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Abstract

Transformer-based models in Neural Machine Translation (NMT) rely heavily on multi-head attention for
capturing dependencies within and across source and target sequences. In Transformers, attention mecha-
nisms dynamically determine which parts of the sentence to focus on in the encoder and decoder through
self-attention and cross-attention. Our experiments show that high-resource NMT systems often exhibit a
specific peaked attention distribution, indicating a focus on key elements. However, in low-resource NMT,
attention tends to be dispersed throughout the sentence, lacking the focus demonstrated by high-resource
models. To tackle this issue, we present EaDRA (Entropy– and Distance-Regularized Attention), which in-
troduces an inductive bias to prioritize essential elements and guide the attention mechanism accordingly.
Extensive experiments using EaDRA on diverse low-resource language pairs demonstrate significant im-
provements in translation quality, while incurring negligible computational cost.

1 Introduction

Neural networks have revolutionized Machine
Translation (MT), as evidenced by the significant
progress made in recent years (Sutskever et al.,
2014). The Transformer architecture (Vaswani
et al., 2017) has garnered substantial attention and
achieved remarkable advancements across various
downstream tasks (Devlin et al., 2019; Liu et al.,
2020; Brown et al., 2020), including its applica-
tion to Neural Machine Translation (NMT). How-
ever, the performance of the Transformer architec-
ture heavily relies on the effectiveness and reliability
of its attention mechanism.

Our observations from well-performing mod-
els suggest that attention should prioritize important
elements, resulting in a peaked distribution of at-
tention weights. By emphasizing crucial informa-
tion, the attention mechanism enables more accu-
rate predictions. This selective attention allows the
model to effectively capture and utilize relevant in-
formation, leading to improved performance. There-

fore, optimizing the attention mechanism is critical
for harnessing the full potential of the Transformer
architecture and enhancing its performance across
tasks, including NMT. However, achieving focused
attention behavior poses a significant challenge for
NMT systems Raganato et al. (2020), especially in
low-resource settings. Our preliminary experiments
show that as the amount of available training data
decreases, NMT systems tend to exhibit a lack of
the desired focused attention behavior. In such low-
resource scenarios, where training data is limited,
the attention distribution becomes more dispersed
and less selective. Consequently, the model’s ability
to effectively capture and utilize crucial information
is hindered, leading to reduced translation perfor-
mance. Therefore, as the amount of available data
diminishes, it becomes crucial to develop techniques
that can guide the attention mechanism towards rel-
evant and informative elements of the source sen-
tence. In order to address this issue, prior research
has suggested hard-coded or fixed attention patterns
for self-attention heads to improve translation qual-
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ity (Raganato et al., 2020; You et al., 2020). How-
ever, the complexity and diversity of language ne-
cessitate the consideration of varied attention pat-
terns for different sentences in the context of trans-
lation. By constraining the attention weights to fixed
values, the model may encounter difficulties in ac-
commodating diverse sentence structures and cap-
turing long-range dependencies with accuracy.

Consequently, this constraint may result in di-
minished performance (You et al., 2020), particu-
larly for sentences that do not align harmoniously
with the predetermined attention patterns.

In this paper, after identifying a significant
difference in the entropies of attention heads be-
tween high-resource and low-resource trained mod-
els (Section 5.1), we introduce an inductive bias
through the proposition of entropy and distance reg-
ularization (Section 3.3). Our approach aims to in-
duce selective attention by regularizing the distance
and entropy in the distribution of attention heads.
Specifically, we introduce a novel term into the loss
function to guide the learning process, which en-
courages the low-resource NMT model to emulate
the patterns observed in the attention of higher-
resource models. This additional bias is incorpo-
rated to improve the low-resource NMT model’s ca-
pability to capture intricate language patterns and
enhance translation performance. Experimental re-
sults demonstrate the effectiveness of our approach
and underscore the importance of inductive bias in
narrowing the performance disparity between low–
and high-resource NMT systems.

