducing the human effort
required for quality evaluation (Tamchyna, 2021;
Murgolo et al., 2022; Zerva et al., 2022; Blain et al.,
2023). Similar to MT models, previous studies high-
light the importance of domain-specific QE for ac-
curately estimating translation quality across diverse
domains (Lee, 2020; Sharami et al., 2023). This is
why, in our work, we employed a domain-specific
QE model instead of a generic one to enhance the
selection of ICEs.

Integrating QE into ICL offers significant, yet
largely unexplored, potential. QE can also bet-
ter capture out-of-domain gender and word-sense-
disambiguation errors (Dinh and Niehues, 2023).
Additionally, integrating QE can mitigate reference
bias, a significant challenge in accurately estimat-
ing the output quality of LLMs (Goyal et al., 2023;
Raunak et al., 2023b). The introduction of COMET-
QE (Raunak et al., 2023a) exemplifies this pursuit,
providing a metric tailored to evaluate the quality of
perturbed prompts provided to GPT-3 (Brown et al.,
2020), aiming to mitigate reference bias. While in
our approach, we employ domain-specific QE to
guide the selection of ICEs, this underscores the po-
tential of QE in refining LLM inputs (i.e., ICEs).

7 Conclusion

We propose a novel in-context learning (ICL)
methodology for enhancing the translation capabil-
ities of large language models (LLMs) while op-
timizing computational resources. Our approach
leverages domain-specific quality estimation (QE)
to guide in-context selection, particularly focusing
on determining the suboptimal number and the com-
binations of in-context examples (ICEs). This novel
strategy moves beyond the conventional reliance
solely on translation references from development
sets seen in prior methods.

We evaluated our approach across different
modes and early stopping patience values on the
German-to-English IT dataset. Our experiments
consistently showed the superior performance of our
methodology, surpassing all prior works across both

9Also referred to as the prompt retrieval method
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BLEU and COMET metrics. Our method consis-
tently improves BLEU scores, although this comes
at the cost of increased computation time. We also
investigated the impact of ordering the ICEs based
on their unigram overlap with the source text and
found it to be not statistically significant. Further-
more, our experiments highlighted the value of ICL
compared to fine-tuning a pre-trained large model,
namely mBART-50. We also highlighted that our
method leads to less carbon emissions while achiev-
ing better translation performance.

In the future, we would like to conduct further
research on the impact of our proposed methodology
across different language pairs, domains and LLMs.
Also, we aim to explore alternative metrics beyond
BLEU to tailor the selection process, as well as addi-
tional features such as bigram, type/token ratio, and
length when ordering examples prior to their input
into LLMs.
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Figure 2: Overview illustration showing an iteration of our proposed methodology.

Metric Generic Model Specific Model

Training Time (hh:mm) 05:55 06:54
CO2 Emissions (kg) 1.41 1.46
Electricity Consumption (kWh) 3.63 3.76

Table 3: Training Time, CO2 Emissions, and Electricity Consumption for QE Models.

ICEs:
Die Sockets, die im except Array aufgelistet sind, werden auf Ausnahmen überwacht. = The sockets listed
in the except array will be watched for exceptions. < /s > Geben Sie den Namen der Variablen ein, deren
Wert überwacht werden soll. = Enter the name of the variable whose value is to be monitored. < /s > Nur
erlaubt bei Sockets für lokale Displays und den globalen Socket. = Permitted only on sockets of local dis-
plays and the global socket. < /s > Legt fest, ob Scandaten-Information, die in den MPEG2-Videoströmen
enthalten sind, aktualisiert werden sollen. = This controls whether to update the scan data information con-
tained in the MPEG-2 video streams. < /s > Die Sockets, die im write Array aufgelistet sind, werden
daraufhin überwacht, ob ein Schreibvorgang den Socket blockiert. =

Translation:
The sockets listed in the write array will be watched for whether a write operation blocks the socket.

Reference Label:
The sockets listed in the write array will be watched to see if a write will not block.

QE: 67.59, BLEU score (using reference label): 52.89

Table 4: An example of selected ICEs for a source text, its corresponding translation, reference label, and
QE estimation compared to the BLEU score computed based on the reference label.
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1: function SEARCH(...)
2: temp← [(“”, 0.0, “”)]
3: prompt← “”
4: itr← 0
5: best qe score← 0.0
6: patience counter← 0
7: while itr < iteration and patience counter < early stop patience do
8: available Prompts← GENERATEAVAILABLEPROMPTS(...) ▷ Initial ICEs
9: if available prompts is not empty then

10: selected prompt index← itr mod k ▷ Phase 1: Selection
11: selected prompt← available prompts[selected prompt index]
12: prompt← CONSTRUCTFULLPROMPT(...)(see 3.3)
13: input ids[0]← ENCODEPROMPT(...) ▷ Phase 2: Translation
14: if length(input ids) > LLM max length then
15: return temp
16: end if
17: output← GENERATEOUTPUT(...)
18: final output← DECODEOUTPUT(...)
19: qe input← PREPAREQEINPUT(source,final output) ▷ Phase 3: Estimation
20: qe score← ESTIMATEQUALITY(qe input,model QE)
21: temp.append((prompt, current qe score,final output))
22: if current bleu score ≥ 100 then
23: return temp
24: end if
25: temp← SORTTEMP(...)
26: if qe score ≤ best qe score then
27: patience counter← patience counter + 1
28: else
29: patience counter← 0
30: end if
31: best qe score← temp[0][1]
32: end if
33: itr← itr + 1
34: end while
35: return temp
36: end function

Algorithm 1: Pseudocode outlining the proposed Search Algorithm. Each phase of the methodology is
annotated alongside the relevant code. Function arguments are omitted for simplicity. The first element of
the returning list (temp) includes the selected prompt, its associated QE score, and the translated text.
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Abstract

In long-term translation projects, like Parliamentary text, there is a desire to build machine translation systems
that can adapt to changes over time. We implement and examine a simple approach to continual learning
for neural machine translation, exploring tradeoffs between consistency, the model’s ability to learn from
incoming data, and the time a client would need to wait to obtain a newly trained translation system.

1 Introduction

There are many translation use cases in which trans-
lation is ongoing, i.e., new translations are being
produced by translators. We experiment with ap-
proaches to using the flow of new data produced
by translators to continually update neural machine
translation (NMT) systems indefinitely. The intu-
ition behind this is a desire to keep the system(s) up-
to-date and optimal for the task of translation over
time. This could include new topics that are being
discussed, changes to terminology, use of spelling
variants, or changes in translator/translation prefer-
ences; we specifically highlight terminology in this
work due to the ease of measurement.

Our planned continual learning approach is to
build a BASELINE-INITIAL system (trained on all
data up to a fixed point in time) and iteratively fine-
tune (continue training) it on chunks of new data,
which we refer to as stages. This simulates the real-
life scenario in which new translations are produced
and then the goal is to use them to improve the qual-

ity of the existing initial translation system.
We use the term “continual learning” in this

work, though we note that a number of different
terms have been used more or less interchange-
ably to refer to this concept in the machine trans-
lation (MT) and machine learning literature.1 In
the context of MT, they refer to the idea of using
the flow of new data to continue to train an MT
system indefinitely, producing systems that are al-
ways up-to-date: that learn new terms, phrases and
formulations, new concepts, changing translations
(of old terms—interestingly, this suggests that while
most old knowledge should be retained, some of it
should be forgotten/overwritten), etc., as they ap-
pear. Within this work we will refer to these ap-
proaches as continual learning (hereafter CL).

The research question we address is whether
a simple approach of regularly finetuning a base
model works successfully as a CL approach to NMT,
especially in a Parliamentary setting, where the do-
main may evolve over time, but is not expected to
suddenly change completely. We describe proof-

1Those include “continuous learning”, “lifelong learning”, “translation project adaptation”, as well as the related concepts of “online
learning” and “incremental learning” or “incremental updating”.
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of-concept experiments, in an idealized setting, but
with real data, where we compare with several base-
lines. While our work examines a realistic use
case, it is limited by our focus on one language pair
(English–French) and one domain (parliamentary
text). We examine tradeoffs with respect to ques-
tions of various measures of model performance,
and note areas where more study is needed to deter-
mine the usefulness of these approaches. We also
provide a brief discussion of the technical infras-
tructure that would be required to implement these
approaches in practice, with considerations around
feasibility and potential costs and risks.

2 Related Work

We provide a brief overview of related CL literature
from machine learning (more broadly) and machine
translation (more specifically).

2.1 CL for Natural Language Processing
In their survey on CL techniques in natural language
processing (NLP), Biesialska et al. (2020, p. 6524)
define CL as “a machine learning paradigm, whose
objective is to adaptively learn across time by lever-
aging previously learned tasks to improve general-
ization for future tasks.” Language usage and top-
ics of interest change over time due to various lin-
guistic and social processes and, as a result, ma-
chine learning models at the heart of NLP applica-
tions tend to become less accurate or stale. Peri-
odically training new models, using data that better
reflects the changing distribution of data, is an ef-
fective but often highly inefficient and costly solu-
tion. This motivates the need to find ways to “con-
tinue” the training of NLP models as new data be-
comes available. In practice, however, existing mod-
els often struggle to adapt to new information while
simultaneously retaining previously learned knowl-
edge, a problem which can eventually lead to catas-
trophic forgetting, where the improvement on a new
task or new data set simultaneously results in a dra-
matic degradation in quality on the original training
task or data (Goodfellow et al., 2014). This gives
rise to the stability-plasticity dilemma discussed in
Biesialska et al. (2020): the main challenge in CL is
to strike a balance between the model’s stability (its
ability to retain prior knowledge) and its plasticity
(its ability to adapt to new knowledge). That sur-
vey highlights three major approaches to this chal-

lenge: rehearsal approaches, where older training
samples are kept for each task and periodically re-
visited while updating a model; regularization ap-
proaches, which modify the learning objective to
aid knowledge consolidation while learning subse-
quent tasks, for example by slowing down the learn-
ing of parameters deemed important for previous
tasks; and architectural approaches, where changes
are made to a model’s architecture, making it possi-
ble to introduce task-specific parameters and isolate
or better control their effects.

2.2 CL for Machine Translation

In machine translation and computer-aided transla-
tion, updating MT models based on new transla-
tion data has been a recurring topic. This differs
from the broader definition of CL, where the task
itself may change: here the task of translation re-
mains the same but the data distribution changes in
potentially unpredictable ways. One type of data
that is of particular interest is professional transla-
tor feedback in the form of post-edited MT output.
Cettolo et al. (2014)—in the phrase-based statisti-
cal MT paradigm—proposed an approach that they
call “translation project adaptation.” In their set-
ting, a translator performed post-editing, and this
post-edited data was then used to adapt the MT sys-
tem for the future, iteratively improving the accu-
racy of translations. This concept was later adapted
to the neural machine translation (NMT) setting by
numerous researchers. For example, Álvaro Peris
and Casacuberta (2019) perform updates by finetun-
ing the parameters of a NMT model with every new
post-edited sentence (in simulation), yielding better
quality translations than the base model and reduc-
ing the human effort required to correct the system’s
output. Kothur et al. (2018) and Knowles (2019)
find similar results in simulations of finetuning on
individual sentences and document-specific dictio-
naries. As in other applications of CL, catastrophic
forgetting is a major concern.

The three major approaches to CL have also
been applied to MT by researchers, including re-
hearsal approaches (Chu et al., 2017; Zhang et al.,
2019; Bengio et al., 2009, i.a.), regularization ap-
proaches (Khayrallah et al., 2018; Kirkpatrick et al.,
2017; Cao et al., 2021, i.a.), and architectural ap-
proaches (Freitag and Al-Onaizan, 2016; Gu and
Feng, 2020; Gu et al., 2022; Li et al., 2020; Bapna
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and Firat, 2019; Wang et al., 2022, i.a.).
In this paper, we do not explore any of these

specifically proposed solutions to the catastrophic
forgetting problem; instead we simply aim to be
alert to the risks (by measuring performance on new
data and held-out original data). Since we examine
a scenario where we do expect gradual change over
time, there are likely some things that should be for-
gotten over time as others are learned (e.g., new pre-
ferred terminology or translations).

3 Data Setup

The general data setup for our experiments is de-
signed to mimic in a controlled fashion a real-world
scenario in which there exists a backlog of profes-
sional translations, and an incoming sequence of
additional new translation pairs that are generated
each day by translators. Translations are collected
regularly and used to incrementally update the MT
model, which is then used to produce future transla-
tions. We call each such collection period a “stage”.

All experiments are based on English–French
or French–English data from the proceedings of the
debates (a.k.a. ”Hansard”) in the Canadian House of
Commons, one of the two chambers of the Canadian
Parliament. This data ranges in time from 2006-
04-03 to 2023-09-29, is segmented into sentences,
and is timestamped so it can be ordered sequentially,
with 5-minute precision.2 We explain here how we
use this data for both hyperparameter-tuning exper-
iments and full data experiments where we train
and test the continual learning approach and several
baselines: (1) a BASELINE-INITIAL system (trained
in a standard, non-CL, manner on all data up to
an initial stopping point in time); (2) a BASELINE-
FINAL system (trained in a standard, non-CL, man-
ner on all data up to a final stopping point in time);
(3) a BASELINE-RECENCY model (a stronger BASE-
LINE, specially finetuned on the CL data).

3.1 Full Experiment Data
The bottom portion of Fig. 1 shows how we have set
up the data for our full experiments, while the top
portion shows how the subset of data used for the
hyperparameter tuning described in this work over-

laps with the full data. For building the BASELINE-
INITIAL system, we use all Hansard data from 2006-
04-03 until (but excluding) 2021-11-22 (A + B in
Fig. 1); this last date coincides with the beginning
of Canada’s 44th Parliament. It is partitioned into
training (A), development, and test splits (baseline-
initial-dev and baseline-initial-test, sampled from
B). Development and test splits for this model are
2000 sentences randomly sampled from the most re-
cent 40000 pairs of sentences (B in Fig. 1); whatever
remains is added to the training data. The baseline-
initial-test data is also used for examining the stabil-
ity of the CL systems.

All data that falls between 2021-11-22 and
2022-10-24 (inclusive; C + D in Fig. 1) is divided
into CL “stages”. We picked a fixed stage size of
3000 sentences, close to the average number of sen-
tences per day in the Hansard (2904).3 Due to the
small size of the stages, we choose a CL approach
where we do not use a development set for early
stopping; instead we use a fixed learning rate and
number of epochs for all stage training. These 3000-
sentence stages are used iteratively as test and then
training data in CL; once a stage has been trained
on, it is never again used as test.

Data for the BASELINE-FINAL system is built
analogously to the BASELINE-INITIAL system, us-
ing all data from 2006-04-03 until 2022-10-24 (A+
B+C+D in Fig. 1), including part of the data from
2022-10-24. Again, we partition this A+B+C+D
data into baseline-final-train, baseline-final-dev and
baseline-final-test by uniformly sampling 2000 sen-
tences each for the latter two from the most recent
40000 sentences (D in Fig. 1).

The rest of the data from 2022-10-24—i.e., that
which is not in set D—is included in the epilogue (E
in Fig. 1). In practice, for the remainder of this pa-
per, when we refer to epilogue-test data we only use
the first 40000 lines of the epilogue data.

See Table 1 and Appendix A for more informa-
tion on data set sizes.

3.2 Hyperparameter Tuning Data

Before experimenting on the full data set, we need
to select hyperparameters. We use fixed values for

2Re. duplicates: in order to evaluate system performance in a realistic usage scenario, duplicates or sentences that appear in training
are not removed from test and tuning sets (Appendix A). This allows us to monitor the “translation memory effects” in our systems.

3In this simplified, idealized setting, one day’s text may spreads across multiple stages, and a stage may include several days. Future
work may experiment with training on varying stage sizes.
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Figure 1: Data splits for hyperparameter tuning and full experiments. In the Full experiment data split, the
BASELINE-INITIAL system is trained on parts A and B; the BASELINE-FINAL system is trained on parts
A,B,C and D, but excluding baseline-initial-test. For both these BASELINE systems, tuning and test sets
(2000 sentence pairs each) are sampled from parts B and D respectively; all remaining data from each set is
used for training. Starting from the BASELINE-INITIAL system, CL systems are trained by iteratively fine-
tuning on data “stages”; each stage is used entirely for training or testing (with no held-out tuning set). The
epilogue (part E) is used for testing only. The Hyperparameter (HP) Tuning Split (at the top) is structured
similarly.

the learning rate and number of epochs during CL,
but in order to properly choose these hyperparam-
eters without train/test set contamination, the hy-
perparameter tuning data must be separate from the
data we use for our final CL experiments. For this,
we create a second data split, with the same struc-
ture as described above, but using data entirely con-
tained within that set’s baseline-initial data (A + B
in Fig. 1). We call this the Hyperparameter Tun-
ing data set: HP data for short. In the HP data,
the CL portion begins with the second session of the
43rd Parliament, on 2020-09-23 , and contains only
16 stages of 3000 sentences, ending on 2020-10-22.
The HP data is shown in the top portion of Fig. 1.
Parts A′, . . . , E′ in that data serve analogous func-
tions to A, . . . , E in the full data.

The HP-epilogue-test set consists of 4000 sen-
tences sampled from the 40000 sentences (approx-
imately 14 days between 2020-10-22 and 2020-11-
06) immediately following the HP CL data, rather
than simply the sentences immediately following the
end of the CL data as is done in our full experiments.

4 Performance Evaluation

We are interested in three main types of perfor-
mance evaluation: plasticity (improvement on new
data), stability (maintaining high performance on
past data), and volatility (whether the translations

change dramatically or incrementally between mod-
els). The goal for CL is high plasticity, high stability
(i.e., no catastrophic forgetting), and low volatility.

We study plasticity on two data sets: the
epilogue-test test set (used only for testing and never
in training or parameter setting) and the sequence of
intermediate test set stages. On the epilogue-test, we
measure translation quality (using automatic met-
rics) of the output produced by the BASELINE-
INITIAL system, each incremental CL system, and
the BASELINE-FINAL or BASELINE-RECENCY sys-
tem. We can compare these scores directly.

We also consider a stage-wise evaluation rep-
resentative of real-life applications. For this evalu-
ation, a stage is initially used as a test set, and then
the CL system trains on it, testing on the subsequent
stage, until reaching the epilogue; a stage is never
again used for testing after it has been trained on.
While we can compare the CL system with each of
the BASELINES on each stage, we cannot directly
compare the scores of the stages to one another (they
are different test sets and most automatic metrics are
not directly comparable across test sets). Instead, we
compare the difference in metric score between the
BASELINE-INITIAL system and any systems of in-
terest. We draw an idealized line between 0 at the
start of CL to the difference between BASELINE-
FINAL and BASELINE-INITIAL (measured on the
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Hyperparameter Tuning Full Experiments
Data for: Train Tune Test Train Tune Test

Baseline systems
BASELINE-INITIAL 4494960 2000 2000 4880109 2000 2000
BASELINE-FINAL 4540960 2000 2000 5262109 2000 2000

Continual learning
CL initial (same data as BASELINE-INITIAL) (same data as BASELINE-INITIAL)
per stage 3000 – 3000 3000 – 3000

(“next” stage) (“next” stage)
CL total 48000 – 45000 384000 – 381000

(16 stages) (128 stages)
epilogue-test set – – 4000 – – 367653

Table 1: Number of sentence pairs in hyperparameter tuning and full data sets.

epilogue-test) at the end of CL.
To measure stability (and whether catastrophic

forgetting occurs), we use the held-out baseline-
initial-test data set. If catastrophic forgetting occurs,
we might expect to see major decreases in quality on
this test, whereas if the CL approach is successful,
we might expect maintained quality (or small varia-
tion; there may be changes in terminology or other
such domain evolution features). This measurement
will also be done with automatic MT metrics.

We examine volatility during our HP search ex-
periments using the HP-epilogue-test set. A highly
volatile system would see major changes from sys-
tem to system; a less volatile system would likely
see most translations remain similar to one another.

5 Hyperparameter Tuning Experiments

Even using the simple CL approach we have se-
lected, we need to set some hyperparameters. We
limit these to the learning rate (LR) and the num-
ber of epochs. In this section we describe the setup
of our hyperparameter tuning experiments. We de-
scribe BASELINE models built specifically for HP
tuning in Section 5.1, the tuning procedure in Sec-
tion 5.2, performance over time in Section 5.3, and
volatility in Section 5.4. We note that for our HP
tuning data set, we are considering a smaller range
in time than in our full data set.

5.1 Baseline Models

We train the HP-BASELINE-INITIAL model on the
HP-baseline-initial-train data, with early stopping
done using the HP-baseline-initial-dev set. The
HP-BASELINE-FINAL is trained using the same set-
tings as the HP-BASELINE-INITIAL, using the rel-
evant HP data described in Fig. 1. We build a
stronger BASELINE with a recency bias, an oracle
finetuned model: HP-BASELINE-RECENCY. This
model is the HP-BASELINE-INITIAL finetuned on
all CL data, selected from a grid search of hyperpa-
rameters based on oracle performance (BLEU score)
on the HP-epilogue.

All models were trained using Sockeye (Hieber
et al., 2022), on 4 Tesla V100-SXM2-32GB GPUs.
Appendix B describes training in more detail.

5.2 Hyperparameter Tuning

Using the HP CL data set, we experiment with 6 dif-
ferent LRs between 1 × 10−6 and 3 × 10−4, and 8
values for the number of epochs, from 1 to 27. For
each experiment, these are fixed to avoid the risk of
using a validation set (e.g., for early-stopping) that is
too small to draw accurate conclusions from. When
training on a stage is complete, the resulting model
is used for translation of the test sets and as the start-
ing model parameters for finetuning using the sub-
sequent stage’s data. For each setting, we run exper-
iments on the sixteen stages, then compute BLEU
score4 gain at each stage, i.e., the difference between

4BLEU scores (Papineni et al., 2002) are computed using sacrebleu (Post, 2018) with a signature of
nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.2.
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the scores obtained with the CL system and the HP-
BASELINE-INITIAL system. For a CL system fine-
tuned on stage n, it can be tested on the held-out
HP-BASELINE-INITIAL test data, stage n + 1, and
the held-out epilogue-test data. Whenever we com-
pare scores of two or more systems, we compare
them on the same test set.

Rather than a single stand-out pair of hyperpa-
rameters from our grid search, we found a cluster
of similarly-performing ones. From this, we chose
a high-performing (high median BLEU score gain
over stages, relatively low standard deviation) set of
HPs with a low number of epochs (to decrease train-
ing time and cost).5 We selected the following HPs
for our full experiments: for EN-FR, LR=1.0×10−5

and 8 epochs, and for FR-EN, LR=3.0 × 10−6 and
8 epochs. We will perform our initial analyses us-
ing these parameters. We later also compare against
other settings. See Appendix C for additional details
on HP selection.

5.3 Performance Over Time

Figure 2: Empirical incremental (EN-FR) evalua-
tion on HP-epilogue-test set after training on each
stage.

Fig. 2 shows incremental evaluation on the HP-
epilogue-test set. The “selected CL” HPs were se-
lected as described above. For the “slow CL” and
“catastrophic CL” we chose a fixed LR with differ-
ent numbers of epochs. For the sake of readabil-
ity, we do not show the worst catastrophic forget-
ting model, as it drops off very quickly and would
dominate the plot. The catastrophic forgetting sce-

nario did occur, as expected, when the combination
of LR and epochs was too high, presumably lead-
ing to overfitting on the stage training data. Both
our “selected” and “slow” CL models outperform
the HP-BASELINE-FINAL model but do not reach
the score of the HP-BASELINE-RECENCY.

5.4 Volatility

We also want to know whether the translations are
changing substantially after each stage of training,
or whether they remain generally consistent while
capturing useful changes. This is likely relevant to
the translator experience; highly volatile systems,
where the translations of similar texts differ greatly
from day to day, may reasonably lose the trust of
translators or otherwise cause frustration. We exam-
ine this using the 4000-line HP-epilogue-test set.

Using the “selected” CL hyperparameter set-
tings for EN-FR, we look at pairs of outputs in se-
quence to check how many translations change. For
example, comparing the HP-BASELINE-INITIAL
model to the model trained on the first stage, 1244
lines differ in their translations, while 2756 remain
identical. Of all the pairs of models we examine,
this is the greatest number of differing lines; most
range between 1000 and 1100. Next we compute
BLEU scores between the pairs of models, on the
sets of sentences whose output translations differ.
We treat the earlier model’s output as the “refer-
ence” and the newer model’s output as the hypothe-
sis. These BLEU scores range from 79.5 to 82.4, in-
dicating very high overlap between these sentences,
and a visual inspection confirms this; the CL mod-
els exhibit low volatility. Performing the same tests
using the “catastrophic” settings from Fig. 2 (which
were not even the worst case we observed), the num-
ber of sentences that differ between adjacent mod-
els ranges from 1812 to 2056, and the BLEU scores
range from 76.3 to 79.0, indicating higher volatil-
ity. If we consider the worst “catastrophic” CL (LR
of 3.0 × 10−4 and 128 epochs), this is even more
extreme: 3754 to 3892 lines of output differ (mean-
ing only 246 to 108 lines remain the same) and the
BLEU scores between them drop to between 30.8
and 43.7.

Thus we find that with a strong set of HPs, we
observe relatively low levels of volatility, support-
ing our decision to focus more on other aspects in

5There are a number of different ways one could choose between these, this heuristic is only one possible approach.
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selecting the HPs. However, it would still be useful
to verify through user studies that translators using
the system find this behaviour satisfactory.

6 Full Data Experiments

Using the full experimental data set allows us to ex-
amine CL performance over a longer timespan and
to see whether it remains consistent,6 and whether
we need to build in additional safeguards, e.g. the
ability to roll back to an earlier model if a particular
update degrades quality. We also examine the var-
ious measures of plasticity, stability, and volatility
over a larger timespan.

We build BASELINE models using the same
configurations as the HP-BASELINES, but using the
larger data set. For the BASELINE-RECENCY model,
we finetuned the BASELINE-INITIAL model on all
but the last stage of the CL data, using a lower ini-
tial LR and using the last stage of CL as a validation
set for early stopping rather than an oracle.

We begin with the same preliminary experi-
ments that we produced for HP selection, which we
describe in Section 6.1. We then examine questions
of novel vocabulary in Section 6.2.

6.1 General Analysis
We examine the results obtained with the HPs we
selected for EN-FR: LR=1.0 × 10−5 and 8 epochs;
finding that our heuristics seem to have led us to se-
lect hyperparameters that are too aggressive, we ex-
amine a lower LR version as well: LR=3.0 × 10−6

and 8 epochs.7 As we see in Figs. 3a (original HPs)
and 3b (lower LR), only the lower LR HP success-
fully outperforms the BASELINE-FINAL model on
the epilogue-test data and has a clear upward trajec-
tory; neither outperform the BASELINE-RECENCY
model, though both outperform BASELINE-INITIAL.
In Fig. 3c, the stage-wise evaluation, we see the rela-
tive performance bouncing up and down, sometimes
dipping below the BASELINE-INITIAL. In contrast,
with the lower LR, Fig. 3d shows an upward trend

and less severe drops below the BASELINE.8 The
lower LR also shows better stability performance
(see Appendix D.2). This suggests that the lower LR
set of HPs is better, on the basis of our earlier goals.
However, there is a tradeoff: this system is slower to
learn translations of new terms (see Section 6.2).

6.2 New Terminology

As Kothur et al. (2018) suggest finetuning NMT
on new revised translations as an effective way of
incorporating new vocabulary, an interesting case
for CL is the appearance of new words or phrases
that appear in the CL data but that did not ap-
pear in the BASELINE-INITIAL system’s training
data (“out-of-vocabulary” or OOV). We examined
a number of such terms (see examples in Table 2),
both single words and multi-word terms that ap-
peared for the first time in parliamentary proceed-
ings between November 2021 and October 2022.
Where terms have multiple forms (e.g., plurals,
inflected forms), we manually clustered these to-
gether as appropriate. We then assessed to what
degree the BASELINE-INITIAL and CL systems pro-
duced the correct translations, as found either in Ter-
mium Plus9 or in the Parliament translators’ “Aide-
mémoire” (tip sheet), where translators consign rec-
ommendations for commonly encountered transla-
tion problems.

In Fig. 4, we show a visual representation of
terms and their translations over time. This allows
us to see how it often takes repeated instances of a
term and its translation appearing in training stages
before it starts to appear in the CL output. Addition-
ally, this highlights the difference between the two
CL models, as we see that the one with the lower
LR is slower to adapt to these new terms (this is the
broader trend across terms examined).

NMT systems are sometimes capable of han-
dling OOV proper names correctly, insofar as they
are written similarly in the source and target lan-
guages. However, casing differences can be a prob-

6We do note that there is an upper limit on performance; i.e., we cannot expect BLEU scores or BLEU score differences to continue
increasing forever, as they range from 0-100. Additionally, natural variation in language means that a “perfect” BLEU score of 100 is
not generally a desired or achievable goal. The same is generally true of other reference-based automatic metrics.

7Results in the FR-EN direction show similar trends given the same lower LR HP settings; we include these figures in Appendix D.1.
8We see a similar pair of trends when measuring with COMET (Rei et al., 2022) – version unbabel-comet==2.2.2 with model

Unbabel/wmt22-comet-da – instead of BLEU or chrF, with our initially selected hyperparameter settings even drifting below the
baseline, while the lower LR shows a positive upward trend; see Fig. 10 in Appendix D.

9Termium Plus is the Government of Canada’s terminology and linguistic data bank: https://www.btb.termiumplus.gc.ca

(Bernier-Colborne et al., 2017).
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(a) 1.0× 10−5 LR and 8 epochs (b) 3.0× 10−6 LR and 8 epochs

(c) 1.0× 10−5 LR and 8 epochs (d) 3.0× 10−6 LR and 8 epochs

Figure 3: Top: EN-FR incremental evaluation on the epilogue-test set after training on each stage of data,
compared against BASELINES, for two LRs. Bottom: EN-FR stage-wise evaluation showing relative perfor-
mance (∆BLEU between CL model and BASELINE-INITIAL model) on individual CL stages.

EN matches FR reference FR MT Accuracy “CL Priming”
EN Term FR Term seg. stg. consistency base.-init. CL seg. stg.

advergames publidivertissements ♡ 9 1 100% 0% 0% – –
crypto(-)asset crypto(-)actif ♡ 54 4 100% 0% 4% 52 2
divisive clivant(e)(s) 193 64 11% 0% 1% 166 48
freedom convoy convoi pour la liberté ♠ 80 33 75% 0% 61% 10 6
greedflation cupidiflation ♡♠ 43 11 72% 0% 0% – –
omicron Omicron ♠ 355 64 98% 3% 55% 50 8
vaccine passport(s) passeport(s) vaccin(al,aux) ♡ 61 36 100% 64% 93% 0 0

Table 2: Examples of English terms encountered in CL data, along with the recommended translation in
French. Translations marked ♡ are those prescribed by Termium Plus; those marked ♠ are those prescribed
in the Parliament translators’ “Aide-mémoire”. Reference consistency is the percentage of English term oc-
currences for which the corresponding French term appears in the reference translation. MT Accuracy is
computed over the full CL data, as the percentage of the time that the MT system (either BASELINE-INITIAL
or the CL system with hyperparameters 1.0 × 10−5 LR and 8 epochs) produces correct output for a given
source term. “CL Priming” refers to the amount of exposure of the CL system to a new term before it
produces a first correct translation for that term; it is reported in number of segments and number of stages
(when the system never successfully translates a term, this is indicated by “–”).
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Figure 4: Terminology learning over time. The area of each outer grey circle represents the number of times
the source term appeared in a stage; the darker overlapping inner circle represents the number of times its
translation appeared in the reference, BASELINE system, and two CL systems (tested stage-wise), respec-
tively. Each horizontal axis ranges from the first occurrence of the given term in the CL data to the last.

lem for the BASELINE-INITIAL system, as in the
COVID variant omicron, which must be written with
an initial capital in French. The CL system eventu-
ally catches this difference after 8 stages, containing
50 occurrences. In some cases, if multiple occur-
rences of a new term appear in the first few stages,
CL can respond more quickly. For example, it ap-
pears to learn the translation of cryptoasset after just
two stages, containing 51 occurrences of the term.
When all occurrences of a new term occur within
the same stage (e.g., advergames), the CL system
may learn the proposed translation, but never gets
the chance to demonstrate this. CL treatment of a
new term can be affected if its translation is not con-
sistent across all stages. For example, even though
the term greedflation appears 43 times in 11 stages,
CL fails to capture its proposed translation (cupidi-
flation), possibly because this is not used systemati-
cally in the reference (72%).10

For multi-word terms, the effectiveness of the
BASELINE-INITIAL and CL systems depends in part
on the term’s degree of lexicalization (or fixedness,
or more generally termhood). For example, for vac-
cine passport or vaccine passports, the BASELINE-

INITIAL system does produce the correct translation
(passeport vaccinal or passeports vaccinaux) 64%
of the time. But it also produces various alternatives,
such as passeport de vaccins, passeports pour les
vaccins, etc. In contrast, the CL system gets it right
93% of the time. In another instance, the BASELINE-
INITIAL system systematically fails to translate free-
dom convoy as convoi pour la liberté, preferring
convoi de la liberté. CL picks up the correct form
after six stages, containing 10 occurrences, and from
there produces the prescribed translation for 70% of
the remaining occurrences (61% global accuracy).
Other terms with a relatively complex translation,
for example rent-to-own programs – programmes de
location avec option d’achat and housing accelera-
tor fund – fonds pour accélérer la construction de
logements are particularly difficult for the baseline-
initial system; in this case, CL eventually produces
the correct translation, sometimes quite rapidly (af-
ter just two stages for rent-to-own programs), some-
times more slowly (after eight stages for housing ac-
celerator fund).

10Regarding the consistency of reference translations, it should be noted that in these experiments, systems were trained and tested
without regard for the original language in which texts were initially produced. Therefore, some apparently inconsistent translations
may instead be reflective of usage variations in the source language.
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7 Implementation and Future Work

All of these experiments were performed in sim-
ulation, and there are a number of additional fac-
tors that would need to be taken into account in or-
der to implement and run CL in a practical setting.
These include data collection (live rather than after
full publication), monitoring (automatically or man-
ually monitoring performance over time), roll-back
(to earlier versions before restarting CL), and inte-
gration into computer-aided translation tools.

All of these considerations come with costs and
risks. There are financial costs in terms of hard-
ware (e.g., GPU purchases or cloud costs) as well
as the maintenance and monitoring of the system.
There are risks in terms of volatility, instability, and
the possibility for catastrophic forgetting. Though
our setup has aimed to mitigate some of those risks,
a live system would need to incorporate monitor-
ing and failsafes for them. Finally, these costs and
risks would need to be weighed against the level
of improvements observed by translators in using
the tool: that is, are the benefits significant enough
to warrant that investment in hardware, system de-
velopment, and maintenance, as compared to other
less-dynamic approaches. This requires validation
through user studies, which will enable us to bet-
ter understand whether the desired goals are being
achieved, such as improving translations of novel
terms or learning from translator corrections, in ad-
dition to maintaining high translation quality. In par-
ticular, it will be important to examine whether the
changes we observe using automatic metrics are ac-
tually significant to users of the tool, and whether
they find them to be beneficial or not. We will be in-
terested to explore the impacts of plasticity, stability,
and volatility on translator satisfaction.

As we noted, our initial hyperparameter selec-
tion heuristics did not result in ideal performance.
Future work could more closely examine how to se-
lect the hyperparameters. Ideally this would be done
in consultation with the intended users of the sys-
tem, to ensure that we focus on the preferred proper-
ties of the system (whether that be consistency, rapid
adaptation to new terminology, or other factors). For
terminology, it may also be worth comparing against
dictionary-based methods, though (Knowles et al.,
2023) also note some challenges to that approach,
focusing on this same domain.

8 Conclusion

In conclusion, we have demonstrated in simulation
that a simple approach to CL can be effectively ap-
plied to Parliamentary machine translation systems.
We find that choosing a good set of hyperparame-
ters enables us to build models with high levels of
plasticity and stability, with low levels of volatility.
However, we also demonstrate tradeoffs: time, plas-
ticity, and performance. Our approach provides in-
cremental improvements over time, but a client who
is willing to wait longer for a better system may pre-
fer to opt for finetuning on a larger amount of recent
data rather than these incremental improvements.
Similarly, we see a tradeoff between rapidly learn-
ing new vocabulary and the overall performance.
While we have measured the success of our mod-
els using automatic metrics, future work will also be
needed to have human translators provide evaluation
and feedback.
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A Data

Table 1 shows the sizes of the training, tuning, and
test sets for our HP tuning and experiments; we pro-
vide some additional notes here.

In order to keep our setup as realistic as possi-
ble, we do not deduplicate the data (and the Hansard
is known to have repetitive/boilerplate text). Re-
garding duplicates, within our 2000-sentence test
and tuning sets, about 7.5% of sentences (either
source or target) also appear in the training set.
Looking at pairs of sentences (source and target) in-
stead, this number falls to 4.75%. Internal repeti-
tion (sentences that repeat within a test or tuning set)
is about 1%. Repeated sentences tend to be short:
their average length is 10.3 words, compared to 20.1
words for all test and tuning sets.

B NMT Model Training

We train all models using Sockeye version 3.1.31
(Hieber et al., 2022), commit 13c63be5 with Py-
Torch 1.13.1 (Paszke et al., 2019). Table 3 lists
the parameter settings in our experiments that differ
from the Sockeye defaults. Training was performed
on 4 Tesla V100-SXM2-32GB GPUs.

For data preprocessing, a bilingual
SentencePieceUnigramTokenizer with a vocab-
ulary of 32k tokens was trained using Hugging-
Face’s tokenizers (Moi and Patry, 2022) library
version 0.14.1 on all of the 4498960 French and
4498960 English sentences from HP-BASELINE-
INITIAL. The tokenizer also applies a few normal-
izations done by Portage (Larkin et al., 2022). Our
vocabulary is augmented with generic tokens and
other domain-specific tokens (unused in these ex-
periments, but intended for future work on domain
adaptation); this yields a final vocabulary of 32123
tokens.

Name Value

amp True
grading clipping type abs
max sequence length 200:200

params previous model when CL

batch size 8192
batch type max-word

cache last best params 1
cache metric bleu

cache strategy last
checkpoint interval 107

decode and evaluate -1 (entire validation)
initial learning rate see Table 4

keep last params 1
learning rate scheduler type None

max epochs see Table 4
metrics perplexity & accuracy

min epochs Same as max epochs
optimizer Adam

optimizer Betas 0.9, 0.98
optimized metric BLEU

update interval 2
vocabulary size 32121

attention heads 16:16
shared vocabulary True
transformer FFN 4096:4096

transformer model size 1024:1024
weight tying True

Table 3: Differences between Sockeye’s default pa-
rameters and our HP configuration.

B.1 Baselines

The HP-BASELINE-INITIAL was trained on the HP-
baseline-initial-train data, with early stopping done
using the HP-baseline-initial-dev set.

The HP-BASELINE-FINAL was trained using
the same settings as the HP-BASELINE-INITIAL, us-
ing the relevant HP data described in Fig. 1 (i.e.,
early stopping based on HP-baseline-final-dev data).

To build an even stronger final BASELINE with
a recency bias (i.e., recently exposed to all the
HP CL data), we implemented an oracle finetuned
model which we call HP-BASELINE-RECENCY.
Using both the HP-BASELINE-INITIAL and HP-
BASELINE-FINAL models as starting points, we fine-
tuned them with the full set of CL data, using as the
LR and number of epochs the full set used in the hy-
perparameter search (described in Section 5.2). We
then selected the best finetuned model based on per-
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formance on the HP-epilogue data (thus making this
an oracle BASELINE). For EN-FR this was the one
trained with LR=3.0 × 10−5 and 4 epochs starting
from the HP-BASELINE-INITIAL model, while for
FR-EN this was LR=3.0× 10−6 and 64 epochs also
starting from the HP-BASELINE-INITIAL model.

Using the full data sets, we built BASELINE
models by applying the same approach as described
for the HP-BASELINE models. All models were
trained with the exact same configuration as for the
HP experiments but using their respective corpora.

We also note differences in how we trained the
BASELINE-RECENCY model for the full data. Using
BASELINE-INITIAL’s configuration, we lowered its
learning rate from 0.06325 to 0.006325 and initial-
ized its weights with those of BASELINE-INITIAL,
to finetune BASELINE-INITIAL on recent data. We
use all stages except the last one for its training cor-
pus. The last stage was used as a validation corpus
to control early stopping.

B.2 Continual Learning

We start CL from the BASELINE-INITIAL model
(either HP-BASELINE-INITIAL or BASELINE-
INITIAL). For our realistic CL setup, we choose not
to use a validation set and do not perform early stop-
ping; that is, we set a fixed number of epochs (train-
ing iterations over the full stage of data) and train
until those epochs have been completed. We also
keep the learning rate fixed throughout the training,
rather than using a variable learning rate. When
the training on a stage is complete, we select the
last saved model checkpoint (produced at the end of
training) to use for translation of the test sets and to
use as the starting model parameters for finetuning
on the subsequent stage’s data. The choice not to
use a validation set enables us to use the full stage
data (which is already fairly small) for training. By
doing this hyperparameter setting, we aim to pick a
learning rate and number of epochs that are at low
risk of overfitting to the data, while also provid-
ing desired improvements, thus aiming to achieve
the same desired end goal as using a validation set.
Also, this avoids the risk of using a validation set
that is too small to draw accurate conclusions from.

C Effects of Hyperparameters

Table 4 shows the set of learning rates and epochs
used for our hyperparameter grid search.

Parameter Values
initial learning rate 3e-4, 1e-4, 3e-5, 1e-5, 3e-6, 1e-6

max epochs 1, 2, 4, 8, 16, 32, 64, 128

Table 4: Grid search values for HP tuning.

In Fig. 5 (EN-FR), we can see how the com-
bination of learning rate and number of epochs im-
pacts performance.11 The subplots show the mini-
mum BLEU gain (with negative values indicating a
degradation in BLEU), the median BLEU gain, and
the maximum BLEU gain observed for a given set
of hyperparameters as measured across stages 2-16
after training on stages 1-15, respectively.

The first notable result from these plots is
that—as expected—we do see catastrophic forget-
ting if the learning rate, number of epochs, or both
are too high. This is apparent in the lower right
corner of all plots, where we see increasingly large
drops in BLEU scores from the HP-BASELINE-
INITIAL model to the CONTINUAL LEARNING mod-
els trained on various stages. A brief examination
of a sample of the output for the high learning rate
and large number of epochs suggests that the sys-
tems still retain the ability to generate output that
is generally fluent, but that there are substitutions
(likely due to overfitting on the previous stage) that
can heavily impact adequacy.

The second notable result is that we find similar
patterns between BLEU and chrF. Both are surface-
level automatic evaluation metrics, so it is not a
surprise to see this correlation, particularly for this
well-studied language pair. Nevertheless, this repli-
cation of similar results across metrics can make us
more confident that the observed patterns are real.
This is particularly important because the BLEU and
chrF differences are relatively small, and it is known
that such small differences may not always corre-
spond to perceivable significant differences if we
were to perform human judgments (Mathur et al.,
2020; Lo et al., 2023, i.a.). However, we do note
that in this particular case, where the model may

11We also examined this in the FR-EN direction and with chrF Popović (2015) implemented in sacre-
bleu Post (2018) with signatures BLEU: nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.2 and
chrF: nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.3.2, but found similar results.
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Figure 5: EN-FR results for BLEU score gains from CL (over HP-BASELINE-INITIAL model) as measured
over HP stages 2-16 (after finetuning on stages 1-15 respectively).

primarily be learning a new name or new term and
otherwise leaving the output fairly similar to previ-
ous output, there may be reason to expect that these
BLEU and chrF scores may capture genuine signal.
We explored this question of volatility in Section 5.4
and the question of new terminology in Section 6.2.

Finally, we observe that there is a cluster of
pairs of learning rates and number of epochs that
show similar performance. Given the concerns
about making decisions based on such small au-
tomatic score metric differences, we may instead
choose to select from the pool of top systems on
some other basis, such as training time required.

C.1 Selection of HPs
Our experimental setup is designed to let us ex-
plore the performance of different hyperparameter
settings without any test set contamination. How-
ever, our main goal is to actually perform this CL in
the longer-term, more realistic setting. To do this,
we want to be able to select hyperparameters based
on the results on the data used for our hyperparam-
eter search; then we wish to see how these perform
on the realistic data. We later run additional experi-
ments on the full data for comparison, but we would
like the initial run to be as realistic as possible: se-
lecting just one set of parameters.

In order to do this, we need to decide on an ap-
proach to hyperparameter selection. We have a clus-
ter of pairs of hyperparameters that perform simi-
larly, with very small differences in automatic met-
ric scores. For example, given a high-performing
pair of hyperparameters, we may also find that
a slightly larger number of epochs paired with a

slightly lower learning rate will perform similarly
(or vice versa). So how should we choose between
these? At first glance, we may wish to maximize the
minimum of some automatic metric over the stages
in our hyperparameter search; this, however, has the
downside of overemphasizing the impact of a sin-
gle stage (potentially problematic if one or more of
the stages are unusual in some way that impacts au-
tomatic metric scores). Alternatively we may aim
for consistency, selecting hyperparameters that ex-
hibit a low standard deviation in automatic metric
score differences; of course, this is no guarantee of
strong performance, as a very low-performing sys-
tem could also have a low standard deviation. And
a high median on its own also fails to tell the whole
story.

We are seeking to balance various interests in
our selection of hyperparameters. These include
plasticity (ability to learn from new data), stability
(maintaining high performance on past data), low
volatility (no dramatic changes from stage to stage),
and cost (i.e., time, compute resources, or both). We
also need to balance risk and reward, i.e., whether
we want a model that reaches the highest scores but
may also exhibit greater inconsistency or variance,
or a model that may not obtain the highest automatic
metric scores but is also fairly consistent in terms of
overall performance.

As was evident from the heatmaps (Fig. 5), we
have a number of different hyperparameter settings
that perform quite similarly, clustered along the di-
agonal. When we examine their distributions over
the hyperparameter tuning experiment stages via the
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boxplots in Fig. 6, the large overlaps in interquar-
tile range hammer home that these top perform-
ing hyperparameters are not significantly different
from one another. Thus, for our initial experiment,
we choose a high-performing (high median BLEU
score, relatively low standard deviation) set of hy-
perparameters with a low number of epochs (in or-
der to decrease training time and cost, particularly
since not all users of these tools may have access
to GPUs). For EN-FR this is 1.0 × 10−5 LR and
8 epochs. For FR-EN this is 3.0 × 10−6 LR and 8
epochs. We then also compare this against another
HP setting. As noted earlier, there are a number of
different ways one could choose between these, this
heuristic is only one possible approach.

Figure 6: EN-FR boxplot showing BLEU score dif-
ferences over stages with medians and interquartile
range (left vertical axis) as well as standard devia-
tion (red triangles and right vertical axis).

D Additional Figures

We provide additional figures in this section. Most
scalable figures in this paper are produced using
Matplotlib (Hunter, 2007), version 3.7.1.

D.1 French–English Figures
The results for FR-EN are similar to those from the
lower learning rate for EN-FR, as we observe in
Figs. 7 and 8.

D.2 Stability Figures
Fig. 9 shows the stability of CL models. Ide-
ally, performance would remain relatively constant.
With our initially selected learning rate performance

eventually begins to drop. This is not overly con-
cerning in and of itself: as new data comes in,
this may change preferred translations, potentially
causing mismatches with the original reference data
which would be viewed as improvements by the
users on later data. With the lower learning rate we
observe that, as expected, stability is improved and
performance even increases slightly.

D.3 English–French COMET Figures

Figs. 10a and 10b use COMET (Rei et al.,
2020) version unbabel-comet==2.2.2 with model
Unbabel/wmt22-comet-da to measure performance
on the epilogue-test. They correspond to the BLEU
score Figs. 3a and 3b, respectively.

Overall, we see similar trends between
COMET and the BLEU scores used in the rest of
the paper; if we had used COMET rather than BLEU
for our hyperparamter selection, we still would have
been choosing between a very similar set of top hy-
perparameters.

Figure 7: FR-EN incremental evaluation on the
epilogue-test set after training on each stage of data,
compared against BASELINES.

Figure 8: FR-EN stage-wise evaluation showing rel-
ative performance (∆BLEU between CL model and
BASELINE-INITIAL model) on individual CL stages.
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(a) 1.0× 10−5 LR and 8 epochs (b) 3.0× 10−6 LR and 8 epochs

Figure 9: EN-FR stability over CL stages, tested on held-out baseline-initial-test data.

(a) 1.0× 10−5 LR and 8 epochs (b) 3.0× 10−6 LR and 8 epochs

Figure 10: EN-FR incremental evaluation using COMET on the epilogue-test set after training on each stage
of data, compared against BASELINES, for two LRs.
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Labelled as AI-Generated Content?
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National Research Council Canada

Abstract

In September 2023, the Government of Canada issued a Guide on the Use of Generative AI with recommen-
dations for Canadian government institutions and their employees. As other similar documents published by
various organizations in recent years, this document makes recommendations regarding transparency, stat-
ing that whenever generative AI is used to produce content, the reader should be informed that “messages
addressed to them are generated by AI”. While this guide does not address specifically the case of machine
translation, it does mention translation as a potential application of generative AI. Therefore, one question
that naturally arises is: Should machine-translated texts be explicitly labelled as AI-generated content wher-
ever they are used? In this position paper, we examine this question in detail, with the goal of proposing
clear guidelines specifically regarding MT, not only for government institutions, but for anyone using MT
technology. Our main conclusion is that machine-translated text is indeed AI-generated content. As such, it
should be explicitly marked everywhere it is used. We make recommendations as to what form this labelling
might take. We also examine under what conditions MT labelling can be removed or omitted.

1 Introduction

In September 2023, the Government of Canada is-
sued a Guide on the Use of Generative AI1, pro-
viding “preliminary guidance to federal institutions
on their use of generative AI tools”. Among other
things, this document makes recommendations re-
garding transparency, stating that whenever gener-
ative AI is used by Canadian government institu-
tions, the users should be informed that “messages
addressed to them are generated by AI” (Govern-
ment of Canada, 2023).

While the recommendations in this guide are
very general and do not target any one specific appli-
cation of generative AI, the authors explicitly men-
tion language translation as a potential use of these
technologies. But they don’t go as far as identify-
ing machine-translated text as AI-generated content.
Of course, machine translation and artificial intelli-
gence are very tightly linked, both historically and
technologically. Therefore, one question that natu-

rally arises is: Should machine-translated text be
explicitly labelled as AI-generated content wher-
ever it is used?

In this position paper, we examine this ques-
tion in detail, with the goal of proposing clear guide-
lines specifically regarding machine translation, not
only for government institutions, but for anyone us-
ing MT technology to produce versions of a text in a
language other than the one in which it was initially
written. We present the wider context in which this
question arises in Section 2, then address our funda-
mental question, as well as several others in Section
3. We wrap up with a summary of recommendations
in Section 4.

Our main conclusion is that machine-translated
text is indeed AI-generated content. As such, it
should be explicitly marked everywhere it is used.
We make recommendations as to what form this la-
belling might take. We also examine under what
conditions MT labelling can be removed or omitted.

1https://www.canada.ca/en/government/system/digital-government/digital-government-innovations...
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2 The Wider Context: Labelling of
AI-generated Content

In its recommendations to Canadian federal institu-
tions on the use of generative AI technologies, the
Guide on the Use of Generate AI includes guide-
lines on transparency: “To maintain public trust and
ensure the responsible use of generative AI tools,
federal institutions should [...] identify content that
has been produced using generative AI [and] no-
tify users that they are interacting with an AI tool”.
In particular, the guide contains a section about
“[d]istinguishing humans from machines”, with spe-
cific recommendations to “[i]nform users when mes-
sages addressed to them are generated by AI” or to
“use watermarks so that users can identify content
generated by AI” (Government of Canada, 2023).

