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Abstract

Hyperparameter optimization (HPO) enhances neural machine translation (NMT) models but demands sub-
stantial computational resources. Successive halving, a multi-fidelity HPO method, mitigates this by early
stopping unpromising models and allocating more resources to promising ones. This method is particularly
relevant for NMT and large language models, which are computationally intensive. However, successive
halving relies on a noisy estimation of model performance and assumes that early performance is highly
correlated with final performance. We introduce a table lookup benchmark dataset to study the reliability of
successive halving and propose best practices for its application in NMT and large language models.

1 Introduction

Hyperparameter optimization (HPO) is crucial yet
resource-intensive for transformer-based neural ma-
chine translation (NMT) models. Hyperparameters
such as learning rate, optimizer, batch size, and the
number of nodes in each layer significantly influ-
ence the achievement of a state-of-the-art (SOTA)
system. According to the ARR Responsible NLP
Research guidelines, presenting extensive tables of
hyperparameters and the best-found values is essen-
tial in research publications. 1

Recently, with the rise of large language mod-
els (LLMs), NMT built upon LLMs has shown
promising results (Hendy et al., 2023; Zhu et al.,
2023; Sia and Duh, 2023; Zhang et al., 2023b).
Adapting LLMs to NMT tasks typically involves in-
context learning and supervised fine-tuning. Given
the abundance of parallel data, fine-tuning has
proven to be more effective than in-context learn-
ing (Zhang et al., 2023b). Parameter efficient fine-
tuning (PEFT), such as Low-Rank Adapter (LoRA,
Hu et al., 2021), is often favored over full fine-
tuning due to its efficiencyfewer parameters are
trained while achieving comparable or superior per-

formance. Despite the fixed architecture of LLMs
during PEFT, new hyperparameters are introduced,
including the LoRA rank and the specific parame-
ters to tune, alongside traditional hyperparameters
like batch size and learning rate.

NMT models, whether trained from scratch or
fine-tuned from LLMs, require extensive computa-
tional time, often taking days or weeks to converge.
This makes hyperparameter searches over a reason-
able space challenging. For instance, if an NMT
model takes 2 GPU days to train, tuning 5 hyper-
parameters with 3 different values each would result
in a total of 35 ∗ 2 = 486 GPU days! Practitioners
with limited computational resources are thus often
forced to resort to manual tuning or random search
instead of more systematic methods like grid search
or advanced HPO algorithms, increasing the risk of
unfair comparisons between systems.

Successive halving (Karnin et al., 2013;
Jamieson and Talwalkar, 2016) accelerates HPO by
terminating unpromising models early in a set of
models trained in parallel, saving more resources
with more aggressive early stopping strategies. It
has shown effectiveness in computer vision (Li
et al., 2018) and NLP tasks (Dodge et al., 2020).

1https://aclrollingreview.org/responsibleNLPresearch/
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However, its effectiveness for training NMT models
or adapting LLMs for NMT tasks remains unclear.

The termination decision in successive halving
is heuristic, based on the ranking of model perfor-
mance up to the current timestamp. It assumes that
early performance is highly correlated with late per-
formance, which may not always be true. This raises
the question: Does this assumption hold for NMT?
If not, can we make it more reliable without relying
solely on this assumption?

This paper focuses on the effectiveness of suc-
cessive halving for HPO in NMT models, whether
trained from scratch or fine-tuned from an LLM.
Our main contributions are summarized as follows:

• Dataset: We build a benchmark dataset,
NMTLC2, to facilitate NMT HPO research.
This dataset contains models trained from
scratch and fine-tuned from LLMs, with
recorded learning curves for various hyperpa-
rameter settings. In total, it comprises 2469
models trained on 9 different corpora, cost-
ing approximately 2519 GPU days. This is
the first HPO benchmark dataset that contains
NMT learning curves and features models fine-
tuned from LLMs.

• Evaluation: We evaluate the effectiveness of
successive halving for NMT HPO under differ-
ent experimental setups.