2 Related work

Prior work has explored various approaches to im-
prove low-resource performance by leveraging high-
resource language pairs. This includes initializ-
ing model parameters from a large-scale trained
model (Zoph et al., 2016), as well as techniques such
as Multilingual Neural Machine Translation (Aha-
roni et al., 2019), cross-lingual knowledge distil-
lation (Tan et al., 2019; Saleh et al., 2020) and
large pre-trained models that aim for universal lan-
guage understanding (Liu et al., 2020; Tang et al.,
2020; Brown et al., 2020; Touvron et al., 2023).
While these methods have significantly improved
low-resource NMT, they rely on the availability of
a large amount of additional data. However, it is
crucial to explore techniques that facilitate the more

efficient utilization of the model. Inductive bias
plays a fundamental role in machine learning as it
allows for the incorporation of prior knowledge or
assumptions into learning systems (Mitchell, 1980).
Different regularization techniques and architectural
choices can introduce specific biases to shape the
behavior of models. For example, regularization
biases models towards relying less on a few influ-
ential features, Convolutional Neural Networks bias
models to capture local relationships between input,
and attention mechanisms (Bahdanau et al., 2015;
Vaswani et al., 2017) bias models to capture long-
range dependencies. Additionally, in the context
of attention mechanisms, specific biases can be in-
troduced to shape the behavior of models and im-
prove their performance. Lin et al. (2018) encour-
age the attention to pay more focus on the content
words rather than functions words. In the context
of summarization, Aralikatte et al. (2021) propose
an attention mechanism that proactively generates
tokens in the decoder that are similar or topical to
the input. Niculae and Blondel (2017) introduce
an attention mechanism that is encouraged to as-
sign similar attention weights to consecutive words.
Structured attention networks (Kim et al., 2017) in-
corporate graphical models to generalize simple at-
tention, while the training time significantly (5×)
increases. More similar to our motivation, LP-
SparseMAP (Niculae and Martins, 2020) models at-
tention distance between consecutive words for a
classification task by introducing trainable param-
eters, but its scalability to large-scale experiments is
limited. In contrast, our approach, based on apply-
ing a regularizer, is faster, less complex, and can be
efficiently executed on GPUs, making it scalable for
large-scale training and fine-tuning setups.

The closest work to our method is Fixed-
attention (Raganato et al., 2020), which enforces
fixed (untrainable) attention patterns. However, they
focus solely on encoder self-attention, overlooking
the importance of cross-attention heads in neural
machine translation (Voita et al., 2019; You et al.,
2020). Similarly, You et al. (2020) introduce Hard-
Coded Gaussian Attention that replaces the atten-
tion distribution computation, i.e., scaled dot prod-
uct of queries and keys, with a fixed Gaussian dis-
tribution, leading to a negative impact on translation
quality. Given the concept of entropy that has been
used in machine translation (Montahaei et al., 2019),
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in the next section, we propose our method that
can be applied to all different attention components,
i.e., encoder self-attention, decoder self-attention,
and encoder-decoder (cross) attention, while consis-
tently yielding significant improvements across var-
ious experimental setups.

3 Methodology

3.1 Entropy
Entropy, a fundamental concept in information the-
ory, has found various applications in the field of
NLP (Pimentel et al., 2021; Vanmassenhove et al.,
2021). One prominent area where the concept of en-
tropy has been utilized is in language modeling and
generation (Han et al., 2018; Meister et al., 2020).
By quantifying the degree of uncertainty or unpre-
dictability of a language model’s output, entropy
serves as a measure of the model’s confidence or in-
formation content (Shannon, 1948). Given a prob-
ability vector a ∈ Rn, i.e., whose entries are non-
negative and sum to 1, the Shannon entropy is de-
fined as:

H(a) := −
n∑

i=1

ai log2(ai) (1)

In order to capture the shape of attention distri-
butions (more peaked versus more flat) we use the
Shannon entropy, defined in Equation 1. For a dis-
crete distribution of dimension n, Shannon entropy
takes values between 0 and log2 n, with H(a) = 0
when a is a peaked one-hot vector, and H(a) =
log2 n when a = (1/n, . . . , 1/n). where we define
the length-normalized entropy:

HN (a) :=
1

log2 n
H(a) (2)

in order to remove unwanted effects induced by
varying sentence lengths, by ensuring the output of
HN falls within the range of 0 to 1.