These recommendations from the Government
of Canada are not an isolated case. Increasingly,
there has been pressure on Big Tech and media
to label AI-generated content (abbreviated AIGC
henceforth). The UNESCO’s 2022 Recommenda-
tion on the Ethics of Artificial Intelligence (UN-
ESCO, 2022), which was adopted by all 193 mem-
ber states in November 2021, includes a clause about
identifying AIGC:

127. Member States should ensure that
users can easily identify whether they are
interacting with a living being, or with
an AI system imitating human or animal
characteristics [...]

This principle is gradually taking the form of laws
and regulations in various places. For example,
the European Commission (EC) added labelling re-
quirements to its Code of Practice on Online Disin-
formation (European Commission, 2022), a volun-
tary framework of industry self-regulation to fight
disinformation, to which most AI actors have al-
ready agreed (one notable exception is X, formerly
Twitter, which pulled out during the summer of
2023). The EC’s Digital Services Act (DSA) (Euro-
pean Commission, 2024) includes provisions requir-
ing large online platforms to label “manipulated au-
dio and images” (O’Carroll, 2023; Zakrzewski and
Lima-Strong, 2023).

The United States, Canada and other countries
are expected to adopt similar rules shortly. The

United States government has recently convened the
major players in AI to adhere to a set of guide-
lines aimed at ensuring safe, secure, and trustwor-
thy AI. These guidelines specifically include provi-
sions to “[d]evelop and deploy mechanisms that en-
able users to understand if audio or visual content is
AI-generated, including robust provenance, water-
marking, or both, for AI-generated audio or visual
content.”2 A similar Code of Conduct (Innovation,
Science and Economic Development Canada, 2023)
was unveiled in Canada in September 2023, instruct-
ing companies to “[d]evelop and implement reliable
and freely available methods to detect content gen-
erated by their systems (e.g., watermarking)” and to
“[e]nsure that systems that could be mistaken for hu-
mans are clearly and prominently identified as AI
systems” (Thompson, 2023; Pisano, 2023).

While legislation and recommendations have
mostly focused on audio and video content, it is
clear that textual content should not be an excep-
tion. Generative AI tools based on Large Language
Models (LLMs) have rapidly been identified by an-
alysts as a potential risk for the massive increase
of dis- and misinformation. This topic was specif-
ically addressed during a workshop organized by
OpenAI, Georgetown University’s Center for Secu-
rity and Emerging Technology and the Stanford In-
ternet Observatory in October 2021.3 During this
workshop, the question of Digital Provenance Stan-
dards was specifically discussed (Goldstein et al.,
2023).

The primary goal of AIGC labelling is to fight
dis- and misinformation, but there is a more general
intention to inform users and create a more healthy
and transparent social environment where trust can
flourish, reflecting the ethical imperative “to not blur
the distinction between the categories of human and
machine” (Grinbaum and Adomaitis, 2022).

3 The Case of Machine Translation

In this document, we ask whether machine-
translated texts should be labelled as AI-generated
content wherever they are used. But before we
can address this question, we first need to clarify
whether MT is AIGC. Then, assuming it is, whether
it is appropriate to label it, and if so, where and how.
We address each of these questions (and more) be-

2https://www.whitehouse.gov/briefing-room/statements-releases/2023/07/21/fact-sheet-biden-harris-...
3https://openai.com/research/forecasting-misuse
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low.

3.1 Is Machine Translated Text “AI-generated
Content”?

TL;DR: Yes.
The Canadian Federal Government’s Guide on the
Use of Generative AI, as other similar documents,
cites language translation as an example of tasks that
generative AI can be used to perform or support. But
it doesn’t go as far as saying that machine-translated
text is AI-generated content. We examine this ques-
tion here.

When asked this precise question, it is surpris-
ing to see how many MT researchers and practi-
tioners are hesitant or even reluctant to answer un-
equivocally. In practice, many of these people don’t
see themselves as “doing AI”. They typically view
their activity or area of expertise as either computa-
tional linguistics, natural language processing, ma-
chine learning, etc., but not AI. When pressed, many
will highlight that AI is a badly defined concept to
start with (more on this below), that it is a catch-all
term or worst, just a buzzword. It is open for debate
whether this tendency to dissociate with the “AI” la-
bel is the result of a conscious decision or just the
self-preservation instinct of those who have survived
a couple of AI winters!

Researchers have been studying the problem
of automatic language translation for more than 60
years. But since the beginning, MT research was not
only an end in itself: over time, it proved a fertile
ground for the development and testing of some of
the central ideas and methods of the artificial intel-
ligence landscape: language analysis, understand-
ing and generation, knowledge representation, pat-
tern recognition, machine learning and, more re-
cently, neural networks and deep learning, to name
just a few. Today, the methods used for most text-
generation AI applications are increasingly similar
to those used for MT: the Transformer neural net-
works used in the vast majority of LLMs were first
developed for translation (Vaswani et al., 2017). In
some cases the tools (models, etc.) are literally the
same: conversational AI systems are now increas-
ingly used to translate text between many languages
(Jiao et al., 2023; Hendy et al., 2023).

But does that make MT “artificial intelli-
gence”? To answer this question, we also need to
ask: What is Artificial Intelligence? In their classic
AI textbook, Russell et al. (2010) cite no less than
eight definitions of AI, among which the two fol-
lowing:

• “The art of creating machines that perform
functions that require intelligence when per-
formed by people.” (Kurzweil et al., 1990)

• “The study of how to make computers do things
at which, at the moment, people are better.”
(Rich and Knight, 1990)

Britannica, the web version of the well-known en-
cyclopedia, describes AI as: “the ability of a digital
computer or computer-controlled robot to perform
tasks commonly associated with intelligent beings.”4

And more recently, Coursera, the online learning
platform, talks about “the theory and development of
computer systems capable of performing tasks that
historically required human intelligence”.5

Admittedly, these are very broad and vague
definitions. Yet it seems fairly uncontroversial to
claim that translation is a task “that historically re-
quired human intelligence”, that is “commonly as-
sociated with intelligent beings”, at which “at the
moment, people are better” or that “require[s] intel-
ligence when performed by people.”

To sum up: whether we look at it from a histor-
ical, technological or theoretical perspective, MT is
AI, and therefore MT text is AI-generated content.

3.2 Should MT be labelled as AI-generated
content?

TL;DR: Yes.
If MT text is AIGC, then it follows that any policy
for AIGC should apply to MT as well. In the eyes
of many, however, not all AI is made equal. For
example, most would agree that a picture that was
“enhanced” using a cell phone’s AI-based photo im-
provement app doesn’t quite fall into the same cate-
gory as a photo-realistic image generated from a text
prompt by a deep learning, text-to-image model.6 In
the case of machine translation, the text is gener-
ated from an input text which we assume was itself
written by a human. Because the translation aims at

4https://www.britannica.com/technology/artificial-intelligence
5https://www.coursera.org/articles/what-is-artificial-intelligence
6Interestingly, we can ask whether photo-realistic image generation is AI, by any of the definitions in Section 3.1.
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rendering the meaning of the source text in the target
language as accurately as possible, it is tempting to
see MT as merely an intermediary in the communi-
cation, a kind of “filter”.

However, as argued earlier, the methods used
for MT and those used for other text-generation ap-
plications are increasingly similar, when they are
not altogether the same. Therefore, the risks inher-
ent to the use of machine translation are essentially
the same as those typically associated with chatbots
and other conversational generative AI applications.
There is a growing body of reported cases of MT
errors with potentially grave consequences for peo-
ple. Of course, there is the infamous example of the
man who was arrested by the police in 2016, after
Facebook’s MT translated his “Good Morning” post
to “hurt them” in English and “attack them” in He-
brew (Hern, 2017). But much more recently, Meta’s
MT was reported to add the word “terrorist” to some
Palestinian users’ Instagram profiles (Taylor, 2023).
Again, in recent news, there were numerous reports
of asylum applications being mishandled by United
States immigration as a result of their over-reliance
on MT (Liebling et al., 2020; Bhuiyan, 2023; Deck,
2023). MT systems routinely used by medical doc-
tors in the United States when interacting with pa-
tients who don’t speak English (Mehandru et al.,
2022) have been shown to produce errors in medical
documents, some of which can cause harm to pa-
tients (Khoong et al., 2019; Mehandru et al., 2023).

In summary, there is no good reason to believe
that the nature of the risks inherent to MT are sub-
stantially different from that of those feared in other
AIGC applications. Therefore, we recommend that
MT should be labelled as AI-generated content.

3.3 Should there be a specific “MT” label?

TL;DR: Yes.
One of the purposes of labelling AIGC is, as

UNESCO puts it, to “ensure that users can easily
identify whether they are interacting with a living
being, or with an AI system imitating human or an-
imal characteristics”. In the case of MT, however,
there are additional reasons to do that.

Even though the quality of translations pro-
duced by MT has greatly improved over the past
few years, systems are still known to produce er-
rors. In general, MT quality is highly dependent
on text domain and genre, but more importantly on

the specific language pair involved (Hendy et al.,
2023). Even for well-resourced language pairs such
as English-German, accuracy errors (word or phrase
mistranslations) make up the majority of problems
and are still more than three times more likely to
appear in state-of-the-art MT output than in trans-
lations produced by professional translators (Freitag
et al., 2021). As pointed out by Vieira (2020): “MT
has great potential to facilitate and promote mul-
tilingualism, but its speed and usefulness may also
prompt end-users to underestimate the complexities
of translation while overestimating the capabilities
of the technology, which in turn may lead to its mis-
use.” This has prompted the need for a new type of
digital literacy, what has been called MT literacy:
“Using machine translation is easy; using it criti-
cally requires some thought. When faced with free,
online machine translation, the important question
is not how to but rather whether, when, and why to
use this technology.” (Bowker, 2019b; Bowker and
Ciro, 2019)

But MT literacy itself is useless if users are
unaware that a particular piece of text is machine-
translated. Therefore, for users to develop and make
use of their judgement when dealing with MT out-
put, it must be explicitly marked as such.

3.4 What should an “MT label” look like?
Obviously, an MT label should state that a given
text is a translation and that the translation was per-
formed by a machine. But any additional informa-
tion that can help the user better assess the risks as-
sociated with MT can be useful. For example, an
MT label might include:

• The source language. Knowing the source lan-
guage may alert the user to specific kinds of er-
rors, and therefore help them better assess the
risk.

• The source text or, more conveniently, a pointer
to the source version of the text. The user may
be fluent enough in the source language that
they prefer reading the original. Or they might
know someone who does and who might be
willing to verify the translation. Or they might
have other tools at their disposal to help them
assess the quality of the translation.

• The name of the MT system that generated it
(possibly a detailed signature). Knowing what
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system was used might help the user better as-
sess the risks.

• A timestamp indicating when the translation
was generated. Knowing that a translation was
produced a (relatively) long time ago may in-
form the user about the expected quality.

• A full disclaimer or warning, informing the
user of the potential risks associated with the
technology, and/or pointing to resources on MT
literacy.

Putting all this information inside a label might be
cumbersome. A better approach would be to have
a short text advising that “This text was translated
from ⟨SourceLanguage⟩ by AI”, followed by a link
or reference to a document with more detailed in-
formation. The label should be written in the same
language as the text itself. However, a link or refer-
ence to a version of the disclaimer in the document’s
source language could also be useful.

For organizations with large publication bases,
it might be relevant to design a standard logo to ac-
company the label, thus making the texts (and their
associated risks) easier and quicker to recognize by
users.

3.5 Labelling vs. Watermarking
TL;DR: Labelling.

In the conversation about transparency and
AIGC, there sometimes appears to be some confu-
sion between labelling and watermarking. It is im-
portant to distinguish between the two.

According to Wikipedia: “A label (as distinct
from signage) is a piece of paper, plastic film, cloth,
metal, or other material affixed to a container or
product, on which is written or printed information
or symbols about the product or item. Information
printed directly on a container or article can also
be considered labelling. [...] Labels may be used
for any combination of identification, information,
warning, instructions for use, environmental advice
or advertising.”7 Disregarding the physical medium
on which labels are said to be printed (“. . . a piece
of paper, plastic film, cloth. . . ”) this definition fits
nicely with what most people have in mind when
talking about labels for AIGC.

Watermarking is quite a different beast. Ini-
tially, the term watermark referred to a recognizable

image or pattern in paper used to determine authen-
ticity. The concept was ported to the digital world
in the form of “digital watermarks”, i.e. markers
covertly embedded in digital content. Digital water-
marks have been used for a wide range of applica-
tions, such as copyright protection, source tracking,
ID card security, fraud and tamper detection, etc.

While this sort of digital watermarking has
been more commonly applied to audio, video or im-
age data, techniques also exist for the watermarking
of AI-generated text. For example, as early as 2011,
Venugopal et al. (2011) proposed a watermarking
method for statistical MT that operated by biasing
the text generation towards a given portion of the
lexicon, i.e. by favouring certain words over oth-
ers. Text generated in this fashion could then be
identified with high accuracy using a statistical test
that “knew” the details of the bias. Similar meth-
ods have now been proposed for general neural text-
generation applications (Kamaruddin et al., 2018;
Kirchenbauer et al., 2023). Alternatively, some are
advocating for “AI to have its own alphabet” (Croll,
2023): under such a scheme, MT systems would
naturally produce text using a dedicated character
encoding that would uniquely identify its synthetic
origin.

For technology provider, the main purpose of
watermarking is to be able to detect AI-generated
text, especially content that was generated using
their own technology, to avoid the model degrada-
tion that comes from training on synthetic data (Ale-
mohammad et al., 2024; Shumailov et al., 2024).
Because of the requirements of this application,
the watermarking techniques developed for MT and
other text-generation are typically designed to be re-
sistant to later transformations to the text, such as re-
visions or post-editing, at least up to a certain point.
As a result, a technique such as that of Venugopal
et al. (2011) makes it possible to recognize MT text
even if the text has been manually edited, for exam-
ple by a translator. While this is an advantage for
excluding MT data from future training sets and test
data, it is problematic if the marking is required to
be reversible, i.e. if we need to be able to “unmark”
or “unlabel” text at will, as is the case here (see Sec-
tion 3.8).

Another important requirement for the applica-
tion we are interested in here is perceptibility: What-

7https://en.wikipedia.org/wiki/Label

Proceedings of the 16th Conference of the Association for Machine Translation in the Americas,

Chicago, USA, September 30 - October 2, 2024. Volume 1: Research Papers

© 2024 His Majesty the King in Right of Canada, as represented by the National Research Council Canada

https://en.wikipedia.org/wiki/Label


ever form the labelling takes, the user must be able
to see it (or hear it, sense it, etc.) somehow. While
both types of watermarking above (encoding-based
and lexical) can be detected using computer func-
tions, they are not inherently perceptible.

A final problem with such watermarking is
that it either disappears or becomes very difficult
to detect as soon as the text is printed on a “hard”
medium, such as a (paper) book, a restaurant menu,
a road sign, etc. Similarly, watermarking may be
lost to someone accessing the information through a
screen reader, an audio recording, a braille reader or
some other assistive technology.

In the end, for the purposes of informing the
end user that a text was machine-translated, a textual
label appears to be the simplest and most effective
solution. This is what we recommend. However,
depending on the intended use of the text, nothing
precludes MT text to be both labelled and water-
marked.

3.6 How do we know it’s MT in the first place?
TL;DR: We don’t, and so we must rely on voluntary
identification.

3.6.1 Automatic Detection
Regulators (the EU, etc.) emphasize the responsi-
bility of technology providers in developing ways
to automatically detect AIGC. But most actors in
the field recognize that building (and maintaining)
such technology is a huge challenge, if not a losing
battle altogether (Jovanović et al., 2024; Sadasivan
et al., 2024; Krishna et al., 2023; Heikkilä, 2022).
Some have recently proposed that any organisation
developing a foundation model intended for public
use (such as a LLM) should be required by law to
demonstrate a reliable detection mechanism for the
content generated by the model, as a condition of its
public release, and make that detection mechanism
freely available to users (Knott et al., 2023). While
technology exists to do just that (see Section 3.5), no
such legislation has appeared anywhere yet.

For MT, some people have looked at the prob-
lem of automatic detection in the past (see for exam-
ple Bhardwaj et al. (2020)), and there are possibly
some specific situations where it can be done reli-
ably. For example, detection may be straightforward
if watermarking has been used and the correspond-

ing detection algorithm is available or when the
challenge is to find out whether a specific MT sys-
tem has been used, using methods similar to those
developed for plagiarism detection (van der Werff
et al., 2022). But for the general case, automatic de-
tection of MT is probably not a viable approach.

3.6.2 Voluntary Labelling

Regarding general AIGC, early actions on the pub-
lishing side of Big Tech (social media, etc.) have
focused on voluntary labelling by content produc-
ers (Suciu, 2023). For example, TikTok is encour-
aging users to label their AI-generated content as
such (Sato, 2023), and Google and Meta require dis-
closure of AI content in political ads (Duffy, 2023;
Isaac, 2023). At the AIGC-producing end, OpenAI
puts restrictions on what can and cannot be done
with their products. Their Usage Policies have re-
quirements of transparency for some specific us-
ages, encouraging users to “disclose to people that
they are interacting with AI”.8

Regarding MT, some MT providers (for exam-
ple, Systran9) offer the possibility of including some
form of labelling or watermarking in their system’s
output. But very often, MT is just one component
within a larger application, and the MT system is
not the one ultimately responsible for the display of
its output.

Therefore, it should be the responsibility of
whoever is disseminating (publishing, sending,
posting, etc.) a machine translated text to propagate
the label for that text if it already exists, or to create
one if it doesn’t.

It should be noted that this has implications for
language service providers (LSPs): organizations
who outsource the translation of their content to
public or private-sector services will want to know
whether their translation providers are using MT as a
“productivity tool”, and if so, whether all translated
content has been manually verified and edited as re-
quired (see Section 3.8). Therefore, there should
be a requirement for LSPs to appropriately label the
texts they return to their clients.

But in the end, our recommendations apply to
all: anyone disseminating machine translated texts
or using MT to create content is responsible for la-
belling their content as appropriate.

8https://openai.com/policies/usage-policies/
9https://docs.systran.net/translate/en/user-guide/translation-tools/file-translation...

Proceedings of the 16th Conference of the Association for Machine Translation in the Americas,

Chicago, USA, September 30 - October 2, 2024. Volume 1: Research Papers

© 2024 His Majesty the King in Right of Canada, as represented by the National Research Council Canada

https://openai.com/policies/usage-policies/
https://docs.systran.net/translate/en/user-guide/translation-tools/file-translation.html#watermark-disclaimer


3.7 Where should MT be labelled?

TL;DR: Everywhere.
Should MT text be labelled everywhere it is

used? Or should it be limited to institutional web-
sites and other high-visibility communication chan-
nels with users? Should it apply only to con-
tents with long shelf-life or should it also be used
for punctual communication such as social media
posts and institutional or commercial emails? What
about institution-internal and personal communica-
tion: email, instant messaging, forms, software user
interfaces, etc.?

There are clearly downsides to systematic,
wall-to-wall labelling. Text is first and foremost a
means of communication, and effective communi-
cation as is required from public and private institu-
tions should be clear, precise and to the point. La-
bels may conflict with other visual requirements of
the text, get in the way of communication and af-
fect the user experience in unwanted ways. One ex-
treme example that comes to mind is MT for soft-
ware localization, where textual content often takes
the form of individual words or phrases in buttons,
menus, etc. Another example is column or row
headers in tables or short captions in figures of au-
tomatically generated web pages. When these text
items are machine-translated, it is not obvious how
to label them clearly, especially if they are mixed
with other, non-MT’d elements and if the labels
should carry all the relevant information (see Sec-
tion 3.4).

But then, how does one decide what to label
and when? On the related topic of when and how
MT text should be post-edited by professional trans-
lators, it has been suggested that the level of human
intervention should relate to the purpose, value and
shelf-life of the content (Way, 2013). Following this
logic, labelling would be more appropriate for texts
that are expected to have a longer shelf-life or are
deemed to be more valuable or serve a more im-
portant purpose. But how do we measure value or
purpose? And, perhaps more importantly, how do
we measure the effect of translation errors on users?
We have seen earlier how some errors can have seri-
ous consequences for users, even in short-lived, ca-
sual settings (see Section 3.2). It has also been ob-
served that small errors, inconsequential in appear-
ance, if they are recurring, may have just as serious
effects on users as more critical errors, by gradu-

ally eroding the confidence of users over time. Re-
search in the field of User Experience suggests that
it may be useful to consider interactions with MT
not only as static and isolated events but as part of
a communicative process in the short and long term
(Guerberof-Arenas and Moorkens, 2023).

Risks in translation (either human or computer)
are a somewhat understudied area. In one of the few
studies on the subject, Canfora and Ottmann (2018)
hypothesize that in the realm of translations, as in
areas where risks have been studied more systemat-
ically (healthcare, aviation, chemical industry, etc.),
severe accidents are likely not caused by one sin-
gle error but are the result of several failures, each
of which would individually lead to only uncriti-
cal incidents. Furthermore, they suggest that all in-
cidents, regardless of their severity, have the same
root causes and that near misses are nothing but haz-
ardous situations that only by chance did not turn
into major accidents. One important implication of
this observation is that we can effectively reduce the
probability of severe accidents by reducing the num-
ber of near misses and minor incidents.

This suggests that the right way to go is to
systematically label MT everywhere it is used. If
the purpose of labelling is “to not blur the distinc-
tion between the categories of human and machine”
(Grinbaum and Adomaitis, 2022), then this is the
logical approach. For users who are knowledgeable
about the limitations of MT, this will have the effect
of “raising the right flags”. And for those who are
not, it will foster MT literacy by exposing users to
“positive” and “negative” examples in various types
of communication settings.

For situations where systematic and precise la-
belling might interfere with effective communica-
tion or with user experience, the best solution may
be to have a general disclaimer at the top or bottom
of the display (web page, document, form, etc.) stat-
ing that “some elements of this page may have been
generated by MT”, with a link or a reference to re-
sources where the user may find more information.
At the other end of the spectrum, for a very long
machine-translated document, it may be necessary
to repeat this disclaimer periodically.

3.8 What if the MT text was post-edited or
verified by a human?

TL;DR: The label can be removed or omitted.
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The question of transparency for AIGC is in
large part one of responsibility and liability: If a
person, either natural or juridical, is willing to stand
behind a given content, i.e. certify or guarantee that
this content is accurate, adequate, well-formed and
fit-for-purpose, then in principle, this should suffice
for that content to be viewed as “human-equivalent”.
And from there, remove any AIGC label that may
have initially been affixed to that content, i.e. “unla-
bel” it.

In the case of MT, this “approval” amounts to
certifying that the content is an accurate and well-
formed (“fit-for-purpose”) version in the target lan-
guage of the source text of which it is a translation
(Bowker, 2019a). In an ideal world, such verifica-
tion would always be done by a professional trans-
lator, but in many practical settings, it can be per-
formed by a competent, bilingual individual with a
good knowledge of the original text domain, target
audience and communicative intent of the transla-
tion.

“Responsibility” is the key word here: by
removing an MT label or omitting to label MT-
generated text, one is effectively taking personal re-
sponsibility for the validity and quality of that con-
tent (or, conversely, for any translation error that it
may contain).

3.9 What if the source text that was
machine-translated is itself AIGC?

TL;DR: It should be labelled as AIGC and MT.
This case is simple: any content naturally in-

herits characteristics of every step or processing it
went through. So a text that was originally generated
by an AI system (say, ChatGPT, as a response to a
prompt or question) and then machine translated (ei-
ther by the same system or a different one) remains
fundamentally AI-generated. In principle, this kind
of text would carry both labels: AIGC and MT. And
to remove both labels, one would have to validate for
each separately, i.e. make sure that the source text
is factually accurate, grammatically correct, etc. and
then make sure that its translation is adequate, gram-
matically correct, etc.

4 Summary of Recommendations

Machine translation is AI-generated content. As
such, it is subject to the same recommendations as
other AIGC. Our recommendation is that machine-

translated text be systematically labelled every-
where it is used. The label should explicitly say that
the content was machine-translated and specify the
language from which it was translated; if possible,
the label should also provide a link or reference to
the original text, as well as pointers to general re-
sources about MT literacy.

The only condition under which such a label
could be omitted or removed is if the entirety of the
affected text has been verified and certified fit-for-
purpose, ideally by a professional translator, other-
wise by a competent bilingual who accepts full re-
sponsibility for the quality and appropriateness of
the translation.

Acknowledgements

This work has greatly benefited from conversations
with and comments from many people. I wish
to express special thanks to (in alphabetical order)
Gabriel Bernier-Colborne, Lynne Bowker, Atsushi
Fujita, Cyril Goutte, Rebecca Knowles, Samuel
Larkin, Chi-kiu Lo, Alan Melby and Joss Moorkens.

References
Alemohammad, S., Casco-Rodriguez, J., Luzi, L., Hu-

mayun, A. I., Babaei, H., LeJeune, D., Siahkoohi, A.,
and Baraniuk, R. (2024). Self-Consuming Generative
Models Go MAD. In The Twelfth International Con-
ference on Learning Representations.

Bhardwaj, S., Alfonso Hermelo, D., Langlais, P., Bernier-
Colborne, G., Goutte, C., and Simard, M. (2020). Hu-
man or Neural Translation? In Scott, D., Bel, N.,
and Zong, C., editors, Proceedings of the 28th Interna-
tional Conference on Computational Linguistics, pages
6553–6564, Barcelona, Spain (Online). International
Committee on Computational Linguistics.

Bhuiyan, J. (2023). Lost in AI translation: growing re-
liance on language apps jeopardizes some asylum ap-
plications. The Guardian. Thu 7 Sep 2023.

Bowker, L. (2019a). Fit-for-purpose translation. In
The Routledge handbook of translation and technology,
pages 453–468. Routledge.

Bowker, L. (2019b). Machine translation literacy as
a social responsibility. In Adda, G., Choukri, K.,
Kasinskaite-Buddeberg, I., Mariani, J., Mazo, H., and
Sakriani, S., editors, Proceedings of the 1st interna-
tional conference on Language Technologies for All

Proceedings of the 16th Conference of the Association for Machine Translation in the Americas,

Chicago, USA, September 30 - October 2, 2024. Volume 1: Research Papers

© 2024 His Majesty the King in Right of Canada, as represented by the National Research Council Canada

https://openreview.net/pdf?id=ShjMHfmPs0
https://openreview.net/pdf?id=ShjMHfmPs0
https://aclanthology.org/2020.coling-main.576
https://aclanthology.org/2020.coling-main.576
https://www.theguardian.com/us-news/2023/sep/07/asylum-seekers-ai-translation-apps
https://www.theguardian.com/us-news/2023/sep/07/asylum-seekers-ai-translation-apps
https://www.theguardian.com/us-news/2023/sep/07/asylum-seekers-ai-translation-apps
https://lt4all.elra.info/proceedings/lt4all2019/pdf/2019.lt4all-1.27.pdf
https://lt4all.elra.info/proceedings/lt4all2019/pdf/2019.lt4all-1.27.pdf


(LT4All), pages 104–107, Paris, France. European Lan-
guage Resources Association.

Bowker, L. and Ciro, J. B. (2019). Machine transla-
tion and global research: towards improved machine
translation literacy in the scholarly community. Emer-
ald Publishing, Bingley, first edition edition. OCLC:
on1075580986.

Canfora, C. and Ottmann, A. (2018). Of ostriches, pyra-
mids, and Swiss cheese: Risks in safety-critical trans-
lations. Translation Spaces, 7(2):167–201.

Croll, A. (2023). To Watermark AI, It Needs Its Own Al-
phabet. Wired. July 27, 2023.

Deck, A. (2023). AI translation is jeopardizing Afghan
asylum claims. Rest of World. 19 April 2023.

Duffy, C. (2023). Google to require disclosures of AI con-
tent in political ads. CNN. Fri September 8, 2023.

European Commission (2022). The 2022 Code of Practice
on Disinformation | Shaping Europe’s digital future.

European Commission (2024). The Digital Services Act
package | Shaping Europe’s digital future.

Freitag, M., Foster, G., Grangier, D., Ratnakar, V., Tan,
Q., and Macherey, W. (2021). Experts, Errors, and
Context: A Large-Scale Study of Human Evaluation
for Machine Translation. Transactions of the Associa-
tion for Computational Linguistics, 9:1460–1474.

Goldstein, J. A., Sastry, G., Musser, M., DiResta,
R., Gentzel, M., and Sedova, K. (2023). Genera-
tive language models and automated influence oper-
ations: Emerging threats and potential mitigations.
arXiv:2301.04246 [cs].

Government of Canada (2023). Guide on the use of gen-
erative AI.

Grinbaum, A. and Adomaitis, L. (2022). The ethical
need for watermarks in machine-generated language.
arXiv:2209.03118 [cs].

Guerberof-Arenas, A. and Moorkens, J. (2023). Ethics
and Machine Translation: The End User Perspective.
In Moniz, H. and Parra Escartı́n, C., editors, Towards
Responsible Machine Translation: Ethical and Legal
Considerations in Machine Translation, pages 113–
133. Springer International Publishing, Cham.
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Abstract

Hyperparameter optimization (HPO) enhances neural machine translation (NMT) models but demands sub-
stantial computational resources. Successive halving, a multi-fidelity HPO method, mitigates this by early
stopping unpromising models and allocating more resources to promising ones. This method is particularly
relevant for NMT and large language models, which are computationally intensive. However, successive
halving relies on a noisy estimation of model performance and assumes that early performance is highly
correlated with final performance. We introduce a table lookup benchmark dataset to study the reliability of
successive halving and propose best practices for its application in NMT and large language models.

1 Introduction

Hyperparameter optimization (HPO) is crucial yet
resource-intensive for transformer-based neural ma-
chine translation (NMT) models. Hyperparameters
such as learning rate, optimizer, batch size, and the
number of nodes in each layer significantly influ-
ence the achievement of a state-of-the-art (SOTA)
system. According to the ARR Responsible NLP
Research guidelines, presenting extensive tables of
hyperparameters and the best-found values is essen-
tial in research publications. 1

Recently, with the rise of large language mod-
els (LLMs), NMT built upon LLMs has shown
promising results (Hendy et al., 2023; Zhu et al.,
2023; Sia and Duh, 2023; Zhang et al., 2023b).
Adapting LLMs to NMT tasks typically involves in-
context learning and supervised fine-tuning. Given
the abundance of parallel data, fine-tuning has
proven to be more effective than in-context learn-
ing (Zhang et al., 2023b). Parameter efficient fine-
tuning (PEFT), such as Low-Rank Adapter (LoRA,
Hu et al., 2021), is often favored over full fine-
tuning due to its efficiencyfewer parameters are
trained while achieving comparable or superior per-

formance. Despite the fixed architecture of LLMs
during PEFT, new hyperparameters are introduced,
including the LoRA rank and the specific parame-
ters to tune, alongside traditional hyperparameters
like batch size and learning rate.

NMT models, whether trained from scratch or
fine-tuned from LLMs, require extensive computa-
tional time, often taking days or weeks to converge.
This makes hyperparameter searches over a reason-
able space challenging. For instance, if an NMT
model takes 2 GPU days to train, tuning 5 hyper-
parameters with 3 different values each would result
in a total of 35 ∗ 2 = 486 GPU days! Practitioners
with limited computational resources are thus often
forced to resort to manual tuning or random search
instead of more systematic methods like grid search
or advanced HPO algorithms, increasing the risk of
unfair comparisons between systems.

Successive halving (Karnin et al., 2013;
Jamieson and Talwalkar, 2016) accelerates HPO by
terminating unpromising models early in a set of
models trained in parallel, saving more resources
with more aggressive early stopping strategies. It
has shown effectiveness in computer vision (Li
et al., 2018) and NLP tasks (Dodge et al., 2020).

1https://aclrollingreview.org/responsibleNLPresearch/
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However, its effectiveness for training NMT models
or adapting LLMs for NMT tasks remains unclear.

The termination decision in successive halving
is heuristic, based on the ranking of model perfor-
mance up to the current timestamp. It assumes that
early performance is highly correlated with late per-
formance, which may not always be true. This raises
the question: Does this assumption hold for NMT?
If not, can we make it more reliable without relying
solely on this assumption?

This paper focuses on the effectiveness of suc-
cessive halving for HPO in NMT models, whether
trained from scratch or fine-tuned from an LLM.
Our main contributions are summarized as follows:

• Dataset: We build a benchmark dataset,
NMTLC2, to facilitate NMT HPO research.
This dataset contains models trained from
scratch and fine-tuned from LLMs, with
recorded learning curves for various hyperpa-
rameter settings. In total, it comprises 2469
models trained on 9 different corpora, cost-
ing approximately 2519 GPU days. This is
the first HPO benchmark dataset that contains
NMT learning curves and features models fine-
tuned from LLMs.

• Evaluation: We evaluate the effectiveness of
successive halving for NMT HPO under differ-
ent experimental setups.

• Model: We introduce a novel model for
learning curve extrapolation, built upon the
LCRankNet introduced in Wistuba and Peda-
pati (2020), and name it LCRankNet-v23. We
aim to determine whether "looking into the pre-
dicted future" enhances the reliability of suc-
cessive halving compared to "looking back to
the completed past."

Our findings indicate that the initial assumption
of successive halving-that early performance pre-
dicts late performancegenerally holds true for NMT
HPO with appropriate setups.

2 Related work

2.1 Hyperparameter optimization
Hyperparameter optimization (HPO) aims to find
the optimal hyperparameter configuration with min-

imal evaluations. HPO methods can be broadly clas-
sified into sequential and parallel approaches. Se-
quential methods, such as Bayesian optimization
(Brochu et al., 2010; Shahriari et al., 2015; Frazier,
2018), evaluate one configuration at a time, using
the results to inform subsequent evaluations. Par-
allel methods evaluate multiple configurations si-
multaneously; examples include population-based
training (Jaderberg et al., 2017), CMA-ES, and suc-
cessive halving (Karnin et al., 2013; Jamieson and
Talwalkar, 2016). While most HPO methods are
black-box approaches that treat the model training
process as opaque, successive halving is a multi-
fidelity method that leverages approximations. It
uses smaller subsets of data or limits training time
to obtain noisy measurements, thereby accelerating
the search for optimal configurations.

2.2 Hyperparameter search for NMT

Research on HPO for NMT is limited. Qin et al.
(2017) propose an evolution strategy-based HPO
method for NMT. Zhang and Duh (2020) release a
benchmark dataset (Section 4.1) for comparing HPO
methods on NMT, focusing on models trained from
scratch. Deb et al. (2022) use a glass-box method to
analyze how hyperparameters influence NMT per-
formance, highlighting its connection with HPO.
Zhang et al. (2023a) present an HPO toolkit for
NMT, implemented as a wrapper on top of the open-
source Sockeye NMT software. This toolkit imple-
ments the Asynchronous Successive Halving Algo-
rithm (Li et al., 2020), promoting configurations as
soon as they are guaranteed to be in the top half,
thus running successive halving asynchronously and
effectively utilizing computational resources.

2.3 Learning curve extrapolation

Learning curve extrapolation aims to predict model
performance later in training based on early check-
points. Kolachina et al. (2012) model learning
curves for statistical machine translation systems by
fitting them to various power-law family functions.
Domhan et al. (2015) use a weighted combination of
parametric model families to model learning curves.
Klein et al. (2022) build a Bayesian neural net-
work, while Chandrashekaran and Lane (2017) pro-
pose an ensemble method, and Baker et al. (2017)

2NMTLC dataset: https://github.com/Este1le/hpo_nmt
3LCRankNet-v2 code: https://github.com/Este1le/hpo_nmt
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use frequentist regression models for learning curve
extrapolation. Adriaensen et al. (2024) propose
a transformer pretrained on data generated from a
prior, performing approximate Bayesian inference.
Wistuba and Pedapati (2020) introduce LCRankNet,
which encodes hyperparameters, dataset IDs, model
architectures, and partial learning curves for perfor-
mance prediction.

3 Successive halving

The goal of successive halving (Karnin et al., 2013;
Jamieson and Talwalkar, 2016) is to efficiently find
the optimal hyperparameter configuration within a
given search space. Suppose we have N configura-
tions to explore. We begin by training all N mod-
els, and at every c checkpoints, we continue train-
ing only the top 1

p configurations based on their per-
formance up to that point, discarding the rest. This
process is repeated until only one configuration re-
mains, which is then trained to convergence.

config2 
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Figure 1: An example of successive halving, where
N = 10, c = 5, p = 2.

As shown in Figure 1, we start with N = 10
configurations and halve (p = 2) the number of con-
figurations every c = 5 checkpoint. Each cut is
based on the best performance of the configurations
up to the current checkpoint. For example, at check-
point 10, when comparing config1 and config3, we
compare config1’s performance at checkpoint 5 with
config3’s performance at checkpoint 10.

In this example, assuming it takes one GPU day
(20 checkpoints) for each model to converge, suc-
cessive halving can reduce the total time for hyper-

parameter search from 10 days to 3.75 days. The
aggressiveness of successive halving can be adjusted
by changing the values of p and c. For instance, if
p = 3 and c = 2, the total time could be further
reduced to 1.3 days. However, a more aggressive
strategy increases the risk of discarding good con-
figurations too early. In the case of p = 3 and c = 2,
config1 might be chosen over config2, even if con-
fig2 could have performed better in the long run.

4 NMTLC benchmark datasets

To evaluate successive halving on NMT HPO, ex-
tensive model training until convergence is required
to determine if good models are prematurely dis-
carded. This process is resource-intensive, as each
new configuration sampled for successive halv-
ing necessitates training a new NMT system from
scratch. To facilitate this study, we have created
a benchmark dataset that supports a table-lookup
framework. We pre-train a large set of NMT sys-
tems and record their configurations and learning
curves in a table. This allows for efficient evalua-
tion of successive halving by looking up the table as
needed, without training each model from scratch,
significantly speeding up the experimental process.

Our dataset includes 2469 models trained on
9 different corpora, encompassing both models
trained from scratch and those fine-tuned from
LLMs, with a total computational cost of approxi-
mately 2519 GPU days. This is the first HPO bench-
mark dataset to contain NMT learning curves, en-
abling detailed studies on learning curves. It is also
the first to include models fine-tuned from LLMs,
facilitating HPO research on this emerging task.

method domain4 lang train dev #cfg

scratch

IARPA sw-en 24k 2675 767
IARPA so-en 24k 2675 604

TED Talks zh-en 170k 1,958 118
TED Talks ru-en 170k 1,958 176
WMT19 ja-en 4M 5,405 150
WMT19 en-ja 4M 5,405 168

FT
WMT23 fr-en 404k 289 162
WMT23 zh-en 421k 2139 162
WMT23 de-en 435k 2342 162

Table 1: Data used for training NMT systems.

4IAPRA: IARPA MATERIAL; TED Talks: Duh (2018); WMT19: Li et al. (2019); WMT23: Neves et al. (2023).
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dataset bpe (1k) #layers #embed #hidden #att_heads init_lr (10−4)
zh, ru, ja, en 10, 30, 50 2, 4 256, 512, 1024 1024, 2048 8, 16 3, 6, 10

sw 1, 2, 4, 8, 16, 32 1, 2, 4, 6 256, 512, 1024 1024, 2048 8, 16 3, 6, 10
so 1, 2, 4, 8, 16, 32 1, 2, 4 256, 512, 1024 1024, 2048 8, 16 3, 6, 10

Table 2: Hyperparameter search space for trained-from-scratch NMT systems.

4.1 Data & setup for training from scratch
Zhang and Duh (2020) provided a HPO bench-
mark for NMT tasks, where models are trained from
scratch without incorporating learning curves, pri-
marily focusing on evaluating black-box HPO meth-
ods such as Bayesian optimization. From their data,
we extracted hyperparameter configurations, evalu-
ation results, and learning curves with perplexity on
the development set for 1983 NMT models. Table
1 summarizes the 6 MT corpora used for training
the systems. The data cover five language pairs and
three domains with varying resource levels, from
low to high. Table 2 presents the hyperparameter
search space for different language pairs.

4.2 Data & setup for fine-tuning from LLMs
LLMs excel in most NLP tasks (Yang et al., 2024).
Recently, fine-tuning LLMs for machine translation
has shown promising results (Zhang et al., 2023b;
Moslem et al., 2023; Zhu et al., 2024). Learning
curves from fine-tuned models are rarely studied in
the context of HPO and learning curve extrapola-
tion, particularly for fine-tuned LLMs in machine
translation. To address this gap, we include fine-
tuned LLMs in our NMTLC benchmark datasets.

MT Data: We explore 3 language pairs as shown
in Table 1. For fr-en, the input format is as follows:

Translate French to English: French: [fr
sent] English: [en sent] <eos>

A special <eos> token is added for post-processing.

Hyperparameters: We consider four hyperpa-
rameters to define the search space:

• LLM (6): BLOOMZ 560m, 1b7, and 3b,
XGLM 564M, 1.7B, and 2.9B. BLOOMZ is
a multilingual model fine-tuned with the xP3
dataset (Muennighoff et al., 2022). XGLM is
a multilingual model trained on 30 diverse lan-
guages. We treat the choice of LLM as a hy-
perparameter since in practice the choice of the

base model affects final MT accuracy. Various
versions affect model size, feed-forward size,
number of layers, and vocabulary size.

• LoRA rank (3): 2, 16, and 64.
• Batch size (3): 16, 32, and 64.
• Learning rate (3): 2e− 5, 1e− 4, and 2e− 4.

Fine-tuning Setup: We utilize QLoRA (Dettmers
et al., 2023) for parameter-efficient fine-tuning. We
set the LoRA scaling factor to 32, limit trainable
parameters to the self-attention layers, and apply a
dropout rate of 0.05 in the LoRA layer. The model
weights are quantized to 4-bit precision, and mixed-
precision training (using float16 and float32) is en-
abled to accelerate the process. We use the Adam
optimizer, evaluating performance every 1000 steps,
and consider the model converged when perfor-
mance does not improve for 12 checkpoints. Mod-
els are trained on a single NVIDIA RTX GPU with
24GB of memory.

Samples: Each sample in the benchmark dataset
includes:

1. Hyperparameter configuration.
2. Meta-information about the MT dataset (size,

language pairs, domain).
3. Learning curve: a list of evaluation results

(perplexity, BLEU5) on the development set
throughout training until convergence.

4. Optimal performance: the best point on the
learning curve.

For de-en, we provide perplexity learning curves.
For fr-en and zh-en, we include both perplexity and
BLEU learning curves to study the correlation be-
tween these metrics.

4.3 Statistics
We present the statistics of samples in the NMTLC
benchmark dataset in this section.

BLEU distribution Figure 2 illustrates the perfor-
mance variance of NMT models trained with differ-

5Obtained by greedy search.
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ent hyperparameter configurations in the NMTLC
dataset, measured by the BLEU score. Models
trained from scratch (scratch) and those fine-tuned
from LLMs (ft) exhibit distinct BLEU score distri-
butions. The BLEU scores of the scratch models
generally follow a left-skewed distribution, indicat-
ing that most configurations result in good perfor-
mance. In contrast, the BLEU scores of the ft mod-
els display a multimodal distribution, suggesting a
wide variation in performance, with many configu-
rations yielding either very good or poor results. For
instance, in ft_fr-en, the BLEU scores range widely,
with differences up to 30 points between the best
and worst models. Additionally, some configura-
tions in almost all tasks (except scratch_ja-en) pro-
duce nearly zero BLEU scores, underscoring the im-
portance of extensive hyperparameter search. This
highlights the necessity of successive halving in effi-
ciently exploring a large search space to find optimal
hyperparameter configurations.

BLEU

#c
on

fig
ur
at
io
ns

Figure 2: BLEU distribution on the hyperparameter
search space.

Length distribution Figure 3 shows the distribu-
tion of the lengths of the learning curves in the
NMTLC dataset, where longer curves indicate mod-
els that take more time to converge. The length dis-
tribution reveals that in most tasks, a small number
of models have extended training times, resulting in
a long right tail in the distribution. In these cases,
successive halving can be particularly beneficial, as
it can terminate unpromising models early in the
training process, thereby saving substantial compu-
tational resources. Additionally, the length distribu-
tions vary across different tasks. While scratch_ja-
en, scratch_en-ja, and ft_zh-en exhibit distributions

similar to a normal distribution, other tasks display
more left-skewed distributions. This variability fur-
ther underscores the importance of using successive
halving to efficiently navigate the diverse conver-
gence behaviors and optimize hyperparameter con-
figurations.

curve length (#checkpoints)

#m
od

el
s

Figure 3: Learning curve length distribution on the
hyperparameter search space.

5 On the reliability of successive halving
on neural machine translation

To evaluate the reliability of successive halving in
NMT, we begin by identifying an appropriate evalu-
ation metric (perplexity vs. BLEU) for termination
decisions (Section 5.1). We then investigate whether
halving consistently retains the best-performing half
of configurations at different learning curve lengths
(Section 5.2.1). Finally, we conduct extensive suc-
cessive halving runs on random subsets of the con-
figuration search space to assess its ability to consis-
tently select the best configuration (Section 5.2.2).

5.1 BLEU vs. perplexity
During training, models can be evaluated on the
development set using either BLEU or perplexity.
BLEU is more aligned with the ultimate goal of
NMT, as BLEU scores are commonly reported for
system comparison on development and test sets.
However, perplexity is more closely aligned with the
training objective and is significantly more efficient
to compute. In our experiments, calculating perplex-
ity is approximately 1000 times faster than BLEU on
a single sentence, which means obtaining a BLEU
score for an evaluation set can take hours. For HPO,
we aim to select a configuration quickly while en-
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suring it achieves the best BLEU score. This raises
the question: can we use perplexity instead of BLEU
for selection and termination decisions in successive
halving to accelerate HPO?

configuration rank

Figure 4: Configurations ranked by perplexity and
BLEU. Configurations are ranked by their low-
est perplexity on the development set and highest
BLEU score, respectively.

Figure 4 shows the ranking of configurations by
their best BLEU and perplexity scores on the devel-
opment set. The results indicate that perplexity does
not consistently align with BLEU across all datasets.
For example, in scratch_sw-en, scratch_en-ja, and
scratch_ja-en, configurations with the best BLEU
scores (lower left) often have the worst perplexity.
This suggests that perplexity may not be a suitable
alternative to BLEU for model selection and early
stopping in HPO for NMT tasks.

5.2 Successive halving on NMT
In this section, we evaluate the reliability of succes-
sive halving on NMT tasks.

5.2.1 Binary rank
In successive halving, at each checkpoint, the bot-
tom half of the configurations are discarded based
on their performance up to that point. To under-
stand how the ranking of partial learning curves cor-
relates with the full curves, we calculate Spearman’s

rank correlation coefficient (ρ) on the binary ranks
of configurations at each checkpoint (Figure 5).

Sp
ea

rm
an

’s
 ρ

Checkpoint

# configurations

Figure 5: Spearman’s rank correlation coefficient ρ
on binary ranks of learning curves at each check-
point. At each checkpoint, learning curves are
ranked based on their best performance (perplexity
or BLEU on the development set) up to that point.
Curves are assigned a rank of 0 if they are in the top
half and 1 if they are in the bottom half. There are
fewer longer learning curves, as shown in the figure,
as the checkpoint number increases, the number of
models (upper x-axis) decreases.

Generally, as the number of checkpoints in-
creases, the correlation between the rankings of par-
tial and full learning curves improves. This trend
holds true for both perplexity and BLEU. Some
datasets, such as scratch_so-en, scratch_zh-en, and
scratch_ru-en for perplexity, and ft_fr-en for BLEU,
achieve high correlation early in training.

5.2.2 Evaluation results
We run successive halving 100 times on randomly
sampled subsets of hyperparameter configurations,
varying p and c as shown in Table 3. The reliability
of successive halving is measured by whether the
best configuration is selected at the end (acc) and
when the best configuration is discarded (dif).

Most runs achieve either perfect acc or a dif
of around 1, indicating that the best configuration is
usually selected, and if not, it is discarded near the
final stage. Increasing the discarding aggressiveness
by increasing p and decreasing c reduces reliability
(lower acc and higher dif) unevenly across datasets–
fr-en(ft) is significantly affected, while so-en(st) and
zh-en(st) remain stable.
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p=2,c=10 p=2,c=5 p=4,c=10
average acc dif acc dif acc dif

st

sw-en 99 0 97 0 95 0
so-en 100 0 100 0 100 0
zh-en 100 0 100 0 100 0
ru-en 100 0 96 0 100 0
ja-en 69 0.2 67 0.1 68 0.1
en-ja 77 0.1 69 0.2 70 0.1

ft
fr-en 69 1.2 11 3.6 54 0.9
zh-en 100 0 83 0.7 100 0
de-en 100 0 61 1.6 57 0.8

Table 3: Successive halving evaluation results. Each
dataset runs successive halving 100 times on ran-
domly selected 40 configurations. The discarding
ratio p−1

p and frequency c checkpoints are varied.
Acc indicates the percentage of runs where the best
configuration is selected, and dif represents the aver-
age difference between total stages and the stage that
discards the best configuration. A dif of 1 means the
best configuration was discarded at the last stage.

6 Learning curve extrapolation

Successive halving uses the best performance ob-
served so far (BSF) to rank configurations at each
checkpoint, assuming early performance correlates
with final performance. However, as shown in Fig-
ure 5, this correlation can be low when learning
curves are short. To improve on the heuristic BSF,
we explore "looking forward into the predicted fu-
ture" by extrapolating the optimal performance of a
configuration based on partial learning curves. This
predicted optimal accuracy can then be used to rank
configurations more effectively in successive halv-
ing.

6.1 LCRankNet-v2
Our learning curve extrapolation model,
LCRankNet-v2, is a variation of LCRankNet (Wis-
tuba and Pedapati, 2020). It takes three inputs:
partial learning curves, hyperparameter configura-
tions, and task meta-information (including dataset
ID, task type, source and target language, and base
model). The architecture is shown in Figure 6. We
removed the architecture embedding component
from LCRankNet since it is defined in the hyper-
parameter configuration in our settings. The experi-
mental setup and configurations for LCRankNet-v2
are detailed in Appendix A.

𝑦!,…,$
Task 

Meta Info
Hyper-

parameters

Embedding

Conv1d
k=2 

BatchNorm

ReLU

Dropout

Fully Connected Layer

"𝑦%&'(  

MaxPool

… Conv1d
k=5 

BatchNorm

ReLU

Dropout

MaxPool

Embedding

Figure 6: Architecture of LCRankNet-v2. Partial
learning curves (y1,··· ,l) are processed through con-
volutional layers with kernel sizes ranging from 2 to
5. Task meta-information and hyperparameter con-
figurations are embedded and then combined with
the curve features. The concatenated features are fed
into fully connected layers to predict the best perfor-
mance of the configuration (ŷbest).

6.2 Training objectives
LCRankNet-v2 is trained using two loss functions:
reconstruction loss Lrec and rank loss Lrank. Given
the true best performance yibest and the prediction
ŷibest for learning curve i, the reconstruction loss is:

Lrec =
∑
i

(yibest − ŷibest)
2. (1)

The probability that configuration i outperforms
configuration j is defined as:

pi>j =


1 if yibest > yjbest
0.5 if yibest = yjbest
0 if yibest < yjbest

(2)

The corresponding prediction is:

p̂i>j =
eŷ

i
best−ŷj

best

1 + eŷ
i
best−ŷj

best

. (3)

The rank loss is a binary cross-entropy loss:

Lrank =
∑
i,j

−pi>j log p̂i>j−(1−pi>j) log(1−p̂i>j)

(4)
To ensure fair comparisons, we always compare par-
tial learning curves of the same length when com-
puting Lrank. To handle curves of different lengths,
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we include multiple truncated versions of each full
learning curve in the training set. The total loss is:

L0 = wrecLrec + wrankLrank. (5)

Additionally, we consider the BSF when rank-
ing configurations. If the model predicts that perfor-
mance will not improve beyond BSF, we set ŷbest
to BSF. The probability of improvement pimp over
BSF is defined similarly to pi > j, and the improve-
ment loss Limp is:

Limp =
∑
i

−pimp
i log p̂imp

i −(1−pimp
i ) log(1−p̂imp

i ).

(6)
The updated total loss is:

L1 = L0 + wimpLimp. (7)

During training, we set wrec to 1, wrank to 1000,
and wimp to 100. At inference, if p̂imp

i > 0.5, we
set ŷbest to BSF.