• Model: We introduce a novel model for
learning curve extrapolation, built upon the
LCRankNet introduced in Wistuba and Peda-
pati (2020), and name it LCRankNet-v23. We
aim to determine whether "looking into the pre-
dicted future" enhances the reliability of suc-
cessive halving compared to "looking back to
the completed past."

Our findings indicate that the initial assumption
of successive halving-that early performance pre-
dicts late performancegenerally holds true for NMT
HPO with appropriate setups.

2 Related work

2.1 Hyperparameter optimization
Hyperparameter optimization (HPO) aims to find
the optimal hyperparameter configuration with min-

imal evaluations. HPO methods can be broadly clas-
sified into sequential and parallel approaches. Se-
quential methods, such as Bayesian optimization
(Brochu et al., 2010; Shahriari et al., 2015; Frazier,
2018), evaluate one configuration at a time, using
the results to inform subsequent evaluations. Par-
allel methods evaluate multiple configurations si-
multaneously; examples include population-based
training (Jaderberg et al., 2017), CMA-ES, and suc-
cessive halving (Karnin et al., 2013; Jamieson and
Talwalkar, 2016). While most HPO methods are
black-box approaches that treat the model training
process as opaque, successive halving is a multi-
fidelity method that leverages approximations. It
uses smaller subsets of data or limits training time
to obtain noisy measurements, thereby accelerating
the search for optimal configurations.

2.2 Hyperparameter search for NMT

Research on HPO for NMT is limited. Qin et al.
(2017) propose an evolution strategy-based HPO
method for NMT. Zhang and Duh (2020) release a
benchmark dataset (Section 4.1) for comparing HPO
methods on NMT, focusing on models trained from
scratch. Deb et al. (2022) use a glass-box method to
analyze how hyperparameters influence NMT per-
formance, highlighting its connection with HPO.
Zhang et al. (2023a) present an HPO toolkit for
NMT, implemented as a wrapper on top of the open-
source Sockeye NMT software. This toolkit imple-
ments the Asynchronous Successive Halving Algo-
rithm (Li et al., 2020), promoting configurations as
soon as they are guaranteed to be in the top half,
thus running successive halving asynchronously and
effectively utilizing computational resources.

2.3 Learning curve extrapolation

Learning curve extrapolation aims to predict model
performance later in training based on early check-
points. Kolachina et al. (2012) model learning
curves for statistical machine translation systems by
fitting them to various power-law family functions.
Domhan et al. (2015) use a weighted combination of
parametric model families to model learning curves.
Klein et al. (2022) build a Bayesian neural net-
work, while Chandrashekaran and Lane (2017) pro-
pose an ensemble method, and Baker et al. (2017)

2NMTLC dataset: https://github.com/Este1le/hpo_nmt
3LCRankNet-v2 code: https://github.com/Este1le/hpo_nmt
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use frequentist regression models for learning curve
extrapolation. Adriaensen et al. (2024) propose
a transformer pretrained on data generated from a
prior, performing approximate Bayesian inference.
Wistuba and Pedapati (2020) introduce LCRankNet,
which encodes hyperparameters, dataset IDs, model
architectures, and partial learning curves for perfor-
mance prediction.

3 Successive halving

The goal of successive halving (Karnin et al., 2013;
Jamieson and Talwalkar, 2016) is to efficiently find
the optimal hyperparameter configuration within a
given search space. Suppose we have N configura-
tions to explore. We begin by training all N mod-
els, and at every c checkpoints, we continue train-
ing only the top 1

p configurations based on their per-
formance up to that point, discarding the rest. This
process is repeated until only one configuration re-
mains, which is then trained to convergence.
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Figure 1: An example of successive halving, where
N = 10, c = 5, p = 2.

As shown in Figure 1, we start with N = 10
configurations and halve (p = 2) the number of con-
figurations every c = 5 checkpoint. Each cut is
based on the best performance of the configurations
up to the current checkpoint. For example, at check-
point 10, when comparing config1 and config3, we
compare config1’s performance at checkpoint 5 with
config3’s performance at checkpoint 10.