3.2 Entropy penalties
We propose a method to replicate the desirable be-
havior observed in higher-resource models by in-
troducing an inductive bias to the attention mech-
anism in lower-resource models, encouraging a fo-
cused behavior to guide the attention mechanism to-
wards more important information. In Transform-
ers, there are multiple attention heads that allow the

model to capture diverse and fine-grained relation-
ships within the input sequence: enc (self-attention
in the encoder), dec (self-attention in the decoder),
and x (encoder-decoder or cross attention). Each at-
tention mechanism computes the attention distribu-
tion for each word in the input sentence x. More
specifically, when translating a sentence pair x, y,
the attention heads of a Transformer model compute
several attention distributions:

Attention(x, h, t) =
n∑

i=1

ai,h,t · Vi,h,t (3)

where Vi,h,t is the value matrix and ai,h,t is the at-
tention distribution at word i calculated at head h,
for attention type t ∈ {enc, dec, x}. ai,h,t is a prob-
ability vector of length nsrc when t ∈ {enc, x} and
of length ntgt when t = dec.

To encourage peaked attention and nudge at-
tention heads toward selecting the important infor-
mation, we apply an entropy-minimizing penalty on
all attention distributions:

Rpeak :=
∑
i,h,t

HN (ai,h,t), (4)

By itself, this regularizer can force attention
heads to trivial solutions, e.g., where all mass is con-
centrated on a token in a sentence. To mitigate this
we invoke another inductive bias based on a desir-
able property observed in high-performing models:
even though individual attention heads are peaked,
the attention distribution averaged over the entire
sentence:

āh,t =
1

n

n∑
i=1

ai,h,t (5)

should be flat. We therefore propose an additional
sentence-level entropy-maximizing penalty:

Rsent := −
∑
h,t

HN (āh,t) (6)

3.3 EaDRA (Entropy- and
Distance-Regularized Attention)

In this section, we propose a distance-based method
that goes beyond simply minimizing attention en-
tropies. This method not only reduces entropy and
enhances attention concentration, but also induces
a preference for attending to adjacent tokens, moti-
vated by the significance of proximity-based atten-
tion in NMT tasks (Raganato et al., 2020).

To develop the intuition, we focus on a single
attention head (hence temporarily dropping the h, t
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indices). Imagine for a moment our attention was
a hard selection mechanism, e.g., (ei)ji = 1, in-
dicating that attention at token i selects only token
ji. If neighboring words and contiguous phrases are
highly relevant to each other, we would expect the
total distance between consecutive selections

Rdist
∼
=

n−1∑
i=1

d(ji, ji+1) (7)

to be rather small, where d is a discrete, one-
dimensional distance function,1 and ∼

= is used since
this is just an intuition and not yet a usable defini-
tion: since our attention is soft and not hard, we can-
not directly measure this total distance suggested by
Equation 7. Instead, we relax the definition by con-
sidering expectation over ji and ji+1, interpreted as
random variables with marginal distributions ai, re-
spectively ai+1. We can then penalize the total ex-
pected distance:

Rdist :=

n−1∑
i=1

EjiEji+1 [d(ji, ji+1)]

=

n−1∑
i−1

a⊤
i Dai+1,

(8)

where D is the distance matrix defined by (D)st =
d(s, t) for our chosen distance function d. This ma-
trix can be precomputed and the quadratic form in
Equation 8 is fast to evaluate on GPUs, although we
remark, since d is symmetric, that D is a Toeplitz
matrix and therefore Rdist could be computed via
fast discrete Fourier transform.

Putting together all terms, our objective for a
given training sentence pair (x, y) minimizes:

L(x, y) =

n∑
i=1

− log p(yi | x, y1:i−1)

+ αpeakRpeak + αsentRsent + αdistRdist.

(9)

Here, α parameters control the relative im-
pact of the various penalties. We call this method
EaDRA (Entropy- and Distance-Regularized Atten-
tion), the distance-based and entropy-based regular-
izers. Unlike fixed diagonal patterns in attention,
EaDRA allows for more flexibility in achieving a
peaky attention distribution.

4 Experimental setup

4.1 Data setup

In our preliminary experiments, we use a dataset
comprising 4 million German-English training sam-
ples from WMT14, which includes Europarl, Com-
mon Crawl, and News Commentary.