6.3 Experiment results
We conduct experiments to evaluate whether learn-
ing curve extrapolation improves the reliability of
successive halving. Specifically, we compare the
accuracy of ranking configurations on perplexity us-
ing LCRankNet-v2’s predictions versus the heuristic
BSF. LCRankNet-v2 was trained using a leave-one-
out strategy, excluding the target dataset from the
training data and warming up the network with 20
examples from the target dataset, as suggested by
Wistuba and Pedapati (2020).

In Table 4, we compare the performance of
the heuristic BSF and LCRankNet-v2 trained to
minimize L0 in predicting the rank between two
configurations given partial learning curves, where
we consider all the possible pairs with the same
length. There are four cases: both methods rank
correctly (B P ), both methods rank incorrectly
(B P ), or one is correct and the other is incor-
rect (B P or B P ). On 7 out of 9 datasets,
B P is less than B P , indicating that while
LCRankNet-v2 can sometimes correct BSF’s mis-
takes, overall, BSF performs better.

When trained to minimize L1, LCRankNet-
v2 converges to BSF on all datasets, resulting
in B P = B P = 0, and B = P .
Therefore, LCRankNet-v2 does not outperform the
heuristic BSF in most of our settings.

acc B P B P B P B P
sw-en 99.78% 95.30% 0.04% 4.48% 0.18%
so-en 99.76% 93.79% 0.19% 5.97% 0.05%
zh-en 75.73% 63.07% 17.61% 12.66% 6.63%
ru-en 99.63% 83.35% 0.12% 16.28% 0.24%
ja-en 95.86% 73.19% 2.35% 22.67% 2.08%
en-ja 94.73% 64.64% 4.73% 30.09% 0.56%
fr-en 84.43% 57.69% 6.94% 26.64% 8.73%
zh-en 75.73% 63.07% 17.61% 12.66% 6.63%
de-en 85.94% 35.20% 5.32% 50.74% 8.74%

Table 4: Performance of LCRankNet-v2 trained
with L0. Acc (or B ) indicates the accuracy of
ranking configuration pairs based on BSF. B rep-
resents ranking by BSF (vanilla successive halving),
while P represents ranking by LCRankNet-v2’s pre-
diction. If B P > B P , successive halving
is more reliable with LCRankNet-v2’s prediction.

Is learning curve extrapolation necessary for suc-
cessive halving on NMT? Not really. In Table 4,
P generally underperforms compared to B in rank-
ing configurations. This suggests that incorporating
learning curve extrapolation is unlikely to signifi-
cantly alter the results of successive halving.

7 Conclusions

Successive halving is both efficient and effective
for hyperparameter search in NMT tasks, signifi-
cantly reducing computational resources and reli-
ably selecting the best model with appropriate se-
tups. However, its reliability depends on the target
task and the choices of the cutting ratio (p) and cut-
ting frequency (c). Based on the studies conducted
in this paper, we propose the following best prac-
tices for successive halving in NMT and LLMs:

1. Rank configurations at each checkpoint based
on BLEU rather than perplexity.

2. Before running an extensive hyperparameter
search with successive halving, train several
configurations to convergence to estimate train-
ing time and learning curve trends, which helps
in determining appropriate values for p and c.

3. Instead of keeping only one configuration at the
end, increase the number of configurations that
are trained to convergence (two might be suffi-
cient, as our experiments suggest) to reduce the
risk of discarding the best one at the last stage.
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A LCRankNet-v2 Training Setup

We pad partial learning curves to a length of 450.
The convolutional layers have an output channel
size of 128. Each hyperparameter and task meta-
information is embedded with a size of 2. The feed-
forward layer size is set to 128. For regularization,
we use a dropout rate of 0.1 and a weight decay of
10−3. The initial learning rate is set to 10−4, with
Adam as the optimizer and cosine annealing as the
learning rate scheduler. The minimum learning rate
(ηmin) is set to 10−7, and Tmax is set to 10,000. Val-
idation occurs every 1000 steps, and the batch size
is 64. Training runs for 5 epochs.
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Abstract

Transformer-based models in Neural Machine Translation (NMT) rely heavily on multi-head attention for
capturing dependencies within and across source and target sequences. In Transformers, attention mecha-
nisms dynamically determine which parts of the sentence to focus on in the encoder and decoder through
self-attention and cross-attention. Our experiments show that high-resource NMT systems often exhibit a
specific peaked attention distribution, indicating a focus on key elements. However, in low-resource NMT,
attention tends to be dispersed throughout the sentence, lacking the focus demonstrated by high-resource
models. To tackle this issue, we present EaDRA (Entropy– and Distance-Regularized Attention), which in-
troduces an inductive bias to prioritize essential elements and guide the attention mechanism accordingly.
Extensive experiments using EaDRA on diverse low-resource language pairs demonstrate significant im-
provements in translation quality, while incurring negligible computational cost.

1 Introduction

Neural networks have revolutionized Machine
Translation (MT), as evidenced by the significant
progress made in recent years (Sutskever et al.,
2014). The Transformer architecture (Vaswani
et al., 2017) has garnered substantial attention and
achieved remarkable advancements across various
downstream tasks (Devlin et al., 2019; Liu et al.,
2020; Brown et al., 2020), including its applica-
tion to Neural Machine Translation (NMT). How-
ever, the performance of the Transformer architec-
ture heavily relies on the effectiveness and reliability
of its attention mechanism.

Our observations from well-performing mod-
els suggest that attention should prioritize important
elements, resulting in a peaked distribution of at-
tention weights. By emphasizing crucial informa-
tion, the attention mechanism enables more accu-
rate predictions. This selective attention allows the
model to effectively capture and utilize relevant in-
formation, leading to improved performance. There-

fore, optimizing the attention mechanism is critical
for harnessing the full potential of the Transformer
architecture and enhancing its performance across
tasks, including NMT. However, achieving focused
attention behavior poses a significant challenge for
NMT systems Raganato et al. (2020), especially in
low-resource settings. Our preliminary experiments
show that as the amount of available training data
decreases, NMT systems tend to exhibit a lack of
the desired focused attention behavior. In such low-
resource scenarios, where training data is limited,
the attention distribution becomes more dispersed
and less selective. Consequently, the model’s ability
to effectively capture and utilize crucial information
is hindered, leading to reduced translation perfor-
mance. Therefore, as the amount of available data
diminishes, it becomes crucial to develop techniques
that can guide the attention mechanism towards rel-
evant and informative elements of the source sen-
tence. In order to address this issue, prior research
has suggested hard-coded or fixed attention patterns
for self-attention heads to improve translation qual-
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ity (Raganato et al., 2020; You et al., 2020). How-
ever, the complexity and diversity of language ne-
cessitate the consideration of varied attention pat-
terns for different sentences in the context of trans-
lation. By constraining the attention weights to fixed
values, the model may encounter difficulties in ac-
commodating diverse sentence structures and cap-
turing long-range dependencies with accuracy.

Consequently, this constraint may result in di-
minished performance (You et al., 2020), particu-
larly for sentences that do not align harmoniously
with the predetermined attention patterns.

In this paper, after identifying a significant
difference in the entropies of attention heads be-
tween high-resource and low-resource trained mod-
els (Section 5.1), we introduce an inductive bias
through the proposition of entropy and distance reg-
ularization (Section 3.3). Our approach aims to in-
duce selective attention by regularizing the distance
and entropy in the distribution of attention heads.
Specifically, we introduce a novel term into the loss
function to guide the learning process, which en-
courages the low-resource NMT model to emulate
the patterns observed in the attention of higher-
resource models. This additional bias is incorpo-
rated to improve the low-resource NMT model’s ca-
pability to capture intricate language patterns and
enhance translation performance. Experimental re-
sults demonstrate the effectiveness of our approach
and underscore the importance of inductive bias in
narrowing the performance disparity between low–
and high-resource NMT systems.

2 Related work

Prior work has explored various approaches to im-
prove low-resource performance by leveraging high-
resource language pairs. This includes initializ-
ing model parameters from a large-scale trained
model (Zoph et al., 2016), as well as techniques such
as Multilingual Neural Machine Translation (Aha-
roni et al., 2019), cross-lingual knowledge distil-
lation (Tan et al., 2019; Saleh et al., 2020) and
large pre-trained models that aim for universal lan-
guage understanding (Liu et al., 2020; Tang et al.,
2020; Brown et al., 2020; Touvron et al., 2023).
While these methods have significantly improved
low-resource NMT, they rely on the availability of
a large amount of additional data. However, it is
crucial to explore techniques that facilitate the more

efficient utilization of the model. Inductive bias
plays a fundamental role in machine learning as it
allows for the incorporation of prior knowledge or
assumptions into learning systems (Mitchell, 1980).
Different regularization techniques and architectural
choices can introduce specific biases to shape the
behavior of models. For example, regularization
biases models towards relying less on a few influ-
ential features, Convolutional Neural Networks bias
models to capture local relationships between input,
and attention mechanisms (Bahdanau et al., 2015;
Vaswani et al., 2017) bias models to capture long-
range dependencies. Additionally, in the context
of attention mechanisms, specific biases can be in-
troduced to shape the behavior of models and im-
prove their performance. Lin et al. (2018) encour-
age the attention to pay more focus on the content
words rather than functions words. In the context
of summarization, Aralikatte et al. (2021) propose
an attention mechanism that proactively generates
tokens in the decoder that are similar or topical to
the input. Niculae and Blondel (2017) introduce
an attention mechanism that is encouraged to as-
sign similar attention weights to consecutive words.
Structured attention networks (Kim et al., 2017) in-
corporate graphical models to generalize simple at-
tention, while the training time significantly (5×)
increases. More similar to our motivation, LP-
SparseMAP (Niculae and Martins, 2020) models at-
tention distance between consecutive words for a
classification task by introducing trainable param-
eters, but its scalability to large-scale experiments is
limited. In contrast, our approach, based on apply-
ing a regularizer, is faster, less complex, and can be
efficiently executed on GPUs, making it scalable for
large-scale training and fine-tuning setups.

The closest work to our method is Fixed-
attention (Raganato et al., 2020), which enforces
fixed (untrainable) attention patterns. However, they
focus solely on encoder self-attention, overlooking
the importance of cross-attention heads in neural
machine translation (Voita et al., 2019; You et al.,
2020). Similarly, You et al. (2020) introduce Hard-
Coded Gaussian Attention that replaces the atten-
tion distribution computation, i.e., scaled dot prod-
uct of queries and keys, with a fixed Gaussian dis-
tribution, leading to a negative impact on translation
quality. Given the concept of entropy that has been
used in machine translation (Montahaei et al., 2019),
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in the next section, we propose our method that
can be applied to all different attention components,
i.e., encoder self-attention, decoder self-attention,
and encoder-decoder (cross) attention, while consis-
tently yielding significant improvements across var-
ious experimental setups.

3 Methodology

3.1 Entropy
Entropy, a fundamental concept in information the-
ory, has found various applications in the field of
NLP (Pimentel et al., 2021; Vanmassenhove et al.,
2021). One prominent area where the concept of en-
tropy has been utilized is in language modeling and
generation (Han et al., 2018; Meister et al., 2020).
By quantifying the degree of uncertainty or unpre-
dictability of a language model’s output, entropy
serves as a measure of the model’s confidence or in-
formation content (Shannon, 1948). Given a prob-
ability vector a ∈ Rn, i.e., whose entries are non-
negative and sum to 1, the Shannon entropy is de-
fined as:

H(a) := −
n∑

i=1

ai log2(ai) (1)

In order to capture the shape of attention distri-
butions (more peaked versus more flat) we use the
Shannon entropy, defined in Equation 1. For a dis-
crete distribution of dimension n, Shannon entropy
takes values between 0 and log2 n, with H(a) = 0
when a is a peaked one-hot vector, and H(a) =
log2 n when a = (1/n, . . . , 1/n). where we define
the length-normalized entropy:

HN (a) :=
1

log2 n
H(a) (2)

in order to remove unwanted effects induced by
varying sentence lengths, by ensuring the output of
HN falls within the range of 0 to 1.

3.2 Entropy penalties
We propose a method to replicate the desirable be-
havior observed in higher-resource models by in-
troducing an inductive bias to the attention mech-
anism in lower-resource models, encouraging a fo-
cused behavior to guide the attention mechanism to-
wards more important information. In Transform-
ers, there are multiple attention heads that allow the

model to capture diverse and fine-grained relation-
ships within the input sequence: enc (self-attention
in the encoder), dec (self-attention in the decoder),
and x (encoder-decoder or cross attention). Each at-
tention mechanism computes the attention distribu-
tion for each word in the input sentence x. More
specifically, when translating a sentence pair x, y,
the attention heads of a Transformer model compute
several attention distributions:

Attention(x, h, t) =
n∑

i=1

ai,h,t · Vi,h,t (3)

where Vi,h,t is the value matrix and ai,h,t is the at-
tention distribution at word i calculated at head h,
for attention type t ∈ {enc, dec, x}. ai,h,t is a prob-
ability vector of length nsrc when t ∈ {enc, x} and
of length ntgt when t = dec.

To encourage peaked attention and nudge at-
tention heads toward selecting the important infor-
mation, we apply an entropy-minimizing penalty on
all attention distributions:

Rpeak :=
∑
i,h,t

HN (ai,h,t), (4)

By itself, this regularizer can force attention
heads to trivial solutions, e.g., where all mass is con-
centrated on a token in a sentence. To mitigate this
we invoke another inductive bias based on a desir-
able property observed in high-performing models:
even though individual attention heads are peaked,
the attention distribution averaged over the entire
sentence:

āh,t =
1

n

n∑
i=1

ai,h,t (5)

should be flat. We therefore propose an additional
sentence-level entropy-maximizing penalty:

Rsent := −
∑
h,t

HN (āh,t) (6)

3.3 EaDRA (Entropy- and
Distance-Regularized Attention)

In this section, we propose a distance-based method
that goes beyond simply minimizing attention en-
tropies. This method not only reduces entropy and
enhances attention concentration, but also induces
a preference for attending to adjacent tokens, moti-
vated by the significance of proximity-based atten-
tion in NMT tasks (Raganato et al., 2020).

To develop the intuition, we focus on a single
attention head (hence temporarily dropping the h, t
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indices). Imagine for a moment our attention was
a hard selection mechanism, e.g., (ei)ji = 1, in-
dicating that attention at token i selects only token
ji. If neighboring words and contiguous phrases are
highly relevant to each other, we would expect the
total distance between consecutive selections

Rdist
∼
=

n−1∑
i=1

d(ji, ji+1) (7)

to be rather small, where d is a discrete, one-
dimensional distance function,1 and ∼

= is used since
this is just an intuition and not yet a usable defini-
tion: since our attention is soft and not hard, we can-
not directly measure this total distance suggested by
Equation 7. Instead, we relax the definition by con-
sidering expectation over ji and ji+1, interpreted as
random variables with marginal distributions ai, re-
spectively ai+1. We can then penalize the total ex-
pected distance:

Rdist :=

n−1∑
i=1

EjiEji+1 [d(ji, ji+1)]

=

n−1∑
i−1

a⊤
i Dai+1,

(8)

where D is the distance matrix defined by (D)st =
d(s, t) for our chosen distance function d. This ma-
trix can be precomputed and the quadratic form in
Equation 8 is fast to evaluate on GPUs, although we
remark, since d is symmetric, that D is a Toeplitz
matrix and therefore Rdist could be computed via
fast discrete Fourier transform.

Putting together all terms, our objective for a
given training sentence pair (x, y) minimizes:

L(x, y) =

n∑
i=1

− log p(yi | x, y1:i−1)

+ αpeakRpeak + αsentRsent + αdistRdist.

(9)

Here, α parameters control the relative im-
pact of the various penalties. We call this method
EaDRA (Entropy- and Distance-Regularized Atten-
tion), the distance-based and entropy-based regular-
izers. Unlike fixed diagonal patterns in attention,
EaDRA allows for more flexibility in achieving a
peaky attention distribution.

4 Experimental setup

4.1 Data setup

In our preliminary experiments, we use a dataset
comprising 4 million German-English training sam-
ples from WMT14, which includes Europarl, Com-
mon Crawl, and News Commentary.

Code Dataset #Sents

Ex. LR
Be-En TED Qi et al. (2018) 4.5k
Gl-En TED Qi et al. (2018) 10k
De-En WMT14 50k
Sk-En TED Qi et al. (2018) 55k

LR
Ko-En Jungyeul Park et al. (2016) 90k
Kk-En WMT19 91k
En-De WMT14 100k
Vi-En IWSLT15 (Cettolo et al., 2012) 133k
En-De IWSLT14 (Cettolo et al., 2012) 160k
Tr-En WMT17 207k
Ja-En IWSLT17 (Cettolo et al., 2012) 223k
En-De WMT14 250k

Table 1: Details of extremely low-resource (Ex. LR)
and low-resource (LR) datasets in our experiments.

To simulate the low-resource scenario in a con-
trolled setting, we randomly choose subsets of 50k,
100k, 250k and 1m samples. We evaluate on the
newstest2014 test set. Additionally, we conduct ex-
periments on two sets of language pairs (Table 1),
one representing low-resource scenarios and the
other representing extremely low-resource scenar-
ios.

All datasets, except Japanese-English, are pre-
processed by applying punctuation normalization,
tokenization (Koehn et al., 2007), limiting the length
of the sentences to 200 tokens and removing sen-
tence pairs with a source/target length ratio exceed-
ing 1.5, following previous work (Ng et al., 2019).
Then, we use BPE (Sennrich et al., 2016) to split the
data with BPE parameter selection with respect to
the data size (Araabi and Monz, 2020).

For the Japanese-English language pair, we use
SentencePiece with a shared vocabulary size of 16k,
as it has been widely recognized for its effectiveness
in handling Japanese text (Kudo and Richardson,

1We use the absolute distance, d(s, t) = |s− t|, but arbitrary functions may be used instead.

Proceedings of the 16th Conference of the Association for Machine Translation in the Americas,

Chicago, USA, September 30 - October 2, 2024. Volume 1: Research Papers



1 2 3 4 5 6 7 8
Heads

1

2

3

4

5

6

La
ye

rs
(a) 4m

1 2 3 4 5 6 7 8
Heads

(b) 1m

1 2 3 4 5 6 7 8
Heads

(c) 100k

1 2 3 4 5 6 7 8
Heads

(d) 100k (Regularized attention)

0.2

0.4

0.6

0.8

En
tro

py

Figure 1: Entropy distribution of the encoder self-attention in a Transformer with 6 layers and 8 attention
heads. (a), (b), and (c) are models trained on 4m, 1m, and 100k samples, respectively. (d) is the model
trained on 100k samples after applying EaDRA. All training sets are random samples from WMT14 En-De.
Entropy values are sorted within each layer to highlight the contrasting patterns.

2018). In order to evaluate the models, for Belaru-
sian (Be), Galician (Gl), Slovak (Sk), Korean (Ko), 1

Kazakh (Kk), WMT German (De), Vietnamese (Vi),
Turkish (Tr), and Japanese (Ja) we use their own of-
ficial test sets. For IWSLT German (De), follow-
ing (Raganato et al., 2020) we use the concatena-
tion of the IWLST 2014 dev sets (tst2010–2012,
dev2010, dev2012).

Model #sent min ave max BLEU

T.base 4m 0.08 0.42 0.83 28.1

1m 0.04 0.58 0.79 24.1

100k 0.34 0.66 0.77 13.5

EaDRAenc+dec 100k 0.01 0.18 0.82 16.2

Table 2: Statistics of entropy values over all encoder
self-attention heads of models with different sam-
ple sizes from WMT14 English-German, trained on
Transformer-base. EaDRAenc+dec denotes EaDRA
applied on the self-attention in the encoder and de-
coder of Transfomer.

4.2 Model Configuration
We adopt the Transformer-base (denoted by
T.base) architecture with its original hyperpa-
rameters (Vaswani et al., 2017) as our baseline
model, upon which our proposed modifications are
built. In addition, we consider the Fixed-attention
method (Raganato et al., 2020) as the most closely
related baseline approach. Our experiments are con-
ducted using the Fairseq library (Ott et al., 2019).

We evaluate the translation quality using sacre-
BLEU (Post, 2018) as evaluation metric.2 All exper-
iments can be completed within a few hours using a
single GPU with the model parameters ranging from
49m to 65m.

5 Results

In this section, we start with a comprehensive anal-
ysis of multi-head attention entropy across various
data setups. Subsequently, we demonstrate the strik-
ing effectiveness of EaDRA when compared to both
the Transformer model and the most closely re-
lated approach, Fixed Attention. Additionally, we
delve into the influence of EaDRA’s hyperparame-
ters. Moreover, we present results involving large
pre-trained fine-tuning, a method widely recognized
as a strong baseline.

5.1 Analysis of entropy in multi-head attention

The limitations in low-resource NMT performance
can be attributed to the inherent difficulties associ-
ated with training models using limited data (Koehn
and Knowles, 2017). However, the impact of this
data scarcity on the multi-head attention mechanism
remains unclear. Building on the observation of dis-
persion of weights in attentions (Voita et al., 2019;
Correia et al., 2019), in this section we aim to ana-
lyze and compare the weight distribution of multi-
head attention in NMT models across different data
regimes. For this purpose, entropy serves as a use-
ful measure by providing valuable insights into the

1https://github.com/jungyeul/korean-parallel-corpora/tree/master/korean-english-news-v1
2sacreBLEU signature:

nrefs:1—case:lc—eff:no—tok:13a—smooth:exp—version:2.0.0
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peakedness of the attention distribution. We conduct
preliminary experiments to investigate the entropy
of attention heads and gain insights into their behav-
ior. Figure 1 (a-c) illustrates the entropy of encoder
self-attention heads for models trained on different
sample sizes: 4m, 1m, and 100k. A clear trend is
observed where the entropy of attentions decreases
as the amount of training data increases. Therefore,
the models trained with smaller data sizes face chal-
lenges in learning focused attention distributions.
Based on this observation, we hypothesize that this
trend of decreasing entropy with larger training sam-
ples will continue, and with a substantial amount of
data, ideally, the entropy will approach zero. Fig-
ure 1 (d) illustrates the entropies of the encoder self-
attention after the application of our method, show-
ing a significant decrease in entropy. This decrease
indicates a higher level of peakedness or concentra-
tion in the attention distribution. In order to compare
EaDRA’s entropy patterns with those of Fixed-attn,
it is essential to note that Fixed-attn primarily uti-
lizes attention heads characterized by fixed diago-
nal or tridiagonal-like patterns. As a result, the en-
tropy for three of these heads reaches zero, while the
remaining heads consistently maintain an entropy
close to zero, forming a consistent value irrespective
of the dataset size or input characteristics.

Table 2 presents the statistics of Figure 1.
We observe a substantial difference in the average
and minimum entropy values across all attention
heads between the higher-resource models and low-
resource one. Therefore, EaDRA results in a signif-
icant decrease in entropy of attention weights, re-
sulting in a more peaked distribution of attention
weights similar to what can be achieved with a large
amount of training data. However, it is crucial to
contextualize these findings by considering that a
fair comparison, as exemplified by the performance
of EaDRA compared to the T.base trained on 100k
samples, demonstrates the efficacy of our approach
under more controlled conditions, where both are
trained on a similar number of sentences. Addi-
tionally, it is worth noting that the improvement ob-
served in row 4 is a direct consequence of our pre-
cise parameter tuning for EaDRA.

5.2 EaDRA in multi-head attention
components

While Raganato et al. (2020) only focus on the en-
coder self-attention, EaDRA is applicable to all at-
tention components. We empirically demonstrate
this through our experiments, which involve the
encoder self-attention, decoder self-attention, and
cross-attention. The performance of EaDRA on
various components and their combinations is pre-
sented in Table 3. The results demonstrate that
EaDRA consistently leads to substantial improve-
ments across all cases, with the encoder and decoder
combination (enc+dec) yielding the highest perfor-
mance on lower-resource setups.

model 50k 100k 250k 1m

T.base 6.2 13.5 19.9 24.1

Fixed-attn 9.3 13.1 19.0 20.4

EaDRAenc 9.4 15.2 20.2 24.4

EaDRAdec 8.1 15.2 20.0 24.4

EaDRAx 8.2 14.1 20.0 24.5

EaDRAdec+x 8.2 14.8 20.0 24.4

EaDRAenc+x 9.0 15.6 20.6 24.6

EaDRAenc+dec 9.7 16.2 20.2 24.1

EaDRAenc+dec+x 9.6 16.1 20.4 24.7

Table 3: Results of applying EaDRA to encoder
self-attention (enc), decoder self-attention (dec), and
cross-attention (x) on 50k, 100k, 250k, and 1m
random samples from WMT14 English-German.
BLEU scores are reported on newstest2014. Fixed-
attn refers to our reimplementation of the Fixed-
attention method (Raganato et al., 2020)

However, the cross-attention component does
not benefit substantially from EaDRA, compared to
the other components and combinations. We spec-
ulate that this observation may be attributed to the
inherent differences in word ordering between the
source and target languages, where EaDRA might
discourage some specific reorderings. Moreover,
EaDRA consistently outperforms Fixed-attention in
all experimental settings and Fixed-attention fails
to exhibit any improvement over the vanilla Trans-
former, except for the smallest training set with
50k samples. Notably, as the amount of training
data decreases, the degree of performance degra-
dation in Fixed-attention also diminishes. In addi-
tion, we conduct experiments with applying Fixed-
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attention to other attention components (decoder
self-attention and cross-attention) and their combi-
nation, observing a notable decline in translation
quality. This observation aligns with the results of
hard-coded attention (You et al., 2020), which re-
vealed that hard-coded encoder and decoder atten-
tion adversely affect translation quality, and hard-
coded cross-attention leads to a more significant de-
crease in BLEU score, potentially due to its higher
importance in the translation process (Voita et al.,
2019; Gheini et al., 2021). Nevertheless, due to
EaDRA’s focus on biasing attentions without im-
posing strict constraints, it exhibits flexibility that
allows for improvements even in case of cross-
attention.

To further explore the impact of EaDRA in
achieving focused attention, we perform a set of
experiments in low-resource settings across various
translation tasks. The results are summarized in Ta-
ble 4, clearly demonstrating the significant improve-
ments achieved by EaDRA. Specifically, our analy-
sis focus on individual attention components as well
as the combined encoder and decoder attention com-
ponents (EaDRAenc+dec), which consistently outper-
formed other combinations in smaller samples from
WMT14 En-De, as shown in Table 3.

Interesting observations arise in the context of
extremely low-resource scenarios, specifically for
Belarusian and Galician datasets, with training sam-
ple sizes of only 4.5k and 10k, respectively. Surpris-
ingly, in these cases, Fixed-attention outperforms
EaDRA. We suspect that this superiority of fixed
attention patterns in extreme scenarios can be at-
tributed to the model’s limited capacity to effec-
tively learn attention distributions with such a small
amount of training data, even when biased towards
selective attention. The fact that the performance
degradation is mitigated as the training size de-
creases and Fixed-attention only exhibits improve-
ment on the smallest dataset, see Table 3, further
supports this hypothesis. Also, this observation
aligns with the findings of Araabi and Monz (2020)
in extremely low-resource settings, which demon-
strate that in the presence of limited data, having
more than two attention heads leads to a significant
performance drop, potentially as the model struggles
to learn attention patterns.

5.3 Hyper-Parameters

We tune the hyperparameters (αpeak, αsent, and αdist)
for every attention components separately, such that
once the optimal value of a hyper-parameter has
been determined, it remains fixed and we sweep over
the next one. 1 We conducted additional experiments
to investigate the influence of the number of atten-
tion heads used in EaDRA. Figure 2 depicts the rela-
tionship between the BLEU score and the number of
attention heads employed in EaDRA (enc), showing
that around 6 attention heads appear to be an optimal
choice. This pattern was consistent across the ex-
periments conducted for decoder self-attention and
cross-attention, indicating that 6 heads yield favor-
able results for all attention components.
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Figure 2: Effect of EaDRA with involving differ-
ent number of encoder attention heads on validation
BLEU score. Similar patterns are observed for other
language pairs and attention components.

Initially, we conducted hyperparameter tuning
on a subset of the data, specifically 100k training
samples from the WMT14 English-German dataset.
This process resulted in a substantial improvement
of +3.1 BLEU points over Fixed-attention. Encour-
aged by these promising results, we proceeded to
apply the same hyperparameter settings to the 50k,
250k, and 1m datasets, which led to substantial im-
provements across all scenarios. These findings
demonstrate the effectiveness of the optimized hy-
perparameter values across different tasks, eliminat-
ing the need for fine-tuning on each individual task.

1For more details, see Appendix A.
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model Be-En Gl-En Sk-En Ko-En Vi-En De-En Tr-En Ja-En
4.5k 10k 55k 90k 133k 160K 207k 223k

T.base 5.0 13.1 22.8 6.5 25.6 32.0 16.2 10.6

Fixed-attn 5.5 18.8 25.4 8.1 25.3 32.4 17.0 11.7

EaDRAenc 5.2 15.3 26.3 7.8 27.3 32.8 17.4 11.8

EaDRAdec 5.2 16.1 25.9 8.3 27.6 33.0 17.6 11.0

EaDRAx 5.3 15.6 25.7 7.6 26.7 32.7 16.6 11.1

EaDRAenc+dec 5.8 16.7 25.3 8.1 27.3 32.9 17.3 11.3

Table 4: Comparing EaDRA applied to single attention components and also combination of encoder and
decoder self-attention with Fixed-attention and Transformer-base for low-resource language pairs.

However, it is important to note that a more thor-
ough hyperparameter sweep for each language pair
in Table 4 produced slightly different optimal pa-
rameter values, which resulted in slight further im-
provements.

5.4 Large pre-trained fine-tuning
Large pre-trained models, such as mBART (Liu
et al., 2020), have become an integral part of many
natural language processing tasks, as they capture
a vast amount of knowledge from extensive train-
ing on massive datasets. Modifying or fine-tuning
such models while preserving their learned repre-
sentations is a challenging task, requiring careful
consideration of the model’s complex architecture,
attention mechanisms, and overall behavior. There-
fore, it is imperative to develop methods that can
leverage the existing strengths of pre-trained mod-
els while pushing for further improvements.

model Ko-En Kk-En Vi-En Tr-En Ja-En
90k 91k 133k 207k 223k

mBART-FT 16.0 17.2 36.0 22.8 16.3

Fixed-attn 15.1 16.8 35.2 21.9 15.7

EaDRAenc 16.0 18.1 36.4 23.0 16.5

EaDRAenc+dec 15.6 17.9 36.1 21.0 16.2

Table 5: Comparison of Fine-tuning mBART using
Fixed-attention (Raganato et al., 2020) and EaDRA
applied to encoder self-attention and also encoder
and decoder self-attention components.

Table 5 shows the effectiveness of applying
EaDRA on top of mBART across all language pairs
except Ko-En. We use the same hyper-parameter
values that were tuned for 100k samples from the

WMT14 En-De dataset. However, interestingly, we
found that involving only two attention heads in
EaDRA yields slightly higher performance. This
observation can be attributed to the fact that the
attention heads in mBART already exhibit a sig-
nificant degree of peakedness—perhaps thanks to
the pretraining—and further regularization through
EaDRA does not yield additional improvements.
We observe a consistent degradation of mBART
when using the Fixed-attention method. One possi-
ble explanation is that applying fixed attention pat-
terns on top of mBART introduces limitations or
constraints that hinder the model’s ability to fully
leverage its capacity, ultimately leading to perfor-
mance degradation. This suggests that the flexibility
and adaptability of mBART’s attention mechanisms
play a crucial role in its overall performance. Fur-
thermore, our experiments with the two most impor-
tance fixed patterns, namely the previous and next
tokens (Raganato et al., 2020), also resulted in per-
formance degradation.

6 Discussion
By introducing regularization techniques that tar-
get distance and entropy in attention heads, we
achieve substantial improvements over various lan-
guage pairs. Extensive experiments demonstrate
the effectiveness of these methods in low-resource
NMT scenarios. The flexibility offered by EaDRA
enables the NMT model to selectively allocate atten-
tion during training. Conversely, fixed and unlearn-
able attention patterns prove to be more beneficial in
the case of extremely low-resource languages with
fewer than 50k training samples. In such scenarios,
fixing the attention mechanism provides a more reli-
able approach, as the model’s capacity to learn from
a small dataset is limited.
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7 Conclusion

In this work, we mitigate the challenge of improving
low-resource NMT by introducing a form of reg-
ularized attentions. We introduce EaDRA, which
promotes focused attention by prioritizing key el-
ements. Extensive experiments on diverse low-
resource language pairs demonstrate significant im-
provements in translation quality, validating the ef-
fectiveness of EaDRA. Our findings highlight the
importance of attention regularization techniques
in enhancing NMT performance, particularly in
low-resource settings. EaDRA offers a practical
and scalable solution with negligible computational
overhead and a few lines of code.

8 Limitations

We only focus on improving low-resource NMT.
However, higher-resource settings might also gain
from regularized attentions facilitated by EaDRA
and it may contribute to faster convergence as well.
Additionally, we demonstrate the effectiveness of
our proposed method using multiple low-resource
language pairs, whereas there are many other lan-
guage pairs with limited data. Furthermore, the en-
couragement of focused attention rather than dis-
persed attention through EaDRA leads us to hypoth-
esize that our method may exhibit higher general-
izability to sentence perturbations. This, in turn,
could result in less volatile behavior of the NMT
system (Fadaee and Monz, 2020). We leave these
investigations to future work.
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9814.

Kim, Y., Denton, C., Hoang, L., and Rush, A. M. (2017).
Structured attention networks. In 5th International
Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Fed-
erico, M., Bertoldi, N., Cowan, B., Shen, W., Moran,
C., Zens, R., Dyer, C., Bojar, O., Constantin, A., and
Herbst, E. (2007). Moses: Open source toolkit for sta-
tistical machine translation. In Carroll, J. A., van den
Bosch, A., and Zaenen, A., editors, ACL 2007, Pro-
ceedings of the 45th Annual Meeting of the Associa-
tion for Computational Linguistics, June 23-30, 2007,

Prague, Czech Republic. The Association for Compu-
tational Linguistics.

Koehn, P. and Knowles, R. (2017). Six challenges for
neural machine translation. In Luong, T., Birch, A.,
Neubig, G., and Finch, A. M., editors, Proceedings
of the First Workshop on Neural Machine Translation,
NMT@ACL 2017, Vancouver, Canada, August 4, 2017,
pages 28–39. Association for Computational Linguis-
tics.

Kudo, T. and Richardson, J. (2018). Sentencepiece: A
simple and language independent subword tokenizer
and detokenizer for neural text processing. In Blanco,
E. and Lu, W., editors, Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2018: System Demonstrations, Brus-
sels, Belgium, October 31 - November 4, 2018, pages
66–71. Association for Computational Linguistics.

Lin, J., Sun, X., Ren, X., Li, M., and Su, Q. (2018).
Learning when to concentrate or divert attention:
Self-adaptive attention temperature for neural machine
translation. In Riloff, E., Chiang, D., Hockenmaier, J.,
and Tsujii, J., editors, Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, Brussels, Belgium, October 31 - November
4, 2018, pages 2985–2990. Association for Computa-
tional Linguistics.

Liu, Y., Gu, J., Goyal, N., Li, X., Edunov, S., Ghazvinine-
jad, M., Lewis, M., and Zettlemoyer, L. (2020). Multi-
lingual denoising pre-training for neural machine trans-
lation. Trans. Assoc. Comput. Linguistics, 8:726–742.

Meister, C., Salesky, E., and Cotterell, R. (2020). Gener-
alized entropy regularization or: There’s nothing spe-
cial about label smoothing. In Jurafsky, D., Chai, J.,
Schluter, N., and Tetreault, J. R., editors, Proceed-
ings of the 58th Annual Meeting of the Association for
Computational Linguistics, ACL 2020, Online, July 5-
10, 2020, pages 6870–6886. Association for Computa-
tional Linguistics.

Mitchell, T. M. (1980). The need for biases in learning
generalizations. Citeseer.

Montahaei, E., Alihosseini, D., and Baghshah, M. S.
(2019). Jointly measuring diversity and quality in text
generation models. CoRR, abs/1904.03971.

Ng, N., Yee, K., Baevski, A., Ott, M., Auli, M., and
Edunov, S. (2019). Facebook fair’s WMT19 news

Proceedings of the 16th Conference of the Association for Machine Translation in the Americas,

Chicago, USA, September 30 - October 2, 2024. Volume 1: Research Papers



translation task submission. In Bojar, O., Chatterjee,
R., Federmann, C., Fishel, M., Graham, Y., Haddow,
B., Huck, M., Jimeno-Yepes, A., Koehn, P., Martins,
A., Monz, C., Negri, M., Névéol, A., Neves, M. L.,
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9 Appendices

A Optimal hyperparameter values

The optimal values for the hyperparameters of sev-
eral models discussed in the paper are presented in
Table 6. Interestingly, our preliminary experiments
indicate that αdist appears to render αpeak redundant.
As for the remaining models not listed in the table,
we adopt the same hyperparameter values as those
used for WMT En-De (100k) experiments. Fur-
thermore, for experiments with applying EaDRA to
combinations of attention heads, we do not perform
additional hyperparameter tuning.

Dataset αdist αsent

EaDRAenc

WMT En-De (100k) 0.02 0.8

Be-En 0.02 1.2

Gl-En 0.02 0.8

Sk-En 0.02 0.8

Ko-En 0.01 0.4

Vi-En 0.02 0.6

Tr-En 0.04 1.2

Ja-En 0.02 0.8

EaDRAx

WMT En-De (100k) 0.1 8

Be-En 0.1 8

Gl-En 0.15 5

Sk-En 0.1 8

Ko-En 0.05 8

Vi-En 0.2 8

Tr-En 0.1 10

Ja-En 0.1 10

EaDRAdec

WMT En-De (100k) 2 0.8

Be-En 1 0.9

Gl-En 1 0.8

Sk-En 2 0.8

Ko-En 0.5 0.8

Vi-En 4 1

Tr-En 3 1.5

Ja-En 2 0.8

Table 6: Hyperparameters of EaDRAenc, EaDRAx,
and EaDRAdec for the models presented in the pa-
per.

B Ablation study

To gain deeper insights into the individual contribu-
tions of the proposed regularization terms, we con-
ducted an ablation study focusing on the English-
German language pair, utilizing a training set of
100k samples from WMT. The study specifically
aimed to isolate the effects of the distance and sen-
tence regularization terms. Table 7 demonstrates
that employing only the distance regularization term
resulted in attention heads converging to trivial so-
lutions, leading to a concentration of attention on a
single token within a sentence. While this induced
a reduction in entropy, it adversely impacted over-
all performance. Conversely, exclusive reliance on
the sentence regularization term led to an overly uni-
form attention distribution, manifesting as a diago-
nal attention pattern across the sentence.

These findings emphasize the necessity of
striking a balance between the two regularization
terms. The combination of both distance and sen-
tence regularization proves instrumental in achiev-
ing the desired focused attention distribution, thus
reinforcing the efficacy of our proposed approach
in low-resource NMT scenarios. It is worth not-
ing that while EaDRAenc+dec was used for this ab-
lation study, it is conceivable that alternative config-
urations would have produced similar results.

Method αdist αsent BLEU

T.base 0.00 0.00 13.5

EaDRA 0.02 0.80 16.2

EaDRA w/o αdist 0.00 0.80 15.2

EaDRA w/o αdist 0.02 0.00 0.7

Table 7: Ablation study results for English-German
task with 100k training samples from WMT14.
EaDRAenc+dec is used for this experiment.

C Convergence Speed Analysis

Given that EaDRA introduces a term into the loss
function, it is imperative to assess its convergence
speed. In Figure 3, we present the validation scores
for two systems trained with 100k English-German
samples from WMT14 on the same GPU.
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Figure 3: Convergence speed comparison on valida-
tion scores of EaDRA and T-base models trained on
100k English-German samples from WMT14.

The results demonstrate that EaDRA sustains a
convergence speed comparable to the baseline. This
observation underscores the efficiency of EaDRA in
terms of convergence, further solidifying its viabil-
ity in practical applications. This suggests that the
incorporation of EaDRA does not come at the cost
of prolonged training times, making it a practical
choice for low-resource NMT tasks
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Abstract

Despite advancements in neural machine translation, word sense disambiguation remains challenging, partic-
ularly with limited textual context. Multimodal Machine Translation enhances text-only models by integrat-
ing visual information, but its impact varies across translations. This study focuses on ambiguous sentences
to investigate the effectiveness of utilizing visual information. By prioritizing these sentences, which benefit
from visual cues, we aim to enhance hybrid multimodal and text-only translation approaches. We utilize
Latent Semantic Analysis and Sentence-BERT to extract context vectors from the British National Corpus,
enabling the assessment of semantic diversity. Our approach enhances translation quality for English-German
and English-French on Multi30k, assessed through metrics including BLEU, chrF2, and TER.

1 Introduction

Neural Machine Translation (NMT) has sig-
nificantly improved translation quality with
transformer-based models (Cho et al., 2014;
Vaswani et al., 2018), integrating cross-attention
for better semantic understanding (Vaswani et al.,
2017). Despite focusing on the broader context in
the text-only translation model, resolving word am-
biguity persists as a challenge. In natural language,
lexical ambiguity (Gonzales et al., 2017) refers to
the occurrence where a single word possesses multi-
ple meanings or interpretations, thereby complicat-
ing comprehension of the text. For example, in the
domain of finance and economy, the word ”bank”
almost always refers to a financial institution rather
than the side of a river.

Multimodal Machine Translation (MMT), a
subset of NMT, incorporates visual information to
enhance translations. Recent studies highlight the

potential of leveraging both textual and visual data
to improve accuracy and contextuality (Yao and
Wan, 2020; Zhao et al., 2022; Wang and Xiong,
2021; Hatami et al., 2023). MMT utilises visual
cues to disambiguate input words and select appro-
priate translations, particularly beneficial for am-
biguous sentences or when visual context provides
crucial details not explicit in the text. Despite the
benefits of integrating visual information into MMT,
this can sometimes result in degraded translation
quality, particularly when there is insufficient data,
including parallel visual and textual data, to ade-
quately train the model. For sentences with unam-
biguous interpretations, textual context alone might
suffice for accurate translation. Unlike NMT, MMT
can be susceptible to noise or irrelevant information
in the visual data, which may introduce errors or dis-
tractions, leading to inaccurate translations.

This paper aims to explore the correlation be-
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tween sentence ambiguity and translation quality,
focusing on effectively integrating visual cues into
the translation process to enhance overall qual-
ity. We assess sentence ambiguity using seman-
tic diversity in Latent Semantic Analysis (LSA)
and Sentence-BERT (S-BERT) vector embedding
spaces, investigating the impact of visual informa-
tion across varying levels of ambiguity. By experi-
menting with different ambiguity scores, we deter-
mine the optimal value where visual cues enhance
translation quality, comparing outcomes with text-
only and multimodal models. For sentences with
low ambiguity, we employ a text-only approach,
while for those with higher ambiguity, we utilize a
multimodal approach.

2 Related Work

Lexical ambiguity presents a major hurdle in ma-
chine translation, making it challenging to discern
the correct word meaning and translation due to
multiple senses and contextual variations. While
Multimodal Machine Translation (MMT) leverages
visual cues to aid disambiguation, the efficacy of vi-
sual features varies, particularly when textual con-
text is sufficient. Despite the potential of visual
cues to improve accuracy, their impact may be con-
strained when textual information is already rich.
This underscores the importance of seamlessly in-
tegrating visual and textual data for optimal transla-
tion outcomes (Caglayan et al., 2016, 2019).

Various methodologies have been proposed to
enhance the quality of the visual modality in MMT.
For example, Yao and Wan (2020) introduced a mul-
timodal transformer-based self-attention mechanism
to encode relevant image information. To capture
diverse relationships, Yin et al. (2020) proposed a
graph-based multimodal fusion encoder. Ive et al.
(2019) devised a translate-and-refine mechanism,
employing images in a second-stage decoder to re-
fine text-only NMT models for ambiguous words.
Additionally, Calixto et al. (2019) utilised a latent
variable model to extract multimodal relationships
between images and text. Recent methods aim to
mitigate visual information noise and select relevant
visual features correlated with text. For instance,
Wang and Xiong (2021) employed object-level vi-
sual modeling to mask irrelevant objects and specific
words in the source text, facilitating visual feature
analysis. Similarly, Zhao et al. (2022) integrated ob-

ject detection into the image encoder to extract vi-
sual features of object regions and applied them to a
doubly-attentive decoder model.

The Multimodal Lexical Translation (MLT)
approach aims to accurately translate ambiguous
words within both visual and textual contexts. In-
troduced with the MLT dataset, which includes 4-
tuples of ambiguous words, visual and textual con-
texts, and translations aligned with both, this re-
source facilitates the evaluation of lexical disam-
biguation within Multimodal Machine Translation
(MMT) (Lala and Specia, 2018). The study by
Lala et al. (2018) examines the effectiveness of mul-
timodal re-ranking methods in improving a stan-
dard sequence-to-sequence attention-based Neural
Machine Translation (NMT) system. By integrat-
ing cross-lingual word sense disambiguation and
data augmentation techniques, the authors aim to
enhance translation quality and develop an image-
based, cross-lingual approach for accurately predict-
ing translation candidates for ambiguous words in
the source sentence.

The translate-and-refine approach (Ive et al.,
2019), introduced to improve upon previous MMT
model, employs images in a second-stage decoder
to refine translation drafts by incorporating both
textual and visual contexts. This method achieves
state-of-the-art results, demonstrating superior per-
formance over text-only models, especially in com-
plex linguistic scenarios, by refining translations
only when necessary through deliberation networks.
In their analysis, Tang et al. (2018) examine how
encoder-decoder attention mechanisms in Neural
Machine Translation (NMT) models handle am-
biguous nouns during word sense disambiguation
(WSD). Contrary to expectations, attention tends to
focus more on the ambiguous noun itself rather than
surrounding context tokens, suggesting that contex-
tual information for WSD is primarily encoded in
the encoder’s hidden states. This study sheds light
on the challenges of WSD in NMT models, particu-
larly due to data sparsity, and offers insights into the
learning process of attention mechanisms in Trans-
formers.

In addressing ambiguity in Multimodal Ma-
chine Translation (MMT), Futeral et al. (2023) pro-
pose a novel approach incorporating neural adapters,
guided self-attention mechanisms, and a visually
conditioned masked language modeling objective.
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Figure 1: Histogram showing the distribution of lexical ambiguity scores across words in BNC (left: S-
BERT and right: LSA)

Their study underscores the importance of using
image context to improve translation quality, intro-
ducing the CoMMuTE dataset as a tool to evaluate
and enhance multimodal translation. The dataset
includes 155 English sentences with two possible
translations in French, German, and Czech, facili-
tating assessment of MMT models in leveraging vi-
suals for accurate translations, especially with am-
biguous content. In Bowen et al. (2024), tech-
niques for identifying visually and contextually rel-
evant tokens in Multimodal Machine Translation
(MMT) systems are explored, employing natural
language processing (NLP), object detection, and
deterministic selection strategies. The study, con-
ducted using the GRAM MMT architecture (Vi-
jayan et al., 2024), reveals performance improve-
ments over baseline models by training on syntheti-
cally collated datasets of masked sentences and im-
ages, emphasizing the importance of visual context
in enhancing translation accuracy within MMT sys-
tems. In Hatami et al. (2022), an approach utilizing
WordNet synsets to gauge sentence ambiguity was
proposed to evaluate the effect of incorporating vi-
sual information in translation models, demonstrat-
ing the potential of visual cues to improve transla-
tion accuracy, especially in challenging tasks like
English-German translation, as observed in the anal-
ysis of the Multi30k dataset.

This paper investigates how integrating visual
elements affects translation quality by examining
the relationship between sentence ambiguity and ac-
curacy, using semantic diversity in sentence vec-
tor spaces to quantify ambiguity and assessing the
impact of visual information on translation quality
across different levels of ambiguity scores.

3 Methodology

This section details the methodology for enhancing
translation quality in MMT by utilizing semantic
diversity. It involves computing lexical ambiguity
scores for nouns, extending to sentence-level ambi-
guity, and exploring sentence ambiguity to optimize
translation scores for text-only and MMT models.

3.1 Lexical Ambiguity Score
We computed the lexical ambiguity score for all
words in the British National Corpus (BNC) by to-
kenizing sentences from the Multi30k dataset train-
ing set, resulting in a word list with 10,105 unique
words, including morphological variants to capture
potential differences in ambiguity scores based on
their roles in sentences. Utilizing Latent Seman-
tic Analysis (Landauer and Dumais, 1997) and S-
BERT (Reimers and Gurevych, 2019), we derived
lexical ambiguity scores based on distributional se-
mantics (Harris, 1954), which infer word meanings
from contextual usage, considering that words ap-
pearing in the same context likely share the same
meaning, while differing contexts may lead to var-
ied interpretations.

In adopting LSA based on Hoffman’s
work (Hoffman et al., 2012), we segmented the
BNC corpus into 1,000-word texts to construct a co-
occurrence matrix, applying singular value decom-
position (SVD) to reveal latent semantic structures
and word associations. Concurrently, for S-BERT,
we segmented the BNC into sentences, preprocess
them for quality, and utilized the pre-trained S-
BERT model1 to generate 768-dimensional sentence
embeddings, capturing semantic information com-
prehensively. To compute lexical ambiguity, we as-

1https://www.sbert.net/
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Figure 2: Average Semantic Diversity (SemD) across different bins, displaying the top 5 words in each bin
from BNC (left: S-BERT and right: LSA)

sessed textual similarity through LSA and S-BERT,
leveraging Semantic Diversity (SemD) scores to rep-
resent ambiguity. By measuring cosine similarity
between vectors, we determined ambiguity levels,
with higher similarity indicating lower ambiguity
and vice versa, enabling precise ambiguity scoring
for individual words. To do this, we first calculated
the mean of the similarity of all pairwise combi-
nations of texts or sentences including the word
(w). Then we took the logarithm of this mean and
reversed the sign to obtain the SemD value of the
word (w). The equation for SemD of word w is:

SemDw = −log(

∑
i,j ϵ Vw

cos sim(vi, vj)

n
)

where Vw is the set of all context vectors for
word w, and vi, vj ϵ Vw.

The histograms in Figure 1 compare the dis-
tribution of words across different ambiguity score
ranges for LSA and S-BERT. S-BERT shows a pos-
itively skewed distribution, with most words having
lower ambiguity scores, while LSA displays a nega-
tively skewed distribution, indicating a higher preva-
lence of words with higher ambiguity scores.

Figure 2 illustrates the average SemD across 6
bins, showcasing the lexical ambiguity scores along
with the top 5 words in each bin. These results, de-

rived from the BNC, compare S-BERT and LSA in
assigning SemD to each word.

3.2 Sentence Ambiguity Score

After computing SemD values for all words in the
vocabulary, we utilize these values to derive ambi-
guity scores for sentences in the test set, focusing
solely on nouns, which carry specific semantic con-
tent and are extracted using SpaCy2.

To compute the ambiguity score at the sentence
level, two mathematical functions, the arithmetic
mean (Mean) and the geometric mean (G-Mean),
are utilized. The arithmetic mean aggregates and di-
vides the lexical ambiguity scores of all nouns in a
sentence by the total number of content words, giv-
ing equal weight to each score, while the geomet-
ric mean calculates the n-th root of the product of
lexical ambiguity scores, assigning less weight to
larger values and mitigating the influence of outliers.
These methods enable the quantification of ambigu-
ity within sentences, facilitating comparisons based
on their ambiguity scores.

The histograms in Figure 3 display sentence
ambiguity scores calculated using Mean and G-
Mean for LSA and S-BERT. LSA exhibits a normal
distribution of scores between 1.13 and 2.18, while
S-BERT shows a positively skewed distribution be-

2https://spacy.io/usage/linguistic-features
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(a) S-BERT (G-Mean) (b) LSA (G-Mean)

Figure 3: Histograms showing the distribution of sentence ambiguity scores across sentences in Multi30k

tween 0.55 and 1.00, indicating lower ambiguity.
These ambiguity scores are used to sort sentences
in the test set in ascending order and then apply a
hybrid approach to translate the sentences. In Sec-
tion 3.3, we explain the details of this approach.