In this example, assuming it takes one GPU day
(20 checkpoints) for each model to converge, suc-
cessive halving can reduce the total time for hyper-

parameter search from 10 days to 3.75 days. The
aggressiveness of successive halving can be adjusted
by changing the values of p and c. For instance, if
p = 3 and c = 2, the total time could be further
reduced to 1.3 days. However, a more aggressive
strategy increases the risk of discarding good con-
figurations too early. In the case of p = 3 and c = 2,
config1 might be chosen over config2, even if con-
fig2 could have performed better in the long run.

4 NMTLC benchmark datasets

To evaluate successive halving on NMT HPO, ex-
tensive model training until convergence is required
to determine if good models are prematurely dis-
carded. This process is resource-intensive, as each
new configuration sampled for successive halv-
ing necessitates training a new NMT system from
scratch. To facilitate this study, we have created
a benchmark dataset that supports a table-lookup
framework. We pre-train a large set of NMT sys-
tems and record their configurations and learning
curves in a table. This allows for efficient evalua-
tion of successive halving by looking up the table as
needed, without training each model from scratch,
significantly speeding up the experimental process.

Our dataset includes 2469 models trained on
9 different corpora, encompassing both models
trained from scratch and those fine-tuned from
LLMs, with a total computational cost of approxi-
mately 2519 GPU days. This is the first HPO bench-
mark dataset to contain NMT learning curves, en-
abling detailed studies on learning curves. It is also
the first to include models fine-tuned from LLMs,
facilitating HPO research on this emerging task.

method domain4 lang train dev #cfg

scratch

IARPA sw-en 24k 2675 767
IARPA so-en 24k 2675 604

TED Talks zh-en 170k 1,958 118
TED Talks ru-en 170k 1,958 176
WMT19 ja-en 4M 5,405 150
WMT19 en-ja 4M 5,405 168

FT
WMT23 fr-en 404k 289 162
WMT23 zh-en 421k 2139 162
WMT23 de-en 435k 2342 162

Table 1: Data used for training NMT systems.

4IAPRA: IARPA MATERIAL; TED Talks: Duh (2018); WMT19: Li et al. (2019); WMT23: Neves et al. (2023).
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dataset bpe (1k) #layers #embed #hidden #att_heads init_lr (10−4)
zh, ru, ja, en 10, 30, 50 2, 4 256, 512, 1024 1024, 2048 8, 16 3, 6, 10

sw 1, 2, 4, 8, 16, 32 1, 2, 4, 6 256, 512, 1024 1024, 2048 8, 16 3, 6, 10
so 1, 2, 4, 8, 16, 32 1, 2, 4 256, 512, 1024 1024, 2048 8, 16 3, 6, 10

Table 2: Hyperparameter search space for trained-from-scratch NMT systems.

4.1 Data & setup for training from scratch
Zhang and Duh (2020) provided a HPO bench-
mark for NMT tasks, where models are trained from
scratch without incorporating learning curves, pri-
marily focusing on evaluating black-box HPO meth-
ods such as Bayesian optimization. From their data,
we extracted hyperparameter configurations, evalu-
ation results, and learning curves with perplexity on
the development set for 1983 NMT models. Table
1 summarizes the 6 MT corpora used for training
the systems. The data cover five language pairs and
three domains with varying resource levels, from
low to high. Table 2 presents the hyperparameter
search space for different language pairs.

4.2 Data & setup for fine-tuning from LLMs
LLMs excel in most NLP tasks (Yang et al., 2024).
Recently, fine-tuning LLMs for machine translation
has shown promising results (Zhang et al., 2023b;
Moslem et al., 2023; Zhu et al., 2024). Learning
curves from fine-tuned models are rarely studied in
the context of HPO and learning curve extrapola-
tion, particularly for fine-tuned LLMs in machine
translation. To address this gap, we include fine-
tuned LLMs in our NMTLC benchmark datasets.

MT Data: We explore 3 language pairs as shown
in Table 1. For fr-en, the input format is as follows:

Translate French to English: French: [fr
sent] English: [en sent] <eos>

A special <eos> token is added for post-processing.