Code Dataset #Sents

Ex. LR
Be-En TED Qi et al. (2018) 4.5k
Gl-En TED Qi et al. (2018) 10k
De-En WMT14 50k
Sk-En TED Qi et al. (2018) 55k

LR
Ko-En Jungyeul Park et al. (2016) 90k
Kk-En WMT19 91k
En-De WMT14 100k
Vi-En IWSLT15 (Cettolo et al., 2012) 133k
En-De IWSLT14 (Cettolo et al., 2012) 160k
Tr-En WMT17 207k
Ja-En IWSLT17 (Cettolo et al., 2012) 223k
En-De WMT14 250k

Table 1: Details of extremely low-resource (Ex. LR)
and low-resource (LR) datasets in our experiments.

To simulate the low-resource scenario in a con-
trolled setting, we randomly choose subsets of 50k,
100k, 250k and 1m samples. We evaluate on the
newstest2014 test set. Additionally, we conduct ex-
periments on two sets of language pairs (Table 1),
one representing low-resource scenarios and the
other representing extremely low-resource scenar-
ios.

All datasets, except Japanese-English, are pre-
processed by applying punctuation normalization,
tokenization (Koehn et al., 2007), limiting the length
of the sentences to 200 tokens and removing sen-
tence pairs with a source/target length ratio exceed-
ing 1.5, following previous work (Ng et al., 2019).
Then, we use BPE (Sennrich et al., 2016) to split the
data with BPE parameter selection with respect to
the data size (Araabi and Monz, 2020).

For the Japanese-English language pair, we use
SentencePiece with a shared vocabulary size of 16k,
as it has been widely recognized for its effectiveness
in handling Japanese text (Kudo and Richardson,

1We use the absolute distance, d(s, t) = |s− t|, but arbitrary functions may be used instead.
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Figure 1: Entropy distribution of the encoder self-attention in a Transformer with 6 layers and 8 attention
heads. (a), (b), and (c) are models trained on 4m, 1m, and 100k samples, respectively. (d) is the model
trained on 100k samples after applying EaDRA. All training sets are random samples from WMT14 En-De.
Entropy values are sorted within each layer to highlight the contrasting patterns.

2018). In order to evaluate the models, for Belaru-
sian (Be), Galician (Gl), Slovak (Sk), Korean (Ko), 1

Kazakh (Kk), WMT German (De), Vietnamese (Vi),
Turkish (Tr), and Japanese (Ja) we use their own of-
ficial test sets. For IWSLT German (De), follow-
ing (Raganato et al., 2020) we use the concatena-
tion of the IWLST 2014 dev sets (tst2010–2012,
dev2010, dev2012).

Model #sent min ave max BLEU

T.base 4m 0.08 0.42 0.83 28.1

1m 0.04 0.58 0.79 24.1

100k 0.34 0.66 0.77 13.5

EaDRAenc+dec 100k 0.01 0.18 0.82 16.2

Table 2: Statistics of entropy values over all encoder
self-attention heads of models with different sam-
ple sizes from WMT14 English-German, trained on
Transformer-base. EaDRAenc+dec denotes EaDRA
applied on the self-attention in the encoder and de-
coder of Transfomer.

4.2 Model Configuration
We adopt the Transformer-base (denoted by
T.base) architecture with its original hyperpa-
rameters (Vaswani et al., 2017) as our baseline
model, upon which our proposed modifications are
built. In addition, we consider the Fixed-attention
method (Raganato et al., 2020) as the most closely
related baseline approach. Our experiments are con-
ducted using the Fairseq library (Ott et al., 2019).

We evaluate the translation quality using sacre-
BLEU (Post, 2018) as evaluation metric.2 All exper-
iments can be completed within a few hours using a
single GPU with the model parameters ranging from
49m to 65m.

5 Results

In this section, we start with a comprehensive anal-
ysis of multi-head attention entropy across various
data setups. Subsequently, we demonstrate the strik-
ing effectiveness of EaDRA when compared to both
the Transformer model and the most closely re-
lated approach, Fixed Attention. Additionally, we
delve into the influence of EaDRA’s hyperparame-
ters. Moreover, we present results involving large
pre-trained fine-tuning, a method widely recognized
as a strong baseline.