3.3 Translation Quality Measure
Despite the benefits of incorporating visual data into
multimodal machine translation (MMT), its use can
sometimes lead to reduced translation quality com-
pared to text-only approaches. This decline may oc-
cur due to the presence of noise or irrelevant visual
information, which could introduce errors or distrac-
tions, ultimately resulting in inaccurate translations
(see Figure 4).

We utilize sentence ambiguity scores based on
SemD to decide between using Text-only or Multi-
modal models for translation. By adopting a hybrid
approach, we determine whether visual information
enhances translation quality, leveraging the ambigu-
ity score to select the most suitable model for sen-
tences in a specific ambiguity range. After comput-
ing ambiguity scores for all sentences in the test set,
we ranked the sentences based on the sentence am-
biguity score calculated using Mean and G-Mean for
both LSA and S-BERT. Then we divided the test set
into 20 sets, each including 50 sentences. The first
set in the sorted sentence list has the lowest ambi-
guity score, and the last set has the highest ambigu-
ity score. The hybrid approach aims to employ the
Text-only MT model for sentence sets with lower
ambiguity and utilize Multimodal models for those
with higher ambiguity. By using a Hybrid model,
we explore the effectiveness of visual information in
translating sentences with higher ambiguity scores,
thereby evaluating translation quality to determine

the optimal range of ambiguity for leveraging visual
information.

Figure 4: Comparing sentence-level BLEU scores of
Text-only and Multimodal MT models for English to
German translation on the Multi30k 2016 test set.

4 Experimental Setup

This section provides insights into the dataset used
in this work, neural architectures involving text-only
and multimodal models, and context vector embed-
ding methods: LSA and S-BERT, and the translation
evaluation metrics BLEU, ChrF2 and TER.

4.1 Dataset
During our experiment, we employed two datasets:
the British National Corpus (BNC) and Multi30k.
The BNC facilitated the extraction of sentence vec-
tors for computing lexical ambiguity, while the
Multi30k dataset served for training and evaluating
our translation models.

4.1.1 British National Corpus (BNC)
The British National Corpus (BNC) (Aston and
Burnard, 1998) is a vast collection comprising 100
million words of both written and spoken British En-
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glish texts, designed to represent the language com-
prehensively. It encompasses diverse sources such
as newspapers, periodicals, academic books, fiction,
letters, and spoken conversations, offering insights
into contemporary British English usage across var-
ious contexts. As a rich repository of language pat-
terns and expressions, the BNC serves as a valuable
resource for linguistic research and language anal-
ysis, facilitating a deeper understanding of British
English in its diverse forms.

4.1.2 Multi30k Dataset
Multi30K (Elliott et al., 2016) is an extension of the
Flickr30K Entities dataset that consists of 29,000
images paired with descriptions in English, along
with translated sentences in German, French, and
Czech (Elliott et al., 2017). The dataset is specifi-
cally designed for evaluating MMT systems, where
both textual and visual information are utilised for
translation tasks. Multi30K provides validation and
test sets, each containing 1,000 images aligned with
the descriptions.

4.2 Semantic Representation Techniques
In this section, we explain two techniques for ex-
tracting semantic representation vectors from given
contexts: Latent Semantic Analysis and S-BERT.
These approaches offer sophisticated methods to
capture the underlying semantic meanings embed-
ded within texts, which can be used to determine the
similarity between them.

4.2.1 Latent Semantic Analysis (LSA)
LSA is a technique that leverages patterns of word
co-occurrence to construct high-dimensional se-
mantic spaces. To implement LSA, the BNC is
divided into text samples, each representing a dif-
ferent context. A co-occurrence matrix is gener-
ated, tracking which words appear in each context.
Each word is represented as a vector, with elements
corresponding to its frequency in a context. Using
singular value decomposition (SVD), LSA extracts
the underlying structure in the co-occurrence matrix,
revealing higher-order relationships between words
based on their co-occurrence patterns. SVD re-
duces the dimensionality of the word vectors (to 300
dimensions), with the similarity structure of these
vectors approximating the original matrix. Conse-
quently, word representations can be interpreted as
points in a high-dimensional space, where proxim-

ity indicates similarity in meaning based on con-
text. Additionally, LSA places individual contexts
in the same semantic space, enabling comparisons
between contexts based on their content similarity.

4.2.2 S-BERT
S-BERT extends the capabilities of the BERT model
by focusing on generating high-quality sentence em-
beddings. Unlike traditional BERT models, which
are primarily trained on word-level tasks like next-
sentence prediction and masked language model-
ing, S-BERT fine-tunes the BERT architecture to
produce embeddings at the sentence level. It was
trained on a combination of two Natural Lan-
guage Inference (NLI) datasets: the Stanford NLI
(SNLI) dataset and the Multi-Genre NLI (MultiNLI)
dataset. S-BERT typically employs Siamese or
triplet network architectures during fine-tuning, en-
abling it to capture contextual information and nu-
ances in meaning. By considering the surround-
ing context, S-BERT generates embeddings that are
suitable for tasks such as semantic textual similarity.
Cosine similarity between associated sentence vec-
tors indicates the similarity between word meanings
in different sentences, with higher similarity indicat-
ing lower ambiguity in word meaning.

4.3 Neural Machine Translation
4.3.1 Text-only Machine Translation
A text-only transformer model serves as the base-
line in our experiment, utilizing solely the textual
captions of images for translation. Trained using
the OpenNMT toolkit (Klein et al., 2018) on the
Multi30k dataset for English to German, French,
and Czech translations, the model comprises a 6-
layer transformer architecture with attention mech-
anisms in both encoder and decoder stages, trained
for 50K steps. Sentencepiece (Kudo and Richard-
son, 2018) is employed to segment words into sub-
word units, offering a language-independent ap-
proach to tokenization without necessitating pre-
processing steps, thus enhancing the model’s adapt-
ability and versatility in handling raw text.

4.3.2 Multimodal Machine Translation
In the MMT model, we adopt the Gated Fusion
MMT model Wu et al. (2021), which fuses visual
and text representations by employing a gate mech-
anism. Gated Fusion is a mechanism used to inte-
grate visual information from images with textual
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En → De Test 2016 Test 2017
LSA S-BERT LSA S-BERT

BLEU ↑ chrF2 ↑ TER ↓ BLEU ↑ chrF2 ↑ TER ↓ BLEU ↑ chrF2 ↑ TER ↓ BLEU ↑ chrF2 ↑ TER ↓
Baseline (MMT) 40.1 64.6 40.6 40.1 64.6 40.6 31.9 59.8 49.6 31.9 59.8 49.6
Hybrid (50) 40.7 65.0 39.9 40.7 65.0 39.8* 32.6 60.6* 48.5* 32.6 60.5* 48.5*
Hybrid (100) 40.8 65.0 39.7* 40.9 65.0 39.7* 32.5 60.4* 48.6* 32.6 60.5* 48.6*
Hybrid (150) 40.8 65.0* 39.9* 40.9 65.0 39.8* 32.4 60.3 48.8* 32.4 60.4* 48.8*
Hybrid (200) 40.6 65.0 40.1 40.7 64.9 39.9 32.4 60.3 48.6* 32.3 60.4* 48.8*
Hybrid (250) 40.6 64.9 40.2 40.5 64.9 40.1 32.2 60.2 48.8* 32.1 60.3 49.0
Hybrid (300) 40.6 65.0 40.2 40.5 64.8 40.1 32.0 60.1 49.0* 32.1 60.1 49.0
Hybrid (350) 40.5 64.8 40.3 40.4 64.7 40.1 32.1 60.1 48.9* 32.0 59.9 49.1
Hybrid (400) 40.5 64.8 40.2 40.5 64.8 40.0 32.3 60.1 48.8* 31.9 59.9 49.1
Hybrid (450) 40.4 64.7 40.3 40.5 64.8 40.0 32.1 59.9 49.0* 32.0 60.0 49.0*
Hybrid (500) 40.4 64.7 40.3 40.5 64.7 40.2 32.2 60.0 49.0* 32.1 60.0 49.0*
Hybrid (550) 40.3 64.7 40.4 40.4 64.8 40.1 32.2 59.9 49.0* 32.0 59.9 49.1*
Hybrid (600) 40.2 64.6 40.5 40.4 64.7 40.1 32.1 59.8 49.2 31.9 59.9 49.2
Hybrid (650) 40.3 64.7 40.4 40.3 64.6 40.1* 32.0 59.8 49.2 32.2 59.9 49.1*
Hybrid (700) 40.3 64.7 40.3 40.2 64.5 40.4 32.2 59.8 49.3 32.1 59.8 49.2*
Hybrid (750) 40.3 64.7 40.3 40.2 64.6 40.3 32.3 59.9 49.3 32.2 59.9 49.3
Hybrid (800) 40.3 64.7 40.4 40.2 64.7 40.3 32.3 59.9 49.3 32.2 59.8 49.4
Hybrid (850) 40.1 64.6 40.4 40.3 64.7 40.2* 32.2 59.9 49.5 32.4* 59.9 49.4
Hybrid (900) 40.1 64.5 40.5 40.3 64.7 40.2* 32.1 59.9 49.6 32.2* 59.9 49.5
Hybrid (950) 40.2 64.7 40.5 40.2 64.7 40.4 31.9 59.8 49.7 32.0 59.8 49.6

En → Fr Test 2016 Test 2017
LSA S-BERT LSA S-BERT

BLEU ↑ chrF2 ↑ TER ↓ BLEU ↑ chrF2 ↑ TER ↓ BLEU ↑ chrF2 ↑ TER ↓ BLEU ↑ chrF2 ↑ TER ↓
Baseline (MMT) 62.3 75.3 25.5 62.3 75.3 25.5 55.6 70.7 30.9 55.6 70.7 30.9
Hybrid (50) 62.1 75.4 25.2 62.2 75.5 25.1 55.9 71.0 30.8 55.9 71.1 30.8
Hybrid (100) 62.0 75.3 25.3 62.2 75.5 25.2 55.9 71.1 30.7 56.0 71.1 30.7
Hybrid (150) 61.8 75.2 25.4 62.1 75.4 25.3 55.9 71.0 30.7 55.8 71.0 30.9
Hybrid (200) 61.7 75.2 25.3 62.0 75.3 25.4 55.9 71.1 30.6 55.9 71.1* 30.7
Hybrid (250) 61.8 75.2 25.4 61.9 75.2 25.4 55.7 70.9 30.7 55.9 71.1* 30.7
Hybrid (300) 61.8 75.2 25.4 61.9 75.2 25.5 55.5 70.9 30.8 55.7 70.9 30.7
Hybrid (350) 61.7* 75.1 25.6 61.7 75.1 25.5 55.5 70.8 30.9 55.8 71.0 30.7
Hybrid (400) 61.7* 75.1 25.6 61.6* 75.0 25.7 55.6 70.8 30.8 55.9 71.1* 30.7
Hybrid (450) 61.7* 75.1 25.6 61.7* 75.0 25.8 55.5 70.8 30.8 55.9 71.0 30.7
Hybrid (500) 61.6* 75.1 25.7 61.7* 75.0 25.7 55.5 70.7 31.0 55.8 70.9 30.7
Hybrid (550) 61.8* 75.1 25.6 61.8* 75.0 25.8 55.3 70.6 31.0 55.7 70.8 30.9
Hybrid (600) 61.9 75.1 25.6 61.9 75.1 25.7 55.3 70.6 31.0 55.5 70.7 31.0
Hybrid (650) 62.0 75.2 25.6 62.0 75.2 25.5 55.5 70.6 31.0 55.5 70.7 31.0
Hybrid (700) 62.1 75.3 25.5 62.1 75.2 25.5 55.4 70.6 31.1 55.5 70.7 31.1
Hybrid (750) 62.0 75.2 25.7 62.0 75.2 25.6 55.5 70.7 31.0 55.4 70.7 31.1
Hybrid (800) 62.0* 75.1* 25.7 62.1 75.2 25.6 55.5 70.6 31.0 55.3 70.6 31.1
Hybrid (850) 62.0* 75.1* 25.6 62.1 75.2 25.6 55.6 70.7 31.0 55.5 70.7 31.1
Hybrid (900) 62.1 75.2 25.6 62.2 75.2 25.6 55.6 70.7 30.9 55.6 70.7 31.0
Hybrid (950) 62.3 75.3 25.5 62.1 75.2* 25.7* 55.6 70.7 31.0 55.6 70.7 31.0

Table 1: BLEU, chrF2, and TER scores for baseline and Hybrid models for English-to-German and English-
to-French translations. Numbers in parentheses show sentences where the model uses visual information
(e.g., Hybrid (50) refers to the top 50 ambiguous sentences using Multimodal, while the remaining 950 use
a text-only model). * indicates a statistically significant result compared to the baseline multimodal at a
significance level of p < 0.05. Bold numbers indicate the best results in each test dataset for each score.

information from source sentences during the trans- lation process. The main idea behind Gated Fu-
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sion is to control the amount of visual information
that is blended into the textual representation us-
ing a gating matrix. The source sentence x is fed
into a vanilla Transformer encoder to obtain a tex-
tual representation Htext of dimension T×d. The
image z is processed using a pre-trained ResNet-
50 CNN which has been trained on the ImageNet
dataset (Russakovsky et al., 2015) to extract a 2048-
dimensional average-pooled visual representation,
denoted as Embedimage(z). The visual represen-
tation Embedimage(z) is projected to the same di-
mension as Htext using a weight matrix Wz . A gat-
ing matrix of dimension T×d is generated to control
the fusion of the textual and visual representations.
The gating matrix is computed as:

Λ = sigmoid(WΛEmbedimage(z) + UΛHtext)

where W and U are model parameters.

4.4 Evaluation Metrics
We use three evaluation metrics: BLEU (Pap-
ineni et al., 2002), ChrF2 (Popović, 2015), and
TER (Snover et al., 2006). BLEU assesses transla-
tion precision by comparing candidate translations
to reference translations based on n-grams. ChrF2
evaluates the similarity between character n-grams
in machine-generated and reference translations,
particularly beneficial for languages with complex
writing systems. TER quantifies the number of edits
needed to align machine translations with human-
generated references. We conduct statistical signifi-
cance testing using the sacrebleu3 toolbox.

5 Results

In this section, we analyze the results of our ex-
periments. We present the findings for both LSA
and S-BERT approaches on the 2016 and 2017
Multi30k test sets for English to German and En-
glish to French translations. Table 1 provides a com-
prehensive comparison of different models’ perfor-
mance in terms of BLEU, chrF2, and TER metrics,
offering insights into the effectiveness of integrating
sentence ambiguity scores with a multimodal setting
in English to German and French translations. We
report translation scores for the baseline multimodal

and the Hybrid models for LSA and S-BERT using
G-Mean4.

Table 1 presents the translation performance of
baseline and Hybrid models for English-to-German
(En → De) and English-to-French (En → Fr) across
different test datasets and Hybrid configurations.
The table highlights metrics including BLEU score
(higher is better), chrF2 score (higher is better), and
TER score (lower is better). Each Hybrid model
variant is indicated by the number of sentences (in
parentheses) where visual information aids transla-
tion, with the remainder utilizing a text-only model5.
Statistically significant improvements over the base-
line multimodal model at p<0.05 are marked with *,
while the best-performing scores in each dataset are
indicated in bold.

The results indicate that the sentence ambigu-
ity score plays an important role in determining the
importance of using visual information in English-
to-German translation compared with English-to-
French translation. In English-to-German transla-
tion for Test 2016, the baseline multimodal model
achieves a performance with a BLEU score of 40.1,
a chrF2 score of 64.6, and a TER of 40.6 using LSA
and S-BERT. In contrast, the Hybrid models show
improvements over the baseline. In LSA, Hybrid
(50) achieves a BLEU score of 40.7, a chrF2 score
of 65.0, and a TER of 39.9. Hybrid (100) and Hybrid
(150) continue to outperform the baseline across all
metrics. In S-BERT, similar to LSA, Hybrid (100)
and Hybrid (150) achieved a BLEU score of 40.9, a
chrF2 score of 65.0, and notably reduced the TER
to 39.7. For both LSA and S-BERT, Hybrid (50)
to Hybrid (150) achieve statistically significant im-
provements in chrF2 and TER in some configura-
tions. By increasing the number of sentences that
the Hybrid model uses visual information for, the
results get close to the baseline multimodal model
(see Hybrid (950)). For Test 2017, the performance
of the Hybrid models remains consistent with Test
2016, indicating stability in the proposed approach
for English-to-German translation. For this test set,
Hybrid (50) maintains improvements over the base-
line with a BLEU score of 32.6, a chrF2 score of
60.6, and a TER of 48.5, representing a statisti-

3https://github.com/mjpost/sacrebleu
4Based on our experiments, G-Mean shows better results compared with Mean. Therefore, due to limited space, we reported the

results for G-Mean.
5The total number of sentences in the test sets is 1,000.
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(a) En → De, Test 2016 (b) En → De, Test 2017

(c) En → Fr, Test 2016 (d) En → Fr, Test 2017

Figure 5: The charts display BLEU scores across various Hybrid models in English to German and French
for the 2016 and 2017 test sets. Solid lines represent BLEU scores for S-BERT and LSA, while dashed lines
indicate the overall performance for multimodal MT models.

cally significant improvement over the baseline. Hy-
brid (100) and Hybrid (150) consistently outperform
the baseline, with results showing statistical signifi-
cance.

In English-to-French translation, the Hybrid
models show slight improvement over the baseline
multimodal model. In Test 2016, the baseline model
has a higher BLEU score compared with the Hybrid
models. The Hybrid model of 50 slightly improves
the chrF2 and TER scores, but they are not statis-
tically significant. Similar to Test 2016, Test 2017
does not represent notable improvements regarding
BLEU, chrF2, and TER scores. This indicates that
the idea of using ambiguity scores to evaluate the
importance of using visual information is less effec-
tive for English-to-French translation.

To better analyze the role of a sentence ambigu-
ity score in the proposed Hybrid models, the BLEU
scores for LSA and S-BERT for G-Mean are pre-
sented in Figure 5. In each subgraph, the red dashed

line shows the overall BLEU scores for the base-
line multimodal model for each language pair in the
2016 and 2017 test sets. The orange and blue lines
show the BLEU scores in different Hybrid models.
For both language combinations, LSA and S-BERT
follow the same pattern. In English-to-German
translation, by increasing the number of sentences
in the Hybrid model, the BLEU scores started from
40.9 and 32.6 for Test 2016 and Test 2017, respec-
tively, and reached the baseline multimodal mod-
els. This indicates that visual information is use-
ful in translating around 150 sentences with higher
ambiguity scores. However, using visual informa-
tion for the remaining sentences with lower ambigu-
ity ranking sharply drops translation performance.
In contrast, for English-to-French translation, we do
not see the same pattern. In Test 2016, all Hybrid
models have BLEU scores lower than the baseline
multimodal model, showing the effectiveness of us-
ing visual information in most sentences. In Test
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Figure 6: Examples from Multi30k illustrate the effectiveness of using images based on the ambiguity level
of the source sentence. The top image shows a source sentence with a low ambiguity score (1.46), which
was translated more accurately using the Text-only model. The bottom image shows a source sentence with
a high ambiguity score (1.81), where the Multimodal model provided a better translation.

2017, there are consistent fluctuations by changing
the number of sentences, but it remains above the
baseline model except in a few cases.

Figure 6 shows examples from the Multi30k
dataset to illustrate the impact of sentence ambiguity
on the effectiveness of translation models. The top
image presents a source sentence with a low ambi-
guity score of 1.46, where the Text-only model out-
performed the Multimodal model according to auto-
matic evaluation metrics like the BLEU score. How-
ever, interestingly, human analysis revealed that the
translation provided by the Multimodal model not
only better explained the image but was also more
readable than even the reference sentence. Con-
versely, the bottom image presents a source sentence
with a higher ambiguity score of 1.81, where the
Multimodal model produced a superior translation
compared to the Text-only model. While various
factors can influence the performance of multimodal
translation models, these findings suggest that the
sentence ambiguity score can serve as a valuable pa-
rameter in determining when visual information en-
hances translation quality.

6 Conclusion

This study contributes to the ongoing discussion on
the effective utilisation of visual cues in translation
tasks and provides insights into optimizing multi-
modal translation systems. In this paper, we inves-
tigate the impact of integrating visual elements into
the translation process on overall translation quality.

Through an analysis of the relationship between sen-
tence ambiguity and translation quality, we aimed
to determine the circumstances under which visual
information enhances translation quality. By estab-
lishing ambiguity scores for individual sentences us-
ing semantic diversity within sentence vector em-
bedding spaces, we investigated how visual infor-
mation influences translation quality across differ-
ent ranges of sentence ambiguity scores. Our re-
search highlights the importance of discerning the
contextual relevance of visual information in multi-
modal tasks, suggesting semantic diversity as a valu-
able metric for determining the significance of vi-
sual cues in multimodal machine translation models.
We plan to look at clustering approaches to cluster
meanings or usages of words based on their seman-
tic similarities. This can be used to assign ambiguity
scores to each word based on the number of clusters.
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Monz, C., Negri, M., Névéol, A., Neves, M., Post, M.,
Specia, L., Turchi, M., and Verspoor, K., editors, Pro-
ceedings of the Third Conference on Machine Trans-
lation: Research Papers, pages 26–35, Brussels, Bel-
gium. Association for Computational Linguistics.

Vaswani, A., Bengio, S., Brevdo, E., Chollet, F., Gomez,
A. N., Gouws, S., Jones, L., Kaiser, L., Kalchbren-
ner, N., Parmar, N., Sepassi, R., Shazeer, N., and
Uszkoreit, J. (2018). Tensor2tensor for neural machine
translation. Computing Research Repository (CoRR),
abs/1803.07416.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017).
Attention is all you need. Computing Research Repos-
itory (CoRR), abs/1706.03762.

Vijayan, V., Bowen, B., Grigsby, S., Anderson, T., and
Gwinnup, J. (2024). Adding multimodal capabilities to
a text-only translation model.

Wang, D. and Xiong, D. (2021). Efficient object-level vi-
sual context modeling for multimodal machine trans-
lation: Masking irrelevant objects helps grounding. In
Thirty-Fifth AAAI Conference on Artificial Intelligence,
AAAI 2021, Thirty-Third Conference on Innovative Ap-
plications of Artificial Intelligence, IAAI 2021, The
Eleventh Symposium on Educational Advances in Arti-
ficial Intelligence, EAAI 2021, Virtual Event, February
2-9, 2021, pages 2720–2728. AAAI Press.

Wu, Z., Kong, L., Bi, W., Li, X., and Kao, B. (2021).
Good for misconceived reasons: An empirical revisit-
ing on the need for visual context in multimodal ma-
chine translation. CoRR, abs/2105.14462.

Yao, S. and Wan, X. (2020). Multimodal transformer for
multimodal machine translation. In Proceedings of the
58th Annual Meeting of the Association for Computa-
tional Linguistics, pages 4346–4350, Online. Associa-
tion for Computational Linguistics.

Proceedings of the 16th Conference of the Association for Machine Translation in the Americas,

Chicago, USA, September 30 - October 2, 2024. Volume 1: Research Papers



Yin, Y., Meng, F., Su, J., Zhou, C., Yang, Z., Zhou, J., and
Luo, J. (2020). A novel graph-based multi-modal fu-
sion encoder for neural machine translation. In Annual
Meeting of the Association for Computational Linguis-

tics.

Zhao, Y., Komachi, M., Kajiwara, T., and Chu, C. (2022).
Region-attentive multimodal neural machine transla-
tion. Neurocomputing, 476:1–13.

Proceedings of the 16th Conference of the Association for Machine Translation in the Americas,

Chicago, USA, September 30 - October 2, 2024. Volume 1: Research Papers



Can Synthetic Speech Improve End-to-End
Conversational Speech Translation?

Bismarck Bamfo Odoom1 bodoom1@jhu.edu
Nathaniel R. Robinson1 nrobin38@jhu.edu
Elijah Rippeth2 erip@cs.umd.edu
Luis Tavarez-Arce3 ltavare1@jhu.edu
Kenton Murray1 kenton@jhu.edu
Matthew Wiesner1 wiesner@jhu.edu
Paul McNamee1 mcnamee@jhu.edu
Philipp Koehn1 phi@jhu.edu
Kevin Duh1 kevinduh@cs.jhu.edu
1 Johns Hopkins University, Baltimore, MD, USA
2 University of Maryland, College Park, MD, USA
3 SCALE 2023 Workshop Participant

Abstract

Conversational speech translation is an important technology that fosters communication among people of
different language backgrounds. Three-way parallel data in the form of source speech, source transcript,
and target translation is usually required to train end-to-end systems. However, such datasets are not readily
available and are expensive to create as this involves multiple annotation stages. In this paper, we investigate
the use of synthetic data from generative models, namely machine translation and text-to-speech synthesis,
for training conversational speech translation systems. We show that adding synthetic data to the training
recipe increasingly improves end-to-end training performance, especially when limited real data is available.
However, when no real data is available, no amount of synthetic data helps.

1 Introduction

The growing globalization of our society re-
quires effective technologies that foster communi-
cation among individuals of varying language back-
grounds. Speech translation is an important tech-
nology that fosters everyday communication among
individuals from different language backgrounds,
bridging cultural and linguistic barriers. The tech-
nology has improved dramatically in recent years
thanks to deep learning, but most gains have been
demonstrated on formal settings such as parliamen-
tary speeches, prepared monologues, and university
lectures. Informal conversations pose significant
challenges due to the lack of training data. Con-
versations deviate from formal written language and

include informal expressions, slang, overlapping
speech, incomplete sentences, varying intonation,
pace, and emotion, which are typically not present
in standard speech translation datasets. To capture
these nuances, conversational datasets are essential
for training models to understand and translate real-
life spoken language accurately. However, creating
this type of data usually involves individuals talk-
ing on the telephone for hours about various top-
ics, followed by multiple annotation stages involv-
ing segmenting the long-form speech into chunks,
transcribing the various chunks, and then translating
them into the target language. Executing these tasks
is tedious, time-consuming, and expensive.

This motivates a new approach of utilizing
synthetic data from generative models. Generative

Proceedings of the 16th Conference of the Association for Machine Translation in the Americas,

Chicago, USA, September 30 - October 2, 2024. Volume 1: Research Papers



Figure 1: Overview of approach in generating three-way parallel data (foreign speech, foreign text, english
text) for training end-to-end conversational speech translation systems.

models present an attractive solution by being able
to produce large amounts of synthetic conversational
speech quickly in a flexible and cost-effective man-
ner. When used as a data augmentation technique,
this synthetic data can potentially improve the per-
formance of speech translation systems in conversa-
tional speech domains.

Over the years, machine translation has seen
significant advances. Machine translation (MT)
models utilizing the transformer architecture when
trained on large data sets across multiple languages
generalize better and can generate adequate and flu-
ent translations in near real-time. In addition, text-
to-speech synthesis (TTS) has attained significant
strides resulting in high-quality synthesized voices
that closely mimic human speech. In this study, we
leverage the advances from MT and TTS to show
that a synthetic conversational speech dataset that is
easier and cheaper to create can be used for the task
of conversational end-to-end speech translation. To
do this, we create a dataset of synthetic speech by
back-translating monolingual text from the target
language to the source language, and then generat-
ing the speech in the source language speech from
the back-translated text using a TTS system (Fig-
ure 1).

We seek to answer the following questions:

1. Does incorporating synthetic data into the
training recipe help end-to-end training for
conversational speech translation?

2. How do we use synthetic data effectively for
end-to-end conversational speech translation?

3. Can synthetic data be used in place of real data

for conversational end-to-end speech transla-
tion?

2 Background and Related Work

Synthetic Data The use of synthetic data has been
extensively studied for text-based machine transla-
tion. Sennrich et al. (2016a) shows that generat-
ing synthetic source sentences from target monolin-
gual data through back-translation helps boost neu-
ral machine translation performance. Amin et al.
(2021) investigate the use of synthetic data for train-
ing RNN-T ASR models via a multi-stage train-
ing pipeline with continual learning. Rossenbach
et al. (2020) show that training attention-based ASR
systems on synthetic data leads to huge improve-
ments in word-error-rate (WER). Rossenbach et al.
(2021) compare the benefits of training with syn-
thetic data for four ASR architectures, namely - at-
tention encoder-decoder (AED), hybrid ASR, CTC,
and monotic RNN-T. Fang and Feng (2023) train a
target-to-unit model to map the target text to source
speech units (Lee et al., 2022). They then utilize a
unit vocoder to map the source units into a wave-
form. Robinson et al. (2022); Karakasidis et al.
(2023) expand these augmentation methods to low-
resource and accented ASR, respectively.

Text-to-Speech Synthesis The task of text-to-
speech synthesis (TTS) is to generate an out-
put speech corresponding to an input transcript.
Early techniques such as formant synthesis used the
source-filter model for intelligibility but lacked nat-
uralness. Modern neural synthesis methods, such
as Tacotron2 (Shen et al., 2018), TransformerTTS
(Li et al., 2019), FastSpeech (Ren et al., 2019)
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and VITS (Kim et al., 2021) simplify the pipeline
and deliver high-quality voice output by leverag-
ing deep learning. Tacotron2 employs an autore-
gressive decoder with attention mechanisms, while
TransformerTTS replaces RNNs with Transformers
for faster training. FastSpeech optimizes the pro-
cess by using non-autoregressive methods, address-
ing the speed limitations of previous models. VITS
employs a conditional variational autoencoder aug-
mented with normalizing flows and an adversarial
training process which enhances the quality of syn-
thesized speech.

Speech Translation Speech translation research
has seen a revival in recent years. For exam-
ple, the IWSLT 2023 campaign showcased a va-
riety of tasks, including multilingual speech trans-
lation, speech-to-speech translation, low-resource
speech translation, automatic dubbing or subtitling,
and simultaneous speech translation (Agarwal et al.,
2023). Both cascaded systems consisting of speech
recognition and machine translation components as
well as end-to-end direct speech translation systems
have been explored. End-to-end systems can be
trained with a combination (Babu et al., 2022) of 2-
fold parallel data or via multi-task learning (Radford
et al., 2023). In the majority of cases, the training
data for these systems come from TED talks, uni-
versity lectures, conference presentations, European
parliamentary speeches. These are prepared, public
talks which exhibit different characteristics from the
informal multiparty conversations of interest here.

3 Data Creation Methods

We use the term three-way parallel data to refer to
the aligned source speech, source transcript, and
target translation that is necessary for end-to-end
speech translation model training. We first describe
the manually-created 3-way parallel data (referred
to as Real in subsequent sections) used for baseline
models. We then explain the synthetically generated
3-way parallel data (which we refer to as Synth in
subsequent sections) used for data augmentation.

3.1 Real 3-way Parallel Data
We use the Fisher-Callhome Spanish-English data-
set (Post et al., 2013), a three-way conversa-

tional telephone speech dataset consisting of Span-
ish speech, Spanish transcript, and English text
translation for our experiments. While we argue
that there is a lack of manually-created conversa-
tional data, this dataset is a rare exception: it is an
immensely large dataset by academic research stan-
dards, created by crowdsourcing translations of an
existing transcribed speech recognition dataset. The
reason we chose this dataset is that is enables us
to perform data ablation experiments to understand
how much real data is needed in a data augmentation
setup.

For preprocessing, we resample the audio to
16kHz and apply speed perturbation (0.9, 1.0, 1.1).
The audio is transformed into a 80 dimensional log-
filterbank and we apply specaugment (Park et al.,
2019) with bi-cubic time-warping. We use byte-
pair-encoding (BPE) tokenization (Sennrich et al.,
2016b) with a vocabulary of size 4000.

3.2 Synthetic 3-way Parallel Data

To create the synthetic speech-text pairs, we use
over 500,000 lines of conversational-style text in
English. This text was collected from the En-
glish translations of various conversational speech
datasets (Ansari et al., 2020; Song et al., 2014).
We back-translate (Sennrich et al., 2016a) this text
using the nllb-200-1.3B1 multilingual machine
translation model (Team et al., 2022) into Spanish.
Spanish speech is synthesized by feeding the back-
translated text into the VITS 2 text-to-speech sys-
tem. Specifically, we use the VITS model trained on
CSS10 Spanish (Park and Mulc, 2019) then apply
voice conversion using freevc243. The target speak-
ers used for voice conversion are the speakers for the
original files; future work is to explore more diver-
sity in speakers by sampling in speaker embedding
space (Jia et al., 2019).

To illustrate the whole pipeline with a con-
crete example, we begin with a Callhome Chinese
file spoken by speaker A: First, we translate the
English text portion to Spanish text. Second, we
synthesize a generic Spanish voice using VITS. Fi-
nally, we apply voice conversion with speaker A as
the target speaker, generating a Spanish voice that
sounds like the original Chinese speaker A. This

1https://huggingface.co/facebook/nllb-200-1.3B
2https://github.com/coqui-ai/TTS
3https://github.com/OlaWod/FreeVC
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Corpus Lang #Hours

Train Dev Test

Real: Spanish Fisher/Callhome Sp-En 170 9.3 4.5/1.8
Synth: backtranslation + TTS Sp-En 520 - -

Table 1: Dataset statistics showing the number of hours of both real and synthetic speech. We use both the
Fisher and the Callhome test sets.

procedure is repeated independently for each file
that we wish to add to the augmentation dataset.
This process yielded about 520 hours of synthetic
speech in Spanish. The resulting dataset consists of
synthetic speech in Spanish, back-translated text in
Spanish (transcript), and the English text (transla-
tion). We apply the same preprocessing techniques
in Section 3.1 and refer to this dataset as Synth in
subsequent sections.

Figure 2: The synthetic data generation pipeline. We
collect over 500,000 lines of English conversational
style text and translate them into Spanish. We pass
the back-translated text into a text-to-speech synthe-
sis (TTS) system to synthesize Spanish speech from
the transcript.

3.2.1 Quality of Synthetic Speech
We use the NISQA model (Mittag et al., 2021) to
analyze the speech quality. The model consists of
a convolutional neural network with a self-attention
and attention-pooling block. The model predicts the
mean opinion score which is a common metric used
to measure the quality of TTS generated speech.
The model predicts a mean opinion score of 4.29 out
of 5 signifying that the synthesized speech is of high
quality. Text references are not available to measure
the translation quality (e.g. BLEU) of the synthetic
text used to generate the synthetic speech. However,

we know that NLLB is generally a strong model for
this language pair; while domain differences may
degrade text translation, a manual check of a small
subset of translations reveals that they mostly pre-
serve the semantics.

4 Speech Translation Model

4.1 Model Architecture
The speech encoder is based on the conformer ar-
chitecture (Gulati et al., 2020), which combines the
strengths of convolutional neural networks (CNNs)
and Transformer models to handle the speech in-
put efficiently. We use 8 conformer blocks with 16
attention heads within its multi-head self-attention
modules, enabling the model to focus on different
segments of the input sequence concurrently. Each
Conformer block contains feed-forward networks
with 2048 linear units. We use relative positional en-
codings and relative self-attention mechanisms, the
swish activation function is used, and dropout of 0.1.

The text decoder is a Transformer model
(Vaswani et al., 2017) featuring 8 blocks with 2048
linear units each. The ReLU activation function is
used and a dropout rate of 0.1. The total number
of trainable parameters is 38.7M. We initialize all
models from scratch and train on 2 NVIDIA V100
32GB GPUs. All models are trained for 50 epochs
with batch size of 64.

4.2 Data Augmentation Scheme
We perform a simple data augmentation scheme:
concatenating the Real data in Section 3.1 and the
Synth data as one training set. The training ob-
jective treats samples from both datasets in the
same way, with no specific up-sampling or down-
sampling. More advanced methods are conceivable,
such as pre-training on Synth and fine-tuning Real
and modifying the training objective to treat real and
synthetic data differently. In this work, we focused
on the simple data concatenation, with experiments
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focusing on different data proportions, to more eas-
ily study the impact of synthetic data.

Figure 3: Model architecture. The frontend ex-
tracts log-mel filterbank features from the speech.
The encoder consists of 8 conformer blocks and the
decoder is a transformer decoder featuring 8 trans-
former blocks.

5 Experiments and Results

This section outlines the various experiments and re-
sults of this study. We use the ESPnet (Watanabe
et al., 2018) toolkit for all experiments. We evalu-
ate all systems with BLEU (Papineni et al., 2002),
as implemented by SacreBLEU4 (Post, 2018).

5.1 Training on only real data

Firstly, we train multiple systems on only real
speech. These systems are treated as baselines. We
train with 5, 10, 20, 50, 100, and 170 hours of Real
speech. As shown in Table 2, the performance con-
tinues to improve as we scale the size of the dataset.

5.2 Training with both real and synthetic data

Here, we investigate whether incorporating Synth
data into our training recipe helps end-to-end train-
ing. We do this by training the same system end-to-
end on a dataset comprising both real and synthetic
speech.

5.2.1 Fixing amount of real speech and varying
amount of synthetic speech

In many circumstances, due to the expensive nature
of collecting conversational speech data, practition-
ers have a fixed budget of data to train models on.
We mimic this situation by fixing the amount of real
speech in the training recipe and then progressively
increasing the amount of synthetic data in the train-
ing recipe. We simulate the low data resource case
where we have less than 10 hours of real speech,
the mid-data resource case, where we have about 50
hours of real speech, and the relatively high resource
data case where we have over a hundred hours of
real speech. As shown in Table 2, there is a con-
sistent improvement in model performance with in-
creased synthetic speech when the amount of real
speech remains fixed. This suggests that given a
fixed amount of real training speech, including syn-
thetic speech improves performance. Robinson et al.
(2022) corroborated this trend for ASR.

5.2.2 How much improvement do we get?
We observe that when there is a small amount of real
speech, including a large amount of synthetic speech
can lead to substantial improvements in model per-
formance as compared to when there is a higher
amount of real speech. This is particularly useful
for low-data resource scenarios.

From Table 2, we observe the cases where there
are 5 and 170 hours of Real and Synth data, respec-
tively. Adding these 170 hours of Synth results in
+9.1 and +9.0 BLEU over the baseline trained on
only real speech for Fisher and CallHome test sets,
respectively. Increasing the amount of synthetic
speech in the training recipe to 340 hours results
in +10.7 and +9.7 BLEU compared to the baseline.
Further increasing the amount of synthetic speech
to 520 hours results in +14.7 and +11.8 BLEU.
For the high-resource case with 170 hours of real
speech, adding 170 hours of synthetic speech results
in +1.4 and +2.3 BLEU on Fisher and CallHome test
sets, respectively. Doubling the amount of synthetic
speech results in +1.1 and +2.0 BLEU, and increas-
ing to 520 hours gives +1.5 and +2.0 BLEU. This
suggests that when there is already a large amount
of real speech in training, including more synthetic
speech does not provide significant additional bene-
fits. The real data likely captures most relevant vari-

4Signature:BLEU+case:mixed+nrefs:1+tok:13a+smooth:exp+version:2.3.1
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Training data (hours) BLEU
Real Synth Fisher ↑ Callhome ↑

0

0 0 0
170 0 0
340 0 0
520 0 0

5

0 0.6 0.7
170 9.7 9.7
340 11.3 10.4
520 15.3 12.5

10

0 0.7 1.1
170 12.2 12.5
340 13.9 13.4
520 17.0 14.9

20

0 5.8 5.6
170 16.7 15.3
340 17.6 16.0
520 19.3 16.4

50

0 14.3 12.3
170 21.9 17.6
340 22.1 18.2
520 22.9 19.0

100

0 21.7 17.0
170 24.5 20.3
340 25.1 20.0
520 24.9 20.2

170

0 25.3 20.1
170 26.7 22.4
340 26.4 22.1
520 26.8 22.1

Table 2: BLEU scores of systems trained on varying amounts of the Real and Synth. When Synth is 0 the
system was trained on only Real. When real is 0, the system was trained on only Synth.

ations, and the synthetic data may not add much new
information.

5.3 Training on only synthetic data

To explore an extreme scenario, we conducted ex-
periments where no real speech was included in
the training setup. Instead, models were trained
only on Synth. This approach of relying solely on
synthetic data for training poses domain adaptation
challenges. The models must generalize from the
synthetic training environment, which may not fully
capture the nuances and variations present in real
speech. Consequently, we observed performance
discrepancies when these models, trained only on
synthetic data, were applied to real speech.

5.3.1 Does training on only synthetic data
work?

When evaluated on the Real test set, the model ob-
tains a BLEU score of 0, signifying a complete lack
of generalizability due to the absence of real-world

data during training. However, we obtain up to
30 BLEU on our best system when we evaluate on
Synth-Fisher and Synth-CallHome, which are ver-
sions of the real test set where the input speech is
synthesized using the same TTS system. (See Table
6.) This shows that the systems trained on only syn-
thetic data do not generalize outside the synthetic
data domain (though it suggests speech translation
models trained only on synthetic data could theoret-
ically be paired with voice conversion to accomplish
speech translation, by converting real voices to syn-
thetic voices before inference). See §5.3.3 for more
on this analysis on this trend.

5.3.2 Bridging the generalization gap
Our experiments show that this generalization gap
is mitigated by incorporating a small amount of real
data into the training recipe. This helps the model
generalize beyond the synthetic domain. When
trained on only the synthetic data, the system can-
not model the noisy channel effects introduced, as
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Spanish Trancript English Translation Synth-170 Translation Synth-170-Real-5
Translation

Sı́, eso es para eso, de
seguro. No importa.

Yes, that’s what’s for,
sure. It doesn’t matter.

Uh uh Yes, it’s for Suhur, it’s
not matter

Y qué estudia, mama,
qué están estudiando.

And what’s she study-
ing, mom, what career.

Uh uh And that’s all, mom,
who’s studying

mmm sı́ eso pasa aquı́
en Estados Unidos acá
pa- casi demandan a la
empresa

hmmm, if that hap-
pens here in the United
States, they, they would
sue the company

Uh uh And if that happens
here is a company in
Canada

Table 3: Example translations to show how adding a small amount of real data to a synthetic training recipe
helps the model generalize beyond the synthetic domain. Synth-170 is the system trained on 170 hours of
synthetic data. Synth-170-Real-5 is the system trained on 170 hours of Synth data and 5 hours of Real

Spanish Trancript English Translation Synth-340 Translation Synth-340-Real-5
Translation

Sı́, eso es para eso, de
seguro. No importa.

Yes, that’s what’s for,
sure. It doesn’t matter.

ah ah yes, for that, of course,
it doesn’t matter

Y qué estudia, mama,
qué están estudiando.

And what’s she study-
ing, mom, what career.

no no and what was my mom?
What are you studying?

mmm sı́ eso pasa aquı́
en Estados Unidos acá
pa- casi demandan a la
empresa

hmmm, if that hap-
pens here in the United
States, they, they would
sue the company

ah no and that happens here in
the United States, send
me a company

Table 4: Example translations to show how adding a small amount of real data to a synthetic training recipe
helps the model generalize beyond the synthetic domain. Synth-340 is the system trained on 340 hours of
synthetic data. Synth-340-Real-5 is the system trained on 340 hours of Synth data and 5 hours of Real

Spanish Trancript English Translation Synth-520 Translation Synth-520-Real-5
Translation

Sı́, eso es para eso, de
seguro. No importa.

Yes, that’s what’s for,
sure. It doesn’t matter.

And, and yes, that’s for sure, they
don’t matter

Y qué estudia, mama,
qué están estudiando.

And what’s she study-
ing, mom, what career.

in, in, in, in And that’s it, mom,
what’s she studying?

mmm sı́ eso pasa aquı́
en Estados Unidos acá
pa- casi demandan a la
empresa

hmmm, if that hap-
pens here in the United
States, they, they would
sue the company

Right, right, In hmmm, that happens
here in the United
States, they would sue
the company

Table 5: Example translations to show how adding a small amount of real data to a synthetic training recipe
helps the model generalize beyond the synthetic domain. Synth-520 is the system trained on 520 hours of
synthetic data. Synth-530-Real-5 is the system trained on 520 hours of Synth data and 5 hours of Real
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Dataset Hours Synth-Fisher ↑ Synth-CallHome ↑

Synth

5 0.0 0.0
10 0.1 0.4
20 0.2 0.3
50 4.5 5.5

100 2.3 1.6
170 5.8 6.9
340 11.4 8.5
520 30.7 26.0

Table 6: BLEU scores for training on varying hours of only synthetic speech and testing on synthetic speech
testsets

the data was collected from telephone conversations.
Introducing a small amount of real data likely helps
the system model the acoustic mismatch. The per-
formance increases further if the amount of syn-
thetic data is increased. For example, in Table 2,
given Synth amounts 170, 340, and 520 hours, when
we add 5 hours of Real data to each, the 520-hour
recipe does best. We display example outputs for
these systems compared with those trained on no
Real data in Tables 3, 4, and 5.

5.3.3 Inference on Synthetic Data
As mentioned in §5.3.1, models trained on only syn-
thetic speech do not generalize to real speech. We
look deeper by evaluating the performance of the
models on Synth-CallHome and Synth-Fisher, the
synthetic versions of the real test sets. We use this
as a proxy to examine the claim that training on only
synthetic data may not generalize to real test sets. As
shown in Table 6, models trained on only synthetic
data perform well on synthetic test sets (inputs that
match the acoustic conditions of their training data),
though they cannot perform at all for real test sets.

6 Takeaways

We summarize our findings here: (1) When there is
a small amount of real speech available, including
a large amount of synthetic speech leads to higher
performance gains in end-to-end training; (2) When
there is a large amount of real data available, in-
cluding synthetic data leads to minimal performance
gains; (3) Training only on synthetic speech data
does not generalize outside of the synthetic domain;
(4) To generalize outside the synthetic data domain,
some amount of real speech has to be present in
the training recipe (5) When there is no real data
present, no amount of synthetic data helps.

7 Conclusion

We investigated whether using synthetic data gener-
ated from backtranslation and text-to-speech synthe-
sis for end-to-end conversational speech translation
improves performance. Incorporating synthetic data
into a conversation speech translation training recipe
helps improve the overall system’s performance es-
pecially when there is limited real speech available.
When models are trained on only synthetic data,
we find that models do not generalize beyond their
training domain. This mismatch between the syn-
thetic training data and real-world data leads to sub-
optimal performance when models trained on only
synthetic data are applied to real speech. This high-
lights the importance of incorporating at least some
real speech data during training to bridge the domain
gap effectively. In the case where no real speech is
available, no amount of synthetic data helps.

There are several open questions worth exam-
ining as future work:

• What happens if a self-supervised pre-trained
speech encoder like wav2vec (Baevski et al.,
2020) is incorporated into the model? Would it
be more or less robust to synthetic data?

• What happens if TTS quality is much lower,
which is likely in lower-resource languages?
(For example, it would be instructive to repeat
the experiments with other languages.)

• Would the conclusions change if we examine
more advanced augmentation besides simple
concatenation of Real and Synth?

• Could a model trained only on synthetic speech
be paired with voice conversion to accomplish
speech translation?
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Abstract

We explore the potential of LLMs to enhance the translation process of rhymed and non-rhymed poetry. We
examine LLMs’ performance (ChatGPT-3.5, ChatGPT-4, Google Gemini) in terms of lexical variety, lexical
density, and sentence length compared to human translations (HT). We also examine the models’ abilities to
translate sonnets while preserving the rhyme scheme of the source text. Our findings suggest that LLMs can
serve as valuable tools for literary translators, assisting with the creative process and suggesting solutions to
problems that may not otherwise have been considered. However, if the paradigm is flipped, such that instead
of the systems being as tools by human translators, humans are used to post-edit the outputs to a standard
comparable to the published translations, the amount of work required to complete the post-editing stage may
outweigh any benefits associated with using machine translation in the first place.

1 Introduction

The translation of poetry has long been a contentious
issue in the field of literary translation (Jones, 1986).
The debate stems from the challenges inherent to
translating poetry, which, depending on the specific
poetic form in evidence, may require a delicate bal-
ancing act of content, style, tone, various types of
phonetic devices, such as rhyme. Differences in
language and poetic tradition may necessitate com-
promises and creative solutions with many compet-
ing constraints making the translation of poetry a
highly complex activity. Literary translation has his-
torically been regarded as the “last bastion of hu-
man translation” (Toral and Way, 2014), and poetry
translation could be thought of as the most extreme
example of this phenomenon. However, recent ad-
vances in the widespread availability of Large Lan-
guage Models (LLMs) have shifted the conversation
to ask in what ways human translators might make
use of electronic tools in the negotiating of literary
translation’s stylistic and technical complexities.

Much of this work to date has focused entirely on
prose, and while advancements have been substan-
tial in this respect, much less attention has fallen
onto poetry in general, and formal poetry in par-
ticular. Thus, formal poetry, simultaneously com-
bining as it does many of the stylistic features that
are known to complicate machine translation, re-
mains an extreme challenge. Nonetheless, the emer-
gence of web-based LLMs offers new opportuni-
ties. These models, such as ChatGPT and Google
Gemini, enable the customisation of translated out-
puts through prompt engineering (Amatriain, 2024),
whereby users can specify in detail aspects of a text
to focus on, change or omit. This capacity sets
LLMs apart from the web-based Neural Machine
Translation (NMT) systems which have been the
mainstay of the machine translation systems (MT)
widely available to literary translators for the past
decade or so. Generally speaking, such NMTs are
limited to one or a small number of similar outputs
for any given input, with little or no functionality
to tailor the translation process around, for example,
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register, addressee, style, or tone. When it comes
to complex operations such as rhyming or counting
syllables, specialised systems would be required.

The focus in this discussion falls predominantly on
web-based systems which are either free to use or
financially accessible, because the funding associ-
ated with any given literary translation project is so
limited (des Associations de Traducteurs Littéraires ,
CEATL). Thus, it is unrealistic to imagine literary
translators being in a position to invest in expensive
bespoke tools which may require training for the fa-
cilitation of their work, and therefore, the most real-
istic use cases when it comes to literary translation
centre on systems which are easily and cheaply ac-
cessible.

For these reasons, the widespread emergence of
LLMs such as ChatGPT and Google Gemini, with
their free entry points, represents a significant op-
portunity for analysing whether such systems might
be useful tools for literary translators. Here there
is an important distinction to be made between Lit-
erary Machine Translation (LMT) and Computer-
Assisted Literary Translation (CALT). On the one
hand, LMT conceptualises the machine at the cen-
tre of the process of producing translated outputs,
generally with one or more human beings support-
ing its work through pre-editing or post-editing. In
this view, quality assessment reaches for the ultimate
goal of producing outputs of the same standard as
human translators (Koponen, 2016). On the other
hand, CALT conceptualises the human translator as
the primary agent, who makes use of the machine as
a tool. In this view, the human translators may use
the machine to translate only individual or isolated
parts of the text, may use iteration to produce mul-
tiple versions of the same passage, and may wholly
disregard the outputs of the machine if a better solu-
tion is found elsewhere.

The focus of each perspective is reversed. In LMT,
the goal is to maximise the quality of the output to
minimise editing work by the human. In CALT, the
goal is to support human translators in their own id-
iosyncratic workflows, identifying and trailing pos-
sible solutions to translation challenges, and fur-
ther stimulating human translators’ creativity. Thus,
whereas in an LMT workflow, producing multiple
outputs of the same text, may be perceived as waste-
ful, because this would imply that each output would
also need to be post-edited, in the context of CALT,

producing multiple outputs of the same text or text
fragment could perceivable be useful for a human
translator who may use the machine’s outputs more
as inspiration than as something approaching a prod-
uct to be refined.

While there is evidence supporting LLMs in
the translation of prose works, especially novels
(Karpinska and Iyyer, 2023), their impact on poetry
translation remains under-explored. Thus, it is un-
clear how machine translations produced with the
help of LLMs compare stylistically to human trans-
lations. Asking about these comparisons is funda-
mental to assessing whether and how LLMs might
be made useful by practising translators of literature,
and especially poetry.

To address this question, our initial step involves ex-
tracting and examining linguistic features at both the
syntactic and lexical level from poems, as well as
from translations of them produced by humans and
by LLMs in Portuguese and Spanish.