Hyperparameters: We consider four hyperpa-
rameters to define the search space:

• LLM (6): BLOOMZ 560m, 1b7, and 3b,
XGLM 564M, 1.7B, and 2.9B. BLOOMZ is
a multilingual model fine-tuned with the xP3
dataset (Muennighoff et al., 2022). XGLM is
a multilingual model trained on 30 diverse lan-
guages. We treat the choice of LLM as a hy-
perparameter since in practice the choice of the

base model affects final MT accuracy. Various
versions affect model size, feed-forward size,
number of layers, and vocabulary size.

• LoRA rank (3): 2, 16, and 64.
• Batch size (3): 16, 32, and 64.
• Learning rate (3): 2e− 5, 1e− 4, and 2e− 4.

Fine-tuning Setup: We utilize QLoRA (Dettmers
et al., 2023) for parameter-efficient fine-tuning. We
set the LoRA scaling factor to 32, limit trainable
parameters to the self-attention layers, and apply a
dropout rate of 0.05 in the LoRA layer. The model
weights are quantized to 4-bit precision, and mixed-
precision training (using float16 and float32) is en-
abled to accelerate the process. We use the Adam
optimizer, evaluating performance every 1000 steps,
and consider the model converged when perfor-
mance does not improve for 12 checkpoints. Mod-
els are trained on a single NVIDIA RTX GPU with
24GB of memory.

Samples: Each sample in the benchmark dataset
includes:

1. Hyperparameter configuration.
2. Meta-information about the MT dataset (size,

language pairs, domain).
3. Learning curve: a list of evaluation results

(perplexity, BLEU5) on the development set
throughout training until convergence.

4. Optimal performance: the best point on the
learning curve.

For de-en, we provide perplexity learning curves.
For fr-en and zh-en, we include both perplexity and
BLEU learning curves to study the correlation be-
tween these metrics.

4.3 Statistics
We present the statistics of samples in the NMTLC
benchmark dataset in this section.

BLEU distribution Figure 2 illustrates the perfor-
mance variance of NMT models trained with differ-

5Obtained by greedy search.
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ent hyperparameter configurations in the NMTLC
dataset, measured by the BLEU score. Models
trained from scratch (scratch) and those fine-tuned
from LLMs (ft) exhibit distinct BLEU score distri-
butions. The BLEU scores of the scratch models
generally follow a left-skewed distribution, indicat-
ing that most configurations result in good perfor-
mance. In contrast, the BLEU scores of the ft mod-
els display a multimodal distribution, suggesting a
wide variation in performance, with many configu-
rations yielding either very good or poor results. For
instance, in ft_fr-en, the BLEU scores range widely,
with differences up to 30 points between the best
and worst models. Additionally, some configura-
tions in almost all tasks (except scratch_ja-en) pro-
duce nearly zero BLEU scores, underscoring the im-
portance of extensive hyperparameter search. This
highlights the necessity of successive halving in effi-
ciently exploring a large search space to find optimal
hyperparameter configurations.

BLEU

#c
on

fig
ur
at
io
ns

Figure 2: BLEU distribution on the hyperparameter
search space.

Length distribution Figure 3 shows the distribu-
tion of the lengths of the learning curves in the
NMTLC dataset, where longer curves indicate mod-
els that take more time to converge. The length dis-
tribution reveals that in most tasks, a small number
of models have extended training times, resulting in
a long right tail in the distribution. In these cases,
successive halving can be particularly beneficial, as
it can terminate unpromising models early in the
training process, thereby saving substantial compu-
tational resources. Additionally, the length distribu-
tions vary across different tasks. While scratch_ja-
en, scratch_en-ja, and ft_zh-en exhibit distributions

similar to a normal distribution, other tasks display
more left-skewed distributions. This variability fur-
ther underscores the importance of using successive
halving to efficiently navigate the diverse conver-
gence behaviors and optimize hyperparameter con-
figurations.

curve length (#checkpoints)

#m
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s

Figure 3: Learning curve length distribution on the
hyperparameter search space.