5.1 Analysis of entropy in multi-head attention

The limitations in low-resource NMT performance
can be attributed to the inherent difficulties associ-
ated with training models using limited data (Koehn
and Knowles, 2017). However, the impact of this
data scarcity on the multi-head attention mechanism
remains unclear. Building on the observation of dis-
persion of weights in attentions (Voita et al., 2019;
Correia et al., 2019), in this section we aim to ana-
lyze and compare the weight distribution of multi-
head attention in NMT models across different data
regimes. For this purpose, entropy serves as a use-
ful measure by providing valuable insights into the

1https://github.com/jungyeul/korean-parallel-corpora/tree/master/korean-english-news-v1
2sacreBLEU signature:

nrefs:1—case:lc—eff:no—tok:13a—smooth:exp—version:2.0.0
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peakedness of the attention distribution. We conduct
preliminary experiments to investigate the entropy
of attention heads and gain insights into their behav-
ior. Figure 1 (a-c) illustrates the entropy of encoder
self-attention heads for models trained on different
sample sizes: 4m, 1m, and 100k. A clear trend is
observed where the entropy of attentions decreases
as the amount of training data increases. Therefore,
the models trained with smaller data sizes face chal-
lenges in learning focused attention distributions.
Based on this observation, we hypothesize that this
trend of decreasing entropy with larger training sam-
ples will continue, and with a substantial amount of
data, ideally, the entropy will approach zero. Fig-
ure 1 (d) illustrates the entropies of the encoder self-
attention after the application of our method, show-
ing a significant decrease in entropy. This decrease
indicates a higher level of peakedness or concentra-
tion in the attention distribution. In order to compare
EaDRA’s entropy patterns with those of Fixed-attn,
it is essential to note that Fixed-attn primarily uti-
lizes attention heads characterized by fixed diago-
nal or tridiagonal-like patterns. As a result, the en-
tropy for three of these heads reaches zero, while the
remaining heads consistently maintain an entropy
close to zero, forming a consistent value irrespective
of the dataset size or input characteristics.

Table 2 presents the statistics of Figure 1.
We observe a substantial difference in the average
and minimum entropy values across all attention
heads between the higher-resource models and low-
resource one. Therefore, EaDRA results in a signif-
icant decrease in entropy of attention weights, re-
sulting in a more peaked distribution of attention
weights similar to what can be achieved with a large
amount of training data. However, it is crucial to
contextualize these findings by considering that a
fair comparison, as exemplified by the performance
of EaDRA compared to the T.base trained on 100k
samples, demonstrates the efficacy of our approach
under more controlled conditions, where both are
trained on a similar number of sentences. Addi-
tionally, it is worth noting that the improvement ob-
served in row 4 is a direct consequence of our pre-
cise parameter tuning for EaDRA.

5.2 EaDRA in multi-head attention
components

While Raganato et al. (2020) only focus on the en-
coder self-attention, EaDRA is applicable to all at-
tention components. We empirically demonstrate
this through our experiments, which involve the
encoder self-attention, decoder self-attention, and
cross-attention. The performance of EaDRA on
various components and their combinations is pre-
sented in Table 3. The results demonstrate that
EaDRA consistently leads to substantial improve-
ments across all cases, with the encoder and decoder
combination (enc+dec) yielding the highest perfor-
mance on lower-resource setups.

model 50k 100k 250k 1m

T.base 6.2 13.5 19.9 24.1

Fixed-attn 9.3 13.1 19.0 20.4

EaDRAenc 9.4 15.2 20.2 24.4

EaDRAdec 8.1 15.2 20.0 24.4

EaDRAx 8.2 14.1 20.0 24.5

EaDRAdec+x 8.2 14.8 20.0 24.4

EaDRAenc+x 9.0 15.6 20.6 24.6

EaDRAenc+dec 9.7 16.2 20.2 24.1

EaDRAenc+dec+x 9.6 16.1 20.4 24.7

Table 3: Results of applying EaDRA to encoder
self-attention (enc), decoder self-attention (dec), and
cross-attention (x) on 50k, 100k, 250k, and 1m
random samples from WMT14 English-German.
BLEU scores are reported on newstest2014. Fixed-
attn refers to our reimplementation of the Fixed-
attention method (Raganato et al., 2020)

