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Abstract

Word-level translation quality estimation (TQE) is the task of identifying erroneous words in a translation
with respect to the source. State-of-the-art methods for TQE exploit large quantities of synthetic training
data generated from bilingual parallel corpora, where pseudo-quality labels are determined by comparing
two independent translations for the same source text, i.e., an output from a machine translation (MT) system
and a reference translation in the parallel corpora. However, this process is sorely reliant on the surface forms
of words, with acceptable synonyms and interchangeable word orderings regarded as erroneous. This can
potentially mislead the pre-training of models. In this paper, we describe a method that integrates a degree
of uncertainty in labeling the words in synthetic training data for TQE. To estimate the extent to which
each word in the MT output is likely to be correct or erroneous with respect to the reference translation, we
propose to use the concept of optimal transport (OT), which exploits contextual word embeddings. Empirical
experiments using a public benchmarking dataset for word-level TQE demonstrate that pre-training TQE
models with the pseudo-quality labels determined by OT produces better predictions of the word-level quality
labels determined by manual post-editing than doing so with surface-based pseudo-quality labels.

1 Introduction

Translation quality estimation (TQE) (Blatz et al.,
2004; Specia et al., 2018) is the task of predicting
quality labels or scores for a given translation, typ-
ically generated by machine translation (MT) sys-
tems, with respect to the source text, without refer-
ring to a reference translations. Predictions can be
made at different levels of granularity, such as sen-
tence and word levels. Sentence-level quality labels
help users determine whether to use an MT output
as it is or after post-editing (PE). Word-level qual-

ity labels better guide post-editors in the translation
production process (ISO/TC37, 2017), i.e., identify-
ing words that require revision.

In this paper, we focus on word-level TQE.
The data for training and evaluating word-level TQE
models consist of tuples of a source text, an MT out-
put, and quality labels for each word in the MT out-
put. In the TQE shared tasks at the Workshop on
Machine Translation (WMT) (Specia et al., 2020,
2021; Zerva et al., 2022), binary labels, i.e., {“OK,”
“BAD”}, are used as the quality labels. As illus-
trated in the top part of Figure 1, TQE data are pro-
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duced through manual PE of MT outputs, where re-
visions indicate that the words in the MT output are
erroneous. It is therefore straightforward to deter-
mine gold-standard labels using the Translation Edit
Rate (TER) toolkit (Snover et al., 2006)1 by iden-
tifying the minimum edit distance between two se-
quences of words relying on surface-level matching.

Source text MT output PE output
MT PE

Necessary edits

Reference
Differences do not 
always indicate errors

Reference: They finally accomplished their goals .

MT output: Eventually , they achieved their goal .

Quality label: BAD    BAD OK    BAD OK    BAD OK

Manually produced TQE data

Synthetic TQE data

Human translation

Figure 1: Framework for obtaining TQE data:
(a) manual PE and (b) comparison of MT output
with a reference translation independently produced
by a human translator. An example for the latter ex-
emplifies that the conventional TER-based method
regards unessential differences as errors.

To improve the accuracy further, state-of-the-
art methods for word-level TQE exploit large quanti-
ties of synthetic TQE data for pre-training (Liu et al.,
2017; Lee, 2020; Tuan et al., 2021; Rubino et al.,
2021; Yang et al., 2023). Figure 1 also shows the
typical process of generating synthetic TQE data.
First, the source side of a given bilingual parallel
corpus is translated with an MT system, and then a
pseudo-quality label for each word in the MT out-
put is determined by comparing two independent
translations for the same source text: the MT output
and the target side of the parallel corpus, i.e., ref-
erence translation. Previous work (Liu et al., 2017;
Lee, 2020; Tuan et al., 2021; Rubino et al., 2021)
has used the TER toolkit for the comparison. How-
ever, surface-level differences between independent
translations do not necessarily indicate errors. For
instance, as shown in Figure 1, they can differ in the
use of synonyms, interchangeable word orderings,
and so forth, even if the MT output is error-free. Ap-
plication of the TER toolkit to such pairs inevitably
produces incorrect quality labels and consequently

misleads the pre-training of TQE models.
In this paper, we describe a method that con-

siders the degree of uncertainty in labeling words in
synthetic training data for TQE. To estimate the ex-
tent in which each word in the MT output is likely
to be correct or erroneous with respect to a refer-
ence translation, we propose to use the concept of
optimal transport (OT). Given a pair of an MT out-
put and a reference translation, our method first ob-
tains contextual word embeddings. It then deter-
mines the optimal alignments between words in the
MT output and the reference translation with their
likelihood. Following Arase et al. (2023), we ex-
pect this approach to identify negligible semantic
differences between synonymous expressions and
corresponding position-free grammatical elements,
and properly label them as “OK.” Empirical ex-
periments using a public benchmarking dataset for
word-level TQE, i.e., MLQE-PE (Fomicheva et al.,
2022), demonstrate that pre-training TQE models
with the OT-based quality labels produces better pre-
dictions of the word-level quality labels determined
by manual PE than models pre-trained on surface-
based quality labels determined by TER.