5 On the reliability of successive halving
on neural machine translation

To evaluate the reliability of successive halving in
NMT, we begin by identifying an appropriate evalu-
ation metric (perplexity vs. BLEU) for termination
decisions (Section 5.1). We then investigate whether
halving consistently retains the best-performing half
of configurations at different learning curve lengths
(Section 5.2.1). Finally, we conduct extensive suc-
cessive halving runs on random subsets of the con-
figuration search space to assess its ability to consis-
tently select the best configuration (Section 5.2.2).

5.1 BLEU vs. perplexity
During training, models can be evaluated on the
development set using either BLEU or perplexity.
BLEU is more aligned with the ultimate goal of
NMT, as BLEU scores are commonly reported for
system comparison on development and test sets.
However, perplexity is more closely aligned with the
training objective and is significantly more efficient
to compute. In our experiments, calculating perplex-
ity is approximately 1000 times faster than BLEU on
a single sentence, which means obtaining a BLEU
score for an evaluation set can take hours. For HPO,
we aim to select a configuration quickly while en-
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suring it achieves the best BLEU score. This raises
the question: can we use perplexity instead of BLEU
for selection and termination decisions in successive
halving to accelerate HPO?

configuration rank

Figure 4: Configurations ranked by perplexity and
BLEU. Configurations are ranked by their low-
est perplexity on the development set and highest
BLEU score, respectively.

Figure 4 shows the ranking of configurations by
their best BLEU and perplexity scores on the devel-
opment set. The results indicate that perplexity does
not consistently align with BLEU across all datasets.
For example, in scratch_sw-en, scratch_en-ja, and
scratch_ja-en, configurations with the best BLEU
scores (lower left) often have the worst perplexity.
This suggests that perplexity may not be a suitable
alternative to BLEU for model selection and early
stopping in HPO for NMT tasks.

5.2 Successive halving on NMT
In this section, we evaluate the reliability of succes-
sive halving on NMT tasks.

5.2.1 Binary rank
In successive halving, at each checkpoint, the bot-
tom half of the configurations are discarded based
on their performance up to that point. To under-
stand how the ranking of partial learning curves cor-
relates with the full curves, we calculate Spearman’s

rank correlation coefficient (ρ) on the binary ranks
of configurations at each checkpoint (Figure 5).

Sp
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rm
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’s
 ρ

Checkpoint
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Figure 5: Spearman’s rank correlation coefficient ρ
on binary ranks of learning curves at each check-
point. At each checkpoint, learning curves are
ranked based on their best performance (perplexity
or BLEU on the development set) up to that point.
Curves are assigned a rank of 0 if they are in the top
half and 1 if they are in the bottom half. There are
fewer longer learning curves, as shown in the figure,
as the checkpoint number increases, the number of
models (upper x-axis) decreases.

Generally, as the number of checkpoints in-
creases, the correlation between the rankings of par-
tial and full learning curves improves. This trend
holds true for both perplexity and BLEU. Some
datasets, such as scratch_so-en, scratch_zh-en, and
scratch_ru-en for perplexity, and ft_fr-en for BLEU,
achieve high correlation early in training.

5.2.2 Evaluation results
We run successive halving 100 times on randomly
sampled subsets of hyperparameter configurations,
varying p and c as shown in Table 3. The reliability
of successive halving is measured by whether the
best configuration is selected at the end (acc) and
when the best configuration is discarded (dif).

Most runs achieve either perfect acc or a dif
of around 1, indicating that the best configuration is
usually selected, and if not, it is discarded near the
final stage. Increasing the discarding aggressiveness
by increasing p and decreasing c reduces reliability
(lower acc and higher dif) unevenly across datasets–
fr-en(ft) is significantly affected, while so-en(st) and
zh-en(st) remain stable.
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p=2,c=10 p=2,c=5 p=4,c=10
average acc dif acc dif acc dif

st

sw-en 99 0 97 0 95 0
so-en 100 0 100 0 100 0
zh-en 100 0 100 0 100 0
ru-en 100 0 96 0 100 0
ja-en 69 0.2 67 0.1 68 0.1
en-ja 77 0.1 69 0.2 70 0.1