However, the cross-attention component does
not benefit substantially from EaDRA, compared to
the other components and combinations. We spec-
ulate that this observation may be attributed to the
inherent differences in word ordering between the
source and target languages, where EaDRA might
discourage some specific reorderings. Moreover,
EaDRA consistently outperforms Fixed-attention in
all experimental settings and Fixed-attention fails
to exhibit any improvement over the vanilla Trans-
former, except for the smallest training set with
50k samples. Notably, as the amount of training
data decreases, the degree of performance degra-
dation in Fixed-attention also diminishes. In addi-
tion, we conduct experiments with applying Fixed-
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attention to other attention components (decoder
self-attention and cross-attention) and their combi-
nation, observing a notable decline in translation
quality. This observation aligns with the results of
hard-coded attention (You et al., 2020), which re-
vealed that hard-coded encoder and decoder atten-
tion adversely affect translation quality, and hard-
coded cross-attention leads to a more significant de-
crease in BLEU score, potentially due to its higher
importance in the translation process (Voita et al.,
2019; Gheini et al., 2021). Nevertheless, due to
EaDRA’s focus on biasing attentions without im-
posing strict constraints, it exhibits flexibility that
allows for improvements even in case of cross-
attention.

To further explore the impact of EaDRA in
achieving focused attention, we perform a set of
experiments in low-resource settings across various
translation tasks. The results are summarized in Ta-
ble 4, clearly demonstrating the significant improve-
ments achieved by EaDRA. Specifically, our analy-
sis focus on individual attention components as well
as the combined encoder and decoder attention com-
ponents (EaDRAenc+dec), which consistently outper-
formed other combinations in smaller samples from
WMT14 En-De, as shown in Table 3.

Interesting observations arise in the context of
extremely low-resource scenarios, specifically for
Belarusian and Galician datasets, with training sam-
ple sizes of only 4.5k and 10k, respectively. Surpris-
ingly, in these cases, Fixed-attention outperforms
EaDRA. We suspect that this superiority of fixed
attention patterns in extreme scenarios can be at-
tributed to the model’s limited capacity to effec-
tively learn attention distributions with such a small
amount of training data, even when biased towards
selective attention. The fact that the performance
degradation is mitigated as the training size de-
creases and Fixed-attention only exhibits improve-
ment on the smallest dataset, see Table 3, further
supports this hypothesis. Also, this observation
aligns with the findings of Araabi and Monz (2020)
in extremely low-resource settings, which demon-
strate that in the presence of limited data, having
more than two attention heads leads to a significant
performance drop, potentially as the model struggles
to learn attention patterns.

5.3 Hyper-Parameters

We tune the hyperparameters (αpeak, αsent, and αdist)
for every attention components separately, such that
once the optimal value of a hyper-parameter has
been determined, it remains fixed and we sweep over
the next one. 1 We conducted additional experiments
to investigate the influence of the number of atten-
tion heads used in EaDRA. Figure 2 depicts the rela-
tionship between the BLEU score and the number of
attention heads employed in EaDRA (enc), showing
that around 6 attention heads appear to be an optimal
choice. This pattern was consistent across the ex-
periments conducted for decoder self-attention and
cross-attention, indicating that 6 heads yield favor-
able results for all attention components.

0 1 2 3 4 5 6 7 8
Attention Heads

14

16
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20

22

24

B
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Gl-En
En-De(WMT-100k)
Vi-En

Figure 2: Effect of EaDRA with involving differ-
ent number of encoder attention heads on validation
BLEU score. Similar patterns are observed for other
language pairs and attention components.

Initially, we conducted hyperparameter tuning
on a subset of the data, specifically 100k training
samples from the WMT14 English-German dataset.
This process resulted in a substantial improvement
of +3.1 BLEU points over Fixed-attention. Encour-
aged by these promising results, we proceeded to
apply the same hyperparameter settings to the 50k,
250k, and 1m datasets, which led to substantial im-
provements across all scenarios. These findings
demonstrate the effectiveness of the optimized hy-
perparameter values across different tasks, eliminat-
ing the need for fine-tuning on each individual task.