2 Related work

The methodological approach used here is one
which analyses and compares the stylistic features
of translated text using Natural Language Processing
(NLP) techniques. In each case, the candidate trans-
lations by each of the LLMs is compared side by side
with previously published human translations of the
same text. This approach is grounded in a body of
literature that has developed since the 1980s to ex-
plore the distinctive stylistic characteristics of trans-
lated texts primarily on statistical terms. This lit-
erature is theoretically rooted in Toury’s translation
norms (Toury, 1980) which posits that translation
is a culturally-bound phenomenon which functions
different in different human contexts, and Baker’s
translation universals (Baker, 1996), which iden-
tify aspects of texts which anecdotal experience can
allow us to identify translated from non-translated
work. The approach responds to these two some-
what subjective theoretical constructs with corpus
linguistics and NLP methods, which allow for the
results to be statistics-based, and repeatable (Ilise
et al., 2010; Ilisei and Inkpen, 2011; Pastor et al.,
2008). The research conducted with these methods,
has consistently shown that translated text does in-
deed tend to exhibit simpler syntax and less varied
vocabulary than non-translated text (Laviosa, 2002;
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Baroni and Bernardini, 2006; Pastor et al., 2008;
Volansky et al., 2013a). This phenomenon, often
referred to as translationese in the literature, is fre-
quently associated with lower quality text, character-
ized by foreign-sounding and awkward wording and
structure (Volansky et al., 2013b; Kunilovskaya and
Lapshinova-Koltunski, 2019).

With the advent of MT systems, attention has shifted
towards the stylistic features of machine-translated
and post-edited texts (Daems et al., 2017; Toral,
2019; Castilho et al., 2019; Castilho and Resende,
2022). This research has gone on to show significant
differences in style and content richness between
human-translated text and machine-translated text,
especially that produced by NMT systems (Castilho
et al., 2019; Castilho and Resende, 2022).

Recent research has begun evaluating the transla-
tion capabilities of large language models (LLMs)
in both literary and technical texts, often in compar-
ison with NMT systems (Peng et al., 2023; Hendy
et al., 2023; Karpinska and Iyyer, 2023). Prelim-
inary studies (Cruys, 2023; Roos, 2023) have ex-
plored LLMs’ ability to preserve the rhyme schemes
in poetry translation, focusing on qualitative analy-
sis of a single poem. However, there is a lack of
research on how the range of stylistic features which
come together to embody poetic texts are managed
by LLMs, and how or whether LLMs might be
made useful to practising human translators of po-
etry. This study represents an initial attempt to ad-
dress this gap in the literature. Given the exploratory
nature of the present study, the focus is on a limited
corpus to provide a preliminary assessment of the
the place these tools could have in a poetry transla-
tion workflow, setting the stage for more extensive
research in the future.

2.1 Methodology

This analysis conducts a statistics-based stylistic
comparison of features extracted from source po-
ems, existing translations of the same poems pro-
duced by humans, and newly produced translations
by three LLMs. The extracted features are both lex-
ical and syntactic in nature, and designed to assess
aspects of the formal qualities of the poems which
a reader may not necessarily be consciously aware
of when reading the texts, but which have an over-
all effect on the texts’ literary qualities (Pynte et al.,
2008). The specific questions addressed are:

1. How do the syntactic and lexical stylistic pat-
terns of LLM-translated poetry compare to
those of human-translated poetry?

2. How do these stylistic patterns vary between
LLMs? Are there identifiable trends and/or de-
viations unique to each language model?

3. How do these qualities compare between for-
mally constrained poems and free verse po-
ems?

2.1.1 Corpus

In order to address these questions, this study draws
on a small corpus of four published poems. Two of
the poems are written in Spanish and two are writ-
ten in Portuguese. Two of the poems are sonnets
and two are free verse poems. A digital version of
each poem was either collected from an online re-
source or was created by digitising a printed ver-
sion. The choice to include two source languages
allows for the comparison of similar features from
different sources. The choice to include sonnets and
free verse poems allows for the analysis of formal
features both under the heavy formal constraint of
a complex rhyme scheme, as found in the sonnet
form, and under less constrained circumstances in
the case of free verse. Before conducting the ex-
periments, at least one published human translation
into English of each poem was identified which was
also collected in the same way as the source texts.
To adhere to copyright laws and ethical standards,
only texts not protected by copyright at the time of
writing were included in the corpus. Table 1 shows
the poems included in the corpus, along with each
poem’s short name, used in these experiments:

2.1.2 Examining the stylistic features

The poems in the corpus were translated using three
large language models (LLMs) accessible online:
ChatGPT-3.5, ChatGPT-4, and Google Gemini. A
zero-shot approach was employed, instructing the
models to translate the source poems into English
without any prior training or fine-tuning. This
method aimed to evaluate how the models perform in
a realistic setting, assuming that most practising lit-
erary translators would not rely on advanced prompt
engineering techniques. The following prompt was
used with all the models under analysis, and with
each of the poems in question:
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Poem Author Year of
Composition

Type Language Short Name

José Carlos Drummond
Andrade

1942 Free verse Portuguese José

Soneto da Fidelidade Vinı́cius de Morais 1939 Sonnet Portuguese Fidelidade
Amor constante más
allá de la muerte

Francisco de
Quevedo

1648 Sonnet Spanish Amor

Corazón Coraza Mario Benedetti 1939 Free verse Spanish Corazón

Table 1: Selected poems included in the corpus

Prompt 1:

Translate this poem into English

Next, the stylistic features of the translated output
were compared with the versions in the human trans-
lations. This approach did not assume the human
translations to be the correct, the only possible, or
the only viable renditions of the poems in question
into the target language. Nor was it assumed that all
the features of the source texts were uniformly in-
cluded in their human-translated versions. Rather,
noting the features which were and were not in-
cluded in the human-translated versions gives a basis
of comparison between the versions translated by the
various systems with what can be considered the cur-
rent state of the art, in the form of the human trans-
lations. For this analysis the following features were
extracted from the translated texts:

• Lexical richness

• Lexical density

• Sentence length in words

• Vocabulary overlap

• Rhyming patterns

The stylistic features were extracted from the texts
using custom Python scripts. To assess lexical va-
riety, which reflects the diversity of vocabulary in a
text, the type/token ratio was calculated by dividing
the total number of unique words (types) by the total
number of words in each text (tokens).

TTR =
Nt

Nw
(1)

where:

* Nt represents the number of unique words (types)
in the text.

* Nw represents the total number of words (tokens)
in the text.

Lexical density is a measure of the informational
content within a text. It reflects the proportion of
content words, relative to the total number of words.
Content words are typically defined as nouns, verbs,
adjectives, and adverbs, which carry the core mes-
sage of a sentence.

Mathematically, the lexical density can be expressed
as:

LD =
Nc

Nw
(2)

where:

* Nc represents the number of content words in the
text.

* Nw represents the total number of words (tokens)
in the text.

Sentence length was calculated by counting the
number of words between each set of sentence mark-
ers.

For the vocabulary overlap analysis, we identified
the words present in the human-translated versions
that were absent in the LLM-produced translations.
This metric was chosen because, on our view, it
provides a clearer, more intuitive understanding of
the differences between texts in percentage terms.
To complement this approach, we also calculated
BLEU scores using the NLTK package (Bird et al.,
2009), which provided valuable additional insights
into the comparative performance of the translations.
Finally, to assess the LLMs’ ability to reproduce the
rhyme schemes of the two sonnets in the corpus, the
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outputs in each case were categorised using the stan-
dard letter-based notation associated with line-end
rhyming patterns. In this notation system, the fi-
nal phonemes of each line of poetry are assigned an
alphabetic value which marks the other lines in the
same poem with a rhyming phoneme. An example
can be seen in the opening stanza of Wordsworth’s
1802 Lyrical poem, Daffodils:

I wandered lonely as a cloud
That floats on high o’er vales and hills,
When all at once I saw a crowd,
A host, of golden daffodils;
Beside the lake, beneath the trees,
Fluttering and dancing in the breeze.

The lines can be annotated as: ABABCC, because
the first and third lines rhyme phonetically, as do the
second and fourth lines, and the fifth and sixth lines.
However, it is important to note that as in this exam-
ple, especially in languages with idiosyncratic ortho-
graphic conventions like English, rhyming phonetic
values do not always correspond to similar spellings.

The first attempt at translating the sonnets with
the straightforward prompt resulted in the rhyme
scheme of each poem being ignored by the system.
Therefore, the prompt was subsequently refined to
target this aspect of the texts’ stylistics more specif-
ically. The subsequent prompt used for these tasks
was:

Prompt 2:

Can you improve the translation
so that it maintains the same
rhyme scheme as the source text?

A few-shot prompting approach, complete with
demonstration examples was also employed to facil-
itate comparison of the outputs achieved from each
prompt technique. This strategy involved explaining
the rhyme scheme of each the poems by providing
examples of word that rhyme within the poem and
also specifying the organisation of rhyming words in
the poem flow. The advanced prompts designed for
the translation of the sonnets can be found in Ap-
pendix A.

2.2 Results

The vocabulary overlap experiment asked: How
many words in the HT are not present in the ver-
sion translated by the LLMs? To address this ques-
tion, the number of words present in the HT and not
present in the outputs produced by the LLMs was
calculated, shown in Table 2.

These results demonstrate that the proportion of vo-
cabulary in the human translation that diverges from
the model is higher in the sonnets than in the free
verse poems. This finding is predictable, because
of the additional formal constraints imposed by the
sonnet form, compared to the free verse form. Key
formal constraints in this respect include the need to
rhyme and to fit lines into specific lengths. These
constraints raise the complexity of the translation
task, implying a higher synonym and paraphrase us-
age than in translation problems where these formal
constraints are not present. Thus, it is possible to
speculate that the greater variation in word choice
observable in the models outputs in the case of the
sonnets is linked to this additional layer of complex-
ity.

Table 3 presents the BLEU scores, which are con-
sistent with the findings from the vocabulary over-
lap experiment. The scores indicate that free verse
poems consistently achieve higher BLEU scores
than sonnets, suggesting closer lexical alignment ob-
served between machine-translated free verse po-
ems and their human-translated counterparts in con-
trast with greater vocabulary variation in machine-
translated sonnets compared to their human transla-
tions. Notably, the GPT-4 model produces transla-
tions of free verse poems that are closest to the hu-
man versions. Conversely, for sonnets, the GPT-3.5
and Gemini models achieve higher BLEU scores, in-
dicating the least variability in lexical choice relative
to their human translations, a result also supported
by the vocabulary overlap findings.

In terms of lexical variety, despite differences in
word choices, the translations produced by the mod-
els is consistently narrower than the human transla-
tions. This pattern holds true regardless of the source
language, the poetic form, the models provider
(OpenAi or Google), or the version number of the
LLM, as can be seen in Table 4.

The same pattern is also observable in terms of lex-
ical density. Again, in this respect the human trans-
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chatGPT-3.5 vs HT chatGPT-4 vs HT Gemini vs HT
José (Free verse) 38 (17%) 31 (14%) 38 (17%)

Fidelidade (Sonnet) 31 (26%) 32 (27%) 27 (23%)
Amor (Sonnet) 48 (41%) 48 (41%) 49 (42%)

Corazón (Free verse) 14 (8%) 11 (6%) 11 (6%)

Table 2: Vocabulary Overlap

Poems GPT-3.5 GPT-4 Gemini
José (free verse) 0.2637 0.3461 0.33

Fidelidade (sonnet) 0.21 0.2768 0.2886
Amor (sonnet) 0.0198 0.0096 0.0197

Corazón (free verse) 0.3597 0.4092 0.3064

Table 3: Bleu scores

Poem HT chatGPT-3.5 chatGPT-4 Google Gemini
José (Free verse) 0.5 0.45 0.47 0.45

Fidelidade (Sonnet) 0.68 0.66 0.62 0.6
Amor (Sonnet) 0.75 0.7 0.64 0.68

Corazón (Free verse) 0.4 0.42 0.4 0.4

Table 4: Lexical Variety

Poem HT chatGPT-3.5 chatGPT-4 Google Gemini
José (Free verse) 0.51 0.43 0.47 0.47

Fidelidade (Sonnet) 0.43 0.4 0.4 0.4
Amor (Sonnet) 0.4 0.53 0.52 0.54

Corazón (Free verse) 0.54 0.38 0.4 0.45

Table 5: Lexical Density
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lations consistently score more highly than the ver-
sions produced by the LLMs.

In terms of sentence length, the HT tended to pro-
duce longer sentences than the LLMs translations
as shown in table 6, the noteworthy exception be-
ing the free verse poem, José, where the HT transla-
tions are shorter than those produced by the LLMs.
One explanation for the LLMs’ propensity to pro-
duce longer texts is found in their tendency to in-
clude optional pronouns as standard, whereas the
human translator generally did not. This tendency
constitutes a form of explicitation (Baker, 1993,
1996), or reducing ambiguities in translations, which
inevitably contributes to an increase in sentence
lengths.

2.2.1 Rhyme scheme reproduction

Table 7 shows the results obtained for the two son-
nets and the few-shot approach used to design the
prompts targeting the poems’ rhyme schemes. In all
but one case (Prompt 2. Fidelidade), the ChatGPT
models appear to be more successful than Gemini in
reproducing the rhyme scheme consistently. How-
ever, it is worth noting that the discrepancy, not
only between the models’ outputs within individ-
ual prompts but also across prompts, varies substan-
tially and not always in intuitive ways. For instance,
even though the words used in the translations dif-
fer, from the perspective of conveying the rhyme
scheme, prompt 2, which simply asked the model to
replicate the rhyme scheme of the source text; and
prompt 4, which went into detail on the nature of
that rhyme scheme, appear to have been precisely as
successful for Amor, having successfully reproduced
the rhyme in every line. However, prompt 2 is less
successful in the case of Fidelidade for GPT-4 (64%
of the source rhyme scheme), and much less success-
ful for GPT-3.5 (29% of the source rhyme scheme).
It is worth noting that the rhyme schemes of the two
poems differ slightly. This implies that the models’
ability to reproduce rhyme may be heavily variable,
and possibly dependent on the contents of the poem,
as well as the extent to which the rhyme schemes
in question are represented in the training data. It
is also worth considering the source language of the
poems under analysis, and the impact this language
may have on the results. In this case, Amor is writ-
ten in Spanish, while Fidelidade is written in Por-
tuguese. It is worth noting that both the GPT models

were highly successful at reproducing the rhyme in
the case of the Spanish text, even with a straight-
forward, zero-shot prompt. On the other hand, the
models’ success in reproducing rhyme in the Por-
tuguese text was more varied. For the Portuguese
sonnet, the GPT models did seem to benefit from the
more complex prompts, improving their success rate
by 14% (from 29% to 43%) and 15% (from 64% to
79%), respectively. Gemini appears to be much less
successful across the board, and its success scores
are so low that it is difficult to draw any meaningful
conclusions based on this small dataset.

2.3 Discussion and conclusions

It is reasonable to ask whether the rapid emergence
of LLMs which are either freely available or avail-
able for little cost on the internet for the first time
might herald a shift in work practices when it comes
to literary translators working with highly form-rich
texts, such as poems. The systems clearly have far
greater flexibility in terms of output style than the
NMT systems which literary translation practition-
ers, especially those with limited technical exper-
tise, are more likely to encounter. As what might
be considered unusual use cases from the perspec-
tive of the majority of the work such widely avail-
able NMT systems do, addressing textual features
such as rhyme or syllable count is seldom part of
the systems’ functionality. Thus, NMT systems use-
fulness as tools for human translators working with
poetry is limited. In the case of LLMs, however, be-
cause prompts can be designed, tailored and used in
an iterative fashion, their capacity to be useful in the
translation of poetry is comparatively higher.

The experiments conducted here show that when us-
ing LLMs to translate both free verse poems and
sonnets, the resulting texts differ significantly in
terms of lexical variety, lexical density, and average
sentence length from their human-translated coun-
terparts. This matches findings from previous stud-
ies comparing translated and non-translated texts,
as well as human-translated and machine-translated
texts. Results show that human-translated texts
tend to contain more varied vocabulary than LLM-
translated texts and that human translations also tend
to contain a higher information load as reflected by
higher number of content words, compared to poems
translated by LLMs. In addition, the mean sentence
length of the human-translated poems is higher than
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Poem HT chatGPT-3.5 chatGPT-4 Google Gemini
José (Free verse) 3.7 4 3.8 3.6

Fidelidade (Sonnet) 8.6 8.4 8.4 8.6
Amor (Sonnet) 8.4 7.0 8.4 7.7

Corazón (Free verse) 6.5 5.8 6 6

Table 6: Mean Sentence Length

Prompt 2. Amor:
Rhyme scheme Overlap Total count

Source ABBA—ABBA—CDC—DCD
Gemini ABAB—CDCD—EEE—BFB 1100—0000—000—000 2 (14%)
ChatGPT-3.5 ABBA—ABBA—CD—DCD 1111—1111—111—111 14 (100%)
ChatGPT-4 ABBA—ABBA—CDC —DCD 1111—1111—111—111 14 (100%)

Prompt 2. Fidelidade:
Source ABBA—ABBA—CDE—DEC
Gemini ABAB—ABCA—DED—FEE 1100—1100—000—010 5 (36%)
ChatGPT-3.5 ABAB—CCCC—DDD—EEE 1100—0000—100—010 4 (29%)
ChatGPT-4 ABBA—ABBA—CCD—EFE 1111—1111—100—000 9 (64%)

Prompt 3. Fidelidade:
Source ABBA—ABBA—CDE—DEC
Gemini ABAC—DEFG—HIH—JKL 1100—0000—000—000 2 (14%)
ChatGPT-3.5 ABBA—CDDC—EFE—GEH 1111—0000—001—010 6 (43%)
ChatGPT-4 ABBA—ABBA—CDE—FGH 1111—1111—111—/000 11 (79%)

Prompt 4. Amor:
Source ABBA—ABBA—CDC—DCD
Gemini ABCA—DEFE—GHI—EJA 1100—0000—000—000 2 (14%)
ChatGT-3.5 ABBA—ABBA—CDC—DCD 1111—1111—111—111 14 (100%)
ChatGPT-4 ABBA—ABBA—CDC—DCD 1111—1111—111—111 14 (100%)

Table 7: Generated Rhyme Schemes
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the mean sentence length of the poems translated by
LLMs, suggesting syntactical differences between
human and LLM renditions. (Baker, 1996; Baroni
and Bernardini, 2006; Ilise et al., 2010; Ilisei and
Inkpen, 2011; Volansky et al., 2013b; Toral, 2019)

When we analyse these results in the context of
translationese literature, which posits that higher
lexical diversity and density correlate with higher
translation quality (Toury, 1980; Gellerstam, 1986;
Baker, 1996; Volansky et al., 2013b), they suggest
that human translators are more efficient at capturing
stylistic nuances and content-based details in trans-
lations, whereas the outputs of LLMs tend to exhibit
features of simplification as reflected by less varied
vocabulary and lower lexical density. This might
be because LLMs tend to translate with fewer de-
partures from source text structures. Despite these
differences, it can be inferred that the use of LLMs
by poetry translators does not necessarily imply a
substantial loss of output quality when it comes to
lexical variety, lexical density and average sentence
length. On the other hand, a reduction in quality
could be expected if LLMs are used as part of a post-
editing workflow.

In addition, when it comes to rhyme, the experi-
ments here have demonstrated that LLMs can go
some way to reflecting complex patterns of word
choice based on word-final phonemes in their out-
puts, in special, GPT models showed a better perfor-
mance in this specific task as compared to Gemini
model. However, it should be noted that the suc-
cess rate of such rhymed outputs is variable and not
entirely predictable. It is likely closely tied to the
amount of appropriate training data for the source
and target languages that is available to the model
(Hoffmann et al., 2024). In this case, ”appropri-
ate” does not simply mean material which includes
rhyme in general. Instead, as a general principle,
the more similar the training data is to the form of
the desired output, the more likely the system is to
be successful (Sahu et al., 2022). Thus, if the tar-
get text is a sonnet, with a complex ABBA-ABBA-
CDE-DEC rhyme scheme and the training data in-
cludes a wealth of examples of sonnets of the same
format, it can be hypothesised that the output, in
terms of rhyming, would likely be better than if the
training data included a larger amount of poetry, but
comparatively less with this specific rhyme scheme.
Our experiments also show that prompt engineer-

ing can improve the models’ ability to reproduce
rhyme schemes, thus revealing the potential benefits
for translators in receiving training in prompt engi-
neering. This skill could be valuable not only for this
specific translation task but also for addressing other
translation challenges.

It is important to note that LLMs offer a new ap-
proach to choosing words, which differs from unas-
sisted human translation, especially for poetic text
types with strict forms, such as sonnets. The vocabu-
lary overlap experiment here shows that LLMs often
make different word choices from their human coun-
terparts, which could be used by human translators
for inspiration. LLMs’ functionality also offers op-
portunities for facilitating the production of rhymed
translation candidates, again, not with the goal of re-
placing the human translators, but for increasing the
speed at which possible rhymed translations candi-
dates can be suggested to the otherwise unaided hu-
man translator.

Indeed, follow-on research could investigate the cre-
ative potential associated with LLMs in terms of
outputting a range of translation candidates for any
given input and how or whether this affects the hu-
man translator’s work. Thus, it may be that there
is potential in LLMs for human translators work-
ing as part of a CALT (Computer-Assisted Literary
Translation) workflow, in encouraging and develop-
ing creative outputs. In particular, the systems have
the capacity to assist and speed the resolution of
complex challenges, such as searching for rhyming
pairs of specific lengths that encapsulate specific
meanings. By contrast, the usefulness of the systems
as the primary actors in poetry translation projects,
coupled with human post-editing, is likely heavily
limited, as seen in the results of the experiments here
on lexical variety, lexical density, average sentence
length, and especially, rhyme. Based on the find-
ings gained from this small number of experiments,
it appears likely that the post-editing work required
to bring the systems’ outputs to the standard observ-
able in the published human translations would be
so substantial and pervasive as to negate the benefits
associated with using the models in the first place.
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Littéraires (CEATL), C. E. (2022). Survey
on working conditions 2020. Accessed: 2024-
06-10.

Gellerstam, M. (1986). Translationese in swedish
novels translated from english. In In Wollin, L.
and Lindquist, H. Translation Studies in Scandi-
navia, volume 4, pages 88–95, CWK Gleerup,
Lund.

Hendy, A., Abdelrehim, M., Sharaf, A., Raunak, V.,
Gabr, M., Matsushita, H., Kim, Y. J., Afify, M.,
and Awadalla, H. H. (2023). How good are gpt
models at machine translation? a comprehensive
evaluation.

Hoffmann, J., Borgeaud, S., Mensch, A.,
Buchatskaya, E., Cai, T., Rutherford, E.,
de Las Casas, D., Hendricks, L. A., Welbl, J.,
Clark, A., Hennigan, T., Noland, E., Millican,
K., van den Driessche, G., Damoc, B., Guy,
A., Osindero, S., Simonyan, K., Elsen, E., Rae,
J. W., Vinyals, O., and Sifre, L. (2024). Training
compute-optimal large language models. arXiv
preprint arXiv:2203.15556.

Ilise, I., Inkpen, D., Pastor, G. C., and Mitkov, R.
(2010). Identification of translationese: a ma-
chine learning approach. In In Gelbukh, A. F.
(ed.), Proceedings of CICLing-2010: 11th Inter-
national Conference on Computational Linguis-
tics and Intelligent Text Processing, volume 6008
of Lecture Notes in Computer Science., pages
503–511.

Ilisei, I. and Inkpen, D. (2011). Translationese traits
in romanian newspapers: a machine learning ap-
proach. International Journal of Computational
Linguistics and Applications, 2(1–2).

Jones, J. (1986). My First Book this Year. John Doe.

Karpinska, M. and Iyyer, M. (2023). Large language
models effectively leverage document-level con-
text for literary translation, but critical errors per-
sist. In Koehn, P., Haddow, B., Kocmi, T., and
Monz, C., editors, Proceedings of the Eighth Con-
ference on Machine Translation, pages 419–451,
Singapore. Association for Computational Lin-
guistics.

Koponen, M. (2016). Is machine translation post-
editing worth the effort?: A survey of research
into post-editing and effort.

Kunilovskaya, M. and Lapshinova-Koltunski, E.
(2019). Translationese features as indicators of
quality in English-Russian human translation. In
Proceedings of the Human-Informed Translation
and Interpreting Technology Workshop (HiT-IT
2019), pages 47–56, Varna, Bulgaria. Incoma
Ltd., Shoumen, Bulgaria.

Proceedings of the 16th Conference of the Association for Machine Translation in the Americas,

Chicago, USA, September 30 - October 2, 2024. Volume 1: Research Papers



Laviosa, S. (2002). Corpus-based translation stud-
ies: Theory, findings, applications. In Approaches
to translation studies, Amsterdam & New York:
Rodopi.

Pastor, G. C., Mitkov, R., and Pekar, V. (2008). V.:
Translation universals: Do they exist? a corpus-
based nlp study of convergence and simplifica-
tion. In In: Proceedings of the AMTA.

Peng, K., Ding, L., Zhong, Q., Shen, L., Liu, X.,
Zhang, M., Ouyang, Y., and Tao, D. (2023). To-
wards making the most of chatgpt for machine
translation.

Pynte, J., New, B., and Kennedy, A. (2008). A mul-
tiple regression analysis of syntactic and semantic
influences in reading normal text. Journal of Eye
Movement Research, 2(1).

Roos, A. (2023). The experiment. In Computer-
Assisted Literary Translation, pages 237–257.
Routledge, New York.

Sahu, G., Rodriguez, P., Laradji, I. H., Atighehchian,
P., Vazquez, D., and Bahdanau, D. (2022). Data
augmentation for intent classification with off-
the-shelf large language models.

Toral, A. (2019). Post-editese: an exacerbated trans-
lationese. In Proceedings of Machine TRansla-
tion Summit, Dublin, Ireland.

Toral, A. and Way, A. (2014). Is machine translation
ready for literature. In Proceedings of Translating
and the Computer 36, London, UK. AsLing.

Toury, G. (1980). In Search of a Theory of Trans-
lation. The Porter Institute for Poetics and Semi-
otics. Tel Aviv University, Tel Aviv, Israel.

Volansky, V., Ordan, N., and Wintner, S. (2013a).
On the features of translationese. Digital Schol-
arship in the Humanities, 30(1):98–118.

Volansky, V., Ordan, N., and Wintner, S. (2013b).
On the features of translationese. Digital Schol-
arship in the Humanities, 30(1):98–118.

A Advanced Prompts

Prompt 3:
The rhyme scheme of the poem Soneto da Fidelidade
is ABBA ABBA CDE DEC. Translate this poem into
English reproducing the rhyme scheme of the source
poem.
In this rhyme scheme:
example 1) A represents words ending in -ento:
atento/pensamento
example 2) B represents words ending in -anto: en-
canto/tanto
example 3) C presents words ending -ure: pro-
cure/dure
example 4) D represents words ending in -ive:
tive/vive
example 5) E represents words that ends in -ama:
chama/ama

Soneto da Fidelidade

De tudo, ao meu amor serei atento (A)
Antes, e com tal zelo, e sempre, e tanto (B)
Que mesmo em face do maior encanto (B)
Dele se encante mais meu pensamento. (A)
Quero vivê-lo em cada vão momento (A)
E em louvor hei de espalhar meu canto (B)
E rir meu riso e derramar meu pranto (B)
Ao seu pesar ou seu contentamento. (A)
E assim, quando mais tarde me procure (C)
Quem sabe a morte, angústia de quem vive (D)
Quem sabe a solidão, fim de quem ama (E)
Eu possa me dizer do amor que tive (D)
Que não seja imortal, posto que é chama (E)
Mas que seja infinito enquanto dure. (C)

Prompt 4:
The rhyme scheme of the poem
Amor constante más allá de la muerte is
ABBA ABBA CDC DCD. Translate this poem into
English reproducing the rhyme scheme
of the source poem.
In this rhyme scheme:
example 1) A represents words ending in -era: postr-
era/lisonjera
example 2) B represents words ending in -ia:
dia/mia
example 3) C presents words ending -ido:
sido/ardido
example 4) D represents words ending in -ado:
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dado/enamorado

Amor constante más allá de la muerte

Cerrar podrá mis ojos la postrera (A)
Sombra que me llevare el blanco dı́a, (B)
Y podrá desatar esta alma mı́a, (B)
Hora a su afán ansioso lisonjera; (A)
Mas no de esotra parte en la ribera (A)
Dejará la memoria, en donde ardı́a: (B

Nadar sabra mi llama el agua frı́a, (B
Y perder el respeto a ley severa. (A)
Alma, a quien todo un dios prisión ha sido, (C)
Venas, que humor a tanto fuego han dado,(D)
Médulas, que han gloriosamente ardido, (C)
Su cuerpo dejará, no su cuidado; (D)
Serán ceniza, mas tendrá sentido; (C)
Polvo serán, mas polvo enamorado. (D)
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Abstract

In this position paper, we examine ways in which researchers in machine translation and translation studies
have approached the problem of evaluating the output of machine translation systems and, more broadly,
the questions of what it means to define translation quality. We explore their similarities and differences,
highlighting the role that the purpose and context of translation plays in translation studies approaches. We
argue that evaluation of machine translation (e.g., in shared tasks) would benefit from additional insights from
translation studies, and we suggest the introduction of an “evaluation brief” (analogous to the “translation
brief”) which could help set out useful context for annotators tasked with evaluating machine translation.

1 Introduction

The evaluation of translation quality remains a chal-
lenge in the fields of machine translation (MT) and
translation studies (TS). Evaluation methods relying
on human judgement have changed and developed
alongside advances in machine translation technol-
ogy. In MT, the longstanding goal of these evalua-
tion approaches has been to provide a standardized
and possibly even “objective” evaluation process. In
this work, we will draw on complementary perspec-
tives from MT and TS.1 We will show that there
are similarities and connections between the fields’
views on evaluation, as well as areas where insights
from TS could be used to inform and improve ap-
proaches to human evaluation of MT.

Controversies resulting from claims that MT
quality has reached “parity” with humans (Hassan
et al., 2018) as well as problems with human evalu-
ation campaigns at the Workshop on Machine Trans-
lation (WMT) have led to MT researchers shin-

ing a spotlight on evaluation protocols and their
challenges (Toral et al., 2018; Läubli et al., 2018;
Knowles, 2021; Castilho and Knowles, 2024, i.a.)—
this has also piqued the interest of researchers in TS
(e.g., Krüger, 2022).

While many previous works in the MT liter-
ature on problems in human MT evaluation have
examined questions like how to set up the evalua-
tion process, how to incorporate context, and how to
standardize annotator scores, it is rarer for them to
focus specifically on the definition at the core of this
process: what is translation quality?

In this paper, we investigate how perspec-
tives on that question differ between researchers
in the fields of MT and TS. We begin with MT
researchers’ perspectives on current methodologies
in human evaluation, focusing on what attributes
of quality these evaluations prioritize. We then
present a view of theoretical and practical dimen-
sions of translation quality assessment (TQA) within
TS in academia and industry. We explore TQA

1This paper stems from ongoing research conversations about translation quality and its evaluation between researchers in MT and
TS, with this work primarily aimed at an audience familiar with the MT literature.
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models in academia such as House’s TQA model,
Williams’ argumentation-centered approach, Col-
ina’s approach, and industry-driven approaches like
Multidimensional Quality Metrics (MQM). Follow-
ing a comparative analysis of these methodologies,
we highlight one particular facet of quality evalua-
tion that is present in the TQA models but frequently
absent from the MT research approaches: an ac-
knowledgement of the purpose of a given translation
and the context in which it is produced and expected
to be used.

We take the position that MT research could
benefit from incorporating these TS perspectives,
and we conclude this work by considering how this
could be done in practice. Translators are sometimes
given a “translation brief” describing the goals of
the translation, the intended audience of the trans-
lation, and other important contextual information;
we propose an analogous “evaluation brief” to serve
a similar role in human evaluation of translation. We
then discuss how this additional context could be
implemented in practice in MT evaluation, includ-
ing the importance of being aware of how the anno-
tator population differs or is similar to the expected
end users of the MT system being evaluated (e.g., in
terms of subject area knowledge, dialect, context,
etc.), as problems in evaluation could arise due to
a mismatch.

2 MT Researcher Perspectives

Since early MT experiments, human evaluation has
been positioned as the ideal form of evaluation,
with automatic metrics seen as a necessary stand-
in. Even BLEU (“bilingual evaluation understudy”),
in its name, considers automatic metrics an “under-
study” to human evaluators (Papineni et al., 2002).
How those human evaluations should be produced
has been an open question, with a rotating cast of
proposed methodologies and definitions of quality.
The methodologies, procedures, and interfaces used
for collecting evaluations include sliders with a con-
tinuous scale, discrete scales, ranking, annotations

of the text, among others. These are often discussed
in conjunction with the aspects of quality being con-
sidered (e.g., discrete scales for adequacy and flu-
ency2), with terminology surrounding methodolo-
gies and interfaces blurring the line between the in-
terface itself and the questions that annotators are
being asked about quality. But in practice these
are orthogonal concerns; various interfaces could be
paired with any number of questions about differ-
ent aspects of quality. This paper categorizes hu-
man evaluation methodologies used in MT evalua-
tion into three broad (and sometimes overlapping)
groups: manual scoring, semi-automatic (or, from
another perspective, this could be viewed as semi-
manual), and task-based. We also touch on how
these groups of evaluation methodologies typically
address questions of quality, and which aspects of
quality are regularly considered in MT human eval-
uation.

We define “manual scoring” evaluations as
evaluations in which an annotator directly provides
a score or ranking to one or more systems. Early
evaluations at shared tasks asked annotators to judge
adequacy and fluency on 5- or 7-point scales (LDC,
2002; Koehn and Monz, 2006; Callison-Burch et al.,
2007, i.a.) and this approach is frequently revis-
ited in other proposed variants, such as the rating
of semantic faithfulness to source text in Licht et al.
(2022). In later system ranking tasks (Vilar et al.,
2007; Callison-Burch et al., 2007, 2008, 2009, i.a.),
annotators were asked “to rank the translations from
best to worst (ties are allowed)” (Bojar et al., 2016),
without specific guidance about what aspects would
make one translation better or worse than another.
Recent WMT annotation campaigns have used di-
rect assessment (DA; Graham et al., 2013a, 2014,
2016), where annotators provide a score from 0-
100 on a sliding scale. These began with asking
for adequacy-oriented human judgements, but were
gradually replaced with questions including both
meaning and grammar (Kocmi et al., 2023).3 We
include some of the exact questions for human an-
notators in WMT evaluation campaigns for refer-

2Adequacy is defined in terms of the amount of meaning carried over from the source sentence to the translation, while fluency
focuses on whether the target language text is grammatical or natural-sounding regardless of semantic content. At times these have
been referred to by other terms as well. In earlier stages of MT development, adequacy and fluency were found to be highly correlated,
and evaluations shifted to focus only on adequacy (Callison-Burch et al., 2007). More recent research argues that “accuracy and fluency
are positively correlated at the level of the corpus but trade off at the level of individual source segments” (Lim et al., 2024).

3Notably, the most recent scale design in Kocmi et al. (2022, 2023, 2024) violates best practices in measurement theory and ques-
tionnaire design by incorporating these two distinct aspects into a single rating scale (Fowler, 2013, p. 81-82).
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ence in Appendix A. In addition to their similarity
in terms of annotators directly providing some sort
of score for a translation, these approaches have all
been challenged at various points due to issues relat-
ing to inter- and intra-annotator consistency.

We define our second category of “semi-
automatic” evaluations as ones in which an annota-
tor provides some sort of annotation (or transforma-
tion like post-editing) to the text, and then a score for
the MT is computed (automatically) based on the an-
notations. This includes approaches such as Human-
targeted Translation Edit Rate (HTER; Snover et al.,
2006), where the edit rate (an automatic measure of
the number of changes/difference) of MT output is
measured against the (human) post-edited version,
rather than a generic reference, with the expectation
that that MT output with higher translation quality
requires fewer edits in order to produce an accept-
able post-edited translation. Other approaches in-
volve the annotation of errors using an error typol-
ogy (e.g., Multilingual Quality Metrics, MQM; Bur-
chardt, 2013) followed by computing a score based
on the number and severity of errors. Similar ap-
proaches, such as HMEANT (Lo and Wu, 2011)
and HUME (Birch et al., 2016), involve annotat-
ing the shallow semantic structures/units and trans-
lation correctness of each semantic unit in the MT
output, followed by aggregating these correctness
annotations into a score for the translation quality
at sentence level. Semi-automatic approaches tend
to have more well-defined instructions for annota-
tors. However, even these may have ambiguities in
the interpretations of the evaluation task. Al Sharou
and Specia (2022) described challenges in consis-
tency of annotating critical errors using an error ty-
pology, noting the importance of annotator training
while also acknowledging that ambiguities and con-
fusion may nevertheless persist. Lo and Wu (2014)
and Birch et al. (2016) both showed that there are
compounding disagreements between annotators at
the end of the evaluation task using HMEANT and
HUME.

The third group consists of task-based evalua-
tions. In this type of extrinsic evaluation, annota-
tors are asked to use MT output to perform a task,
e.g., template filling in Laoudi et al. (2006), ques-
tion answering in Jones et al. (2007), semantic pars-

ing in Moghe et al. (2023), etc.; the performance on
the downstream task is scored. These scores are in-
terpreted as the usefulness of the MT output for the
downstream task and used to form a score or ranking
of the translation quality of the underlying MT sys-
tem. These task-based approaches typically do not
ask annotators to directly judge aspects of MT qual-
ity. Instead, they emphasize the utility/usefulness
aspect of the translation and implicitly ask “Is the
quality of the MT good enough for the annotator to
perform the requested task?”, “Does one MT system
better enable annotators to complete the task than
another MT system?”, or similar questions.

As far as we can tell, the specific form of the
questions posed/directions given to annotators are
(with a few exceptions) rarely studied by MT re-
searchers in order to ensure their validity or re-
liability. In general, despite its goals of produc-
ing “objective” scores, human evaluation in MT re-
search has tended to focus either on high-level and
potentially undefined or underspecified aspects like
generic “quality”, divided quality into adequacy and
fluency, defined MT performance based on down-
stream task performance, or used error typologies.
Graham et al. (2012) raised the question of whether
identifying the “components” of quality that anno-
tators used in their decisions could help to improve
the reliability and validity of future evaluations.

3 Translation Studies (TS) Perspectives

We now explore perspectives on translation qual-
ity and translation quality assessment (TQA)4 from
TS academia and industry. Academic research in
TS often explores theoretical frameworks, pedagog-
ical implications, and methodological innovations
(Jakobsen, 2017; Carl, 2021, i.a.), and the trans-
lation industry tends to focus on operational effi-
ciency, quality assurance, and client satisfaction,
frequently employing quantitative measures and
standardized processes to ensure consistency and
reliability in translation outputs (Williams, 2004;
Pym, 2019; Bowker, 2019, i.a.). Drugan (2013)
and Castilho et al. (2018) note the challenges of
TQA in practical settings, with an eye toward real-
world applicability, often within the constraints of
tight timelines and specific client needs. Although
there is a significant body of research within TS

4TQA is a branch of translation criticism (Holmes, 1988, p. 78), concerning “how to tell whether a translation is good or bad”
(House, 2015).
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that is process-oriented (Dimitrova, 2010; Saldanha
and O’Brien, 2014, i.a.), in this paper we focus
on product-oriented aspects of translation, as these
align more with the areas of MT evaluation research
that we also examine.

3.1 Definitions of Translation Quality

In TS, quality has been conceptualized through di-
verse contexts and perspectives and has been the
subject of many debates. Koby et al. (2014) char-
acterized translation quality in terms of two major
senses: narrow and broad. In the narrow sense,
translation is text-centric, requiring a full transfer of
the source text’s message to the target language with
correct grammar and cultural appropriateness. Early
understandings focused on linguistic fidelity and
equivalence, such as textual equivalence (Catford,
1965). This line of work emphasized accurate repli-
cation of meaning and structure from source text to
target text to ensure the translation closely mirrored
the original. Building on this, House (1997) con-
ceives of translation as a double-constrained text,
bound to both the source text and the target audi-
ence’s communicative conditions. Translating in-
volves substituting one language’s text with another
language’s equivalent that serves the same purpose.
This functional equivalence is significantly affected
by two empirically established categories of trans-
lation: overt and covert translation (House, 1997).
In an overt translation, the original text’s cultural
context and linguistic features are preserved so the
target audience can experience the original cultural
nuances (House, 2001). For example, translating an-
cient Greek poetry while maintaining references to
Greek mythology and cultural practices is a type of
overt translation. However, covert translation seeks
to create an equivalent text that functions seamlessly
in the target culture as if it were an original. Transla-
tions with a “cultural filter” adapt the content to the
target audience’s expectations and cultural norms,
creating a text that appears to have been written in
the target language originally. Translations of mar-
keting and advertising materials typically fall into
this category. This often involves adapting idiomatic
expressions, cultural references and humour to align
with local tastes and expectations. Thus, translat-
ing overtly or covertly depends on the text’s nature,
the purpose of the translation, and the intended au-
dience.

The broad sense of quality described by Koby
et al. (2014) encompasses the narrow sense but adds
compliance with negotiated specifications and con-
sideration of end-user needs, ensuring translations
meet measurable standards and fit their purpose.
This broader perspective first aligns with function-
alist approaches which define translation quality as
whether a translated text fulfills its intended purpose
for the target audience in the given circumstances,
ensuring linguistic accuracy and appropriateness in
context. Vermeer (1978, 2021) introduced Skopos
theory, which argued that linguistic solutions, such
as lexical choices and syntactical adjustments, can-
not address all translation issues, including main-
taining the original text’s intent and adapting to cul-
tural differences. Skopos theory considers transla-
tion as a purposeful action based on the source text,
where the translator must consider the intent of the
original text and adapt it to the target culture.

Building on Skopos theory and the process
by which translations are commissioned (Vermeer,
1978, 2021), Nord (1997a, p. 46-48) introduced
the translation brief or “Übersetzungsauftrag”. A
translation brief typically includes “the target-text
addressee(s), the prospective time and place of text
reception, the medium over which the text will be
transmitted, and the motive for the production or
reception of the text” (Nord, 1997a). ISO (2015)
listed 22 key and supplementary elements in a trans-
lation brief, which included information about the
source content, source and target languages, lin-
guistic specifications (e.g., language variants), audi-
ence, purpose, style guide, locale conventions, ref-
erence materials, etc., on top of some project man-
agement specifications. Similarly, Esselink (2003)
introduced a translation kit (or localization kit) as
a package of files that includes all necessary infor-
mation to meet the client’s quality standards. More
recently, Calvo (2018) used the term “specifica-
tions” to reflect the complexity of modern transla-
tion projects. Here, “Skopos”, “brief”, and “specifi-
cations” determine the communicative function and
quality of the translation.

Chesterman and Wagner (2002, p. 80-84)
added a view on quality from an industrial context.
Here, translation quality is viewed from different
perspectives: as a product judged by end quality,
as a process dependent on correct execution, as a
service measured by customer satisfaction, and as a
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copy to be assessed by accuracy and faithfulness to
the original text. The view of translation quality as
customer/end-user satisfaction is also discussed by
Pym (2019, p. 437-452).

Another view on the definition of translation
quality stems from the management quality frame-
work in Garvin (1984), which encompasses five per-
spectives: transcendent, product-based, user-based,
manufacturing-based, and value-based. Fields et al.
(2014) introduced this framework to the translation
industry to increase overall translation effectiveness
and satisfaction by balancing stakeholder expecta-
tions and addressing diverse quality dimensions.

To conclude, the understanding of quality in
TS has evolved significantly from early emphases
on linguistic fidelity to a more inclusive understand-
ing that considers functionalist, industrial, and man-
agement perspectives. This inclusive view acknowl-
edges that translation quality is multifaceted, con-
sidering both linguistic accuracy and the fulfillment
of the translation’s intended purpose for its end
users. This does not cover the full range of defi-
nitions of translation quality; the ones we selected
for discussion here are especially pertinent.

3.2 Concepts of Translation Quality
Assessment (TQA)

Bowker (2000, p. 183) described TQA as “the most
problematic area of translation,” citing descriptions
like “a great stumbling block” (Bassnett-McGuire,
1991), “a complex challenge” (Mahn, 1987), “a
most wretched question” (Malmkjær, 1998), and “a
thorny problem” (Snell-Hornby, 1992). Historically,
TS has favoured “translation criticism over empiri-
cal measurement” (Moorkens et al., 2018, p. 12),
with a particular emphasis on literary works.

Equivalence is a cornerstone of early TQA
(House, 2015, p. 21-22). The concept of equivalence
in TS describes the relationship between the source
text (ST) and the target text (TT), in which the TT
aims to match the ST in terms of meaning, func-
tion, and effect. However, equivalence at all levels
is often impossible due to linguistic and cultural dif-
ferences. The concept has evolved through various
scholars, from Vinay and Darbelnet (1958) focus-
ing on the stylistic impact, to linguistic categoriza-
tion by Jakobson (1959), and Nida and Taber (1969)
distinguishing between formal and dynamic equiva-
lence. Early TQA models focused on achieving tex-

tual and formal equivalence between source and tar-
get texts (Lauscher, 2000). However, equivalence-
based TQA approaches have often been criticized
for being too rigid and not accommodating the di-
verse functions translations can serve. For a more
in-depth overview of the concept, see Appendix B.

Compared to the concept of equivalence, func-
tionalism in translation (Vermeer, 1978; Honig,
1997) emphasizes the purpose and function of trans-
lations within their specific contexts over strict
equivalence to the source text (Lauscher, 2000). For
example, under Skopos theory, translation quality is
assessed by how well translations achieve their in-
tended purpose. In doing so, assessments will con-
sider the cultural and situational appropriateness of
the translation to ensure it resonates with the target
audience and serves its intended function.

The introduction of translation technologies to
the translation industry, such as MT and computer-
aided translation (CAT) tools, further impact the as-
sessment of translation quality. Bowker (2019, p.
453-468) emphasizes evaluating translations based
on their suitability for their intended purpose rather
than adhering to a one-size-fits-all notion of qual-
ity. This perspective helps translators navigate the
“Triple Constraint” of quality, cost, and time, ensur-
ing that translations meet specific end-user needs.
By informing clients about the significance of defin-
ing the translation’s purpose and agreeing on spec-
ifications, translators ensure that their work focuses
on both linguistic merit and overall effectiveness in
fulfilling intended purposes.

3.3 Modern TQA Models and Methodologies

Modern TQA methods can be categorized into
quantitative and qualitative dimensions. Quantita-
tive TQA models aim to provide measurable stan-
dards and numeric descriptions of translation qual-
ity. Qualitative TQA models look at how well the
translation conveys the original message, fits within
the cultural and contextual setting, and meets the
needs of its intended audience. Quantitative TQA
models, during the assessment, may break down the
translation work into smaller units, e.g., paragraphs,
sentences, or even phrases (an approach that is also
common in MT); qualitative TQA models usually
look at the complete work of the translation as a
whole. We begin with a brief discussion of quan-
titative approaches, as those more closely resemble
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the MT-style evaluations, before examining qualita-
tive approaches.

Many quantitative models are based on er-
ror typologies. Canadian Language Quality Mea-
surement System (Sical) and the Canadian Transla-
tors, Terminologists and Interpreters Council (CT-
TIC) certification exam (CTTIC, 2021) emphasize
a structured, numerical approach to quality evalu-
ation. The CTTIC’s error-based assessment has a
“Marking Scale” that differentiates between major
“Translation” errors, like significant misinterpreta-
tions (-10 points), and minor “Language” inaccura-
cies (-5 points). We should note, though, that the
CTTIC exam is arguably an evaluation/grading of a
translator, rather than an evaluation of translation or
translated texts more generally.

Other types of error typologies have grown
from the intersections of technology and translation.
MQM introduces over 100 issue types, arranged in
a hierarchical structure (Lommel et al., 2014). They
use five main branches: Fluency, Accuracy, Verity,
Design, and Internationalization and evaluate trans-
lations according to specific project requirements
and communicative purposes by selecting relevant
issue types. MQM supports multiple levels of granu-
larity and includes tools for calculating quality met-
rics and is used for both human and machine trans-
lation evaluations.

Another type is introduced in ISO (2024),
which focuses on segment-based comparisons and
detailed error typology to promote objective and
reliable quality assessment. The error categories
cover points such as: terminology (e.g., inconsis-
tent use of terms), accuracy (e.g., mistranslation,
omissions), linguistic conventions (e.g., grammar,
spelling), style (e.g., register, unidiomatic style), lo-
cale conventions (e.g., formats of dates and curren-
cies), audience appropriateness (e.g., cultural refer-
ences), and design and markup (e.g., character for-
matting, layout). Error annotations are made based
on the relevant translation project specifications and
translation evaluation specifications. To further as-
sist users in analyzing their evaluation needs, that
document contains appendices with guiding ques-
tions to help users determine their evaluation needs
and think about how to best implement an evalua-
tion setup for their situation, covering translation use
cases, evaluation purposes, and constraints.

Many modern qualitative TQA models draw on
linguistic and functionalist approaches. The model
in House (1977, 1997, 2015) is rooted in functional
pragmatics. It employs a register analysis (an anal-
ysis of the variety of language used in a particu-
lar situation/for a particular purpose) to assess how
well the source and target text match in terms of
these dimensions. In particular, the model analyzes
field, tenor, and mode (Halliday, 1973; Halliday
and Hasan, 1989)—roughly domain, relationship
between the translation participants, and medium of
communication—as well as genre.5

The functionalist/componential (i.e., breaking
quality down into components) approach, described
in Colina (2008), evaluates various components of
translation quality separately based on their func-
tions or purposes. The evaluation tool—similar to
a grading or evaluation rubric—includes descriptive
statements for different categories such as linguis-
tic form, functional adequacy, meaning, and spe-
cialized content. Raters select descriptors that best
match the text’s quality in each category, which
are then converted into numerical scores for analy-
sis. By separating the evaluation into distinct, well-
defined components, the componential nature of the
tool likely contributed to the better inter-rater agree-
ment observed in this study, reducing ambiguity and
subjectivity. Another aspect of this study was that all
raters were given training and an explanation of the
methodology before participating, which may have
contributed to their confidence and high levels of
agreement.

Qualitative TQA models also draw on an end-
user-focused approach to complement error typolo-
gies. Bowker (2009) used recipient evaluation—
surveying the target audience about how well
various translation options meet their needs and
expectations—to assess quality. This approach posi-
tions the end-users of translation at the centre, exam-
ining how different language communities may have
different use cases, needs and requirements. Simi-
larly, Saldanha and O’Brien (2014) proposed using
diverse research instruments, such as questionnaires
and eye-tracking, to make a more flexible and pre-
cise TQA method to adapt to genre, text function,
and translation briefs. Han (2020) also highlighted
this integration of various methods to enhance re-
liability, validity, and practicality to emphasize the

5See Appendix C for more details.
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need for robust and pragmatic assessment methods
to address challenges in evaluating translation qual-
ity.

There are also models, such as the
argumentation-centred TQA from Williams (2004),
which combine both qualitative and quantitative
methods. This model focuses on assessing instru-
mental translations6 by evaluating how well reason-
ing and arguments are transferred. It uses two main
components: argument schema, including elements
like claims, grounds, and rebuttals, and rhetorical
topology, which encompasses organizational rela-
tions, propositions, and narrative strategies. This
model employs a detailed framework for decon-
structing arguments to ensure the factual content
and the persuasive force are accurately conveyed.
It also assigns numerical values to various parame-
ters, including core and field-specific elements like
terminology and formatting, to provide a compre-
hensive quality assessment.

To conclude, TQA is complex in both the aca-
demic and industry sectors of translation and local-
ization (Castilho et al., 2018). The lack of a univer-
sally agreed-upon measurement standard for quality
underscores a broader debate on TQA methodolo-
gies, particularly with the increasing integration of
MT and human translation in various contexts. As
a whole, TQA models in TS advocate for a holistic
and context-sensitive evaluation of translation qual-
ity, acknowledging that different contexts and pur-
poses require different quality standards, but they
differ in how to assess and evaluate these.