2 Standard Framework

A word-level TQE model is trained on DQE =
(Sk, T

′
k, Yk)

N
k=1, i.e., a set of N triplets of a source

text Sk, its machine-translated text T ′
k, and a se-

quence of quality labels Yk corresponding to the
words in T ′

k.

2.1 Data for Word-level TQE
Data for word-level TQE can be obtained through
post-editing the machine-translated text T ′

k into Rk,
or annotating errors in T ′

k (Freitag et al., 2021). For
the former, we can automatically identify the words
that have been dropped or revised by comparing T ′

k

and Rk, typically using the TER toolkit (Snover
et al., 2006), and regard them as errors. The post-
editing process requires workers who are highly
competent in both the source and target languages,
and is a laborious task. Therefore, only limited
quantities of data are available for a limited number
of translation directions and content domains. For
instance, the MLQE-PE dataset (Fomicheva et al.,
2022) covers only 11 translation directions (see
Section 4.1 for details).

1http://www.cs.umd.edu/˜snover/tercom/
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Label type Problem/Arch. Wo σ(·) Loss function

Hard Classification Rd×c argmax(softmax(·)) e.g., Cross-entropy
Soft Regression Rd×1 sigmoid(·) e.g., Mean squared error

Table 1: Architectures and components of word-level TQE models: d indicates the dimension of the contex-
tual word embeddings and c represents the number of possible hard labels (c = 2 for {“OK,” “BAD”}).

To improve the accuracy, overcoming the data
sparseness issue, researchers have exploited syn-
thetic TQE data, which are readily available at a
large scale (Liu et al., 2017; Lee, 2020; Tuan et al.,
2021; Rubino et al., 2021; Yang et al., 2023). Syn-
thetic TQE data can be generated from a bilingual
parallel corpus, Dpara = (Sk, Tk)

N
k=1. The paral-

lel corpus can be filtered with some metrics as ex-
emplified in Section 5.1. Typically, T ′

k is first gen-
erated by translating each source text Sk with an
MT model. Alternatively, T ′

k can be obtained by
rewriting each target text Tk with a masked lan-
guage model (Tuan et al., 2021) or translating Tk

into another language and translating it back into
the target language, i.e., round-trip translation (Ding
et al., 2021), which can also be applied to monolin-
gual data of the target language. Then, the pseudo-
quality label for each word in T ′

k is determined by
comparing T ′

k with the corresponding human trans-
lation in the bilingual parallel corpus, i.e., Tk. Most
previous work has employed the TER toolkit for this
purpose; however, as exemplified in Figure 1, this
results in inaccurate pseudo-quality labels, which
would mislead the pre-training of TQE models.

2.2 Training Word-level TQE Models

To train a word-level TQE model, large quantities
of synthetic data, such as those obtained by the pro-
cedure explained in Section 2.1, are used for pre-
training (Liu et al., 2017; Lee, 2020; Tuan et al.,
2021; Rubino et al., 2021; Yang et al., 2023). In
contrast, small quantities of manually produced data
are used for fine-tuning the model.

State-of-the-art approaches for word-level
TQE rely on a pre-trained multilingual encoder,
such as XLM-RoBERTa (Conneau et al., 2020) and
INFOXLM (Chi et al., 2021), to obtain contex-
tual embeddings for the words in the source text
S and its machine-translated text T ′. To exploit
cross-lingual relationships between S and T ′, pre-
vious work (Zerva et al., 2021; Rei et al., 2022)

jointly encodes the sequences of words in S and T ′

with a pre-trained multilingual encoder, and obtains
[h1, . . . , hn], i.e., d-dimensional contextual embed-
dings, for the n words in T ′. Then, the label for each
word t′i in T ′ is predicted as follows:

ŷi = σ(WoL(hi)), (1)

where L(·) denotes additional task-specific transfor-
mation layers, Wo is a projection matrix, and σ(·) is
a normalization function. There are two major op-
tions for the labels: (a) a hard label, such as {“OK,”
“BAD”}, or (b) the degree of badness (or good-
ness). Wo and σ(·) are implemented depending on
this choice, as summarized in Table 1. Appropriate
loss function is also set according to the label type.