ft
fr-en 69 1.2 11 3.6 54 0.9
zh-en 100 0 83 0.7 100 0
de-en 100 0 61 1.6 57 0.8

Table 3: Successive halving evaluation results. Each
dataset runs successive halving 100 times on ran-
domly selected 40 configurations. The discarding
ratio p−1

p and frequency c checkpoints are varied.
Acc indicates the percentage of runs where the best
configuration is selected, and dif represents the aver-
age difference between total stages and the stage that
discards the best configuration. A dif of 1 means the
best configuration was discarded at the last stage.

6 Learning curve extrapolation

Successive halving uses the best performance ob-
served so far (BSF) to rank configurations at each
checkpoint, assuming early performance correlates
with final performance. However, as shown in Fig-
ure 5, this correlation can be low when learning
curves are short. To improve on the heuristic BSF,
we explore "looking forward into the predicted fu-
ture" by extrapolating the optimal performance of a
configuration based on partial learning curves. This
predicted optimal accuracy can then be used to rank
configurations more effectively in successive halv-
ing.

6.1 LCRankNet-v2
Our learning curve extrapolation model,
LCRankNet-v2, is a variation of LCRankNet (Wis-
tuba and Pedapati, 2020). It takes three inputs:
partial learning curves, hyperparameter configura-
tions, and task meta-information (including dataset
ID, task type, source and target language, and base
model). The architecture is shown in Figure 6. We
removed the architecture embedding component
from LCRankNet since it is defined in the hyper-
parameter configuration in our settings. The experi-
mental setup and configurations for LCRankNet-v2
are detailed in Appendix A.

𝑦!,…,$
Task 

Meta Info
Hyper-

parameters

Embedding

Conv1d
k=2 

BatchNorm

ReLU

Dropout

Fully Connected Layer

"𝑦%&'(  

MaxPool

… Conv1d
k=5 

BatchNorm

ReLU

Dropout

MaxPool

Embedding

Figure 6: Architecture of LCRankNet-v2. Partial
learning curves (y1,··· ,l) are processed through con-
volutional layers with kernel sizes ranging from 2 to
5. Task meta-information and hyperparameter con-
figurations are embedded and then combined with
the curve features. The concatenated features are fed
into fully connected layers to predict the best perfor-
mance of the configuration (ŷbest).

6.2 Training objectives
LCRankNet-v2 is trained using two loss functions:
reconstruction loss Lrec and rank loss Lrank. Given
the true best performance yibest and the prediction
ŷibest for learning curve i, the reconstruction loss is:

Lrec =
∑
i

(yibest − ŷibest)
2. (1)

The probability that configuration i outperforms
configuration j is defined as:

pi>j =


1 if yibest > yjbest
0.5 if yibest = yjbest
0 if yibest < yjbest

(2)

The corresponding prediction is:

p̂i>j =
eŷ

i
best−ŷj

best

1 + eŷ
i
best−ŷj

best

. (3)

The rank loss is a binary cross-entropy loss:

Lrank =
∑
i,j

−pi>j log p̂i>j−(1−pi>j) log(1−p̂i>j)

(4)
To ensure fair comparisons, we always compare par-
tial learning curves of the same length when com-
puting Lrank. To handle curves of different lengths,
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we include multiple truncated versions of each full
learning curve in the training set. The total loss is:

L0 = wrecLrec + wrankLrank. (5)

Additionally, we consider the BSF when rank-
ing configurations. If the model predicts that perfor-
mance will not improve beyond BSF, we set ŷbest
to BSF. The probability of improvement pimp over
BSF is defined similarly to pi > j, and the improve-
ment loss Limp is:

Limp =
∑
i

−pimp
i log p̂imp

i −(1−pimp
i ) log(1−p̂imp

i ).

(6)
The updated total loss is:

L1 = L0 + wimpLimp. (7)

During training, we set wrec to 1, wrank to 1000,
and wimp to 100. At inference, if p̂imp

i > 0.5, we
set ŷbest to BSF.