4 Overlaps and Differences in MT and TS

The fields of MT and TS do have points of com-
monality when it comes to human evaluation and
assessment of MT quality, while the areas where
they differ may have their origins in the underlying
objectives and methodologies of the fields. This is
noted in Castilho et al. (2018), who point out that
many researchers in TS “have argued that evalua-

tion is directly associated with the underlying trans-
lation theory that one subscribes to,” citing in par-
ticular the quote that “different views of translation
lead to different concepts of translational quality,
and hence different ways of assessing it” (House,
1997). We also note that even within each research
community—and in their areas of overlap—there is
not a broad consensus on how to define quality or
which aspects ought to be considered most impor-
tant.

There are two main forms of evaluations that
overlap between the two fields: error typology-
based and task-based evaluations. MQM, devel-
oped in the translation industry and TS and recently
adopted by MT for some evaluations (Freitag et al.,
2021a; Anastasopoulos et al., 2022; Agarwal et al.,
2023), breaks MT quality down into a typology of
errors. Task-based and recipient evaluations have
also been used in both fields. In task-based evalua-
tions, we see the use of MT presented in a particular
context, with the users asked to either perform a task
or evaluate it from the perspective of their use case.
These may come the closest to examining whether
or not translations are appropriate for the situations
and contexts for which they are intended.

Both fields have recognized the challenge of
defining and assessing translation quality, though
they have largely taken different approaches in ex-
ploring this. At various points in MT evaluation his-
tory, we have seen quality broken down into compo-
nent parts at different levels of granularity (e.g., ad-
equacy and fluency, or error typologies like MQM).
Perspectives from TS provide other ways of catego-
rizing the components that come together to make
up notions of “quality”. These include extra-textual
factors that influence quality, as well as borrowing
and incorporating understandings of quality from
different disciplines, such as functionalism, indus-
try, and management. But in all of these efforts,
we see that quality is multidimensional (i.e., made
up of various contributing aspects) and situation-
dependent; there is not a straightforward simple or

6“Instrumental translation” refers to a type of translation where the target text functions independently and serves as an instrument
for communication within the target culture (Nord, 1997b). Unlike documentary translation, which focuses on reflecting the source
text’s original context and form, instrumental translation adapts the source text to meet the communicative needs of the target culture.
While this concept bears some resemblance to the distinction between covert and overt translation described in House (1997), the two
should not be conflated. Covert translations, like instrumental translations, aim to blend seamlessly into the target culture. However,
instrumental translation places a particular emphasis on the functional adaptation of the text to serve the target audience effectively,
sometimes requiring significant modifications to the source text. This approach is especially relevant in technical, pragmatic, and other
context-sensitive translations where functional equivalence is prioritized.
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universal definition.
MT research often seeks a single “objective”

metric for MT “quality”, which can be used to com-
pute a simple ranking of systems. This is connected
to the leaderboard and competition aspects that are
common to MT and other areas of machine learning.
It also directly relates to the fact that system opti-
mization is a major focus in MT research: optimiza-
tion towards a single objective is substantially easier
than optimization towards multiple (potentially con-
flicting) objectives. In MT, the response to observ-
ing annotator variation in evaluation has often been
to modify the evaluation protocols (e.g., changing
from a rating scale to ranking to direct assessment)
or to seek ways of standardizing annotator scores.

Both MT and TS have considered the ques-
tion of who should perform annotations. In large-
scale MT evaluations, this has often been con-
strained by the cost of annotation, with interest in
crowdsourcing (Callison-Burch, 2009; Denkowski
and Lavie, 2010; Bentivogli et al., 2011; Graham
et al., 2013b, i.a.) and comparing crowdsourced re-
sults against language and translation experts. In
TS, Colina (2008) also examines this question of
who should perform annotations, finding greater
levels of inter-annotator agreement within homoge-
nous groups (e.g., groups of all professional transla-
tors or groups of bilinguals who are not translators).

In TS, we see more attention paid to the mean-
ing of quality itself and how best to define that, influ-
enced by definitions and descriptions of quality from
different disciplines. TS also tends more towards ex-
ploring the notion of subjectivity, with a greater fo-
cus on the specific use cases and users of a particular
translation and how that translation serves its pur-
pose. This focus on a specific use case can be seen
as a difference from MT research, which often pur-
ports to aim for a broad or universal use case (see,
e.g., the framing of tasks at WMT, such as “News”
or “General” translation, without reference to a spe-
cific audience for the news/general translations).7 In

TS, there is a significant focus on who the transla-
tion is for, what it is intended to do, and the spe-
cific circumstances surrounding its creation and use
(Bowker, 2009; Chesterman and Wagner, 2002; Col-
ina, 2008, i.a.). This approach ensures that transla-
tions are tailored to meet the needs and expectations
of their target audience. This contrasts with some
MT research proposals of a translation that can be
used in any context by anyone. This MT perspective
may be tied to underlying assumptions of invertibil-
ity as a desired component of MT (since round-trip
translation performance has frequently been used as
a benchmark of success by MT researchers), a view
which is not shared in all of TS.

A recent concept from the MT perspective as-
sumes that a single translation can meet all pur-
poses or that there exists a general-purpose transla-
tion, which is often unrealistic given the diversity of
language use and cultural contexts.8 While the con-
cept of a universal translator has long been a goal
of some researchers, we note that, over time, MT
research has taken various views on how best to ap-
proach translation. Early MT successes such as the
METEO systems (Chandioux, 1976, i.a.) occurred
through focused efforts on limited and specific do-
mains: purpose-built MT. The late 1990s and early
2000s saw the widespread availability of free pub-
lic online MT systems, such as AltaVista Babel Fish
(Yang and Lange, 1998), allowing anyone with an
internet connection to (attempt to) translate anything
within a limited set of language pairs. MT research
has seen both these research tracks—the purpose-
built task-specific translation system and the goal of
a universal system—pursued in parallel. When re-
searchers or users treat online MT systems, for ex-
ample, as a box into which any source text can be
placed with the expectation of receiving the desired
translation, conflict and disappointment are likely
to arise. Users of MT technologies are in fact us-
ing MT with a purpose, and two users of the same
MT system may be using it with two different and

7We do note some exceptions to this, such as the specification that the 2024 English–Spanish task is intended to translate into Latin
American Spanish, specifically (WMT, 2024), though one could argue that this still covers a wide range of language variants.

8For example, we know that it is frequently the case that sentences in isolation may have ambiguities that would require additional
context to resolve for translation (Castilho et al., 2020); MT systems that translate at the sentence level will struggle with this. Similarly,
if we do not specify language variant well enough, we may produce text that is suitable for one linguistic community that speaks a
language but not another (e.g., orthographic, writing system, or vocabulary differences). While most MT evaluations omit such factors
as design, layout, formatting, and markup, these factors are more frequently considered in the TS perspective. Consider, for example
the task of subtitle or closed-caption translation, which places additional constraints, such as length, on the translation, which we are
now also beginning to see addressed in MT.
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conflicting purposes. The emphasis on universal-
ity that is often present (implicitly or explicitly) in
MT research may overlook the specificities that TS
scholars deem crucial for high-quality translations.
We argue that MTR research should be consider-
ing these purposes and specificities when perform-
ing evaluations, whether by explicitly highlighting
specific use cases, language variants, and so on, or
by being clear about how to handle conflicting pref-
erences in translation quality.

5 Evaluation Briefs

In this work, we have looked at how both MT and TS
have explored questions of what it means to evalu-
ate the “quality” of a translation. While we have
seen that MT has explored some aspects of quality
(e.g., adequacy and fluency), TS has enumerated a
wider range of aspects that contribute to perceptions
and judgments of MT quality; TQA involves deci-
sions that take into account many factors beyond the
source and target text, such as the intended target au-
diences and their linguistic and cultural background,
the purpose of translation, and the medium of re-
ception. Without access to these relevant details,
human evaluators are reasoning under uncertainty.
This leads us to ask: can insights from TS suggest to
us aspects that are missing from many of the current
implementations of human evaluation of MT from
the MT research side?

We argue that the concepts of the purpose and
intended audience of a translation are some of the
central aspects that have been underexplored in the
MT literature. This is also one of the major research
areas identified in human-centered MT evaluation
by Liebling et al. (2022). Trying to incorporate this
into MT evaluation (e.g., of the sorts performed at
WMT or other large-scale evaluations) will require
MT researchers to first settle on more concrete and
well-defined goals for their MT systems. That in-
cludes the considerations of the intended use case,

the language variants, and the intended audiences.
This is certainly not a new call; Church and

Hovy (1993) pointed out that “if the application is
not clearly identified (or worse, if the application
is poorly chosen), then it is often very difficult to
find a satisfying evaluation paradigm.” That claim
was made in an era of “crummy” MT, but we ar-
gue for its continued relevance in an era of improved
MT. Among several other goals, Church and Hovy
(1993) argued that an appropriate application should
“set reasonable expectations” and “should be attrac-
tive to the intended users”. Now that we have access
to much-improved MT for many language pairs and
domains, how should we push forward?

We propose being explicit with a “translation
brief” (for the use of both the translators producing
reference translations and the researchers building
MT systems9) as well as expanding this to an “eval-
uation brief”. An “evaluation brief” would provide
the human evaluators with a wider context and de-
tailed instructions about how to evaluate the transla-
tion. This is similar to the “role” or “persona” de-
scribed in Graham et al. (2012), which annotators
are asked to take on when evaluating MT output;
that work also highlights the importance of taking
great care with the design of such instructions. With
the evaluation brief, human evaluators could situate
themselves in the use case of the translation and as
the intended users of the translation to consider the
users’ needs and expectations. As for what to in-
clude in an evaluation brief, we could draw inspi-
ration from the translation brief: source and target
languages (including language variants), relevant in-
formation about both the author/speaker and the au-
dience, purpose, style guide, and so on (ISO, 2015).

For example, we can consider two different
types of medical texts: medical information that is
intended for healthcare workers (domain experts)
and medical information in public health announce-
ments that is intended to be accessible to a broad
audience (non-experts).10 An appropriate evaluation

9While human translators will make use of the translation brief directly, i.e., deciding on levels of formality, language variants,
technical language, and so on to use in their translations, MT researchers are likely to use this more indirectly, such as by selecting
which data sources to train on, deciding whether to incorporate model features such as tagging (e.g., for multi-domain or multilingual
systems), considering issues such as robustness to input variations, and so on, with the goal of producing a translation system that in
turn will follow the translation brief. We could also imagine employing translation briefs when experimenting with large language
model-based translation, as part of the instructions provided to the large language model.

10We consider here primarily the case in which the expertise level of the audience is held consistent from the source to the tar-
get (i.e., translating text for domain experts from a source language into target language text also intended for domain experts); the
transformation of text from expert to non-expert (or vice versa) introduces additional challenges.
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brief would, at a minimum, indicate which audience
and purpose was intended, and perhaps also other
relevant concerns like whether there were termino-
logical conventions that should be followed. Impor-
tantly, the translation brief (for translators producing
reference translations and for MT researchers build-
ing systems) and the evaluation brief should gener-
ally be in agreement; while there may be some situa-
tions (e.g., challenge sets or analyses of MT robust-
ness) where it is appropriate to evaluate MT systems
on things outside of the purview of the translation
brief, to be fair to the participants of a shared task,
the evaluation should match the stated objectives of
the task itself.

However, an evaluation brief is likely insuf-
ficient on its own; MT researchers also need to
think about recruiting human evaluators with skills,
knowledge, and cultural expertise appropriate for
the specific goals of the translation. In the case of
translations that are intended to be acceptable across
a wide range of language variants (e.g., dialects,
spelling conventions), whether the evaluator pool re-
flects this diversity would affect the validity of the
evaluation results. Similarly, in the case of transla-
tions for a highly-technical domain (intended for use
by experts), e.g., biomedical translations in (Neves
et al., 2023), employing subject matter experts as
translation evaluators is necessary for a meaning-
ful evaluation. A lack of such experts may lower
evaluation consistency (Freitag et al., 2021b). Im-
portantly, the evaluation brief (and any translation
brief) should be reported (e.g., in the appendices of
publications), along with relevant information about
the annotators (e.g., language skills, expertise, etc.).
Current practices often report only high-level infor-
mation (e.g., whether annotators were translators or
non-translator bilinguals); one may wish to consider
expanding this to cover a broader range of relevant
demographic information about annotators.

6 Conclusion

In this work, we have examined perspectives on both
MT quality and how to evaluate MT from the per-
spectives of MT research and translation studies. We
argue that future MT evaluation could benefit from
drawing on insights from translation studies. In par-
ticular, this includes an increasing focus on the pur-
pose, intended audience, and context of translation.
More broadly, we encourage MT researchers to seek

collaborations and conversations in TS and beyond.
In order to better design the questions that MT re-
searchers ask of evaluators, the field would likely
benefit from more interactions with research best
practices in measurement theory, survey research
methods, human-computer interaction, and more.
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Sudoh, K., Tang, Y., Thompson, B., Tran, K., Turchi,
M., Waibel, A., Wang, M., Watanabe, S., and Zevallos,
R. (2023). FINDINGS OF THE IWSLT 2023 EVAL-
UATION CAMPAIGN. In Salesky, E., Federico, M.,
and Carpuat, M., editors, Proceedings of the 20th In-
ternational Conference on Spoken Language Transla-
tion (IWSLT 2023), pages 1–61, Toronto, Canada (in-
person and online). Association for Computational Lin-
guistics.

Al Sharou, K. and Specia, L. (2022). A taxonomy and
study of critical errors in machine translation. In Mo-
niz, H., Macken, L., Rufener, A., Barrault, L., Costa-
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Neves, M., Post, M., Specia, L., Turchi, M., and Ver-
spoor, K., editors, Proceedings of the Third Conference
on Machine Translation: Shared Task Papers, pages
272–303, Belgium, Brussels. Association for Compu-
tational Linguistics.

Proceedings of the 16th Conference of the Association for Machine Translation in the Americas,

Chicago, USA, September 30 - October 2, 2024. Volume 1: Research Papers

© 2024 His Majesty the King in Right of Canada, as represented by the National Research Council Canada



Bowker, L. (2000). A corpus-based approach to evaluat-
ing student translations. The Translator, 6(2):183–210.

Bowker, L. (2009). Can machine translation meet the
needs of official language minority communities in
Canada? A recipient evaluation. Linguistica Antver-
piensia, New Series – Themes in Translation Studies,
8:123–155.

Bowker, L. (2019). Fit-for-purpose translation. In
O’Hagan, M., editor, The Routledge Handbook of
Translation and Technology. Routledge.

Burchardt, A. (2013). Multidimensional quality metrics:
A flexible system for assessing translation quality. In
Proceedings of Translating and the Computer 35, Lon-
don, UK. Aslib.

Callison-Burch, C. (2009). Fast, cheap, and creative:
Evaluating translation quality using Amazon’s Me-
chanical Turk. In Koehn, P. and Mihalcea, R., edi-
tors, Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing, pages 286–
295, Singapore. Association for Computational Lin-
guistics.

Callison-Burch, C., Fordyce, C., Koehn, P., Monz, C.,
and Schroeder, J. (2007). (Meta-) evaluation of ma-
chine translation. In Callison-Burch, C., Koehn, P.,
Fordyce, C. S., and Monz, C., editors, Proceedings of
the Second Workshop on Statistical Machine Transla-
tion, pages 136–158, Prague, Czech Republic. Associ-
ation for Computational Linguistics.

Callison-Burch, C., Fordyce, C., Koehn, P., Monz, C., and
Schroeder, J. (2008). Further meta-evaluation of ma-
chine translation. In Callison-Burch, C., Koehn, P.,
Monz, C., Schroeder, J., and Fordyce, C. S., editors,
Proceedings of the Third Workshop on Statistical Ma-
chine Translation, pages 70–106, Columbus, Ohio. As-
sociation for Computational Linguistics.

Callison-Burch, C., Koehn, P., Monz, C., and Schroeder,
J. (2009). Findings of the 2009 Workshop on Statistical
Machine Translation. In Callison-Burch, C., Koehn, P.,
Monz, C., and Schroeder, J., editors, Proceedings of the
Fourth Workshop on Statistical Machine Translation,
pages 1–28, Athens, Greece. Association for Computa-
tional Linguistics.

Calvo, E. (2018). From translation briefs to quality stan-
dards: Functionalist theories in today’s translation pro-
cesses. Translation & Interpreting, 10(1).

Carl, M., editor (2021). Explorations in Empirical Trans-
lation Process Research. Springer International Pub-
lishing.

Castilho, S., Doherty, S., Gaspari, F., and Moorkens, J.
(2018). Approaches to Human and Machine Trans-
lation Quality Assessment, pages 9–38. Volume 1 of
Moorkens et al. (2018).

Castilho, S. and Knowles, R. (2024). A survey of context
in neural machine translation and its evaluation. Natu-
ral Language Processing, page 1–31.

Castilho, S., Popović, M., and Way, A. (2020). On con-
text span needed for machine translation evaluation. In
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nical Papers, pages 275–285, Langhorne, PA, USA.
Springer.

A Questions for DA Annotators in WMT

In the original work of Graham et al. (2013a), an-
notators were asked questions about fluency using
the DA sliding scales. In the Mechanical Turk setup
in Bojar et al. (2016, 2017, 2018); Barrault et al.
(2019) annotators were asked: “Read the text be-
low. How much do you agree with the following
statement:” where the statement was “The black text
adequately expresses the meaning of the gray text
in English.” (English was replaced with a different
language where appropriate). The Appraise inter-
face used the question “How accurately does the
above candidate text convey the original semantics
of the reference text? Slider ranges from “Not at
all (left) to Perfectly (right).”—though in bilingual
assessment, “reference” was replaced with “source”
(Bojar et al., 2017, 2018). In Barrault et al. (2019)
the Appraise setup asked annotators: “For the pair of
sentences below: Read the text and state how much
you agree that:” where the statement was “The black
text adequately expresses the meaning of the gray
text in German (deutsch).” (replaced with a differ-
ent language where appropriate). Later evaluations
with a different interface added clarifications about
the location of the two texts (Barrault et al., 2020).

The most recent two WMT shared tasks have
used an approach that they call DA+SQM; that inter-
face uses a continuous slider to assign scores on a 7-
point (0 to 6) scale, with the 0, 2, 4, and 6 tick marks
attached to labels. These labels and their descrip-
tions explicitly include both meaning and grammar,
as we see in this example: “4: Most meaning pre-
served and few grammar mistakes: The transla-
tion retains most of the meaning of the source. It
may have some grammar mistakes or minor contex-
tual inconsistencies.” (Kocmi et al., 2023). This
decision to use DA+SQM and these particular la-
bels was supported by “internal preliminary experi-
ments” (Kocmi et al., 2022) that showed that it may
produce more stable scores across annotators; the
results and supporting data have not been released
publicly.

B Translation Equivalence in TS

Table 1 shows different understandings of equiva-
lence in TS, acknowledging that the target text (TT)
can never be equivalent to the source text (ST) on
all levels (Vandepitte, 2017, p. 151). Vinay and
Darbelnet (1958, p.32) suggested that the stylistic
impact in translation is critical. Jakobson (1959,
p. 233) took a linguistic approach, discussing dif-
ferent types of translation (intralingual, interlingual,
and inter-semiotic). Nida (1964); Nida and Taber
(1969); de Waard and Nida (1986) drew on Bible
Studies and distinguished between formal and func-
tional equivalence, stressing the importance of mes-
sage over form. Catford (1965, p.27) introduced the
concept of “textual equivalent”, which refers to a
text or section of text in the TT that, in a specific
situation, is deemed equivalent to a corresponding
text or segment in the ST. This work underscores
the challenges of achieving equivalence across lan-
guages and the critical role of context in defining
linguistic meaning, distinguishing between “textual
equivalence” and “formal correspondence” based on
their respective roles in translation. House (1997)
emphasized functional equivalence between the ST
and TT. Koller (1979, 1989) identified five types of
equivalence, ranging from denotative to pragmatic.
Baker (1992), from a linguistic perspective, elabo-
rated on text-level and pragmatic equivalence. Pym
(2023, p. 10-12) framed equivalence as a relation-
ship of ‘equal value’ between segments of the ST
and TT from form to function. While languages and
cultures may differ, translations can achieve equiv-
alence by preserving some aspect of value, whether
it be in terms of meaning, function, or effect. The
work emphasized that equivalence involves “trans-
formation”, aiming to preserve or reproduce a cer-
tain value from the ST in the TT. This perspective
emphasizes the translator’s role in navigating cul-
tural differences and making deliberate choices to
ensure the translation fulfills its intended purpose,
whether that be informing, persuading, or entertain-
ing the target audience.

Exploring these perspectives provides a con-
text for the evolution of TQA approaches. The dis-
cussions by Vinay and Darbelnet (1958), Jakobson
(1959), Nida and Taber (1969), and others laid the
groundwork for what was predominantly a quali-
tative assessment of translations, rooted in linguis-
tic, functional, and stylistic parameters. This era’s
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Representative work Key understandings of equivalence
Vinay and Darbelnet (1958) Replicate the same message with different wording (p. 32); an emphasis

on the stylistic impact in the target text (TT) (p. 256)
Jakobson (1959) Three kinds of translation: intralingual, interlingual, and inter-semiotic,

with interlingual translation as the focus in TS; there is no full equivalence
between code-units; translation from one language into another substitutes
messages in one language not for separate code-units but for entire mes-
sages in some other language (p. 233).

Nida (1964); Nida and
Taber (1969); de Waard and
Nida (1986)

Two basic types of equivalence: (1) formal equivalence (fidelity to the orig-
inal text) and; (2) dynamic equivalence; a translation is to seek equivalence
of the message rather than conserving the form of the utterance; meaning
is given priority over structure; style, though secondary to content, must
still be preserved (1986, p. 36)

Catford (1965) “Translation is an operation performed on language: a process of substi-
tuting a text in one language for a text in another. Then, any theory of
translation must draw upon a theory of language – a general linguistic the-
ory.” (p. 1)
Textual equivalence is “any target language text or portion of text which is
observed on a particular occasion to be equivalent of a given ST or portion
of text” (p. 27)
Formal correspondence is “any TL category (unit, class, structure) which
can be said to occupy as nearly as possible the same place in the economy
of the TT as the ST given category occupied in the ST” (p. 27)

House (1997) An emphasis on functional equivalence between the ST and the TT.
Koller (1979, 1989) Five different types of equivalence: denotative (extra-linguistic factors),

connotative (verbalized through source text), text-normative (textual and
linguistic norms), pragmatic (concerning the receiver of the target text)
and formal (the formal-aesthetic qualities of the source text).

Baker (1992) Word-level equivalence (p. 9-49);
grammatical-level equivalence (p. 92-129);
textual-level equivalence (cohesion and thematic structure) (p.131-228);
pragmatic level equivalence (mainly with implications which refers to the
implied not the literal meanings) (p. 230-271).

Pym (2023) Transformation-based equivalence (p.12)

Table 1: A timeline of understanding “translation equivalence” in TS.

TQA was characterized by its reliance on human ex-
pertise, with scholars advocating for various frame-
works to grapple with the intangible qualities of a
“good translation”. These early debates and theo-
ries remain influential, offering a point of departure
for understanding how the advent of technology has
reshaped the methodologies and tools of TQA.

C House’s TQA Model (2015)

The House TQA model (House, 2015, p. 127) em-
ploys a register analysis derived from the framework

in Halliday (1973) and Halliday and Hasan (1989),
utilizing the categories of field, tenor, and mode. It
includes six parameters:

• Field: This refers to the domain of knowledge
or social practice that the text relates to and the
activities that it refers to. It answers the ques-
tion of “what is happening” or “what is being
talked about.” For example, a scientific report
on climate change will have a different field
than a personal letter, affecting the choice of
technical versus everyday language.
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• Tenor: This includes the participant relation-
ships, the author’s provenance, social relation-
ships, social attitudes, and participation. It re-
flects the social roles and relationships between
the participants (e.g., teacher-student, doctor-
patient, friend-friend) involved in the commu-
nicative event, including the author, the reader,
and the translator. Tenor influences aspects of
language such as the level of formality, use of
pronouns, and the choice of modal verbs ex-
pressing obligation, possibility, or permission,
reflecting the nature of interpersonal interac-
tions.

• Mode: Mode refers to the medium of the text,
the channel of communication (spoken or writ-
ten), and the complexity or simplicity of the
language, as well as its connectivity. It refers
to how the text is presented and how it estab-
lishes a connection with the reader.

• Register: This is a central concept that draws
together the elements of field, tenor, and mode,
to describe the language variety used for a par-
ticular purpose. For instance, an academic lec-
ture employs specialized vocabulary and com-
plex structures (field), within a formal rela-

tionship between lecturer and students (tenor),
delivered through a monologic presentation
(mode). Conversely, a casual conversation be-
tween friends features everyday topics (field),
marked by an informal, equal-status interac-
tion (tenor), in a spontaneous, spoken format
(mode).

• Genre: Genre is understood in terms of so-
cially ratified forms of texts, like a novel, a le-
gal document, or a poem.

• Corpus Studies: This is not traditionally part
of House’s model but suggests a methodologi-
cal approach to TQA through the use of corpora
to analyze translations in a larger, more empir-
ical context.

House’s approach to TQA is functionalist and
descriptive. A quality translation is functionally
equivalent to the ST, meaning it should enable the
reader to understand and do the same things as they
would with the ST, taking into account the cultural
context and the communicative situation of the TT.
The emphasis of the model is on the equivalence of
the communicative functions of the texts rather than
a word-for-word correspondence.
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Abstract

Word-level translation quality estimation (TQE) is the task of identifying erroneous words in a translation
with respect to the source. State-of-the-art methods for TQE exploit large quantities of synthetic training
data generated from bilingual parallel corpora, where pseudo-quality labels are determined by comparing
two independent translations for the same source text, i.e., an output from a machine translation (MT) system
and a reference translation in the parallel corpora. However, this process is sorely reliant on the surface forms
of words, with acceptable synonyms and interchangeable word orderings regarded as erroneous. This can
potentially mislead the pre-training of models. In this paper, we describe a method that integrates a degree
of uncertainty in labeling the words in synthetic training data for TQE. To estimate the extent to which
each word in the MT output is likely to be correct or erroneous with respect to the reference translation, we
propose to use the concept of optimal transport (OT), which exploits contextual word embeddings. Empirical
experiments using a public benchmarking dataset for word-level TQE demonstrate that pre-training TQE
models with the pseudo-quality labels determined by OT produces better predictions of the word-level quality
labels determined by manual post-editing than doing so with surface-based pseudo-quality labels.

1 Introduction

Translation quality estimation (TQE) (Blatz et al.,
2004; Specia et al., 2018) is the task of predicting
quality labels or scores for a given translation, typ-
ically generated by machine translation (MT) sys-
tems, with respect to the source text, without refer-
ring to a reference translations. Predictions can be
made at different levels of granularity, such as sen-
tence and word levels. Sentence-level quality labels
help users determine whether to use an MT output
as it is or after post-editing (PE). Word-level qual-

ity labels better guide post-editors in the translation
production process (ISO/TC37, 2017), i.e., identify-
ing words that require revision.

In this paper, we focus on word-level TQE.
The data for training and evaluating word-level TQE
models consist of tuples of a source text, an MT out-
put, and quality labels for each word in the MT out-
put. In the TQE shared tasks at the Workshop on
Machine Translation (WMT) (Specia et al., 2020,
2021; Zerva et al., 2022), binary labels, i.e., {“OK,”
“BAD”}, are used as the quality labels. As illus-
trated in the top part of Figure 1, TQE data are pro-

∗This work was done during an internship of the first author at National Institute of Information and Communications Technology.
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duced through manual PE of MT outputs, where re-
visions indicate that the words in the MT output are
erroneous. It is therefore straightforward to deter-
mine gold-standard labels using the Translation Edit
Rate (TER) toolkit (Snover et al., 2006)1 by iden-
tifying the minimum edit distance between two se-
quences of words relying on surface-level matching.

Source text MT output PE output
MT PE

Necessary edits

Reference
Differences do not 
always indicate errors

Reference: They finally accomplished their goals .

MT output: Eventually , they achieved their goal .

Quality label: BAD    BAD OK    BAD OK    BAD OK

Manually produced TQE data

Synthetic TQE data

Human translation

Figure 1: Framework for obtaining TQE data:
(a) manual PE and (b) comparison of MT output
with a reference translation independently produced
by a human translator. An example for the latter ex-
emplifies that the conventional TER-based method
regards unessential differences as errors.

To improve the accuracy further, state-of-the-
art methods for word-level TQE exploit large quanti-
ties of synthetic TQE data for pre-training (Liu et al.,
2017; Lee, 2020; Tuan et al., 2021; Rubino et al.,
2021; Yang et al., 2023). Figure 1 also shows the
typical process of generating synthetic TQE data.
First, the source side of a given bilingual parallel
corpus is translated with an MT system, and then a
pseudo-quality label for each word in the MT out-
put is determined by comparing two independent
translations for the same source text: the MT output
and the target side of the parallel corpus, i.e., ref-
erence translation. Previous work (Liu et al., 2017;
Lee, 2020; Tuan et al., 2021; Rubino et al., 2021)
has used the TER toolkit for the comparison. How-
ever, surface-level differences between independent
translations do not necessarily indicate errors. For
instance, as shown in Figure 1, they can differ in the
use of synonyms, interchangeable word orderings,
and so forth, even if the MT output is error-free. Ap-
plication of the TER toolkit to such pairs inevitably
produces incorrect quality labels and consequently

misleads the pre-training of TQE models.
In this paper, we describe a method that con-

siders the degree of uncertainty in labeling words in
synthetic training data for TQE. To estimate the ex-
tent in which each word in the MT output is likely
to be correct or erroneous with respect to a refer-
ence translation, we propose to use the concept of
optimal transport (OT). Given a pair of an MT out-
put and a reference translation, our method first ob-
tains contextual word embeddings. It then deter-
mines the optimal alignments between words in the
MT output and the reference translation with their
likelihood. Following Arase et al. (2023), we ex-
pect this approach to identify negligible semantic
differences between synonymous expressions and
corresponding position-free grammatical elements,
and properly label them as “OK.” Empirical ex-
periments using a public benchmarking dataset for
word-level TQE, i.e., MLQE-PE (Fomicheva et al.,
2022), demonstrate that pre-training TQE models
with the OT-based quality labels produces better pre-
dictions of the word-level quality labels determined
by manual PE than models pre-trained on surface-
based quality labels determined by TER.

2 Standard Framework

A word-level TQE model is trained on DQE =
(Sk, T

′
k, Yk)

N
k=1, i.e., a set of N triplets of a source

text Sk, its machine-translated text T ′
k, and a se-

quence of quality labels Yk corresponding to the
words in T ′

k.

2.1 Data for Word-level TQE
Data for word-level TQE can be obtained through
post-editing the machine-translated text T ′

k into Rk,
or annotating errors in T ′

k (Freitag et al., 2021). For
the former, we can automatically identify the words
that have been dropped or revised by comparing T ′

k

and Rk, typically using the TER toolkit (Snover
et al., 2006), and regard them as errors. The post-
editing process requires workers who are highly
competent in both the source and target languages,
and is a laborious task. Therefore, only limited
quantities of data are available for a limited number
of translation directions and content domains. For
instance, the MLQE-PE dataset (Fomicheva et al.,
2022) covers only 11 translation directions (see
Section 4.1 for details).

1http://www.cs.umd.edu/˜snover/tercom/
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Label type Problem/Arch. Wo σ(·) Loss function

Hard Classification Rd×c argmax(softmax(·)) e.g., Cross-entropy
Soft Regression Rd×1 sigmoid(·) e.g., Mean squared error

Table 1: Architectures and components of word-level TQE models: d indicates the dimension of the contex-
tual word embeddings and c represents the number of possible hard labels (c = 2 for {“OK,” “BAD”}).

To improve the accuracy, overcoming the data
sparseness issue, researchers have exploited syn-
thetic TQE data, which are readily available at a
large scale (Liu et al., 2017; Lee, 2020; Tuan et al.,
2021; Rubino et al., 2021; Yang et al., 2023). Syn-
thetic TQE data can be generated from a bilingual
parallel corpus, Dpara = (Sk, Tk)

N
k=1. The paral-

lel corpus can be filtered with some metrics as ex-
emplified in Section 5.1. Typically, T ′

k is first gen-
erated by translating each source text Sk with an
MT model. Alternatively, T ′

k can be obtained by
rewriting each target text Tk with a masked lan-
guage model (Tuan et al., 2021) or translating Tk

into another language and translating it back into
the target language, i.e., round-trip translation (Ding
et al., 2021), which can also be applied to monolin-
gual data of the target language. Then, the pseudo-
quality label for each word in T ′

k is determined by
comparing T ′

k with the corresponding human trans-
lation in the bilingual parallel corpus, i.e., Tk. Most
previous work has employed the TER toolkit for this
purpose; however, as exemplified in Figure 1, this
results in inaccurate pseudo-quality labels, which
would mislead the pre-training of TQE models.

2.2 Training Word-level TQE Models

To train a word-level TQE model, large quantities
of synthetic data, such as those obtained by the pro-
cedure explained in Section 2.1, are used for pre-
training (Liu et al., 2017; Lee, 2020; Tuan et al.,
2021; Rubino et al., 2021; Yang et al., 2023). In
contrast, small quantities of manually produced data
are used for fine-tuning the model.

State-of-the-art approaches for word-level
TQE rely on a pre-trained multilingual encoder,
such as XLM-RoBERTa (Conneau et al., 2020) and
INFOXLM (Chi et al., 2021), to obtain contex-
tual embeddings for the words in the source text
S and its machine-translated text T ′. To exploit
cross-lingual relationships between S and T ′, pre-
vious work (Zerva et al., 2021; Rei et al., 2022)

jointly encodes the sequences of words in S and T ′

with a pre-trained multilingual encoder, and obtains
[h1, . . . , hn], i.e., d-dimensional contextual embed-
dings, for the n words in T ′. Then, the label for each
word t′i in T ′ is predicted as follows:

ŷi = σ(WoL(hi)), (1)

where L(·) denotes additional task-specific transfor-
mation layers, Wo is a projection matrix, and σ(·) is
a normalization function. There are two major op-
tions for the labels: (a) a hard label, such as {“OK,”
“BAD”}, or (b) the degree of badness (or good-
ness). Wo and σ(·) are implemented depending on
this choice, as summarized in Table 1. Appropriate
loss function is also set according to the label type.

3 Determining Pseudo-Quality Labels with
Optimal Transport

This paper describes how better pseudo-quality la-
bels can be assigned to the synthetic TQE data. We
assume that the triples Dsyn = (Sk, T

′
k, Tk)

N
k=1 are

generated from a bilingual parallel corpus, Dpara =
(Sk, Tk)

N
k=1, and determine the pseudo-quality label

for each word in T ′
k by comparing T ′

k with the cor-
responding Tk, as in previous work (Section 2.1).

In the proposed approach, we apply optimal
transport (OT), which identifies the optimal way of
converting one distribution into another. The appli-
cation of OT is inspired by its application to mono-
lingual word alignment (Arase et al., 2023). Let
[t′1, . . . , t

′
n] be a sequence of n words in a given

machine-translated text T ′ and [t1, . . . , tm] be a se-
quence of m words in the corresponding reference
translation T . The goal of OT is to identify a ma-
trix P ∈ Rn×m

+ that best aligns the words in T ′ and
T , where Pi,j represents the likelihood of the align-
ment between t′i and tj . To solve our problem with
OT, we define the following two concepts:

Mass of each word: this is a probability simplex,
i.e.,

∑
l = {v ∈ Rl

+ |
∑l

i=1 vi = 1}. We
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denote the mass of n words in T ′ as a ∈
∑

n

and that of m words in T as b ∈
∑

m.

Cost for transportation: a cost function for each
pair of words, c(t′i, tj) ∈ R+, can be defined
as their dissimilarity. A matrix C ∈ Rn×m

+ ,
where Ci,j = c(t′i, tj), represents a summary
of the cost for all pairs of words. The cost is
typically computed on the basis of contextual
word embeddings. In the process of obtaining
the embeddings, such as by using a pre-trained
multilingual encoder, we can also refer to the
source text (see Appendix A), which is an ad-
vantage of this method over the TER toolkit.

A matrix P ∈ Rn×m
+ that minimizes the total cost

for transportation is then identified as follows:

P = argmin
P ′∈U(a,b)

∑
i,j

Ci,jP
′
i,j , (2)

where U(a, b) is a set of matrices (∈ Rn×m
+ ) that

satisfy a certain constraint. For instance, the follow-
ing constraint preserves the mass of the source in the
target:

U(a, b) = {P ∈ Rn×m
+ | P1n = a, P⊤

1m = b},
(3)

where 1l is an l-dimensional vector in which all el-
ements are 1. Equation (3) assumes that T ′ and T
can be completely aligned, which conflicts with the
motivation of word-level TQE, i.e., the necessity of
spotting errors in T ′. Therefore, we introduce a con-
straint that bounds the mass to be transported up to
λm following the formulation of Partial OT (Figalli,
2010; Caffarelli and McCann, 2010):

U(a, b) = {P ∈ Rn×m
+ | P1n ≤ a, P⊤

1m ≤ b,

1
⊤
nP

⊤
1m = λm}.

(4)
Having obtained the optimal transportation, P ,

which represents the most plausible alignments be-
tween T ′ and T , we determine the pseudo-quality
label for each word t′i in T ′. We consider two vari-
ants: soft label (ysoft

i ∈ [0, 1]) and hard label (yhard
i ∈

{“OK,” “BAD”}).

Soft label is a real number between 0.0 and 1.0,
where 0.0 indicates that nothing is transported

from the word, strongly suggesting that the
word is erroneous, while 1.0 indicates that the
word perfectly aligns with a word in T .

ysoft
i = max(Pi,0, . . . , Pi,m), (5)

Y soft = [ysoft
1 , . . . , ysoft

n ]. (6)

Hard label is a binary label, {“OK,” “BAD”},
which is determined by thresholding the soft la-
bel. We introduce this merely for a comparison
with the conventional binary labels determined
by the TER toolkit.

yhard
i =

{
“OK” ysoft

i > λ

“BAD” otherwise
(7)

Y hard = [yhard
1 , . . . , yhard

n ]. (8)

Finally, we obtain two sets of synthetic data for
word-level TQE: Dsoft

QE = (Sk, T
′
k, Y

soft
k )Nk=1 with

the soft labels and Dhard
QE = (Sk, T

′
k, Y

hard
k )Nk=1

with the hard labels.

4 Experiments

To confirm the effectiveness of the proposed
method, we conducted experiments using a public
dataset for word-level TQE, MLQE-PE (Fomicheva
et al., 2022).2 Following recent shared tasks on
word-level TQE (Specia et al., 2020, 2021; Zerva
et al., 2022) and Fomicheva et al. (2022), we eval-
uated TQE models using the Matthews correlation
coefficient (MCC) (Matthews, 1975).

4.1 Word-level TQE Dataset
MLQE-PE (Fomicheva et al., 2022) contains test
sets for 11 translation directions, each consist-
ing of 1k triplets of source text, an MT out-
put for it, and binary quality labels, i.e., {“OK”,
“BAD”}, determined by manual PE for the
MT output and comparing the result with the
raw MT output using the TER toolkit. We
used Test20 (data/post-editing/test) and
Test21 (data/test21∗) in this repository. For
seven3 translation directions, the MT outputs
have been generated by a unidirectional Trans-
former model (Vaswani et al., 2017) trained

2https://github.com/sheffieldnlp/mlqe-pe
3English-to-German (En→De), English-to-Chinese (En→Zh), Romanian-to-English (Ro→En), Estonian-to-English (Et→En),

Nepali-to-English (Ne→En), Sinhalese-to-English (Si→En), and Russian-to-English (Ru→En).
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with the fairseq toolkit (Ott et al., 2019);4,5

training and development data consisting of 7k
and 1k triplets, respectively, are also available
(data/post-editing/{train,dev}). We
used the training data for fine-tuning the TQE mod-
els and the development data for selecting the hyper-
parameters and models, except for Ru→En. We
regarded the remaining four translation directions,6

for which the MT outputs have been generated by
mBART50 (Tang et al., 2021), and Ru→En as zero-
shot, since we used neither bilingual parallel data
nor TQE data for them.7

4.2 Synthetic TQE Data
To generate synthetic TQE data, we used the bilin-
gual parallel corpora8 officially provided by the or-
ganizers of WMT21 TQE Task 2 and M2M-100
(Fan et al., 2021).9 Table 2 summarizes their sizes
and our groupings.

Group Language pair Bilingual Synthetic

High
En–De 23,360,441 22,701,552
En–Zh 20,305,268 16,201,271

Medium
Ro–En 3,901,501 3,027,243
Et–En 877,769 855,680

Low
Ne–En 498,271 166,893
Si–En 646,766 570,770

Table 2: Numbers of sentence pairs in the bilingual
parallel corpora and the synthetic TQE data.

Before generating machine-translated texts, we
fine-tuned M2M-100 for each translation direction
on a sample from the bilingual parallel corpora: 1M,
200k, and 50k sentence pairs for the high-, medium-,
and low-resource language pairs, respectively; in
each pair, both source and target sides were com-
posed of up to 128 sub-word tokens. Fine-tuning
of M2M-100 on the sample was carried out with
HuggingFace Transformers (Wolf et al., 2020), the

AdamW optimizer (Loshchilov and Hutter, 2019)
(β1 = 0.9, β2 = 0.999, ϵ = 1 × 10−8), batches
consisting of 16 sentence pairs, and a learning rate
of 3 × 10−5. This process was terminated after one
epoch for each of the high- and medium-resource
language pairs and after three epochs for each of the
low-resource language pairs. After deduplication,
we then decoded the source side of the entire paral-
lel corpora, using beam search with a beam size of
5 and length penalty of 1.0. After decoding, we dis-
carded MT outputs containing more than 128 sub-
word tokens together with their corresponding par-
allel sentences. The numbers of retained sentence
pairs are listed in the “Synthetic” column in Table 2.

To determine the pseudo-quality labels, we first
obtained the word embeddings using INFOXLMBase
(Chi et al., 2021),10 inputting a concatenation of MT
output T ′, source text S, and reference translation
T in this order with an [SEP] token as the delim-
iter, and determining the embedding for each word
by average pooling of its sub-word embeddings.11

Then, we determined word alignment by solving OT
using OTAlign (Arase et al., 2023);12 more specifi-
cally, we used the entropy-regularized OT (Cuturi,
2013) formulated by Equation (9), which is superior
to Equation (2) (Arase et al., 2023).

P = argmin
P ′∈U(a,b)

∑
i,j

Ci,jP
′
i,j − ξH(P ′), (9)

where H(·) is the entropy of a candidate matrix, and
ξ is a weight for the regularizer, which we set to
0.1. We used a uniform distribution as the mass for
each word, i.e., a and b, and took the cosine dis-
tance between contextual word embeddings13 as the
cost function, i.e., Ci,j . In contrast, we optimized
the two hyper-parameters of OT for each transla-
tion direction through a grid search for λm in the
range [0.02, 1.00] with a step size of 0.02 and λ in
the range [0.01, 0.99] with a step size of 0.01, us-
ing the MLQE-PE development data and computing
the MCC between the OT-based hard labels and the

4https://github.com/pytorch/fairseq
5https://github.com/facebookresearch/mlqe/tree/main/nmt_models
6English-to-Czech (En→Cs), English-to-Japanese (En→Ja), Khmer-to-English (Km→En), and Pashto-to-English (Ps→En).
7Bilingual parallel data for these language pairs could have been used for pre-training the MT models and multilingual encoders.
8https://www.statmt.org/wmt21/quality-estimation-task.html
9https://huggingface.co/facebook/m2m100_418M

10https://huggingface.co/microsoft/infoxlm-base
11Some decisions were made through a preliminary experiment. See Appendix A for details.
12https://github.com/yukiar/OTAlign
131− cos(h′

i, hj), which has the range [0.0, 2.0], where h′
i and hj are word embeddings of t′i and tj , respectively.
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gold-standard labels. Table 3 presents the values for
λm and λ that achieved the highest MCC.

Translation direction λm λ
MCC

Dev Syn

En→De 0.02 0.37 0.870 0.805
En→Zh 0.24 0.51 0.833 0.698
Ro→En 0.14 0.33 0.876 0.819
Et→En 0.02 0.35 0.804 0.776
Ne→En 0.14 0.37 0.680 0.777
Si→En 0.02 0.36 0.699 0.849

Table 3: Hyper-parameters that maximize MCC for
the MLQE-PE development data (Dev), and MCC
between OT-based and TER-based hard labels for
the synthetic TQE data (Syn).

Finally, we determined the pseudo-quality la-
bels with the optimal λm and λ as explained in
Section 3. Table 3 also lists the MCCs between
OT-based hard labels in our synthetic TQE data,
derived with the optimized hyper-parameters, and
TER-based pseudo-quality labels (Section 4.4).

4.3 TQE Model Training

We trained TQE models using OpenKiWi (Ke-
pler et al., 2019) with the necessary modifications
for training regression models and using multiple
GPUs. As the backbone pre-trained multilingual en-
coder, we used INFOXLMLarge.14 For each configu-
ration, we trained a single multi-directional model to
deal with all of the test sets, using the training data
for six translation directions together: the synthetic
TQE data for pre-training (Section 4.2) and manu-
ally labeled MLQE-PE training data (Section 4.1)
for fine-tuning.

Pre-training was carried out for one epoch with
the Adam optimizer (β1 = 0.9, β2 = 0.999, ϵ =
1 × 10−8), batches consisting of 2, 048 sentence
pairs, and a learning rate of 1 × 10−5. To accom-
modate the imbalanced distribution of labels, we
weighted the “BAD” labels as 3.0 times the “OK”
labels when computing the cross-entropy loss for the
classification models. When evaluating the regres-
sion models, we computed the MCC by thresholding
the predicted value at 0.5.

We then fine-tuned the models on the MLQE-
PE training data. When fine-tuning a regression
model on the manually produced data with the TER-
based hard labels, i.e., the MLQE-PE training data,
the “BAD” and “OK” labels were casted as 0.0
and 1.0, respectively. We used Adam (β1 = 0.9,
β2 = 0.999, ϵ = 1 × 10−8), batches consisting of
64 sentence pairs, and a learning rate of 1 × 10−5.
During ten epochs, the model was saved every after
0.5 epochs, and the model that maximized the MCC
for the MLQE-PE development data was selected
from the 20 checkpoints. For the regression models,
we also performed a grid search for the threshold in
the range [0.1, 0.9] with a step size of 0.1, using the
MLQE-PE development data, and used the results to
convert the predictions into binary labels.

4.4 Baseline Methods

We compared our method against the models trained
on the synthetic data with pseudo-quality labels de-
termined by the TER toolkit as in MLQE-PE.15 To
re-confirm the impact of pre-training on synthetic
TQE data, we also trained classification and regres-
sion models only on the MLQE-PE training data.

4.5 Main Results

For each model, we report on the average MCC
over three training runs with different random seeds.
To confirm the statistical significance of the differ-
ence between two sets of predictions, we used paired
bootstrap resampling (Koehn, 2004) with 30, 000
sub-samples (10, 000 for each random seed) and a
significance level of 0.05.

Tables 4 and 5 summarize the MCCs for the
non-zero-shot translation directions in Test20 and
Test21, respectively, where models #1 and #6 based
on TER-based pseudo-quality labels and model #4
based only on manually created training data are
the baselines. The upper block presents the re-
sults in the pseudo-supervised setting, i.e., models
trained only on the synthetic TQE data. The model
trained on OT-based soft labels (#3) outperformed
those trained on either TER-based (#1) or OT-based
hard labels (#2). The lower block shows the results
of fine-tuned models, i.e., those directly trained or
fine-tuned on the MLQE-PE training data. In this
setting, the model pre-trained on OT-based soft la-

14https://huggingface.co/microsoft/infoxlm-large
15https://github.com/deep-spin/qe-corpus-builder
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ID Arch. PT FT
Test20

En→De En→Zh Ro→En Et→En Ne→En Si→En

#1 Class. TER-Hard — 0.196 0.163 0.240 0.307 0.320 0.372
#2 Class. OT-Hard — 0.208 0.154 0.252 0.312 0.344 0.374
#3 Reg. OT-Soft — 0.258(1) 0.196(1) 0.301(1) 0.358(1) 0.356 0.413(1)

#4 Class. — TER-Hard 0.449 0.380 0.623 0.552 0.511 0.552
#5 Reg. — TER-Hard 0.439 0.373 0.650(4) 0.537 0.510 0.550
#6 Class. TER-Hard TER-Hard 0.485(4) 0.398 0.620 0.577(4) 0.521 0.571
#7 Class. OT-Hard TER-Hard 0.486(4) 0.397 0.615 0.571(4) 0.518 0.564
#8 Reg. OT-Soft TER-Hard 0.491(4) 0.409(4) 0.634 0.569 0.530(4) 0.571

Table 4: MCCs for the non-zero-shot translation directions in Test20: “Arch.” indicates the model archi-
tecture while “PT” and “FT” denote the type of labels used for pre-training and fine-tuning, respectively.
Bold signifies the highest value in each block and translation direction. Values with superscripts (deleted)
are statistically significantly higher (lower) than that for the system with the indicated IDs.

ID Arch. PT FT
Test21

En→De En→Zh Ro→En Et→En Ne→En Si→En

#1 Class. TER-Hard — 0.217 0.129 0.248 0.302 0.322 0.348
#2 Class. OT-Hard — 0.236(1) 0.117 0.258 0.316 0.346 0.355
#3 Reg. OT-Soft — 0.282(1) 0.151(1) 0.304(1) 0.362(1) 0.366(1) 0.406(1)

#4 Class. — TER-Hard 0.434 0.320 0.636 0.580 0.540 0.558
#5 Reg. — TER-Hard 0.406 0.316 0.657(4) 0.570 0.537 0.554
#6 Class. TER-Hard TER-Hard 0.496(4) 0.329 0.626 0.605(4) 0.551 0.586(4)

#7 Class. OT-Hard TER-Hard 0.486(4) 0.322 0.629 0.591(6) 0.544 0.571
#8 Reg. OT-Soft TER-Hard 0.485(4) 0.332 0.643(6) 0.596 0.555 0.582(4)

Table 5: MCCs for the non-zero-shot translation directions in Test21.

bels (#8) achieved a higher MCC than the TER-
based baseline (#6) for seven out of the 12 test sets.
As in previous work (Liu et al., 2017; Lee, 2020;
Tuan et al., 2021; Yang et al., 2023), pre-training
on the synthetic TQE data brought a consistent im-
provement over the baseline (#4). However, only
for Ro→En, the regression model with the same
supervised signals (#5) significantly outperformed
the classification-based baseline (#4) and even sur-
passed all models with pre-training. This suggests
some peculiar characteristics of the MLQE-PE train-
ing data for this translation direction.

The MCCs for the zero-shot translation direc-
tions in Test20 and Test21 are presented in Table 6.
There were similar trends as for the non-zero-shot
translation directions. The synthetic TQE data with
OT-based soft labels (#3) gave the best results in
the pseudo-supervised setting. For the settings with

fine-tuning, the MCCs for all translation directions
benefited from supervised signals for other transla-
tion directions. They were further improved by pre-
training, especially with OT-based soft labels (#8)

5 Analyses

We investigated the quality of the synthetic TQE
data and the potential utility of OT-based labels for
manually post-edited data. We used the non-zero-
shot translation directions of Test20 because the
post-edited texts for the MT outputs are available,
enabling contrastive experiments.