3 Determining Pseudo-Quality Labels with
Optimal Transport

This paper describes how better pseudo-quality la-
bels can be assigned to the synthetic TQE data. We
assume that the triples Dsyn = (Sk, T

′
k, Tk)

N
k=1 are

generated from a bilingual parallel corpus, Dpara =
(Sk, Tk)

N
k=1, and determine the pseudo-quality label

for each word in T ′
k by comparing T ′

k with the cor-
responding Tk, as in previous work (Section 2.1).

In the proposed approach, we apply optimal
transport (OT), which identifies the optimal way of
converting one distribution into another. The appli-
cation of OT is inspired by its application to mono-
lingual word alignment (Arase et al., 2023). Let
[t′1, . . . , t

′
n] be a sequence of n words in a given

machine-translated text T ′ and [t1, . . . , tm] be a se-
quence of m words in the corresponding reference
translation T . The goal of OT is to identify a ma-
trix P ∈ Rn×m

+ that best aligns the words in T ′ and
T , where Pi,j represents the likelihood of the align-
ment between t′i and tj . To solve our problem with
OT, we define the following two concepts:

Mass of each word: this is a probability simplex,
i.e.,

∑
l = {v ∈ Rl

+ |
∑l

i=1 vi = 1}. We
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denote the mass of n words in T ′ as a ∈
∑

n

and that of m words in T as b ∈
∑

m.

Cost for transportation: a cost function for each
pair of words, c(t′i, tj) ∈ R+, can be defined
as their dissimilarity. A matrix C ∈ Rn×m

+ ,
where Ci,j = c(t′i, tj), represents a summary
of the cost for all pairs of words. The cost is
typically computed on the basis of contextual
word embeddings. In the process of obtaining
the embeddings, such as by using a pre-trained
multilingual encoder, we can also refer to the
source text (see Appendix A), which is an ad-
vantage of this method over the TER toolkit.

A matrix P ∈ Rn×m
+ that minimizes the total cost

for transportation is then identified as follows:

P = argmin
P ′∈U(a,b)

∑
i,j

Ci,jP
′
i,j , (2)

where U(a, b) is a set of matrices (∈ Rn×m
+ ) that

satisfy a certain constraint. For instance, the follow-
ing constraint preserves the mass of the source in the
target:

U(a, b) = {P ∈ Rn×m
+ | P1n = a, P⊤

1m = b},
(3)

where 1l is an l-dimensional vector in which all el-
ements are 1. Equation (3) assumes that T ′ and T
can be completely aligned, which conflicts with the
motivation of word-level TQE, i.e., the necessity of
spotting errors in T ′. Therefore, we introduce a con-
straint that bounds the mass to be transported up to
λm following the formulation of Partial OT (Figalli,
2010; Caffarelli and McCann, 2010):

U(a, b) = {P ∈ Rn×m
+ | P1n ≤ a, P⊤

1m ≤ b,

1
⊤
nP

⊤
1m = λm}.

(4)
Having obtained the optimal transportation, P ,

which represents the most plausible alignments be-
tween T ′ and T , we determine the pseudo-quality
label for each word t′i in T ′. We consider two vari-
ants: soft label (ysoft

i ∈ [0, 1]) and hard label (yhard
i ∈

{“OK,” “BAD”}).

Soft label is a real number between 0.0 and 1.0,
where 0.0 indicates that nothing is transported

from the word, strongly suggesting that the
word is erroneous, while 1.0 indicates that the
word perfectly aligns with a word in T .

ysoft
i = max(Pi,0, . . . , Pi,m), (5)

Y soft = [ysoft
1 , . . . , ysoft

n ]. (6)

Hard label is a binary label, {“OK,” “BAD”},
which is determined by thresholding the soft la-
bel. We introduce this merely for a comparison
with the conventional binary labels determined
by the TER toolkit.

yhard
i =

{
“OK” ysoft

i > λ

“BAD” otherwise
(7)

Y hard = [yhard
1 , . . . , yhard

n ]. (8)

Finally, we obtain two sets of synthetic data for
word-level TQE: Dsoft

QE = (Sk, T
′
k, Y

soft
k )Nk=1 with

the soft labels and Dhard
QE = (Sk, T

′
k, Y

hard
k )Nk=1

with the hard labels.

4 Experiments

To confirm the effectiveness of the proposed
method, we conducted experiments using a public
dataset for word-level TQE, MLQE-PE (Fomicheva
et al., 2022).2 Following recent shared tasks on
word-level TQE (Specia et al., 2020, 2021; Zerva
et al., 2022) and Fomicheva et al. (2022), we eval-
uated TQE models using the Matthews correlation
coefficient (MCC) (Matthews, 1975).