6.3 Experiment results
We conduct experiments to evaluate whether learn-
ing curve extrapolation improves the reliability of
successive halving. Specifically, we compare the
accuracy of ranking configurations on perplexity us-
ing LCRankNet-v2’s predictions versus the heuristic
BSF. LCRankNet-v2 was trained using a leave-one-
out strategy, excluding the target dataset from the
training data and warming up the network with 20
examples from the target dataset, as suggested by
Wistuba and Pedapati (2020).

In Table 4, we compare the performance of
the heuristic BSF and LCRankNet-v2 trained to
minimize L0 in predicting the rank between two
configurations given partial learning curves, where
we consider all the possible pairs with the same
length. There are four cases: both methods rank
correctly (B P ), both methods rank incorrectly
(B P ), or one is correct and the other is incor-
rect (B P or B P ). On 7 out of 9 datasets,
B P is less than B P , indicating that while
LCRankNet-v2 can sometimes correct BSF’s mis-
takes, overall, BSF performs better.

When trained to minimize L1, LCRankNet-
v2 converges to BSF on all datasets, resulting
in B P = B P = 0, and B = P .
Therefore, LCRankNet-v2 does not outperform the
heuristic BSF in most of our settings.

acc B P B P B P B P
sw-en 99.78% 95.30% 0.04% 4.48% 0.18%
so-en 99.76% 93.79% 0.19% 5.97% 0.05%
zh-en 75.73% 63.07% 17.61% 12.66% 6.63%
ru-en 99.63% 83.35% 0.12% 16.28% 0.24%
ja-en 95.86% 73.19% 2.35% 22.67% 2.08%
en-ja 94.73% 64.64% 4.73% 30.09% 0.56%
fr-en 84.43% 57.69% 6.94% 26.64% 8.73%
zh-en 75.73% 63.07% 17.61% 12.66% 6.63%
de-en 85.94% 35.20% 5.32% 50.74% 8.74%

Table 4: Performance of LCRankNet-v2 trained
with L0. Acc (or B ) indicates the accuracy of
ranking configuration pairs based on BSF. B rep-
resents ranking by BSF (vanilla successive halving),
while P represents ranking by LCRankNet-v2’s pre-
diction. If B P > B P , successive halving
is more reliable with LCRankNet-v2’s prediction.

Is learning curve extrapolation necessary for suc-
cessive halving on NMT? Not really. In Table 4,
P generally underperforms compared to B in rank-
ing configurations. This suggests that incorporating
learning curve extrapolation is unlikely to signifi-
cantly alter the results of successive halving.

7 Conclusions

Successive halving is both efficient and effective
for hyperparameter search in NMT tasks, signifi-
cantly reducing computational resources and reli-
ably selecting the best model with appropriate se-
tups. However, its reliability depends on the target
task and the choices of the cutting ratio (p) and cut-
ting frequency (c). Based on the studies conducted
in this paper, we propose the following best prac-
tices for successive halving in NMT and LLMs:

1. Rank configurations at each checkpoint based
on BLEU rather than perplexity.

2. Before running an extensive hyperparameter
search with successive halving, train several
configurations to convergence to estimate train-
ing time and learning curve trends, which helps
in determining appropriate values for p and c.

3. Instead of keeping only one configuration at the
end, increase the number of configurations that
are trained to convergence (two might be suffi-
cient, as our experiments suggest) to reduce the
risk of discarding the best one at the last stage.
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A LCRankNet-v2 Training Setup

We pad partial learning curves to a length of 450.
The convolutional layers have an output channel
size of 128. Each hyperparameter and task meta-
information is embedded with a size of 2. The feed-
forward layer size is set to 128. For regularization,
we use a dropout rate of 0.1 and a weight decay of
10−3. The initial learning rate is set to 10−4, with
Adam as the optimizer and cosine annealing as the
learning rate scheduler. The minimum learning rate
(ηmin) is set to 10−7, and Tmax is set to 10,000. Val-
idation occurs every 1000 steps, and the batch size
is 64. Training runs for 5 epochs.
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