5.1 Impact of Quality of Synthetic TQE Data
As mentioned in Section 2.1, bilingual parallel cor-
pora used as the source of synthetic TQE data may
include sentence pairs that are less likely to be trans-
lations. Pseudo-quality labels derived from seman-
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ID Arch. PT FT
Test20 Test21

Ru→En En→Cs En→Ja Km→En Ps→En Ru→En

#1 Class. TER-Hard — 0.132 0.224 0.086 0.177 0.234 0.171
#2 Class. OT-Hard — 0.147 0.238 0.101(1) 0.201(1) 0.233 0.172
#3 Reg. OT-Soft — 0.156(1) 0.265(1) 0.131(1) 0.311(1) 0.263(1) 0.173

#4 Class. — TER-Hard 0.280 0.326 0.148 0.444 0.348 0.313
#5 Reg. — TER-Hard 0.286 0.301 0.154 0.451 0.362 0.308
#6 Class. TER-Hard TER-Hard 0.282 0.379(4) 0.170 0.469(4) 0.368 0.340
#7 Class. OT-Hard TER-Hard 0.289 0.381(4) 0.169 0.473(4) 0.374(4) 0.332
#8 Reg. OT-Soft TER-Hard 0.287 0.374(4) 0.190(4) 0.480(4) 0.381(4) 0.334

Table 6: MCCs for the zero-shot translation directions in Test20 and Test21.

tically isolated pairs of machine-translated text and
reference translation could mislead the pre-training
of models. To gauge the impact of the quality of
parallel data, as well as the quality of synthetic TQE
data, we conducted a corpus filtering experiment.

For each pair of sentences in the given bilin-
gual parallel corpora, we computed the cosine simi-
larity between their corresponding sentence embed-
dings determined by LaBSE (Feng et al., 2022),16

and then filtered out pairs for which the similarity
was lower than a pre-determined threshold. Figure 2
depicts the percentages of retained sentence pairs,
depending on the threshold. We found that the Ro–
En parallel corpus contained lots of noise, with ap-
proximately 40% of sentence pairs having a similar-
ity lower than 0.5.
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Figure 2: Percentages of remaining sentence pairs
after the LaBSE-based filtering.

From the filtered bilingual parallel data, we
generated synthetic TQE data and trained TQE mod-
els as described in Section 4.3. Finally, we evaluated
the model accuracy in terms of MCC, using the non-
zero-shot translation directions in Test20.

Table 7 presents the results. In the pseudo-
supervised setting, a more aggressive filtering of
the parallel corpus produced a higher MCC, sug-
gesting that the quality of synthetic TQE data mat-
ters. Among the six translation directions, Ro→En
benefited the most; this is to be expected from the
statistics shown in Figure 2. In contrast, when fine-
tuning was carried out after pre-training, the impact
of pre-training, i.e., the gain over the directly super-
vised model (#5), was often diminished. This im-
plies that the quantity of synthetic TQE data matters
when the quality can be guaranteed by fine-tuning
on manually produced training data. Besides a slight
improvement with corpus filtering, pre-training still
had a negative impact on Ro→En, i.e., models #8a
and #8b underperformed model #5. In-depth analy-
ses of the MLQE-PE training data of this translation
direction is left for future work.

5.2 Fine-tuning on OT-based Labels
Figure 1 illustrated our motivation for obtaining
pseudo-labels of better quality, especially for syn-
thetic TQE data. In this section, we examine
whether OT also brings some advantages for the au-
thentic data derived through manual PE.

To this end, we first determined the quality la-
bels for the MLQE-PE training data in the same
manner as for the synthetic TQE data (Section 4.2).
We then fine-tuned the pre-trained models (#2 and

16https://huggingface.co/sentence-transformers/LaBSE
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ID Arch.
Synthetic Data

FT
Test20

Label Th Size En→De En→Zh Ro→En Et→En Ne→En Si→En

#3 Reg. OT-Soft — 43.5M — 0.258 0.196 0.301 0.358 0.356 0.413
#3a Reg. OT-Soft 0.5 41.2M — 0.298(3) 0.199 0.426(3) 0.351 0.379(3) 0.414
#3b Reg. OT-Soft 0.7 38.8M — 0.305(3) 0.205 0.448(3) 0.363 0.384(3) 0.425
#3c Reg. OT-Soft 0.9 13.4M — 0.316(3) 0.241(3) 0.489(3) 0.392(3) 0.368 0.410

#8 Reg. OT-Soft — 43.5M TER-Hard 0.491 0.409 0.634 0.569 0.530 0.571
#8a Reg. OT-Soft 0.5 41.2M TER-Hard 0.488 0.407 0.641 0.571 0.527 0.571
#8b Reg. OT-Soft 0.7 38.8M TER-Hard 0.489 0.410 0.641 0.573 0.527 0.568
#8c Reg. OT-Soft 0.9 13.4M TER-Hard 0.484 0.401 0.637 0.565 0.519 0.555

#5 Reg. —- — — TER-Hard 0.439 0.373 0.650 0.537 0.510 0.550

Table 7: MCCs for the non-zero-shot translation directions in Test20 with several threshold values (“Th”) for
the similarity of parallel sentences: “Size” denotes the number of sentence pairs having a similarity higher
than or equal to the threshold.

ID Arch. PT FT
Test20

En→De En→Zh Ro→En Et→En Ne→En Si→En

#4 Class. — TER-Hard 0.449 0.380 0.623 0.552 0.511 0.552
#5 Reg. — TER-Hard 0.439 0.373 0.650(4) 0.537 0.510 0.550
#4’ Class. — OT-Hard 0.431 0.334(4) 0.609 0.514(4) 0.462(4) 0.506(4)

#5’ Reg. — OT-Soft 0.413(4) 0.326(4) 0.626 0.484(4) 0.443(4) 0.482(4)

#6 Class. TER-Hard TER-Hard 0.485(4) 0.398 0.620 0.577(4) 0.521 0.571
#7 Class. OT Hard TER-Hard 0.486(4) 0.397 0.615 0.571(4) 0.518 0.564
#8 Reg. OT-Soft TER-Hard 0.491(4) 0.409(4) 0.634 0.569 0.530(4) 0.571
#7’ Class. OT-Hard OT-Hard 0.464 0.350(4,6) 0.589(4,6) 0.523(4,6) 0.467(4,6) 0.508(4,6)

#8’ Reg. OT-Soft OT-Soft 0.444(6) 0.344(4,6) 0.633 0.503(4,6) 0.453(4,6) 0.491(4,6)

Table 8: MCCs with TER-based hard labels for the non-zero-shot translation directions in Test20.

#3) using these labels, as described in Section 4.3,
and directly trained the models on them, as de-
scribed in Section 4.4.

Table 8 presents the results for Test20. Irre-
spective of whether the pre-training was carried out,
the models trained or fine-tuned on the OT-based
pseudo-quality labels (#4’ to #8’) resulted in lower
MCCs than the corresponding models trained on
TER-based hard labels (#4 to #8). We consider this
result to be natural because the gold-standard labels
have been determined by the TER toolkit.

5.3 Predicting OT-based Labels

We also evaluated the predicted results with respect
to the OT-based labels for Test20, with the labels de-
termined by OT in the same manner as for the syn-
thetic TQE data (Section 4.2).

The MCCs with OT-based hard labels are sum-
marized in Table 9. Compared with those in Table 8,
the MCCs of the TER-based models (#4 to #8) were
lower, except for the pseudo-supervised models (#4
and #5) for Et→En, while the MCCs of the OT-
based models (#4’ to #8’) were higher. For all trans-
lation directions, except for En→De, the models
trained or fine-tuned on OT-based labels scored sig-
nificantly higher MCCs than those based on TER-
based labels. This also revealed that pre-training
has little gain for all translation directions, implying
that the distributions of OT-based labels for the syn-
thetic TQE data and PE-derived data (see Figure 1)
are similar.

We also evaluated the accuracy of the regres-
sion models against OT-based soft labels with Pear-
son’s product-moment correlation coefficient (Pear-
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ID Arch. PT FT
Test20

En→De En→Zh Ro→En Et→En Ne→En Si→En

#4 Class. — TER-Hard 0.437 0.344 0.589 0.555 0.497 0.521
#5 Reg. — TER-Hard 0.431 0.334 0.622(4) 0.545 0.503 0.519
#4’ Class. — OT-Hard 0.446 0.384(4) 0.647(4) 0.600(4) 0.599(4) 0.637(4)

#5’ Reg. — OT-Soft 0.430 0.376(4) 0.672(4) 0.577(4) 0.587(4) 0.623(4)

#6 Class. TER-Hard TER-Hard 0.454 0.356 0.575 0.562 0.493 0.518
#7 Class. OT-Hard TER-Hard 0.472(4) 0.367 0.585 0.564 0.501 0.526
#8 Reg. OT-Soft TER-Hard 0.488(4,6) 0.381(4,6) 0.603(6) 0.565 0.516 0.533
#7’ Class. OT-Hard OT-Hard 0.483(4,6) 0.406(4,6) 0.629(4,6) 0.610(4,6) 0.608(4,6) 0.643(4,6)

#8’ Reg. OT-Soft OT-Soft 0.468 0.401(4,6) 0.679(4,6) 0.594(4,6) 0.601(4,6) 0.631(4,6)

Table 9: MCCs with OT-based hard labels for the non-zero-shot translation directions in Test20.

ID Arch. PT FT
Test20

En→De En→Zh Ro→En Et→En Ne→En Si→En

#5 Reg. — TER-Hard 0.505 0.389 0.697 0.622 0.625 0.651
#5’ Reg. — OT-Soft 0.581(5) 0.486(5) 0.773(5) 0.703(5) 0.714(5) 0.751(5)

#8 Reg. OT-Soft TER-Hard 0.558 0.444 0.675 0.653 0.647 0.666
#8’ Reg. OT-Soft OT-Soft 0.637(8) 0.540(8) 0.779(8) 0.734(8) 0.740(8) 0.766(8)

Table 10: Pearson’s r with OT-based soft labels for the non-zero-shot translation directions in Test20.

son’s r), performing a statistical significance test-
ing in the same manner as for the MCCs. Table 10
demonstrates that training or fine-tuning on OT-
based labels leads to higher correlation. Unlike the
results for predicting hard labels, pre-training con-
sistently improved the correlation, irrespective of
the types of labels used for fine-tuning, with the ex-
ception of “TER-Hard” for Ro→En.

These results confirm that the labels for fine-
tuning should be consistent with those to be pre-
dicted, as discussed by Yang et al. (2023).

6 Conclusion

This paper has described the application of optimal
transport (OT) to determine pseudo-quality labels
in synthetic data for word-level TQE. Through ex-
periments, we confirmed that OT-based labels bet-
ter guide pre-training on large quantities of syn-
thetic TQE data and result in higher accuracy
in word-level TQE tasks, as measured by MCC.
Our method achieved consistently better results for
pseudo-supervised settings and in zero-shot transla-
tion directions, encouraging future applications to
less-studied translation directions.

In future work, we plan to investigate better and
finer-grained specifications of the hyper-parameters
for OT. While we determined a single value of λm,
the upper bound of the mass to be transported, for
each translation direction, we consider it should be
possible to approximate this value for each sentence
pair. We have only evaluated our method for pre-
dicting target labels; doing so for source labels is
another avenue for extension (Appendix B).
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A Preliminary Investigation

In our preliminary experiment, we first selected a
pre-trained multilingual encoder to obtain contex-
tual word embeddings for OT, using the MLQE-PE
development data and varying λm and λ in the same
manner as described in Section 4.2. We also com-
pared two encoding patterns. Table 11 summarizes
the MCCs between OT-based hard labels and TER-
based labels for the MLQE-PE development data.
Among the four candidate encoders, INFOXLMBase
achieved consistently high MCCs across all transla-
tion directions. Interestingly, “Large” models con-
sistently underperformed their “Base” counterpart.
We also confirmed that referring to the source text
leads to higher MCCs in general.

Then, we investigated the ordering of the
source text S, its MT output T ′, and its post-
edited version R as the input for INFOXLMBase,
even though R must be replaced with an indepen-
dently produced human reference when generating
synthetic TQE data. Table 12 presents the results.
Among the six permutations of these three elements,
(S, T ′, R) resulted in the highest MCC in average,
but other permutations also achieved comparable
MCCs. Assuming that focusing on T ′ would be ef-
fective for synthetic data, we used (T ′, S,R) in our
experiment. This experiment reconfirmed the use-
fulness of the source text S and revealed that deter-
mining pseudo-labels using only the source text and
MT output, i.e., (S, T ′), is infeasible.

Figure 3 visualizes the sensitivity of the two
hyper-parameters λm and λ with INFOXLMBase and
the (T ′, S,R) layout for its input.

Figure 4 depicts that the soft labels determined
by OT are highly correlated with the TER-based bi-
nary labels. Nevertheless, we consider the conti-
nuity of the labels and some discrepancies to im-
prove the prediction; discrepancies include high val-
ues with “BAD” label, such as those illustrated in
Figure 1, and potentially low values with “OK” label
for identical but unrelated word correspondences,
such as articles for different nominal elements.

B Label Types to Predict

In the MLQE-PE dataset, word-level quality labels
are assigned to both the words and gaps between
each pair of adjacent words. The former, the so-
called target label, indicates the quality of each word

in the MT output, where “BAD” indicates that the
word needs to be deleted or substituted with an-
other one. On the other hand, the latter, the so-
called gap label, represents whether some words
must be inserted in the gap between the adjacent
words (“BAD”) or not (“OK”).

We consider the task of predicting gap labels
itself is arguable, because the correct position of a
missing word is not necessarily unique: while the
positions of missing articles are deterministic, there
are multiple possible solutions for inserting untrans-
lated words and phrases. Please refer to ISO/TC37
(2024) and the MQM-based TQE task tackled at
WMT since 2022 (Zerva et al., 2022) for further dis-
cussion of the inutility of gap labels for translations
in the translation production workflow.

C Computation Time

Table 13 summarizes the computation time in GPU
hours for each process.

D Limitations

Our experiment covered only 11 translation direc-
tions, and our results do not guarantee the same con-
clusions on other translation directions. As demon-
strated by our experiments, the accuracy can be sub-
stantially different even for the same translation di-
rection (see Tables 4 and 5). This implies that the
difficulty of the task depends on the characteristics
of the test data, the MT systems used for generat-
ing MT outputs, and human annotators recruited for
manual PE.

All experiments were carried out with up
to eight NVIDIA Tesla V100 GPUs. If we
had a more powerful environment, higher accu-
racy could be achieved, for instance, by employ-
ing larger pre-trained multilingual encoders, such
as XLM-RoBERTaXL and XLM-RoBERTaXXL

(Goyal et al., 2021), larger batch sizes, longer train-
ing, and ensembling multiple models.

E Ethics Statement

As shown in our experiments, the predicted labels
do not perfectly correlate with the gold-standard la-
bels obtained through manual PE. Therefore, such
predicted labels could mislead potential users. This
is not specific to our work, but common in the TQE
task.
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Backbone encoder Input En→De En→Zh Ro→En Et→En Ne→En Si→En

XLM-RoBERTaBase (T ′, R) 0.855 0.802 0.864 0.796 0.671 0.685
XLM-RoBERTaBase (T ′, S,R) 0.854 0.771 0.881 0.801 0.687 0.693
XLM-RoBERTaLarge (T ′, R) 0.650 0.682 0.655 0.639 0.562 0.579
XLM-RoBERTaLarge (T ′, S,R) 0.669 0.700 0.702 0.665 0.606 0.610
INFOXLMBase (T ′, R) 0.865 0.829 0.869 0.796 0.677 0.689
INFOXLMBase (T ′, S,R) 0.870 0.833 0.876 0.804 0.680 0.699
INFOXLMLarge (T ′, R) 0.713 0.710 0.743 0.704 0.628 0.640
INFOXLMLarge (T ′, S,R) 0.752 0.760 0.772 0.714 0.645 0.654

Table 11: MCCs between OT-based hard labels and TER-based labels for the MLQE-PE development data
with different pre-trained multilingual encoders: S, T ′, and R denote the source text, its MT output, and its
post-edited version, respectively. Bold and underline indicate the highest and second-highest values, respec-
tively.

Backbone encoder Input En→De En→Zh Ro→En Et→En Ne→En Si→En

INFOXLMBase

(S, T ′) 0.052 0.048 0.167 0.042 0.032 0.077

(T ′, R) 0.865 0.829 0.869 0.796 0.677 0.689
(R, T ′) 0.862 0.826 0.868 0.796 0.680 0.688

(S, T ′, R) 0.866 0.838 0.873 0.808 0.686 0.705
(S,R, T ′) 0.866 0.838 0.875 0.805 0.684 0.702
(T ′, S,R) 0.870 0.833 0.876 0.804 0.680 0.699
(R,S, T ′) 0.867 0.835 0.874 0.802 0.680 0.697
(T ′, R, S) 0.865 0.839 0.875 0.811 0.679 0.699
(R, T ′, S) 0.869 0.835 0.871 0.805 0.682 0.697

Table 12: MCCs for the MLQE-PE development data with different orderings of S, T ′, and R.

Step En→De En→Zh Ro→En Et→En Ne→En Si→En

Generating synthetic TQE data
Fine-tuning M2M-100 9 10 2 2 2 2
Translation with M2M-100 963 856 173 31 6 7
OT-based labeling 103 80 15 4 1 2

TQE model training
Pre-training with TER-based hard labels 372
Pre-training with OT-based hard labels 372
Pre-training with OT-based soft labels 366
Fine-tuning a classification model 5
Fine-tuning a regression model 5
Direct training a classification model 5
Direct training a regression model 5

Table 13: GPU hours spent for each phase of TQE model training.
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Figure 3: MCC for the MLQE-PE development data with different values for λm and λ.
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Figure 4: Distribution of OT-based soft labels for each of the {“OK,” “BAD”} labels in the MLQE-PE
development data, determined by the optimal λm in Table 3: the dark bar indicates the median.
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Abstract

In machine translation, rare words continue to be a problem for the dominant encoder-decoder architecture,
especially in low-resource and out-of-domain translation settings. Human translators solve this problem
with monolingual or bilingual dictionaries. In this paper, we propose appending definitions from a bilingual
dictionary to source sentences and using attention masking to link together rare words with their definitions.
We find that including definitions for rare words improves performance by up to 1.0 BLEU and 1.6 MacroF1.

1 Introduction

The current state-of-the-art for machine translation
(MT) is still the transformer encoder-decoder archi-
tecture (Kocmi et al., 2023). While large language
models such as LLaMA and GPT-4 have achieved
great success on various NLP tasks, they still fall
behind dedicated encoder-decoders for MT (Xu et al.,
2024). A major drawback of encoder-decoder models,
however, is that they continue to struggle with rare
word translation (Minh-Cong et al., 2022).

Dictionaries, both monolingual and bilingual,
are an indispensable resource for human translators,
and in pre-neural statistical MT systems, it was com-
mon to use bilingual dictionaries to improve transla-
tion of rare words (Tan et al., 2015). However, the use
of dictionaries in neural MT is not straightforward,
as there is a strong dependence on the surrounding
context and word frequency in the training data (Wu
et al., 2021). In this paper, we explore a new ap-
proach for incorporating dictionaries into neural MT
systems. We hypothesize that dictionaries could be
useful both for low-resource translation, where the
target language has limited training data, and out-of-
domain translation, where the testing domain differs
significantly from the training domain(s). In addi-
tion, dictionaries could facilitate continual learning
by enabling zero-shot adaptation of MT systems.

vom Kampf kühner Helden EOS bold brave hero

vom Kampf kühner Helden EOS bold brave hero

vom Kampf kühner Helden EOS bold brave hero

Figure 1: We append definitions of kühn ‘bold, brave’
and Held ‘hero’ to a sentence, and use an attention
mask (with learnable strength) to inform the model
which definitions correspond to which words. In each
picture, the query vectors are above, with one query
vector shaded yellow, and the key/value vectors are
below, shaded to indicate the strength of the attention
mask (black = not masked, white = masked).
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However, the morphology of both the source and
target language poses a major challenge for the use of
dictionaries with MT compared to other NLP tasks
that incorporate methods of retrieval-augmented gen-
eration (Niehues, 2021). MT systems that incorporate
dictionaries must be capable of inflecting definitions
for the target language and the context in which those
definitions must appear, as dictionary entries and
their definitions are often base forms. In Figure 1,
we see the adjective kühner is declined for the gen-
itive case, but only the lemma kühn would be in a
German dictionary. Moreover, if the target language
has adjective declension, then the MT system must
also decline the dictionary form of the definition.

Our approach is to retrieve dictionary definitions
for low-frequency words, append the definitions to
source sentences containing rare words, and use
attention masking to link together rare words with
their definitions. We find that appending definitions
for rare words improves MT performance by up to
1.0 BLEU and 1.6 MacroF1.

2 Related Work

Previous work on dictionaries for neural MT can
be divided into two broad categories, which we call
dictionaries-as-translators and dictionaries-as-text.
In the dictionaries-as-translators approach, the dictio-
nary is assumed to contain high-quality translations
of words, and the technical challenge is to get the
MT system to use the dictionary’s translations when
appropriate. In the dictionaries-as-text approach,
dictionary entries are added somehow to the source
sentence, and it is up to the MT system to learn how
to use them. In this approach, the dictionary can con-
tain definitions that are not necessarily translations
(e.g., one definition for German halt is: “Indicat-
ing that something is generally known, or cannot be
changed, or the like; often untranslatable”). This
approach could, in principle, use other resources like
monolingual dictionaries, grammars, and so on.

2.1 Dictionaries as translators
In the dictionaries-as-translators category, Zhang et al.
(2021) propose a model with three steps: (1) identify
source words that can be translated using a dictionary,
(2) select one of several translation candidates (i.e.,
definitions), and (3) copy the selected translation into
the output sequence. Similarly, other previous work
in this category uses constrained decoding with a

translation lexicon: Zhang and Zong (2016), Arthur
et al. (2016), Fadaee et al. (2017), Chatterjee et al.
(2017), Hasler et al. (2018), Post and Vilar (2018),
Thompson et al. (2019), Dinu et al. (2019).

A translation lexicon is a mapping of words from
the source language to the target language, whereas a
bilingual dictionary provides several possible transla-
tions for a given source word in addition to including
definitions for untranslatable words such as particles.
To incorporate a translation lexicon, we must con-
strain the output of the MT system, but that approach
assumes the correct translation given the source con-
text is contained within the lexicon. However, it
quite often is the case that there are several valid
translations with some being more appropriate than
others for the given context.

2.2 Dictionaries as text

In the dictionaries-as-text category are approaches
in which dictionary definitions are added to source
sentences so that the model can learn how to use
them. Two further questions arise: (1) How do
we decide which definitions to include (especially
in morphologically-rich languages, where a word
in context does not in general match a dictionary
headword)? (2) How do we represent the nonlinear
structure of the input, which includes both a source
sentence and associated definitions?

Niehues (2021) lemmatizes each rare word and
retrieves the matching bilingual definition, if any.
The definition is inserted into the sentence immedi-
ately after the rare word, delimited by #. He uses a
combination of subword and character tokenization
to improve handling of rare inflected forms.

Zhong and Chiang (2022) use a combination of
Levenshtein distance and locality-sensitive hashing
to find the closest dictionary headword for each,
potentially inflected, rare word. They append the
definitions to the end of the source sentence, and
they inform the model about the structure of the
input using position encodings (PEs). Each definition
word’s vector has contributions from both its own
(sinusoidal) PE as well as the (learnable) PE of the
defined word. They use BPE subword segmentation
for all words; instead of the PE of the defined word,
they choose the PE of its first subword. In contrast to
Niehues (2021), Zhong and Chiang (2022) find that
the model with BPE can inflect dictionary definitions
without switching to character-level tokenization.
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3 Methodology

Our approach falls squarely into the dictionaries-as-
text category: given a source sentence, we retrieve
relevant entries from a bilingual dictionary and in-
clude them in the source sentence. To decide which
entries to include, we use a source-language lemma-
tizer, which should be more reliable and faster than
fuzzy matching. To represent the input, we use atten-
tion masking instead of positional encodings since we
suspect that attention is a more natural mechanism
by which an encoder-decoder model can associate
definitions (keys) with rare words (queries).

In this section, we break down our approach for
using a bilingual dictionary for machine translation
with a transformer-based, encoder-decoder model
into the following steps: (1) headword selection, (2)
definition retrieval, and (3) attention masking.

3.1 Headword Selection

In order to classify a source word as rare, we com-
pare the number of occurrences in the training data
against a frequency threshold that we choose from a
hyperparameter search. For a given source word, we
say that a word 𝑤 is rare if (a) it has both a frequency
below the threshold and an entry in the dictionary, or
(b) if 𝑤 does not meet either of the above criteria, but
its lemmatized form meets both.

3.2 Definition Retrieval

If a rare/unknown word is present in the dictionary,
we retrieve its definition(s). Otherwise, we first use a
lemmatizer and check if the dictionary contains the
lemma for the rare/unknown word. Then, we append
the definition(s) to the source sentence following the
end-of-sentence token <EOS>.

3.3 Attention Masking

The input now contains a source sentence augmented
with dictionary definitions, both segmented into sub-
words using BPE. To inform the model about the
structure of the input, we use attention masking (Shen
et al., 2018).

Let 𝑛 be the input length (source subwords plus
definition subwords), and let 𝑑 be the dimensionality
of the model’s hidden vectors. In standard attention,
we compute, for each head ℎ, a matrix of attention
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Figure 2: Our system uses two attention masks with
learnable strengths. Rows are queries; columns are
keys/values. Black = not masked; white = masked.
Mask M1 allows each source word to attend to its
definitions (if any). Mask M2 allows each definition
word to attend to the word it defines.

weights 𝛼ℎ ∈ R𝑛×𝑛:

𝛼ℎ = softmax

(
QℎK𝑇

ℎ√
𝑑

)
where Qℎ,Kℎ ∈ R𝑛×𝑑 are the query and key matrices,
respectively, for head ℎ.

We construct two masks (see Figure 2). Both
masks allow all source subwords to attend to all source
subwords, and all definition subwords to attend to all
subwords in the same definition. Note that kühner
has two definitions, which cannot attend to each
other. Mask M1 allows each source subword to
attend to its definitions (if any). Mask M2 allows
each definition subword to attend to the word it defines.
Mathematically, we represent each mask as a matrix
M𝑘 ∈ {0, 1}𝑛×𝑛, where M𝑘

𝑖 𝑗
= 1 means that subword

𝑖 cannot attend to subword 𝑗 .
The attention masks are applied softly, with

learnable weights. We combine the masks as follows:

𝛼ℎ = softmax

(
QℎK𝑇

ℎ√
𝑑

−
𝑚∑︁
𝑘=1

exp
(
𝑠𝑘,ℎ

)
M𝑘

)
where 𝑚 = 2 is the number of masks and 𝑠𝑘,ℎ ∈ R
is the learnable strength for mask 𝑘 and head ℎ. We
apply the exponential function component-wise to
each 𝑠𝑘,ℎ to ensure that every element of the summa-
tion is positive. The aggregate attention mask is then
subtracted from the standard dot-product attention. In
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this way, the model can decide if and/or when the dic-
tionary definitions are useful and adjust the strengths
of the attention masks accordingly (McDonald and
Chiang, 2021).

4 Experiments

In this section, we describe our translation model, the
source-side lemmatizer, and the bilingual dictionary
used hereafter throughout the paper.

4.1 Translation Model
To experiment with the internal architecture, we
implement an encoder-decoder model from scratch
using PyTorch (Paszke et al., 2019).1 For the en-
coder/decoder, we use a transformer model (Vaswani
et al., 2017). Hidden vectors have 𝑑 = 𝑑model =

512 dimensions, and feed-forward networks have
𝑑FFN = 2048 dimensions. The encoder and decoder
each have 6 layers, each with 8 attention heads. We
apply dropout to all embedding, feed-forward, and
attention layers with a probability of 0.1. Instead of
layer normalization, we use FixNorm and ScaleNorm,
which have been shown to improve translations in the
low-resource setting (Nguyen and Salazar, 2019).

All models are trained on NVIDIA A10 GPUs.
We use negative log-likelihood for training with a
batch size of 4096, a label smoothing value of 0.1,
and an initial learning rate of 3 · 10−4, which we
decay by a factor of 0.8 with a patience of 3 and a
minimum learning rate of 5 · 10−5. In addition, we
do early stopping if our model trains for 20 epochs
without improvement or exceeds a maximum of 250
epochs. Finally, we filter through the training data
by removing empty translations, duplicate sentence
pairs, sentences longer than a maximum length of 256,
and sentence pairs with a source:target length ratio
greater than 1.3. We also normalize the punctuation
in both the source and target languages.

4.2 Training/Evaluation Data
For German to English translation, we use data from
the WMT22 shared task: Europarl v10 for train-
ing (Koehn, 2005), newstest2019 for validation, and
newstest2022 for testing. For tokenization, we use
sacremoses,2 an implementation of Moses (Koehn

1https://github.com/kennethsible/

dictionary-attention
2https://github.com/hplt-project/sacremoses

et al., 2007), at the word-level and subword-nmt,3
an implementation of BPE, at the subword-level.
For evaluation, we use a fork of sacrebleu (Post,
2018) for BLEU (Papineni et al., 2002) and MacroF1
(Gowda et al., 2021).4

The Europarl corpus for German to English has
1,778,520 sentences, with 1,379,973 remaining after
cleaning. We apply BPE with 32,000 merge oper-
ations and a dropout probability of 0.1 to obtain a
shared vocabulary size of 32,469. The newstest2019
validation set and newstest2022 test set contain 2,000
and 1,984 sentences, respectively. To measure trans-
lation performance in a low-resource setting, we limit
the Europarl corpus to the first 250,000 sentences.
The smaller training set has 190,686 sentences re-
maining after cleaning. We apply BPE with 8,000
merge operations and a dropout probability of 0.1 to
obtain a shared vocabulary size of 8,348.

Regarding the difficulty of finding and/or cu-
rating extensive dictionaries for low-resource lan-
guages, the available Uyghur-English data for the
DARPA LORELEI Year 1 evaluation (Hermjakob
et al., 2018), for example, consisted of 99k sen-
tences of parallel text and 240k dictionary entries,
so there are cases where the amount of dictionary
data available is extensive compared to the amount
of parallel text available. Given the lack of avail-
able training data for low-resource languages, we
would argue that hiring linguists to construct bilin-
gual dictionaries offers a greater overall benefit to the
community of native speakers and those wishing to
document/preserve/revitalize the language than sim-
ply hiring translators to expand the available corpora,
as the usefulness of dictionaries extends beyond NLP
applications (Garrette and Baldridge, 2013).

To evaluate the performance of our model on out-
of-domain translation, we combine the Medline test
sets from the WMT20 (Bawden et al., 2020), WMT21
(Yeganova et al., 2021), and WMT22 (Neves et al.,
2022) biomedical tasks, removing any duplicate sen-
tence pairs. However, the parallel text is misaligned,
so we use the provided alignment files to construct
the test set, filtering out all sentence pairs not labeled
as OK. The final test set has 1,073 sentences. Table 3
shows an example sentence from the biomedical test
set along with the reference translation.

3https://github.com/rsennrich/subword-nmt
4https://github.com/isi-nlp/sacrebleu
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News Biomedical
Training Corpus Model BLEU MacroF1 BLEU MacroF1

Europarl (Limited) Baseline 22.1 18.1 18.2 18.5
Parallel 22.3 18.2 18.2 18.4
DPE 22.4 18.4 18.3 18.6
Masking 23.4 20.0 19.1 19.9

Europarl (Full) Baseline 30.4 25.4 23.8 25.8
Parallel 30.5 25.4 24.0 25.9
DPE 31.1 26.3 24.3 26.5
Masking 31.2 26.8 24.4 26.9

Table 1: Baseline refers to the translation model without any dictionaries, Parallel includes a bilingual
dictionary as parallel text, DPE appends dictionary definitions and uses positional encodings (Zhong and
Chiang, 2022), and Masking (ours) appends dictionary definitions and uses attention masking. To construct
Europarl (Limited), we only use the first 250,000 sentences (<10%) of the 1.8 million in Europarl (Full).

4.3 Lemmatizer and Dictionary

For the German lemmatizer, we used the spaCy model
de_core_news_sm5 with only the tok2vec, tagger,
and lemmatizer enabled in the NLP pipeline. For the
bilingual dictionary, we used the most recent devel-
opment version of the German to English bilingual
dictionary provided by TU Chemnitz.6 To prepare
the data for our model, we filtered out:

• All dictionary headwords labeled non-alphabetic
in Python, excluding hyphenated compound
(e.g., im eigenen Tempo).

• All dictionary metadata contained in grouping
symbols, such as part-of-speech and gender (e.g.,
masculine noun {m}, transitive verb {vt}, bio-
logical term [biol.], Austrian dialect [Ös.]).

• All dictionary abbreviations used for nominative,
accusative, dative, and genitive objects (e.g.,
jdm., jdn., jds., and etw.).

• All German prepositional phrases of the
form: preposition + abbreviation (e.g., bei
jdm./etw.).

• The German reflexive pronoun sich when-
ever preceding a headword (e.g., sich
anschließen).
The German to English dictionary, after cleaning

and applying the filters, has 302,061 entries.

5https://spacy.io/models/de
6https://ftp.tu-chemnitz.de/pub/Local/urz/ding/

de-en-devel/

4.4 Experimental Setup
In addition to our model (Masking), we trained three
baseline models: a translation model without any dic-
tionaries (Baseline), a model that includes a bilingual
dictionary as parallel text (Parallel), and a model that
uses dictionary positional encodings (DPE) (Zhong
and Chiang, 2022). For DPE and Masking, we append
dictionary definitions to source sentences containing
rare words. All models were trained on two datasets:
Europarl (Limited) and Europarl (Full).

4.5 Hyperparameter Search
By appending dictionary definitions, we introduce
two hyperparameters in the model: the frequency
threshold for rare words and the number of definitions
(or word senses) appended for each rare word. In
our experiments, we used frequency thresholds of
5, 10, 15, 25, and 50, and restricted the number of
definitions appended to 1, 5, 10, and unbounded.

5 Results

In this section, we report and analyze the results of
our experiments described in the previous section.
We found that appending definitions for rare words
and using attention masking (Masking) improved
translation performance over the baseline models:
Baseline, Parallel, and DPE.

Furthermore, we observed that using a lower
frequency threshold during training and increasing
that threshold during inference resulted in the largest
performance improvement. We speculate that this
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Source Mit
Mit

with

seiner
seiner

his

Tarnkappe
T@@ ar@@ n@@ k@@ app@@ e

invisibility cloak

entkam
ent@@ kam

evaded

Siegfried
Sie@@ g@@ fri@@ ed

Sigurd

dem
dem

the

kampferprobten
kampf@@ er@@ prob@@ ten

battle-hardened

Ritter,
R@@ it@@ ter ,

knight

einem
einem

a

Todfeind,
To@@ d@@ fein@@ d ,

deadly enemy

und
und

and

schlich
sch@@ lich

crept

sich
sich

himself

aus
aus

out of

der
der

the

Burg.
Burg .

castle

Tarnkappe: {invisibility cloak}; entkam: {evaded, escaped, got away}; Siegfried: {Sigurd};
kampferprobt: {battle-seasoned, battle-hardened, battle-tested, combat proven};
Ritter: {knight, knights, companion of the order of knighthood, chevalier};
Todfeind: {deadly enemy, mortal enemy}; schlich: {crept, slunk, tiptoed}

Reference With his invisibility cloak, Siegfried evaded the battle-hardened knight, a deadly foe, and crept out of the castle.
Baseline With his cap, Siegfried escaped the tried and tested ritter, a death-enemy, and smashed from the castle.
Parallel With his cap, Siegfried escaped the tried and tested Ritter, a death enemy, and came out of the castle shamefully.
DPE With his glasscloak, Sigurd escaped the fighter’s knight, a deadly enemy, and crept out of the castle.
Masking With his invisibility cloak, Sigurd escaped the battle-tested knight, a deadly enemy, and crept out of the castle.
Apple With his camouflage cap, Siegfried escaped the battle-tested knight, a mortal enemy, and crept out of the castle.

Table 2: On a German sentence (Source), our system’s output (Masking) is closer to the Reference than
the Baseline system’s, even when the dictionary is included in the baseline system’s training data (Parallel)
or dictionary positional encodings (Zhong and Chiang, 2022) are used instead of attention masking (DPE).
Even Apple’s Translate app translates Tarnkappe over-literally as camouflage cap. Rare words are written in
boldface. The Reference sentence was written by the first author to demonstrate multiple rare words with a
variety of parts of speech and inflections, and a native German speaker translated it into the Source sentence.

Source Typisch
Typ@@ isch

typical

für
für

for

ein
ein

a

konjunktivales
kon@@ jun@@ ktiv@@ ales

conjunctival

Lymphom
L@@ ymp@@ ho@@ m

lymphoma

ist
ist

is

eine
eine

a

lachsfarbene
la@@ chs@@ far@@ bene

salmon-colored

Schwellung.
Schwell@@ ung .

swelling

Lymphom: {lymphoma}; lachsfarben: {salmon, salmon-coloured, salmon-colored};
Schwellung: {swelling-up, swelling, puffiness, tumescence, intumescence, intumescentia, tumentia,
tumefaction, tumidity, turgescence, turgidity, engorgement}

Reference A salmon-colored swelling is typical for conjunctival lymphoma.
Baseline A lax threshold is typical of a lax lymphom in economic terms.
Parallel A low level threshold is typical of a cyclical lymphom.
DPE A cyclical lymphom is typically characterised by a lame threshold.
Masking A salmon-coloured lymphoma is typical of a cyclical lymphoma.

↰

Restricted A salmon-coloured swelling is typical of a current lymphoma.

↰

Updated A salmon-coloured swelling is typical of a conjunctival lymphoma.

Table 3: On a German sentence (Source) from the biomedical dataset, our system’s output (Masking) is
closer to the Reference than the Baseline system’s, even when the dictionary is included in the baseline
system’s training data (Parallel) or dictionary positional encodings (Zhong and Chiang, 2022) are used instead
of attention masking (DPE). Rare words are written in boldface. We also edited the input manually for
demonstration purposes: For Restricted, the number of definitions appended has been restricted to 3 since
Schwellung has 12, which causes the model to struggle. For Updated, we restricted the number of definitions
appended to 3 and added a definition for konjunktival ‘conjunctival’ to the dictionary (not previously present).
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Figure 3: The attention scores of the Masking model for the German sentence: “Mit seiner Tarnkappe schlich
sich Siegfried aus der Burg” with the definition string “invisibility cloak crept slunk tiptoed Sigurd.” The
attention scores are summed for all encoder layers and attention heads. We observe both attention masks
being utilized by the model.

behavior is a result of larger thresholds incorrectly
classifying unknown compound words (i.e., those not
occurring in the training data) as rare when they are
already translatable by the baseline models as a result
of subword tokenization. If we are attempting to teach
the model to use definitions, including them when
they are not necessary may actively work against our
training objective.

During a hyperparameter search, we found that
using 10 for the frequency threshold and 10 for the
maximum number of definitions appended yields the
largest improvement in translation performance. Ta-
ble 1 compares our model against the three baseline
models for both the general (news) and out-of-domain
(biomedical) datasets. All metrics reported in the
table were averaged over 5 random restarts and sta-
tistical significance was verified with paired t-tests.
Masking (our model) outperforms the three baseline
models on both metrics and all improvements are
statistically significant (p-value < 0.05), except for the
BLEU improvement over DPE for Europarl (Full).

In the low-resource setting, DPE struggles to
improve over the baseline models, while Masking
has the largest BLEU improvement, demonstrating a

boost in low-resource translation performance. In the
high-resource setting, although DPE and Masking
are not significantly different in BLEU, they are sig-
nificantly different in MacroF1. Since rare words are
less frequent in the high-resource setting, the BLEU
improvement of DPE and Masking over Baseline and
Parallel is not as large. However, Masking has the
largest MacroF1 improvement, demonstrating a boost
in rare word translation performance.

In Table 2, we compare candidate translations
of a German sentence containing rare words against
an English reference. The sentence was written in
English, and translated by a native German speaker,
to demonstrate the capability and robustness of our
model in using the dictionary. The German sentence
contains seven rare words of varying part-of-speech,
including adjective declension and verb conjugation.
In the Source row, the English glosses are shown
beneath each German word to match the Reference
translation along with the corresponding subword
tokenization. To reduce the sentence length, the
definitions are listed separately instead of appended
to the German sentence.

Baseline and Parallel contain several incorrect
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translations of rare words. In particular, we observe
that Tarnkappe and Todfeind were translated over-
literally, with the first noun in the compound being
dropped all together. Even the Apple Translate app
translated Tarnkappe over-literally as camouflage cap.
The DPE model, instead of dropping the first noun
like Baseline/Parallel, used a seemingly random noun
and translated the second over-literally. Only the
Masking model correctly translated Tarnkappe as
invisibility cloak. In fact, Masking used at least one
definition for every rare word, getting the closest to
the Reference.

In Table 3, we compare candidate translations
of a German sentence taken directly from the Med-
line test set. The sentence contains four rare words,
but our dictionary has no definition for konjunkti-
val. Lymphom, despite having a definition, is copied
to English sentence by Baseline, Parallel, and DPE.
Masking correctly translates Lymphom and lachsfar-
ben, but all models mistranslate Schwellung. We
found that Masking often ignores definitions if there
are too many appended for a given rare word. To
demonstrate, we restricted the number of definitions
for Schwellung to 3 and see that the model correctly
translates the word. We also succeeded in trans-
lating konjunktival correctly by adding the English
definition to the dictionary, demonstrating that the
dictionary coverage is a limiting factor.

In Figure 3, we use an attention heat map to
visualize the attention scores for a German sentence.
The sentence shown is a trimmed version of the
example in Table 2. To build the heat map, we
summed the attention scores for every encoder layer
and every attention head. We see that the attention
masks shown in Figure 2 are clearly visible in the
heat map. However, the model decided to put more
emphasis on the first mask than the second, which is
done by adjusting the mask strengths.

6 Discussion

Rare Word Classification As mentioned previ-
ously, compound words that do not occur in the
training data may still be accurately translated as
a result of subword segmentation, suggesting that
frequency is not an ideal or reliable metric for clas-
sifying rare words. In the future, frequency could
be replaced with a source-side estimation of model
confidence in the translation of rare words.

Incorrect Lemmatization We could not find an
acceptable lemmatizer for the German language
since even spaCy would occasionally misidentify
the lemma for, e.g., a declined adjective or a past
participle. Furthermore, no lemmatizer that we found
could correctly identify the infinitive form for sep-
arable verbs or trennbare Verben, a common class
of verbs in the German language. In the future, we
could explore more robust lemmatization techniques
or the inclusion of inflected forms in the dictionary.

Lemmatization Ambiguities We have identified
several cases where lemmatization causes the model
to use a definition that is not grammatically correct
in the context of the source sentence. For example,
if the past tense form of a verb is not present in the
dictionary and the definition for the infinitive form is
used, the model often avoids inflecting the infinitive
form to the correct tense unless the sentence contains,
e.g., an auxiliary verb. Similarly, nouns ending in
–er in German have no plural ending, which creates
an ambiguity as to whether the English definition
should be plural. A dictionary that directly contains
inflected forms may resolve such ambiguities.

Definition/Word Sense Pruning We appended def-
initions for each word sense and part-of-speech with
the assumption that the model could learn to lever-
age syntactic or semantic knowledge of the source
sentence to select an appropriate translation for the
rare words from among those definitions appended.
However, we find that the model is often spoiled for
choice, in that the model may use an inappropriate
definition, or none at all, if there are too many without
a clear way to disambiguate. In the future, we could
implement a strategy to select the most relevant defini-
tions or limit the number of appended definitions per
rare word, such as pruning based on document-level
context or prior domain knowledge.

Phrases and Compound Words We appended def-
initions only for single words, which includes both
hyphenated and concatenated compound words in
German, but did not consider phrases whose trans-
lations may not be directly deducible from the con-
stituent words. Similarly, we did not consider separat-
ing compound words into the constituent words and
recursively searching for definitions if the compound
words are not present in the dictionary themselves
since subword segmentation often handles these.
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7 Conclusion

In this paper, we proposed using bilingual dictio-
naries and attention masking to improve translation
performance for rare words, a problem that encoder-
decoder models continue to struggle with in MT. Our
method was to append definitions to source sentences
for low-frequency words and use attention masking
to associate rare words with their definitions. We
found that our method improved MT performance by
up to 1.0 BLEU and 1.6 MacroF1. In the future, we
are interested in incorporating other external knowl-
edge sources, such as monolingual dictionaries and
knowledge graphs, to reduce translation ambiguity
and further improve the translation of rare words.

8 Limitations

The following are two limiting factors of our mask-
ing approach to including bilingual dictionaries in
machine translation: (1) the quality and coverage of
the lemmatizer and/or dictionary is a bottleneck to
further improvement and (2) appending definitions
increases sentence length and therefore runtime.
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Abstract

Decoder-only LLMs have shown impressive performance in MT due to their ability to learn from extensive
datasets and generate high-quality translations. However, LLMs often struggle with the nuances and style
required for organisation-specific translation. In this study, we explore the effectiveness of fine-tuning Large
Language Models (LLMs), particularly Llama 3 8B Instruct, leveraging translation memories (TMs), as a
valuable resource to enhance accuracy and efficiency.

We investigate the impact of fine-tuning the Llama 3 model using TMs from an organisation in the software
sector. Our experiments cover five translation directions across languages of varying resource levels (English
to Brazilian Portuguese, Czech, German, Finnish, and Korean). We analyse diverse sizes of training datasets
(1k to 207k segments) to evaluate their influence on translation quality. We fine-tune separate models for each
training set and evaluate their performance based on automatic metrics, BLEU, chrF++, TER, and COMET.

Our findings reveal improvement in translation performance with larger datasets across all metrics. On aver-
age, BLEU and COMET scores increase by 13 and 25 points, respectively, on the largest training set against
the baseline model. Notably, there is a performance deterioration in comparison with the baseline model
when fine-tuning on only 1k and 2k examples; however, we observe a substantial improvement as the train-
ing dataset size increases. The study highlights the potential of integrating TMs with LLMs to create bespoke
translation models tailored to the specific needs of businesses, thus enhancing translation quality and reduc-
ing turn-around times. This approach offers a valuable insight for organisations seeking to leverage TMs and
LLMs for optimal translation outcomes, especially in narrower domains.

1 Introduction

In recent years, decoder-only large language mod-
els (LLMs) have revolutionised the machine transla-

tion (MT) field due to their ability to learn from vast
amounts of data and generate high-quality transla-
tions (Alves et al., 2023a; Moslem et al., 2023a;
Mu et al., 2023; Robinson et al., 2023; Zhu et al.,
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Datasets Segments

Aligned Training 1000, 2000, 5000, 10000, 14688
Dev 1837
Test 1353

Table 1: Segment counts for the various aligned training dataset sizes, the development set, and the test set.

2023; Lyu et al., 2024). LLMs, such as Llama 3
8B Instruct,1 have shown impressive capabilities in
adapting to translation tasks, generating human-like
accurate output, making them invaluable tools for
the sector (Li et al., 2023; Moslem et al., 2023b;
Lyu et al., 2024). However, out-of-the-box LLMs
do not always capture all the nuances, appropri-
ate tone, and terminology required for specialised
or organisation-specific translations (Moslem et al.,
2022; Alves et al., 2023b; Zheng et al., 2024). This
is where translation memories (TMs) offer a poten-
tial solution.

A TM is a database that stores previously
human-translated segments and their respective
translations. They are particularly useful to lan-
guage service providers (LSPs) as they deal with
repetitive content and organisation-specific style and
terminology, enhancing the efficiency and accuracy
of translations (Bloodgood and Strauss, 2014; Bulte
and Tezcan, 2019; Moslem et al., 2023a). There-
fore, the integration of TMs and LLMs can cre-
ate models that better understand organisational re-
quirements and lead to higher quality outputs and
reduced turnaround times. However, this approach
depends on several factors, like the amount, quality
and specificity of the TMs used as training data for
fine-tuning.

Previous work explored fine-tuning of models
with TM for translation for specific domains and
the benefit that offers to performance (Haque et al.,
2020; Moslem et al., 2022). Accordingly, TM pro-
vides much value because of its high quality and do-
main relevance (Bulte and Tezcan, 2019; Xu et al.,
2020; Cai et al., 2021; Knowles and Littell, 2022).
This research highlights the gains available when
leveraging existing TMs during the fine-tuning pro-
cess of LLMs.

In this paper, we investigate a real-life scenario
where we fine-tune Llama 3 8B Instruct (Llama

Team, 2024) using TMs from a specific organisa-
tion. Additionally, since increasing the fine-tuning
data requires dedicating more resources and time,
we explore different dataset sizes to evaluate their
impact on translation quality and identify the most
efficient return on investment. We conduct exper-
iments in five translation directions (from English)
on languages of varying resource level (Brazilian
Portuguese (PT-BR), Czech (CS), German (DE),
Finnish (FI), and Korean (KO)). This approach can
lead to bespoke translation models that cater to the
unique needs of different companies when com-
pared to generic LLMs.

2 Methodology

2.1 Data

The raw dataset consists of TMs from an anony-
mous organisation that operates in the software sec-
tor. The three datasets employed cover knowledge
base, mobile user interface, and mobile reference
materials.

The five target languages dataset (PT-BR, CS,
DE, FI, and KO) are filtered to remove duplicates,
source-copies, and segments over 150 words to en-
sure none would go over the maximum length set
during training. All HTML tags are removed, and
double spaces are converted to single spaces. Any
rows containing only dates, version numbers, or any
programming language are also removed. Rows
are then randomly shuffled to mitigate any tempo-
ral bias that could arise from the chronological order
of the data, ensure the model does not memorise se-
quences, and prevent the evaluation set from being
biased towards a particular section of the data.

The dataset is then transformed into an inter-
lingual aligned dataset for all five target languages
where any rows with missing translations for any
target languages, are dropped. This results in a

*These authors contributed equally to this work
1https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
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Lang Full Training Data Dev Data Total Segments

Brazilian Portuguese (PT-BR) 217,555 54,389 271,944
Czech (CS) 107,555 26,889 134,804
German (DE) 223,894 55,973 279,867
Finnish (FI) 207,218 51,805 259,023
Korean (KO) 162,360 40,590 202,950

Table 2: Segment counts for the full datasets used during training.

dataset where all source segments have translations
available in all five target languages. The dataset is
then split into training, development, and test sets,
as shown in Table 1.

Further filtering is applied to the test set remov-
ing segments that had over 75% similarity with any
segments in the training dataset to ensure robust test-
ing and minimal memorisation. We measure simi-
larity as a combination of the Levenshtein distance
(Levenshtein, 1965) and a 5-gram-based similarity
(Lopez-Gazpio et al., 2019). This reduced the size
of the test split from 1837 to 1353. The test split
with under 75% similarity was used for all experi-
ments.

In the interest of using all the data available, we
also compile all segments in a given language into a
dataset for each target language. This includes any
segment that would not fit the inter-lingual align-
ment criteria applied above. This will now be re-
ferred to as the ‘full dataset’. These larger training
sets allow us to train beyond the 14.7k aligned seg-
ments and make use of the total volume of available
segments in order to explore what impact that would
have on results. The full training sets range from
107k (CS) to 223k (DE) examples, as shown in Ta-
ble 2.

2.2 Model

We use the Llama 3 8B Instruct model and its asso-
ciated tokenizer (Llama Team, 2024). The decision
between the Instruct and the base model is based on
an extensive MT evaluation of Llama 3 models (Wu
et al., 2024) using the Flores-2002 dataset (Guzmán
et al., 2019; Costa-jussà et al., 2022). Even though
Wu (2024) dealt with the opposite language direc-

tion (X to English), we consider the close results
between Instruct and the base model involving the
five languages included in this paper to be a good
indicator of proximity in performance between the
models. Our baseline consists of the test set met-
ric results obtained from the out-of-the-box Llama 3
8B Instruct model. We use QLoRA (Hu et al., 2021;
Dettmers et al., 2023) for efficient fine-tuning with
4-bit quantisation using Hugging Face Transform-
ers. We perform fine-tuning on a high performance
cluster with four A100-SXM4-80GB GPUs. From
Hugging Face, we leverage the Supervised Fine-
Tuning Training (SFTTrainer),3 which is a wrapper
of the Trainer class4 optimized for fine-tuning lan-
guage models like Llama. On the largest dataset
size, fine-tuning takes approximately 2.3 hours (Ap-
pendix A).

2.3 Inference

2.3.1 Prompting
At inference time, we use many of the recom-
mended parameters from previous work (Moslem
et al., 2023b) and model documentation to produce
translation outputs from the baseline model and the
fine-tuned versions (cf. Appendix C). Meta’s Llama
3 documentation5 provides a recommended prompt
format and instructions to implement special tokens
during inference and training (Llama Team, 2024).