4.1 Word-level TQE Dataset
MLQE-PE (Fomicheva et al., 2022) contains test
sets for 11 translation directions, each consist-
ing of 1k triplets of source text, an MT out-
put for it, and binary quality labels, i.e., {“OK”,
“BAD”}, determined by manual PE for the
MT output and comparing the result with the
raw MT output using the TER toolkit. We
used Test20 (data/post-editing/test) and
Test21 (data/test21∗) in this repository. For
seven3 translation directions, the MT outputs
have been generated by a unidirectional Trans-
former model (Vaswani et al., 2017) trained

2https://github.com/sheffieldnlp/mlqe-pe
3English-to-German (En→De), English-to-Chinese (En→Zh), Romanian-to-English (Ro→En), Estonian-to-English (Et→En),

Nepali-to-English (Ne→En), Sinhalese-to-English (Si→En), and Russian-to-English (Ru→En).
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with the fairseq toolkit (Ott et al., 2019);4,5

training and development data consisting of 7k
and 1k triplets, respectively, are also available
(data/post-editing/{train,dev}). We
used the training data for fine-tuning the TQE mod-
els and the development data for selecting the hyper-
parameters and models, except for Ru→En. We
regarded the remaining four translation directions,6

for which the MT outputs have been generated by
mBART50 (Tang et al., 2021), and Ru→En as zero-
shot, since we used neither bilingual parallel data
nor TQE data for them.7

4.2 Synthetic TQE Data
To generate synthetic TQE data, we used the bilin-
gual parallel corpora8 officially provided by the or-
ganizers of WMT21 TQE Task 2 and M2M-100
(Fan et al., 2021).9 Table 2 summarizes their sizes
and our groupings.

Group Language pair Bilingual Synthetic

High
En–De 23,360,441 22,701,552
En–Zh 20,305,268 16,201,271

Medium
Ro–En 3,901,501 3,027,243
Et–En 877,769 855,680

Low
Ne–En 498,271 166,893
Si–En 646,766 570,770

Table 2: Numbers of sentence pairs in the bilingual
parallel corpora and the synthetic TQE data.

Before generating machine-translated texts, we
fine-tuned M2M-100 for each translation direction
on a sample from the bilingual parallel corpora: 1M,
200k, and 50k sentence pairs for the high-, medium-,
and low-resource language pairs, respectively; in
each pair, both source and target sides were com-
posed of up to 128 sub-word tokens. Fine-tuning
of M2M-100 on the sample was carried out with
HuggingFace Transformers (Wolf et al., 2020), the

AdamW optimizer (Loshchilov and Hutter, 2019)
(β1 = 0.9, β2 = 0.999, ϵ = 1 × 10−8), batches
consisting of 16 sentence pairs, and a learning rate
of 3 × 10−5. This process was terminated after one
epoch for each of the high- and medium-resource
language pairs and after three epochs for each of the
low-resource language pairs. After deduplication,
we then decoded the source side of the entire paral-
lel corpora, using beam search with a beam size of
5 and length penalty of 1.0. After decoding, we dis-
carded MT outputs containing more than 128 sub-
word tokens together with their corresponding par-
allel sentences. The numbers of retained sentence
pairs are listed in the “Synthetic” column in Table 2.

To determine the pseudo-quality labels, we first
obtained the word embeddings using INFOXLMBase
(Chi et al., 2021),10 inputting a concatenation of MT
output T ′, source text S, and reference translation
T in this order with an [SEP] token as the delim-
iter, and determining the embedding for each word
by average pooling of its sub-word embeddings.11

Then, we determined word alignment by solving OT
using OTAlign (Arase et al., 2023);12 more specifi-
cally, we used the entropy-regularized OT (Cuturi,
2013) formulated by Equation (9), which is superior
to Equation (2) (Arase et al., 2023).

P = argmin
P ′∈U(a,b)

∑
i,j

Ci,jP
′
i,j − ξH(P ′), (9)

where H(·) is the entropy of a candidate matrix, and
ξ is a weight for the regularizer, which we set to
0.1. We used a uniform distribution as the mass for
each word, i.e., a and b, and took the cosine dis-
tance between contextual word embeddings13 as the
cost function, i.e., Ci,j . In contrast, we optimized
the two hyper-parameters of OT for each transla-
tion direction through a grid search for λm in the
range [0.02, 1.00] with a step size of 0.02 and λ in
the range [0.01, 0.99] with a step size of 0.01, us-
ing the MLQE-PE development data and computing
the MCC between the OT-based hard labels and the

4https://github.com/pytorch/fairseq
5https://github.com/facebookresearch/mlqe/tree/main/nmt_models
6English-to-Czech (En→Cs), English-to-Japanese (En→Ja), Khmer-to-English (Km→En), and Pashto-to-English (Ps→En).
7Bilingual parallel data for these language pairs could have been used for pre-training the MT models and multilingual encoders.
8https://www.statmt.org/wmt21/quality-estimation-task.html
9https://huggingface.co/facebook/m2m100_418M

10https://huggingface.co/microsoft/infoxlm-base
11Some decisions were made through a preliminary experiment. See Appendix A for details.
12https://github.com/yukiar/OTAlign
131− cos(h′

i, hj), which has the range [0.0, 2.0], where h′
i and hj are word embeddings of t′i and tj , respectively.
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gold-standard labels. Table 3 presents the values for
λm and λ that achieved the highest MCC.