1For more details, see Appendix A.
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model Be-En Gl-En Sk-En Ko-En Vi-En De-En Tr-En Ja-En
4.5k 10k 55k 90k 133k 160K 207k 223k

T.base 5.0 13.1 22.8 6.5 25.6 32.0 16.2 10.6

Fixed-attn 5.5 18.8 25.4 8.1 25.3 32.4 17.0 11.7

EaDRAenc 5.2 15.3 26.3 7.8 27.3 32.8 17.4 11.8

EaDRAdec 5.2 16.1 25.9 8.3 27.6 33.0 17.6 11.0

EaDRAx 5.3 15.6 25.7 7.6 26.7 32.7 16.6 11.1

EaDRAenc+dec 5.8 16.7 25.3 8.1 27.3 32.9 17.3 11.3

Table 4: Comparing EaDRA applied to single attention components and also combination of encoder and
decoder self-attention with Fixed-attention and Transformer-base for low-resource language pairs.

However, it is important to note that a more thor-
ough hyperparameter sweep for each language pair
in Table 4 produced slightly different optimal pa-
rameter values, which resulted in slight further im-
provements.

5.4 Large pre-trained fine-tuning
Large pre-trained models, such as mBART (Liu
et al., 2020), have become an integral part of many
natural language processing tasks, as they capture
a vast amount of knowledge from extensive train-
ing on massive datasets. Modifying or fine-tuning
such models while preserving their learned repre-
sentations is a challenging task, requiring careful
consideration of the model’s complex architecture,
attention mechanisms, and overall behavior. There-
fore, it is imperative to develop methods that can
leverage the existing strengths of pre-trained mod-
els while pushing for further improvements.

model Ko-En Kk-En Vi-En Tr-En Ja-En
90k 91k 133k 207k 223k

mBART-FT 16.0 17.2 36.0 22.8 16.3

Fixed-attn 15.1 16.8 35.2 21.9 15.7

EaDRAenc 16.0 18.1 36.4 23.0 16.5

EaDRAenc+dec 15.6 17.9 36.1 21.0 16.2

Table 5: Comparison of Fine-tuning mBART using
Fixed-attention (Raganato et al., 2020) and EaDRA
applied to encoder self-attention and also encoder
and decoder self-attention components.

Table 5 shows the effectiveness of applying
EaDRA on top of mBART across all language pairs
except Ko-En. We use the same hyper-parameter
values that were tuned for 100k samples from the

WMT14 En-De dataset. However, interestingly, we
found that involving only two attention heads in
EaDRA yields slightly higher performance. This
observation can be attributed to the fact that the
attention heads in mBART already exhibit a sig-
nificant degree of peakedness—perhaps thanks to
the pretraining—and further regularization through
EaDRA does not yield additional improvements.
We observe a consistent degradation of mBART
when using the Fixed-attention method. One possi-
ble explanation is that applying fixed attention pat-
terns on top of mBART introduces limitations or
constraints that hinder the model’s ability to fully
leverage its capacity, ultimately leading to perfor-
mance degradation. This suggests that the flexibility
and adaptability of mBART’s attention mechanisms
play a crucial role in its overall performance. Fur-
thermore, our experiments with the two most impor-
tance fixed patterns, namely the previous and next
tokens (Raganato et al., 2020), also resulted in per-
formance degradation.

6 Discussion
By introducing regularization techniques that tar-
get distance and entropy in attention heads, we
achieve substantial improvements over various lan-
guage pairs. Extensive experiments demonstrate
the effectiveness of these methods in low-resource
NMT scenarios. The flexibility offered by EaDRA
enables the NMT model to selectively allocate atten-
tion during training. Conversely, fixed and unlearn-
able attention patterns prove to be more beneficial in
the case of extremely low-resource languages with
fewer than 50k training samples. In such scenarios,
fixing the attention mechanism provides a more reli-
able approach, as the model’s capacity to learn from
a small dataset is limited.
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7 Conclusion

In this work, we mitigate the challenge of improving
low-resource NMT by introducing a form of reg-
ularized attentions. We introduce EaDRA, which
promotes focused attention by prioritizing key el-
ements. Extensive experiments on diverse low-
resource language pairs demonstrate significant im-
provements in translation quality, validating the ef-
fectiveness of EaDRA. Our findings highlight the
importance of attention regularization techniques
in enhancing NMT performance, particularly in
low-resource settings. EaDRA offers a practical
and scalable solution with negligible computational
overhead and a few lines of code.