The prompt and the source segment were
passed to the model for inference to obtain each
translation. This constitutes zero-shot as it did not
include examples in the prompt (Zhang et al., 2023).
A JSON scheme ({“translation”: “string”}) was
also added to the prompt in order to obtain a struc-
tured output (Wu et al., 2024). During training, the

2github.com/facebookresearch/flores/blob/main/flores200/README.md
3https://huggingface.co/docs/trl/en/sft trainer
4https://huggingface.co/docs/transformers/en/main classes/trainer
5https://llama.meta.com/docs/model-cards-and-prompt-formats/meta-llama-3/
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BitsAndBytes Quantisation Configuration

load in 4bit True
bnb 4bit quant type “nf4”
bnb 4bit use double quant True
bnb 4bit compute dtype torch.bfloat16

PEFT LoRA Configuration

low-rank matrix dimension (r) 64
scaling factor (lora alpha) 16
dropout probability (lora dropout) 0.1
training of bias parameters (bias) “none”

Training Arguments

batch size for training and evaluation 32 examples
learning rate 2e-3
lr scheduler type “constant”
bf16 True

Table 3: Fine-tuning hyperparameters.

same format was applied with the addition of the
specific EOS token (< |end of text| >) as recom-
mended by Meta’s documentation (cf. Appendix B).

2.3.2 Translation
In order to obtain higher efficiency, both baseline
and fine-tuned models are converted to the CTrans-
late26 (Klein et al., 2020) format (with 8-bit quan-
tisation) and provided with parameters for inference
(cf. Appendix C).

2.3.3 Stopping Criteria and Post-processing
In early experiments, we observe frequent instances
of overgeneration; an issue recently explored further
by Zheng et al. (2024). By using ”}assistant” as a
stop token in our stopping criteria, we find much
less post-processing is required in order to obtain the
pure translation.

Our post-processing consists of extracting the
translation by removing the ‘{“translation”: “ ’
prefix and the trailing ‘ ”} ’. The newline characters
are replaced by spaces. On some occasions, espe-
cially in the models produced by the smaller train-
ing datasets (1k and 2k examples), further cleaning
is required as the model inadvertently overgenerated
some HTML tags like ‘<br>’ and ‘<p>’. This is

important to properly assess the translation quality.

2.4 Evaluation

To evaluate the performance of our models, we re-
port BLEU (Papineni et al., 2002), chrF++ (Popović,
2017), TER (Snover et al., 2006) via sacreBLEU,7

and COMET8 (Rei et al., 2020). We use multiple
metrics to make our experiments more comparable
to a wider variety of work and to provide insight into
certain aspects of performance.

It is important to note that the experiment aims
to show the training efficiency of the PEFT fine-
tuning method and its ability to approximate the
model’s translating capabilities to the training mate-
rial. Therefore, we pay special attention to the auto-
matic metrics measuring n-gram differences and ed-
its (BLEU, chrF++, TER) whilst still considering the
quality estimation aspect of COMET as a means of
comparing inter-source languages and other similar
research. Our results are compared to those obtained
from the baseline model, an out-of-the-box Llama 3
8B Instruct model, and to GPT 3.5. We also ask
five professional translators to post-edit 100 transla-
tions from the best-performing model into their lan-
guage pair. They also answer a questionnaire about

6https://github.com/OpenNMT/CTranslate2
7https://github.com/mjpost/sacrebleu
8wmt20-comet-da, https://github.com/Unbabel/COMET
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the quality of the automatically translated segments.
The questionnaire asks for comments on the quality
of the translations.

3 Results and Discussion

The results in Table 4 show an increase in perfor-
mance across all the languages for all datasets with
more than 5k segments compared to the baseline.
The fully aligned 14.7k dataset sees a BLEU score
increase of 4.8 points or relative increase of 17.42%
on average over the baseline, over all target lan-
guages, while chrF++ and COMET increases 7.1
and 16.9, respectively. Similarly, TER decreases by
9 points. The 100k+ datasets also demonstrate con-
sistent performance gains with an average increase
of 13.7 BLEU, 12.7 chrF++, and 25 COMET, while
TER decreases to 15.5.

To provide a point of comparison, we evaluate
the performance of GPT-3.59 on our test set. While
GPT-3.5 outperforms our highest-performing model
in BLEU and chrF++ for DE and FI, the 100k+
datasets often surpass GPT-3.5 in other languages
and metrics. This demonstrates the effectiveness of
creating bespoke models through fine-tuning mid-
sized LLMs when leveraging domain-specific data.
Targeted fine-tuning can yield competitive or su-
perior results compared to larger, general-purpose
models like GPT-3.5.

3.1 Small Dataset Deterioration
Regarding translation quality across different train-
ing data sizes, we note a deterioration in quality for
models trained on the smaller datasets (1k and 2k) in
relation to the baseline. Despite a smooth reduction
in both training and evaluation loss during training
across all sizes, these smaller datasets still lead to
poorer performance on all metrics. This can be due
to the fact that the 1k and 2k datasets are insufficient
to offer the models a wide enough variety of ex-
amples, leading to overfitting where the model per-
forms well on training but poorly on the unseen test
data (Barone et al., 2017; Atrio and Popescu-Belis,
2022; Garcia et al., 2023; Ramı́rez Atrio, 2023).

It is possible that the lack of diversity in the
smaller models fails to capture the range of lin-
guistic and translation nuances present in the test
data which hinders the model’s ability to gener-
alise beyond the specific examples seen during train-

ing. Furthermore, the smaller datasets may make the
models more susceptible to noise, such as transla-
tion errors or inconsistencies, leading to the learning
of incorrect patterns and degrading performance on
the test data, affecting the automatic metrics results,
while the loss continues to drop due to fitting noisy
data (Barone et al., 2017; Atrio and Popescu-Belis,
2022; Ramı́rez Atrio, 2023).

Another possible explanation for the deterio-
ration is a decrease in training data quality in the
1k and 2k dataset sizes. To examine this, we use
COMET-Kiwi (Rei et al., 2023), a popular qual-
ity estimation metric, to evaluate the quality of the
training data. The scores are consistent for each lan-
guage with variations within a narrow range of 1-2
points (cf. Appendix D). For example, FI has the
highest variation with a maximum score of 79.58 (1k
and 14.7K) and a minimum score of 78.12 (5k), re-
sulting in a range of only 1.46 points. The minimal
variation in score indicates consistent data quality
across all dataset sizes for each language. There-
fore, the deterioration in performance is unlikely to
be due to a decrease in data quality for the 1k and 2k
training data sizes.

Hyperparameter fine-tuning could be employed
to mitigate this early deterioration in situations
where only small datasets are available. This may
include dropout or other regularisation techniques
to prevent overfitting on small training sets. Adjust-
ment of the learning rate, batch sizes and QLoRA
hyperparameters should also be explored to deal
with this specific case of deterioration (Barone et al.,
2017; Atrio and Popescu-Belis, 2022; Dettmers
et al., 2023; Ramı́rez Atrio, 2023).

Overall, a different approach is required in or-
der to obtain gains when the training data is scarce.
Our experiments suggest the need for at least 5k ex-
amples to achieve an improvement in metrics under
the hyper-specific domain and circumstances we ex-
plore.

The issues above seem to be mitigated on the
larger sets whilst maintaining the same hyperparam-
eters as previously reported (cf. Table 3). We ob-
serve performance recovery on 5k examples, over-
taking the baseline model, then consistently improv-
ing over all metrics as dataset size increases, and
achieving increasingly impressive results across all
metrics when training on anything above the 10k

9https://chat.openai.com/
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Lang Data Size BLEU ↑ chrF++ ↑ TER ↓ COMET ↑

GPT 3.5 56.50 76.33 32.03 86.02
Baseline 48.25 69.21 39.36 77.28

1k 48.00 69.34 40.11 78.28
PT-BR 2k 46.04 67.93 44.09 75.70

5k 49.73 69.92 38.03 80.80
10k 50.90 70.92 35.96 86.15

14.7k 53.42 73.07 32.92 89.18
100k+ 62.45 78.57 26.20 95.98

GPT 3.5 31.78 55.02 58.17 72.99
Baseline 26.25 49.97 63.27 62.43

1k 26.53 50.15 64.97 64.20
CS 2k 25.23 48.35 68.76 58.28

5k 27.57 51.35 62.84 66.85
10k 27.96 52.40 63.26 66.62

14.7k 31.57 54.75 60.07 73.73
100k+ 39.72 61.45 52.00 84.22

GPT 3.5 42.41 65.88 50.07 65.31
Baseline 34.32 59.16 57.60 58.36

1k 34.58 59.07 58.42 60.86
DE 2k 32.45 57.08 62.93 53.87

5k 35.31 59.37 56.19 63.66
10k 37.23 60.58 53.59 66.82

14.7k 37.88 61.08 52.71 68.50
100k+ 42.27 65.15 48.59 73.01

GPT 3.5 33.80 59.18 58.29 83.84
Baseline 23.97 49.70 70.36 62.64

1k 24.14 49.48 71.18 65.22
FI 2k 19.07 46.97 83.00 58.34

5k 22.05 47.32 75.12 60.54
10k 25.88 50.71 65.99 74.91

14.7k 26.48 51.32 64.91 73.66
100k+ 31.71 57.13 59.72 84.71

GPT 3.5 33.07 49.72 60.60 63.28
Baseline 20.81 35.37 77.95 36.45

1k 20.12 42.16 83.37 35.24
KO 2k 19.25 41.13 82.48 26.03

5k 28.60 46.84 65.42 54.17
10k 31.36 52.62 60.86 70.56

14.7k 28.15 58.88 53.11 76.65
100k+ 45.80 64.81 44.73 84.30

Table 4: Evaluation results of fine-tuning Llama 3 8B on datasets of various sizes. Bold text indicates the
best score. The models trained on the largest dataset (100k+) perform the best. The scores deteriorate from
the baseline for 1k and 2k but recover and increase from 5k onward. Underlined text indicates the worst
scores.

sets and excelling on the 100k+ sets.
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3.2 Resource Level

It is interesting to note that the performance for KO
has improved after the 14.7k fine-tuning and be-
comes comparable to or better than the performance
of the other language directions, despite the lower
initial baseline score across all metrics. For instance,
the COMET score for the KO baseline is 36.5 while
the average for all other languages is 57.7. We find
that the lower resource languages (KO being the
lowest of the target languages explored) have the
highest relative gains, turning around a very poor
baseline across all metrics. The COMET score for
KO increased to 84.3 compared to the average of
84.5 in the 100k+ datasets for PR-BR, DE, FI, and
CS, resulting in KO’s comparable performance to
the high resource languages, i.e. PT-BR and DE.

These results probably relate not only to the re-
source level of the language but also to the amount
of Korean data in the Llama 3 training recipe. Ac-
cording to MetaAI, “over 5% of the Llama 3 pre-
training dataset consists of high-quality non-English
data that covers over 30 languages” (Meta, 2024).
While the Llama Team provides more detail on the
training and data mix Llama 3, the exact proportion
of Korean data is not discussed (Llama Team, 2024).
Our baseline metrics suggest that Korean does not
feature highly on that list given that it scores signif-
icantly lower than all other languages. This might
be attributed to the fact that there were not enough
examples to produce a firm understanding of the lan-
guage but enough to provide a foundation that heav-
ily benefited from fine-tuning. As mentioned, this is
an assumption as we lack sufficiently detailed infor-
mation on the training recipe.

When looking at the target languages, we note
that PT-BR shows the best performance at 14.7k and
100k+ dataset. This indicates that, even for a well-
resourced language, the foundation model gained
a strong understanding of the language during pre-
training. However, it did not seem to benefit as much
from fine-tuning as KO, a lower resource language.
This corroborates the finding that resource level is a
strong determiner of LLM MT performance (Robin-
son et al., 2023).

3.3 Human Evaluation

Regarding the human evaluation, the qualitative
comments from the translators reveal that the largest
model struggles with ambiguity. Evaluators men-

tion that segments that lacked complete information
needed to be completely reworked. For example,
the segment, “Get basic, step-by-step instructions to
learn” lacks a final object, which impacts the trans-
lation. While human translators often face and re-
solve such ambiguities through research or decision-
making with incomplete information, the model pro-
cesses segments in isolation, unable to access po-
tentially clarifying context from adjacent segments.
This limitation provides insight into the model’s per-
formance in real-world translation scenarios.

4 Conclusions

Fine-tuning on TMs has been demonstrated to en-
hance the performance of LLMs in MT tasks. In this
paper, we investigate the relationship between auto-
matic metric results and training set sizes to iden-
tify the optimal balance where resource investment
yields the most significant improvements in transla-
tion quality. In our experiments, it has become evi-
dent that fine-tuning on training datasets whose size
is larger than 5k examples returned increasingly bet-
ter results in 19 out of the 20 language-training set
size combinations explored.

By leveraging TMs, the model becomes more
adept at recognising and reproducing previously
translated segments, their style, and terminology.
Furthermore, fine-tuning on TM data helps the
model adapt to specialised fields.

The test and training sets used come from a
much narrower corpus of data than in similar exper-
iments that deal with wider domains, i.e. medicine
(Moslem et al., 2023b). The hyper-specific nature
of the training data employed in our approach may
partly explain the promising results. We therefore
leverage the advantage that smaller models licensed
for business-use offer; they can be adapted several
times over for narrow and specific domains, as well
as multiple languages with little investment, instead
of aiming for a more general purpose or multilingual
model. The hyper-specific purpose of our trained
model, i.e. one language direction and a narrow do-
main, suits the size and easiness of training of an 8B
parameter mode.

Being a commonly experienced scenario in the
localization industry, this is an under-explored ap-
proach that organisations could be pursuing in or-
der to make the most out of their access to TMs and
LLMs for MT in order to obtain the best possible re-
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turn on investment when leveraging their previously
human-translated material.

Low-resource languages seem to be in a perfect
position to benefit from leveraging small business-
friendly models, like Llama 3 8B. The gains in auto-
matic metric results for KO are substantially higher
for high resource languages, like PT-BR and DE,
returning the highest increase in performance com-
pared to the metrics obtained from training on sim-
ilar set sizes in those languages. KO observes an
increase of 130% on COMET from the baseline
to the 100k+ dataset, whereas the average increase
amongst the other target languages is 46% (cf. Ta-
ble 4).

It is important to mention that, just as Wu
(2024) acknowledges the FLORES-200 dataset
leakage into Llama 3, it is possible that some of our
test set was also scraped by the Llama 3 models, as
parts of the material were published online prior to
the Llama 3 family’s pre-training. We face the same
challenge as the whole AI researching community,
forced to either constantly come up with new test
sets or simply acknowledge the potential leakage of
test data (Xu et al., 2024). We urge large tech com-
panies to disclose at a minimum the test sets that
were not ingested by their models for the benefit of
the whole community. We acknowledge the Llama
Team’s leadership in this area (Llama Team, 2024).

5 Future Work

Future work in the area may benefit from the intro-
duction of checkpoints during training and subse-
quent intermediate evaluation would enable the vi-
sualisation of a clearer learning curve, and the iden-
tification of potential dips in performance and points
of diminishing returns. This approach would facili-
tate the analysis and allow for a finer and more effi-
cient evaluation process.

In the future, we aim to obtain a bespoke test
set directly from the organisation that owns the
TMs. This tailored test set would consist of ex-
amples specifically designed in-house according to
strict guidelines, ensuring they are completely orig-
inal and reflective of the organisation’s unique re-
quirements and style. By using a bespoke and un-
seen test set, we can more accurately assess the per-
formance of our fine-tuned models in a real-world
context.

Finally, further investigation is required with

regard to the training hyperparameters across the
different dataset sizes in order to obtain better re-
sults with smaller training sets under 5k examples.
Several strategies can be explored to optimise per-
formance on smaller datasets. Adjustments such
as modifying the dropout rates to prevent overfit-
ting, applying regularisation techniques to enhance
model generalisation, and fine-tuning the learning
rate to ensure efficient convergence can be partic-
ularly beneficial in this case.
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A Appendix A

Lang Size Loss Dev Loss Train Runtime

1k 1.4922 1.0706 69
2k 0.8271 0.8290 120

PT-BR 5k 0.7506 0.6325 290
10k 0.4222 0.5337 551
14.7k 0.4918 0.4714 820
100k+ 0.6031 0.5964 8423

1k 1.5428 1.0795 70
2k 0.9446 0.8880 124

CS 5k 0.6643 0.6586 296
10k 0.6475 0.5880 574
14.7k 0.5346 0.5169 837
100k+ 0.5600 0.4800 8000*

1k 1.5342 1.1519 71
2k 0.9631 0.9602 125

FI 5k 0.5876 0.6286 302
10k 0.5662 0.5874 589
14.7k 0.3996 0.5138 866
100k+ 0.5964 0.5867 8241

1k 1.5551 1.1397 69
2k 0.9591 0.9301 121

DE 5k 0.4371 0.6426 290
10k 0.4553 0.5639 550
14.7k 0.5310 0.5037 819
100k+ 0.6672 0.6603 8000*

1k 1.5851 1.0651 67
2k 0.7765 0.7733 120

KO 5k 0.6086 0.6340 270
10k 0.4662 0.5666 543
14.7k 0.4167 0.4923 807
100k+ 0.7822 0.7052 5791

Table 5: Training Details by Language. Train Runtime is measured in seconds. Starred numbers are esti-
mates.

B Appendix B

B.1 Special Token Descriptions

< |begin of text| >: This is equivalent to the BOS token.

< |eot id| >: This signifies the end of the message in a turn.

< |start header id| >{role}< |end header id| >: These tokens enclose the role for a particular message. The possible

roles can be: system, user, assistant.

< |end of text| >: This is equivalent to the EOS token.
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B.2 Prompt
< |begin of text| > < |start header id| >system< |end header id| >

You are a helpful AI assistant for translation from {source language} to {target language}. You MUST answer

with the following JSON scheme: {“translation”: “string”} < |eot id| >
< |start header id| >user< |end header id| >

{source sentence}< |eot id| >< |start header id| >assistant< |end header id| >

B.3 Training Prompt
< |begin of text| >< |start header id| >system< |end header id| >

You are a helpful AI assistant for translation from {source language} to {target language}. You MUST answer with the
following JSON scheme: {“translation”: “string”} < |eot id| >

< |start header id| >user< |end header id| > {source sentence}< |eot id| >

< |start header id| >assistant< |end header id| >{target sentence}< |end of text| >

C Appendix C

Inference Parameters

sampling topk 1
max batch size 8096
min length 1
max length double the source length

Table 6: CTranslate2 Inference Parameters.
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D Appendix D

Lang Data Size Comet-
Kiwi ↑

1k 77.95
2k 77.81

PT-BR 5k 77.65
10k 77.77

14.7k 78.92

1k 79.71
2k 78.98

CS 5k 78.57
10k 78.78

14.7k 79.71

1k 78.58
2k 78.22

DE 5k 78.34
10k 78.21

14.7k 78.73

1k 79.58
2k 78.70

FI 5k 78.12
10k 78.54

14.7k 79.58

1k 81.93
2k 81.56

KO 5k 81.20
10k 81.22

14.7k 81.55

Table 7: Quality Evaluation results of training datasets of different sizes using Comet-Kiwi metric.
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Abstract

This paper aims to investigate the presence of cognitive biases, more specifically of Availability heuristics,
Representativeness heuristics and Framing, in OpenAI’s ChatGPT 3.5 and ChatGPT 4, as well as the linguis-
tic dependency of their occurrences in the Large Language Models’ (LLMs) outputs. The innovative aspect
of this research is conveyed by rephrasing three tasks proposed in Kahneman and Tversky’s works and deter-
mining whether the LLMs’ answers to the tasks are correct or incorrect and human-like or non-human-like.
The latter classification is made possible by interviewing a total of 56 native speakers of Italian, English and
Spanish, thus introducing a new linguistic comparison of results and forming a “human standard". Our study
indicates that GPTs 3.5 and 4 are very frequently subject to the cognitive biases under discussion and their
answers are mostly non-human-like. There is minimal but significant discrepancy in the performance of GPT
3.5 and 4, slightly favouring ChatGPT 4 in avoiding biased responses, specifically for Availability heuris-
tics. We also reveal that, while the results for ChatGPT 4 are not significantly language dependent, meaning
that the performances in avoiding biases are not affected by the prompting language, their difference with
ChatGPT 3.5 is statistically significant.

1 Introduction

In the last years, Large Language Models (LLMs)
have been used exponentially thanks to their capa-
bilities to be queried with natural language and to
return content- and context-aware responses. They
became popular within the general public, and busi-
nesses swiftly introduced these models in their
workflow aiming at becoming more productive,
while reducing employees’ workload. Natural lan-
guage itself is not only our easiest and quickest way
to communicate to these language models, but also
the main reason why we tend to anthropise these ma-
chines (Roberts and al., 2024), making our relation-
ship with them resonate widely and strongly in our
everyday life. Nonetheless, “LLMs simply do not
have the capacity to distinguish between truth and

falsehood and, therefore, without malicious intent,
[they] can confidently present fictions as if they were
truths" (Roberts and al., 2024, p. 4). For this reason,
we have the responsibility to prove if, how and when
they are most reliable. Much work has been done in
delicate fields such as legal, medical and educational
(Schmidgall and al., 2024; Pal and al., 2023; Pal,
2024; Curran and al., 2023; Gutiérrez-Cirlos and al.,
2023; Ji and al., 2023b) to analyse how to improve
their use in the professionals’ decision-making pro-
cess and to help users make more conscious choices.
When only taking the outputs into consideration, the
main hindrance to their implementation into busi-
nesses and field-specific tasks are hallucinations, de-
fined as “the generated content that is nonsensical
or unfaithful to the provided source content" (Ji and
al., 2023a, p. 4). Hallucinations are defined as in-
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trinsic, when the output contradicts the source, or
extrinsic, when the output cannot be verified from
the source (Ji and al., 2023a). Given the poten-
tially harmful and often subtle nature of this phe-
nomenon, researchers have developed various hal-
lucination mitigation techniques. These techniques
operate at different levels of the LLM’s functioning
to help reduce their occurrence. Addressing the is-
sue can involve either prompt engineering or devel-
oping models to reduce the elicitation of hallucina-
tions. Specific actions are available for each level of
the LLM’s functioning (Tonmoy and al., 2024).
Alongside the phenomena that hinder menaces, the
utility of LLMs is threatened by the presence of cog-
nitive biases in their outputs. As hallucinations, cog-
nitive biases are concepts mainly used to describe
human behaviours and have been adapted to this
field to define machines’ dysfunctions. Generative
Artificial Intelligence (GenAI) can exhibit biases
due to various factors. Some of the key causes are
that LLMs are trained on human-made data, includ-
ing historical data. They can be skewed and affected
by under/over-representation of certain phenomena.
Moreover, biases can be introduced in the process of
data annotation and refinement, often based on Re-
inforced Learning with Human Feedback (RLHF)
(Christiano and al., 2023; Chen and al., 2023; Nav-
igli and al., 2023) and propagate into the models.
Thus, machines can potentially inherit and enhance
human cognitive biases.
The main focus of this article is to verify whether
ChatGPT 3.5 and ChatGPT 4 are susceptible to
three specific cognitive biases, known in the liter-
ature as Availability heuristics, Representativeness
heuristics and Framing (Tversky and Kahneman,
1973, 1983, 1981). The Dictionary of Psychology
issued by the American Psychological Association
defines them as follows. Availability heuristics is: “a
common strategy for making judgments about like-
lihood of occurrence in which the individual bases
such judgments on the salience of the information
held in their memory about the particular type of
event"1. Representativeness heuristics is: “a strat-
egy for making categorical judgments about a given
person or target based on how closely the exemplar
matches the typical or average member of the cate-

gory"2. Finally, Framing is: “the process of defining
the context or issues surrounding a question, prob-
lem, or event in a way that serves to influence how
the context or issues are perceived and evaluated"3.
A recent trend in Generative Artificial Intelligence
literature is “machine psychology" by Thilo Ha-
gendorff, meaning that the LLM is positioned by
the researchers as the subject of their psychological
tests, initially designed to investigate human misbe-
haviour (Hagendorff, 2023). According to this ap-
proach, LLMs are tested for cognitive biases using
their chatbot interfaces. The tools mainly investi-
gated for tracking cognitive biases are Open AI’s
ChatGPT (version 3.5, 3.5 Turbo and 4), Google’s
Gemini, Anthropic’s Claude in different versions
and Llama in different versions (Macmillan-Scott
and M., 2024; Azaria, 2023; Chen and al., 2023;
Schmidgall and al., 2024). Most studies refer to the
tasks proposed by Kahneman and Tversky to test
cognitive biases (Macmillan-Scott and M., 2024;
Azaria, 2023; Chen and al., 2023; Kliegr and al.,
2021) and have unmasked that LLMs are, in fact,
victims of these biases, including but not limited to:
Confirmation bias (Macmillan-Scott and M., 2024;
Chen and al., 2023; Kliegr and al., 2021; Berberette
and al., 2024; Ke and al., 2024; Dos Santos and
Cury, 2023; Schmidgall and al., 2024), Availabil-
ity heuristics (Azaria, 2023; Chen and al., 2023;
Kliegr and al., 2021; Berberette and al., 2024),
Overconfidence (Chen and al., 2023; Kliegr and
al., 2021; Schmidgall and al., 2024), Representa-
tiveness heuristics (Macmillan-Scott and M., 2024;
Chen and al., 2023; Kliegr and al., 2021), Framing
(Azaria, 2023; Chen and al., 2023), Recency effect
(Berberette and al., 2024; Schmidgall and al., 2024).
The primary methodology described in these studies
either directly or indirectly refers to the “machine
psychology" approach (Hagendorff, 2023).
This paper addresses the following research ques-
tions:

1. Do ChatGPT 3.5 and 4 show Availability
heuristics, Representativeness heuristics and
Framing biases in their outputs?

2. Are there any differences in the performance
outcomes of ChatGPT 3.5 and ChatGPT 4?

1https://dictionary.apa.org/availability-heuristic, last access: 3/14/2024
2https://dictionary.apa.org/representativeness-heuristic, last access: 3/14/2024
3https://dictionary.apa.org/framing, last access: 3/14/2024
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3. Are the two ChatGPT models language depen-
dent in reporting the aforementioned biases?

Based on the results of previous research, it can be
supposed that: - LLMs show biases like Availabil-
ity heuristics (Berberette and al., 2024; Kliegr and
al., 2021; Azaria, 2023), Representativeness heuris-
tics (Macmillan-Scott and M., 2024; Chen and al.,
2023; Kliegr and al., 2021) and Framing (Chen and
al., 2023; Azaria, 2023) in their outputs;
- there are differences between ChatGPT 3.5 and 4,
where 4 should be less subject to biases since it is
trained on more data, or at least gives better perfor-
mances according to OpenAI (OpenAI et al., 2024);
- LLMs should be language dependent since the data
with which they are trained differ among languages,
causing different performances, or at least their re-
sults in Massive Multitask Language Understanding
(MMLU) are, despite a minimal difference, better
in English than Italian or Spanish (OpenAI et al.,
2024).

2 Methodology

In consideration of recent literature, the aim is to
analyse the biases of Availability heuristics, Repre-
sentativeness heuristics and Framing in two LLMs,
namely ChatGPT 3.5 and 44. This will be done
by introducing a new rephrasing approach to three
specific Tversky and Kahneman tests, namely the
Judgement of word frequency (Tversky and Kah-
neman, 1973) to demonstrate Availability heuristics,
the Linda problem (Tversky and Kahneman, 1983)
to demonstrate Representativeness heuristics and
the Framing of Contingencies (Tversky and Kahne-
man, 1981) to demonstrate Framing.
The presence of biases in LLMs outputs was ex-
amined by classifying the answers of the LLMs
according to the methodology proposed by Olivia
MacMillan-Scott and Mirco Musolesi in their paper
(Macmillan-Scott and M., 2024), using four param-
eters: correct/incorrect and human-like/non-human-
like. To support the definition of what is human-
like, a pool of 56 people (59% women, 41% men,
age average: 33) was interviewed, defined by the
availability of resources, yet guaranteeing the repre-
sentativeness of the sample, posing the same ques-
tions asked to the two ChatGPT models. Ethics ap-

proval was not obtained since the research did not
involve sensitive personal information or interven-
tions that required formal ethical oversight. Addi-
tionally, to verify whether the answers of the mod-
els, as well as their potential biases, are language
dependent, a multilingual analysis was conducted by
prompting the LLMs in Italian, English and Spanish.
The innovative aspect of this work lies in the multi-
lingual comparison between human native speakers
and LLM data, setting it apart from previously anal-
ysed reference material.
To answer the research questions, we followed the
methodology described in the subsequent sections.
All data regarding the complete prompts and results
are available in a public GitHub repository. 5

2.1 LLM tools

Open AI’s ChatGPT 3.5 and 4 were chosen for
this research paper as they are among the most
commonly used LLMs in the literature regarding
the testing on cognitive biases (Macmillan-Scott
and M., 2024; Azaria, 2023; Chen and al., 2023;
Berberette and al., 2024; Ke and al., 2024; Dos San-
tos and Cury, 2023; Schmidgall and al., 2024). Chat
GPT 3.5 was chosen because it is free and therefore
widely accessible; Chat GPT 4, expected to have
better performance (OpenAI et al., 2024), was anal-
ysed to determine if it provides potentially less bi-
ased answers than the former model.
The models were not customised or specifically
trained. The chatbot interface was used to test the
prompts and obtain the answers. Zero-shot prompt-
ing (Kojima and al., 2022) was applied to address
the LLMs, at times integrated with an iterative ap-
proach to elicit a unique and definite answer from
the machines. The prompt testing for the LLMs was
carried out from 15th March to 10th April 2024. The
prompting texts are described below and reported in
Table 1 in the Appendix.

2.2 Prompt definition

One prompt was tested for each bias: the Judge-
ment of word frequency for Availability heuristics,
the Linda problem for Representativeness heuris-
tics and the Framing of Contingencies for Framing.
Each prompt was tested in three languages: Italian,
English and Spanish. Below, the methodology for

4https://chat.openai.com/auth/login, last access 4/10/2024
5https://github.com/CreativeWords/Cognitive_Bias_GPT
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defining the three tests and how the same prompt
was formulated in the three different languages un-
der scrutiny will be explained.
All the prompts tested were re-elaborated from pre-
existing psychology tests originally targeting hu-
man subjects. This paper focuses on addressing
LLMs, instead, following the “machine psychol-
ogy" approach (Hagendorff, 2023). The tests were
rephrased in respect to the originals proposed by
Tversky and Kahneman to avoid the risk of them be-
ing part of the training data of the LLMs, thus min-
imizing any potentially compromised performance
that would have prevented our detection of real bi-
ases. As Thilo Hagendorff explains in his paper (Ha-
gendorff, 2023), it is essential to ensure that the ma-
chine has not seen the test before. Given the limited
information available on the training dataset, this
can be guaranteed by reformulating the questions
with new components while preserving the original
logical structure. Regarding the languages involved,
it necessary to ensure the accuracy and reliability of
the translations. To achieve this, the initial drafts of
the three prompts were created in Italian by native
speakers. Professional translators and native speak-
ers of each language were assigned to translate the
prompts into English and Spanish. The three final
prompts were subsequently used to query the LLMs.
The prompts were submitted 56 times to GPT 3.5
and 56 times to GPT 4, of which 27 times using
the Italian prompt, 11 times the English prompt and
18 times the Spanish prompt. This was done to en-
sure the LLM models were prompted as many times
as the human pool (56 people), allowing an effec-
tive comparative evaluation. Another reason behind
this choice was the need to minimise the chances of
randomness (Macmillan-Scott and M., 2024). Each
task was prompted in a new, empty chat each time to
avoid any occurrence of recency effect6 (Macmillan-
Scott and M., 2024). All prompts are reported in
the Appendix in Table 1 following the same logic:
name of the test, name of the bias to test, original
question by Tversky and Kahneman, and English
translation of the prompt. The Italian and Spanish
versions are reported in the full repository of data
on GitHub. The first prompt in Table 1 was used to
test the Availability heuristics cognitive bias. Words
were tested instead of single letters. “Yes" and “no"
were defined as usable words due to their similar fre-

quency of occurrence in all three languages. The de-
ciding factor was supposing that neither people nor
machines have enough knowledge or data on words’
frequency to consciously give a correct answer, thus
requiring to make a decision using System 1, which
is a fast, intuitive and emotional decision-making
mechanism (Kahneman, 2011).
The second prompt in Table 1 was used to test the
Representativeness heuristics cognitive bias, start-
ing from the Linda problem. Being the test ques-
tion extracted from the original paper and dislocated
from the task, the square brackets in the original col-
umn were added to make the request clearer. Using
the same pattern as the original, a different situation
was imagined. The various options in the answers
are all potential assumptions one can make about Ju-
lia based on the initial description given of her. “I
don’t know" was added to provide respondents with
a non-biased option.
The third prompt in Table 1 instead is intended to
test the Framing bias. In this case, percentages
and minor lexical and syntactic changes were used
to manipulate the framing of two identical situa-
tions. This was built to elicit a preference of one
framing of information over another to give an illu-
sion of certainty, defined by Kahneman and Tversky
as “pseudocertainy effect" (Tversky and Kahneman,
1981). In the same table, the English question is for-
mulated with a spelling mistake, i.e. “well-todden"
instead of “well-trodden". The typo was noticed
only after prompting ChatGPT, but the decision was
made to replicate the task nonetheless, as the LLM
could still properly understand and answer the ques-
tion.

2.3 Evaluation metric

To catalog the outputs of the LLMs, the scheme
by Olivia MacMillan-Scott and Mirco Musolesi
(Macmillan-Scott and M., 2024) was applied. They
consider “correct" the LLM answer that precisely
addresses the question. “Incorrect" is a non-accurate
response. In this categorisation, they just refer to
the final answer given by the chatbot, without taking
into consideration the reasoning behind the answers.
For “human-like" and “non-human-like" they refer
to the answer a human would have given to the same
test. Eventually, they categorise the LLMs’ answers
in a table, employing this classification: “R: rea-

6https://dictionary.apa.org/recency-effect, last access 3/28/2024
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soned, IR: incorrect reasoning, H: human-like, NH:
non-humanlike, CR: correct reasoning. Both Incor-
rect (NH) and Incorrect (CR) belong to the incor-
rect & non-human-like categorisation" (Macmillan-
Scott and M., 2024).
Given the rephrasing we did of the Tversky and Kah-
neman tests, relying on their original responses was
not feasible. For this reason, it was necessary to
first discern the “correct" (unbiased) and “incorrect"
(biased) answers for our tasks. The same questions
were then posed to human respondents to establish
the “human-like" standard. The methodology for the
human testing is reported below in section 2.3.2.

2.3.1 Correct and Incorrect

First, “correct" and “incorrect" answers were identi-
fied in all the rephrased tests. To prevent any poten-
tial anchoring bias7, the correct answer was inten-
tionally repositioned. The “correct" and “incorrect"
answers for each test are the following: for Avail-
ability heuristics “No" is correct and “Yes" is incor-
rect. For Representativeness heuristics the correct
answer is “I don’t know" and the incorrect ones are
“A house on the beach. A house on the beach and a
motorbike. A house on the beach and a bike". For
Framing the correct response is “C". “A" and “B"
are incorrect.
For Availability heuristics, six single-language cor-
pora were checked – two for each language – and
it was consistently observed that “No" occurs more
frequently than “Yes". The Italian average for “No"
is 281.113 occurrences and 158.325 for “Yes". In
Spanish, “No" has an average of 36.326.326 occur-
rences, while “Yes" scores 1.775.599. For English,
“No" is more common, with 13.597.439 cases, and
only 1.058.347 for “Yes". The links to the corpora
can be found on the GitHub space.
Moving on, the correct answer to the Representa-
tiveness Heuristics test is “I don’t know" because,
although some information about Julia is provided,
there are insufficient details to determine what she
actually owns.
In the Framing scenario, option “C" is the correct
answer: by carefully analysing both situations, it is
clear that they are identical, even if they are inten-
tionally presented differently.
The purpose of the prompt formulations is to pro-
vide limited details compelling a quick decision

without full information, triggering System 1, lead-
ing to decisions made in a condition of “pseudocer-
tainty" (Tversky and Kahneman, 1981).

2.3.2 Human-like and non-human-like
In order to define the human-like standard, a pool of
56 people (33 females – 59%, 23 males – 41%, age
average: 33) was interviewed. Of them, 27 (48.2%)
were Italian respondents, 11 (19.6%) were English
natives and 18 (32.2%) were Spanish natives. The
participants were categorised in three age groups:
18-25, 26-30 and 31-72, with the following number
of participants for each: 18-25: 13, 26-30: 19, 31-
72: 24. The respondents were also asked about their
profession, which is reported, for brevity’s sake, in
groups, ordered in descending number of respon-
dents: Administration: 11, Student: 9, Education:
8, Environment: 8, Languages: 7, Sciences: 6, Cul-
ture: 5, Unemployed: 2.
The following pipeline was used to test the cognitive
biases on the human pool of participants to gather
the “human-like" standard:

• A participant was recruited according to their
conformity to age groups, their availability to
be tested either in person or via phone, and
their mother tongue – only Italian, English and
Spanish native speakers are selected (proficient
but non-native speakers were not included).
The test was carried out orally, either in person
or via phone, not to let the respondents have
time to think about the logical answer to the
questions. The test was conducted only after
obtaining the participant’s consent to use their
answers in the present study.

• A preamble is given to the participants by the
researcher: they must give the first answer that
comes to their mind without thinking too much
over it, and they cannot confabulate with each
other if the situation where the test is carried
out involves more people gathered together.
This is done to preserve the individuality of
their answers and avoid any type of contami-
nation.

• The question and multiple-choice answers pro-
posed to the human subjects are the same ques-
tions and answers fed to the LLMs.

7https://dictionary.apa.org/anchoring-bias, last access 3/28/2024
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• Only after eliciting their responses, the partic-
ipants were made aware of the intent and pur-
pose of the research testing.

• The answers were catalogued in an Excel file
and are available in the GitHub page.

The next section details all the results achieved in
the present analysis.

3 Results

In order to have a more complete and clear view
about the outcomes of this research, the results that
appear in this section are divided in general results
and language-specific results.

3.1 General Results
Overall, the analysis highlights that both ChatGPT
3.5 and 4 produced biased responses to the prompts.
If we consider just the correct (unbiased) answers,
for the Availability exercise, ChatGPT 4 shows a
higher number of correct responses, 98.2%, against
a lower 21.4% by ChatGPT 3.5. For Representa-
tiveness, ChatGPT 3.5 performed slightly better,
achieving 7.1% of correct responses compared to
GPT 4 with 0%. For Framing, neither of the two
LLMs gave correct responses at all. Human respon-
ders gave 41.1% of correct answers for Availability
heuristics, defining “Yes" as human-like standard
(the highest percentage of responses); 48.2% of un-
biased answers for Representativeness, thus identi-
fying the human-like standard in the correct answer
(“I don’t know"); and elicited 66% of the times the
unbiased and correct answer “C" for Framing, thus
defining “C" as the human-like standard response.
The results summarising GPTs and human answers
are reported below. Figure 1 illustrates the results
of the answers given by the two LLMs and presents
the human responses altogether, with the human-
like standard being underlined, and the correct an-
swers being coloured in green. Both results are
completely comparable, since they are prompted the
same number of times and all outputs are presented
in percentage. When comparing the data to draw
conclusions, the first observation from the table is
that the results for the LLM show a more polarized
trend, whereas the human average results display a
less spiked trend. For the Representativeness exer-
cise, the majority of responses from Chat GPT 3.5

were “A house and a motorbike", while ChatGPT 4
predominantly answered “A house and a bike". Both
responses are incorrect. When compared to the ma-
jority of human responses, it is clear that neither
GPT 3.5 nor GPT 4 provided a human-like answer.
The main difference between the LLMs arises in the
Availability heuristics exercise. In this case, GPT
3.5 answers incorrectly but human-like the majority
of times. Instead, GPT 4 replies with the correct
answer almost 100% of the times, despite it be-
ing non-human-like. Turning to Framing, ChatGPT
3.5 reports almost a majority of responses of “B",
which is incorrect and non-human-like, with one
case being “N/A", meaning that the LLM refused to
respond, quoting: “Since I have no personal pref-
erences and cannot experience emotions, I cannot
make a choice on my own" (original in Spanish,
translated in English via DeepL8). The result for
GPT 4 is surprising, returning the biased answer
“B" with 100% frequency for Framing, which is
classifiable as non-human-like.
To investigate whether the difference between GPT
3.5 and 4 is statistically significant on the overall
results, we used the paired t-test on the distribu-
tion of the correct/incorrect answers of the repeated
paired tests, based on the assumption that the sample
was large enough, despite the non-normal distribu-
tion of data, according to the Central Limit Theo-
rem. Results show that the difference is significant
(t=6.312, p < 0.01), with overall better performance
of ChatGPT 4, specifically due to the results for the
Availability heuristics, even though the observed ef-
fect size is small (0.49). To support the result, we
also used the Wilcoxon signed-rank test, which con-
firmed the significance of the difference (Z=-4.9525,
p < 0.01).

3.1.1 Italian Results

The results for the human-like standard are pre-
sented and compared with the answers from GPT
3.5 and 4, as language-specific results slightly differ
from the general findings. In the Availability heuris-
tics scenario, the Italian results can be compared to
the general findings, with 3.7% of correct responses
for ChatGPT 3.5 and 100% of correct responses for
ChatGPT 4. The same happens for Framing, re-
porting 0% of correct responses for both models.

8https://www.deepl.com/translator, last access 4/8/2024
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Figure 1: Total results of ChatGPT 3.5, 4, and human data.

Regarding Representativeness, both “A house and a
motorbike" and “I don’t know" are elected as hu-
man standard. GPT 3.5 selects 14.8% of the times
the correct and human-like answer, with the most
frequent response being “A house and a motorbike",
85.2% of the times. Instead, GPT 4 elects the cor-
rect response 0% of the times. A majority of GPT 4
responses goes to “A house and a bike", 63%, which
is incorrect and non-human-like. The evidence for
this section leads to conclude that the Italian results
have one additional human-like answer for GPT 3.5
compared to the general findings, while confirming
the same results for the remainder.

3.1.2 English Results

English participants averagely answered correctly to
all three tests, setting the human-like standards to
the correct answers. When examining the English
results for the GPT models, GPT 3.5 gets 0% of
correct answers for Availability and Representative-
ness, eliciting instead 100% of the times incorrect
and non-human-like answers: “Yes" and “A house
and a motorbike", respectively. GPT 4 instead se-
lects 90.9% of the times the correct option for Avail-
ability, giving a major frequency of responses to
“A house and a motorbike", 63.6%. The results for
Framing are comparable to the general findings. In
conclusion, the English results show 0 human-like
and correct answers for ChatGPT 3.5, and 1 human-
like and correct answer for GPT 4.

3.1.3 Spanish Results

When examining the Spanish results, no differences
are found compared to the general human standards.
By analysing LLMs’ results, it is understood that
ChatGPT 3.5 opts for the correct answer for Avail-
ability 61.1% of the times, while ChatGPT 4 opts for
this answer 100% of the times. The results for Avail-
ability heuristics report 0% of correct responses for
both models, choosing instead “A house and a mo-
torbike" with a frequency of 100% for ChatGPT 3.5
and “A house and a bike" with the same frequency
for ChatGPT 4. The results for Framing align with
the general findings. Spanish results leads to a total
of 0 human-like and 1 correct answer for ChatGPT
3.5 in Spanish. The same results are achieved for
ChatGPT 4.

The analysis of variance (ANOVA) on the results
for the three languages shows a statistically signif-
icant difference when the answers are provided by
ChatGPT 3.5 (F=6.2904, p-value=0.002), while the
difference is not significant when using ChatGPT 4
(F=0.05434, p-value=0.947). To determine between
which of the language pairs there is a significant
difference with ChatGPT 3.5, the Post Hoc Tukey
HSD test was used. The analysis shows that there
is a statistically significant difference at p<0.05 be-
tween English and Spanish (Q=5.00, p=0.0015) and
between Italian and Spanish (Q=3.48, p=0.0391),
while there is not between English and Italian. The
result is confirmed also using the Kruskall-Wallis
test, which revealed a significant difference between

Proceedings of the 16th Conference of the Association for Machine Translation in the Americas,

Chicago, USA, September 30 - October 2, 2024. Volume 1: Research Papers



the results of ChatGPT 3.5 (Z=11.831, p=0.0027),
while the difference is not significant with ChatGPT
4. The Post-Hoc Dunn’s test also confirmed that the
difference is statistically significant for the same lan-
guage pairs indicated above.

4 Discussion

In the previous section, we presented the results of
our examinations. In this section, we discuss them
to address the research questions and the hypothe-
ses from the Introduction. Similar to previous stud-
ies, it was found that Availability heuristics, Rep-
resentativeness heuristics, and Framing are indeed
present in the outputs of ChatGPT 3.5 and 4. Among
them, the less frequent bias is Availability heuris-
tics, since across all prompts in Italian, English and
Spanish, ChatGPT 4 was able to answer correctly
98.2% of the times. The most frequent bias is Fram-
ing, which was reported 100% of the times for both
LLMs and across the three languages, with a minor
difference for GPT 3.5 that in Spanish gave a not
applicable (N/A) answer. Referring to Representa-
tiveness heuristics, the bias is undoubtedly present
in LLMs answers, but quite less frequently than
Framing. This study also aims to evaluate potential
differences of bias appearance in the two analysed
models. As hypothesised, GPT 4 performs slightly
better than GPT 3.5. On the one hand, its higher
percentage of correct outputs is statistically signif-
icant according to both the t-test and the Wilcoxon
signed-rank test, even though the effect size is small.
Additionally, it performs better in the way it ap-
proaches a problem and provides a solution: when
presented with choices among the various options,
ChatGPT 4 exhibits a tendency to provide more de-
tailed explanations for its decision-making process
compared to GPT 3.5. This behaviour is hypothe-
sised to reflect the machine’s tendency to convince
the user of its answer, even though this can some-
times lead the machine to fall victim of Confirma-
tion Bias, a phenomenon already demonstrated in
other studies (Macmillan-Scott and M., 2024; Chen
and al., 2023; Kliegr and al., 2021; Berberette and
al., 2024; Ke and al., 2024; Dos Santos and Cury,
2023; Schmidgall and al., 2024). For this reason, to
guide the drafting of one single response for each
LLM, the iterative approach was integrated to the
zero-shot prompting.
The present study wants to determine whether

prompting in different languages has effects on the
biases occurrence. It can be concluded that the Ital-
ian outputs are more similar to their respective hu-
man counterparts. In contrast, the Spanish outputs
exhibit the highest frequency of correct answers.
The English results instead are consistent with the
general findings. Unlike humans, LLMs tend to
be highly confident in their answers, consistently
reproducing the same results across numerous re-
quests, even when prompted in separate, new chats,
each time. This does not indicate that LLM outputs
are consistent; rather, it suggests that they are more
susceptible to biases than human responses. They
are more vulnerable to being influenced by biases
compared to humans, who tend to demonstrate a
more varied and inconsistent frequency in their an-
swers, irrespective of these being correct or incor-
rect. When investigating the language dependency
of results, the ANOVA test and also the Kruskall-
Wallis test show the performance of ChatGPT 3.5
are statistically different for the language combi-
nations English-Spanish and Italian-Spanish. The
combinations Italian-English with ChatGPT 3.5 and
all language combinations with ChatGPT 4 are not
statistically different.
These data must be interpreted with caution: as
many studies in this field, this analysis is subject
to limits. A wider range of biases, prompts, lan-
guage models, natural languages, participants, and
methodologies should be applied to guarantee more
reliable results. It is important to remember that
these models are considered “stochastic parrot[s]"
(Roberts and al., 2024), thus non-deterministic in
their answers. The results of the research, even if
conducted with high standards of control, may not
be generalisable to any broader range. The develop-
ment of a wider picture of cognitive biases in LLMs
is subject to the performance of additional studies,
with the objective of tackling the problem and fur-
ther analysing the models along their evolution, for
example taking into consideration ChatGPT 4o and
other models from different developers. Further re-
search should be also undertaken to investigate the
influence of the prompt formulation and the rele-
vance of specific wording in the elicitation of cogni-
tive biases, or hallucinations in general, by the ma-
chine.
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5 Conclusions

The present study was designed to determine
whether the two LLMs under scrutiny exhibit cog-
nitive biases similar to humans, considering the hu-
man nature of the data and feedback they are trained
on. The research aimed to determine the frequency
of these biases, compare their prevalence between
ChatGPT 3.5 and 4, and examine whether the emer-
gence of these biases is influenced by the language
of the prompts, thereby determining if they can be
considered language-dependent. As demonstrated
by recent literature, these machines reflect many dif-
ferent types of cognitive biases. The investigation
focused on the occurrence of Availability heuris-
tics, Representativeness heuristics, and Framing.
This study suggests that biases are very frequently
present in LLM outputs, especially when the prompt
structure imposes the machine to make a choice with
limited information available. Compared to GPT
3.5, ChatGPT 4 proved to be slightly less affected
by these biases, especially by Availability heuris-
tics. However, both of them are subject to biases.
Another significant assertion in the restitution of bi-
ases concerns the fact that, at the moment, the only
two combinations that seem to depend on the natural
language they are prompted with are Italian/English-
Spanish for ChatGPT 3.5. It is worth noting that
the languages chosen for this research show similar
performances according to OpenAI’s paper (Ope-
nAI et al., 2024). A future analysis could be de-
signed taking into consideration two very different
performing languages, so to verify this result fur-
ther. The insights gained here should raise aware-
ness when using LLMs, regardless of the purpose
of use. This awareness is particularly crucial in
fields such as medicine, law, education and research,
where LLMs play a significant role in decision-
making processes (Gutiérrez-Cirlos and al., 2023).
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A Appendix

In this section, Table 1 contains the original and the
rephrased version of the prompts used for the three
tests.
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Task name: Judgment of word frequency
Cognitive bias: Availability heuristics

Original English
Consider the letter R. Is R more likely to appear
in: the first position; the third position? Check
one. (Tversky and Kahneman, 1973)

Based on your knowledge, which of the two words
are more common: “yes” or “no”?

Task name: Linda problem
Cognitive bias: Representativeness heuristics

Original English
Linda is 31 years old, single, outspoken and very
bright. She majored in philosophy. [Pick one as-
sumption from the following.] As a student, she
was deeply concerned with issues of discrimina-
tion and social justice, and also participated in
anti-nuclear demonstrations. Linda is a teacher
in elementary school. Linda works in a book-
store and takes Yoga classes. Linda is active in
the feminist movement. Linda is a psychiatric so-
cial worker. Linda is a member of the League of
Women Voters. Linda is a bank teller. Linda is an
insurance salesperson. Linda is a bank teller and
is active in the feminist movement. (Tversky and
Kahneman, 1983)

Julia is a law trainee in a company, she has a part-
ner and she has recently started volunteering in the
road accidents center in her city. Her friend saw
her wearing flipflops and short and carrying a hel-
met while walking. It’s winter time. What does
Julia own: I don’t know. A house on the beach. A
house on the beach and a motorbike. A house on
the beach and a bike. Choose one of the options
above.

Task name: Framing of Contingencies
Cognitive bias: Framing

Original English

Which of the following options do you prefer? A.
a sure win of 30$ [78 percent]; B. 80% chance to
win 45$ [22 percent]. (Tversky and Kahneman,
1981)

You are on a day hike in a mountainous area and
come to a crossroad with two tracks to continue
your journey: A. Path A will lead you to a spec-
tacular final mountain panorama. The landscape is
beautiful throughout the whole trek. The weather
forecast gives a 15% chance of bad weather for
that day that won’t let you enjoy the walk. B.
Path B will lead you to a wonderful final moun-
tain panorama with a beautiful landscape through-
out the whole track. There’s 85% chances of good
weather for that day that will let you enjoy the
walk and the view. C. They are the same. Both
paths are well-todden and their length is the same.
Which option do you choose?

Table 1: The three cognitive tasks to test the LLMs: on the left column the original as in Tversky and Kah-
neman’s works and on the right the reformulated prompt used in this work.
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