Translation direction λm λ
MCC

Dev Syn

En→De 0.02 0.37 0.870 0.805
En→Zh 0.24 0.51 0.833 0.698
Ro→En 0.14 0.33 0.876 0.819
Et→En 0.02 0.35 0.804 0.776
Ne→En 0.14 0.37 0.680 0.777
Si→En 0.02 0.36 0.699 0.849

Table 3: Hyper-parameters that maximize MCC for
the MLQE-PE development data (Dev), and MCC
between OT-based and TER-based hard labels for
the synthetic TQE data (Syn).

Finally, we determined the pseudo-quality la-
bels with the optimal λm and λ as explained in
Section 3. Table 3 also lists the MCCs between
OT-based hard labels in our synthetic TQE data,
derived with the optimized hyper-parameters, and
TER-based pseudo-quality labels (Section 4.4).

4.3 TQE Model Training

We trained TQE models using OpenKiWi (Ke-
pler et al., 2019) with the necessary modifications
for training regression models and using multiple
GPUs. As the backbone pre-trained multilingual en-
coder, we used INFOXLMLarge.14 For each configu-
ration, we trained a single multi-directional model to
deal with all of the test sets, using the training data
for six translation directions together: the synthetic
TQE data for pre-training (Section 4.2) and manu-
ally labeled MLQE-PE training data (Section 4.1)
for fine-tuning.

Pre-training was carried out for one epoch with
the Adam optimizer (β1 = 0.9, β2 = 0.999, ϵ =
1 × 10−8), batches consisting of 2, 048 sentence
pairs, and a learning rate of 1 × 10−5. To accom-
modate the imbalanced distribution of labels, we
weighted the “BAD” labels as 3.0 times the “OK”
labels when computing the cross-entropy loss for the
classification models. When evaluating the regres-
sion models, we computed the MCC by thresholding
the predicted value at 0.5.

We then fine-tuned the models on the MLQE-
PE training data. When fine-tuning a regression
model on the manually produced data with the TER-
based hard labels, i.e., the MLQE-PE training data,
the “BAD” and “OK” labels were casted as 0.0
and 1.0, respectively. We used Adam (β1 = 0.9,
β2 = 0.999, ϵ = 1 × 10−8), batches consisting of
64 sentence pairs, and a learning rate of 1 × 10−5.
During ten epochs, the model was saved every after
0.5 epochs, and the model that maximized the MCC
for the MLQE-PE development data was selected
from the 20 checkpoints. For the regression models,
we also performed a grid search for the threshold in
the range [0.1, 0.9] with a step size of 0.1, using the
MLQE-PE development data, and used the results to
convert the predictions into binary labels.

4.4 Baseline Methods

We compared our method against the models trained
on the synthetic data with pseudo-quality labels de-
termined by the TER toolkit as in MLQE-PE.15 To
re-confirm the impact of pre-training on synthetic
TQE data, we also trained classification and regres-
sion models only on the MLQE-PE training data.

4.5 Main Results

For each model, we report on the average MCC
over three training runs with different random seeds.
To confirm the statistical significance of the differ-
ence between two sets of predictions, we used paired
bootstrap resampling (Koehn, 2004) with 30, 000
sub-samples (10, 000 for each random seed) and a
significance level of 0.05.

Tables 4 and 5 summarize the MCCs for the
non-zero-shot translation directions in Test20 and
Test21, respectively, where models #1 and #6 based
on TER-based pseudo-quality labels and model #4
based only on manually created training data are
the baselines. The upper block presents the re-
sults in the pseudo-supervised setting, i.e., models
trained only on the synthetic TQE data. The model
trained on OT-based soft labels (#3) outperformed
those trained on either TER-based (#1) or OT-based
hard labels (#2). The lower block shows the results
of fine-tuned models, i.e., those directly trained or
fine-tuned on the MLQE-PE training data. In this
setting, the model pre-trained on OT-based soft la-

14https://huggingface.co/microsoft/infoxlm-large
15https://github.com/deep-spin/qe-corpus-builder
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ID Arch. PT FT
Test20