8 Limitations

We only focus on improving low-resource NMT.
However, higher-resource settings might also gain
from regularized attentions facilitated by EaDRA
and it may contribute to faster convergence as well.
Additionally, we demonstrate the effectiveness of
our proposed method using multiple low-resource
language pairs, whereas there are many other lan-
guage pairs with limited data. Furthermore, the en-
couragement of focused attention rather than dis-
persed attention through EaDRA leads us to hypoth-
esize that our method may exhibit higher general-
izability to sentence perturbations. This, in turn,
could result in less volatile behavior of the NMT
system (Fadaee and Monz, 2020). We leave these
investigations to future work.
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9 Appendices

A Optimal hyperparameter values

The optimal values for the hyperparameters of sev-
eral models discussed in the paper are presented in
Table 6. Interestingly, our preliminary experiments
indicate that αdist appears to render αpeak redundant.
As for the remaining models not listed in the table,
we adopt the same hyperparameter values as those
used for WMT En-De (100k) experiments. Fur-
thermore, for experiments with applying EaDRA to
combinations of attention heads, we do not perform
additional hyperparameter tuning.

Dataset αdist αsent

EaDRAenc

WMT En-De (100k) 0.02 0.8

Be-En 0.02 1.2

Gl-En 0.02 0.8

Sk-En 0.02 0.8

Ko-En 0.01 0.4

Vi-En 0.02 0.6

Tr-En 0.04 1.2

Ja-En 0.02 0.8

EaDRAx

WMT En-De (100k) 0.1 8

Be-En 0.1 8

Gl-En 0.15 5

Sk-En 0.1 8

Ko-En 0.05 8

Vi-En 0.2 8

Tr-En 0.1 10

Ja-En 0.1 10

EaDRAdec

WMT En-De (100k) 2 0.8

Be-En 1 0.9

Gl-En 1 0.8

Sk-En 2 0.8

Ko-En 0.5 0.8

Vi-En 4 1

Tr-En 3 1.5

Ja-En 2 0.8

Table 6: Hyperparameters of EaDRAenc, EaDRAx,
and EaDRAdec for the models presented in the pa-
per.

B Ablation study

To gain deeper insights into the individual contribu-
tions of the proposed regularization terms, we con-
ducted an ablation study focusing on the English-
German language pair, utilizing a training set of
100k samples from WMT. The study specifically
aimed to isolate the effects of the distance and sen-
tence regularization terms. Table 7 demonstrates
that employing only the distance regularization term
resulted in attention heads converging to trivial so-
lutions, leading to a concentration of attention on a
single token within a sentence. While this induced
a reduction in entropy, it adversely impacted over-
all performance. Conversely, exclusive reliance on
the sentence regularization term led to an overly uni-
form attention distribution, manifesting as a diago-
nal attention pattern across the sentence.

These findings emphasize the necessity of
striking a balance between the two regularization
terms. The combination of both distance and sen-
tence regularization proves instrumental in achiev-
ing the desired focused attention distribution, thus
reinforcing the efficacy of our proposed approach
in low-resource NMT scenarios. It is worth not-
ing that while EaDRAenc+dec was used for this ab-
lation study, it is conceivable that alternative config-
urations would have produced similar results.

Method αdist αsent BLEU

T.base 0.00 0.00 13.5

EaDRA 0.02 0.80 16.2

EaDRA w/o αdist 0.00 0.80 15.2

EaDRA w/o αdist 0.02 0.00 0.7

Table 7: Ablation study results for English-German
task with 100k training samples from WMT14.
EaDRAenc+dec is used for this experiment.

C Convergence Speed Analysis

Given that EaDRA introduces a term into the loss
function, it is imperative to assess its convergence
speed. In Figure 3, we present the validation scores
for two systems trained with 100k English-German
samples from WMT14 on the same GPU.
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Figure 3: Convergence speed comparison on valida-
tion scores of EaDRA and T-base models trained on
100k English-German samples from WMT14.

The results demonstrate that EaDRA sustains a
convergence speed comparable to the baseline. This
observation underscores the efficiency of EaDRA in
terms of convergence, further solidifying its viabil-
ity in practical applications. This suggests that the
incorporation of EaDRA does not come at the cost
of prolonged training times, making it a practical
choice for low-resource NMT tasks
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