En→De En→Zh Ro→En Et→En Ne→En Si→En

#1 Class. TER-Hard — 0.196 0.163 0.240 0.307 0.320 0.372
#2 Class. OT-Hard — 0.208 0.154 0.252 0.312 0.344 0.374
#3 Reg. OT-Soft — 0.258(1) 0.196(1) 0.301(1) 0.358(1) 0.356 0.413(1)

#4 Class. — TER-Hard 0.449 0.380 0.623 0.552 0.511 0.552
#5 Reg. — TER-Hard 0.439 0.373 0.650(4) 0.537 0.510 0.550
#6 Class. TER-Hard TER-Hard 0.485(4) 0.398 0.620 0.577(4) 0.521 0.571
#7 Class. OT-Hard TER-Hard 0.486(4) 0.397 0.615 0.571(4) 0.518 0.564
#8 Reg. OT-Soft TER-Hard 0.491(4) 0.409(4) 0.634 0.569 0.530(4) 0.571

Table 4: MCCs for the non-zero-shot translation directions in Test20: “Arch.” indicates the model archi-
tecture while “PT” and “FT” denote the type of labels used for pre-training and fine-tuning, respectively.
Bold signifies the highest value in each block and translation direction. Values with superscripts (deleted)
are statistically significantly higher (lower) than that for the system with the indicated IDs.

ID Arch. PT FT
Test21

En→De En→Zh Ro→En Et→En Ne→En Si→En

#1 Class. TER-Hard — 0.217 0.129 0.248 0.302 0.322 0.348
#2 Class. OT-Hard — 0.236(1) 0.117 0.258 0.316 0.346 0.355
#3 Reg. OT-Soft — 0.282(1) 0.151(1) 0.304(1) 0.362(1) 0.366(1) 0.406(1)

#4 Class. — TER-Hard 0.434 0.320 0.636 0.580 0.540 0.558
#5 Reg. — TER-Hard 0.406 0.316 0.657(4) 0.570 0.537 0.554
#6 Class. TER-Hard TER-Hard 0.496(4) 0.329 0.626 0.605(4) 0.551 0.586(4)

#7 Class. OT-Hard TER-Hard 0.486(4) 0.322 0.629 0.591(6) 0.544 0.571
#8 Reg. OT-Soft TER-Hard 0.485(4) 0.332 0.643(6) 0.596 0.555 0.582(4)

Table 5: MCCs for the non-zero-shot translation directions in Test21.

bels (#8) achieved a higher MCC than the TER-
based baseline (#6) for seven out of the 12 test sets.
As in previous work (Liu et al., 2017; Lee, 2020;
Tuan et al., 2021; Yang et al., 2023), pre-training
on the synthetic TQE data brought a consistent im-
provement over the baseline (#4). However, only
for Ro→En, the regression model with the same
supervised signals (#5) significantly outperformed
the classification-based baseline (#4) and even sur-
passed all models with pre-training. This suggests
some peculiar characteristics of the MLQE-PE train-
ing data for this translation direction.

The MCCs for the zero-shot translation direc-
tions in Test20 and Test21 are presented in Table 6.
There were similar trends as for the non-zero-shot
translation directions. The synthetic TQE data with
OT-based soft labels (#3) gave the best results in
the pseudo-supervised setting. For the settings with

fine-tuning, the MCCs for all translation directions
benefited from supervised signals for other transla-
tion directions. They were further improved by pre-
training, especially with OT-based soft labels (#8)

5 Analyses

We investigated the quality of the synthetic TQE
data and the potential utility of OT-based labels for
manually post-edited data. We used the non-zero-
shot translation directions of Test20 because the
post-edited texts for the MT outputs are available,
enabling contrastive experiments.

5.1 Impact of Quality of Synthetic TQE Data
As mentioned in Section 2.1, bilingual parallel cor-
pora used as the source of synthetic TQE data may
include sentence pairs that are less likely to be trans-
lations. Pseudo-quality labels derived from seman-
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ID Arch. PT FT
Test20 Test21

Ru→En En→Cs En→Ja Km→En Ps→En Ru→En

#1 Class. TER-Hard — 0.132 0.224 0.086 0.177 0.234 0.171
#2 Class. OT-Hard — 0.147 0.238 0.101(1) 0.201(1) 0.233 0.172
#3 Reg. OT-Soft — 0.156(1) 0.265(1) 0.131(1) 0.311(1) 0.263(1) 0.173

#4 Class. — TER-Hard 0.280 0.326 0.148 0.444 0.348 0.313
#5 Reg. — TER-Hard 0.286 0.301 0.154 0.451 0.362 0.308
#6 Class. TER-Hard TER-Hard 0.282 0.379(4) 0.170 0.469(4) 0.368 0.340
#7 Class. OT-Hard TER-Hard 0.289 0.381(4) 0.169 0.473(4) 0.374(4) 0.332
#8 Reg. OT-Soft TER-Hard 0.287 0.374(4) 0.190(4) 0.480(4) 0.381(4) 0.334

Table 6: MCCs for the zero-shot translation directions in Test20 and Test21.

tically isolated pairs of machine-translated text and
reference translation could mislead the pre-training
of models. To gauge the impact of the quality of
parallel data, as well as the quality of synthetic TQE
data, we conducted a corpus filtering experiment.

For each pair of sentences in the given bilin-
gual parallel corpora, we computed the cosine simi-
larity between their corresponding sentence embed-
dings determined by LaBSE (Feng et al., 2022),16

and then filtered out pairs for which the similarity
was lower than a pre-determined threshold. Figure 2
depicts the percentages of retained sentence pairs,
depending on the threshold. We found that the Ro–
En parallel corpus contained lots of noise, with ap-
proximately 40% of sentence pairs having a similar-
ity lower than 0.5.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Threshold

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
m

ai
ni

ng
 se

nt
en

ce
 p

ai
rs

 [%
]

En->De
En->Zh
Ro->En
Et->En
Ne->En
Si->En
All

Figure 2: Percentages of remaining sentence pairs
after the LaBSE-based filtering.

From the filtered bilingual parallel data, we
generated synthetic TQE data and trained TQE mod-
els as described in Section 4.3. Finally, we evaluated
the model accuracy in terms of MCC, using the non-
zero-shot translation directions in Test20.

Table 7 presents the results. In the pseudo-
supervised setting, a more aggressive filtering of
the parallel corpus produced a higher MCC, sug-
gesting that the quality of synthetic TQE data mat-
ters. Among the six translation directions, Ro→En
benefited the most; this is to be expected from the
statistics shown in Figure 2. In contrast, when fine-
tuning was carried out after pre-training, the impact
of pre-training, i.e., the gain over the directly super-
vised model (#5), was often diminished. This im-
plies that the quantity of synthetic TQE data matters
when the quality can be guaranteed by fine-tuning
on manually produced training data. Besides a slight
improvement with corpus filtering, pre-training still
had a negative impact on Ro→En, i.e., models #8a
and #8b underperformed model #5. In-depth analy-
ses of the MLQE-PE training data of this translation
direction is left for future work.

5.2 Fine-tuning on OT-based Labels
Figure 1 illustrated our motivation for obtaining
pseudo-labels of better quality, especially for syn-
thetic TQE data. In this section, we examine
whether OT also brings some advantages for the au-
thentic data derived through manual PE.

To this end, we first determined the quality la-
bels for the MLQE-PE training data in the same
manner as for the synthetic TQE data (Section 4.2).
We then fine-tuned the pre-trained models (#2 and

16https://huggingface.co/sentence-transformers/LaBSE
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ID Arch.
Synthetic Data

FT
Test20

Label Th Size En→De En→Zh Ro→En Et→En Ne→En Si→En

#3 Reg. OT-Soft — 43.5M — 0.258 0.196 0.301 0.358 0.356 0.413
#3a Reg. OT-Soft 0.5 41.2M — 0.298(3) 0.199 0.426(3) 0.351 0.379(3) 0.414
#3b Reg. OT-Soft 0.7 38.8M — 0.305(3) 0.205 0.448(3) 0.363 0.384(3) 0.425
#3c Reg. OT-Soft 0.9 13.4M — 0.316(3) 0.241(3) 0.489(3) 0.392(3) 0.368 0.410

#8 Reg. OT-Soft — 43.5M TER-Hard 0.491 0.409 0.634 0.569 0.530 0.571
#8a Reg. OT-Soft 0.5 41.2M TER-Hard 0.488 0.407 0.641 0.571 0.527 0.571
#8b Reg. OT-Soft 0.7 38.8M TER-Hard 0.489 0.410 0.641 0.573 0.527 0.568
#8c Reg. OT-Soft 0.9 13.4M TER-Hard 0.484 0.401 0.637 0.565 0.519 0.555

#5 Reg. —- — — TER-Hard 0.439 0.373 0.650 0.537 0.510 0.550

Table 7: MCCs for the non-zero-shot translation directions in Test20 with several threshold values (“Th”) for
the similarity of parallel sentences: “Size” denotes the number of sentence pairs having a similarity higher
than or equal to the threshold.

ID Arch. PT FT
Test20

En→De En→Zh Ro→En Et→En Ne→En Si→En

#4 Class. — TER-Hard 0.449 0.380 0.623 0.552 0.511 0.552
#5 Reg. — TER-Hard 0.439 0.373 0.650(4) 0.537 0.510 0.550
#4’ Class. — OT-Hard 0.431 0.334(4) 0.609 0.514(4) 0.462(4) 0.506(4)

#5’ Reg. — OT-Soft 0.413(4) 0.326(4) 0.626 0.484(4) 0.443(4) 0.482(4)

#6 Class. TER-Hard TER-Hard 0.485(4) 0.398 0.620 0.577(4) 0.521 0.571
#7 Class. OT Hard TER-Hard 0.486(4) 0.397 0.615 0.571(4) 0.518 0.564
#8 Reg. OT-Soft TER-Hard 0.491(4) 0.409(4) 0.634 0.569 0.530(4) 0.571
#7’ Class. OT-Hard OT-Hard 0.464 0.350(4,6) 0.589(4,6) 0.523(4,6) 0.467(4,6) 0.508(4,6)

#8’ Reg. OT-Soft OT-Soft 0.444(6) 0.344(4,6) 0.633 0.503(4,6) 0.453(4,6) 0.491(4,6)

Table 8: MCCs with TER-based hard labels for the non-zero-shot translation directions in Test20.

#3) using these labels, as described in Section 4.3,
and directly trained the models on them, as de-
scribed in Section 4.4.

Table 8 presents the results for Test20. Irre-
spective of whether the pre-training was carried out,
the models trained or fine-tuned on the OT-based
pseudo-quality labels (#4’ to #8’) resulted in lower
MCCs than the corresponding models trained on
TER-based hard labels (#4 to #8). We consider this
result to be natural because the gold-standard labels
have been determined by the TER toolkit.

5.3 Predicting OT-based Labels

We also evaluated the predicted results with respect
to the OT-based labels for Test20, with the labels de-
termined by OT in the same manner as for the syn-
thetic TQE data (Section 4.2).

The MCCs with OT-based hard labels are sum-
marized in Table 9. Compared with those in Table 8,
the MCCs of the TER-based models (#4 to #8) were
lower, except for the pseudo-supervised models (#4
and #5) for Et→En, while the MCCs of the OT-
based models (#4’ to #8’) were higher. For all trans-
lation directions, except for En→De, the models
trained or fine-tuned on OT-based labels scored sig-
nificantly higher MCCs than those based on TER-
based labels. This also revealed that pre-training
has little gain for all translation directions, implying
that the distributions of OT-based labels for the syn-
thetic TQE data and PE-derived data (see Figure 1)
are similar.

We also evaluated the accuracy of the regres-
sion models against OT-based soft labels with Pear-
son’s product-moment correlation coefficient (Pear-
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ID Arch. PT FT
Test20

En→De En→Zh Ro→En Et→En Ne→En Si→En

#4 Class. — TER-Hard 0.437 0.344 0.589 0.555 0.497 0.521
#5 Reg. — TER-Hard 0.431 0.334 0.622(4) 0.545 0.503 0.519
#4’ Class. — OT-Hard 0.446 0.384(4) 0.647(4) 0.600(4) 0.599(4) 0.637(4)

#5’ Reg. — OT-Soft 0.430 0.376(4) 0.672(4) 0.577(4) 0.587(4) 0.623(4)

#6 Class. TER-Hard TER-Hard 0.454 0.356 0.575 0.562 0.493 0.518
#7 Class. OT-Hard TER-Hard 0.472(4) 0.367 0.585 0.564 0.501 0.526
#8 Reg. OT-Soft TER-Hard 0.488(4,6) 0.381(4,6) 0.603(6) 0.565 0.516 0.533
#7’ Class. OT-Hard OT-Hard 0.483(4,6) 0.406(4,6) 0.629(4,6) 0.610(4,6) 0.608(4,6) 0.643(4,6)

#8’ Reg. OT-Soft OT-Soft 0.468 0.401(4,6) 0.679(4,6) 0.594(4,6) 0.601(4,6) 0.631(4,6)

Table 9: MCCs with OT-based hard labels for the non-zero-shot translation directions in Test20.

ID Arch. PT FT
Test20

En→De En→Zh Ro→En Et→En Ne→En Si→En

#5 Reg. — TER-Hard 0.505 0.389 0.697 0.622 0.625 0.651
#5’ Reg. — OT-Soft 0.581(5) 0.486(5) 0.773(5) 0.703(5) 0.714(5) 0.751(5)

#8 Reg. OT-Soft TER-Hard 0.558 0.444 0.675 0.653 0.647 0.666
#8’ Reg. OT-Soft OT-Soft 0.637(8) 0.540(8) 0.779(8) 0.734(8) 0.740(8) 0.766(8)

Table 10: Pearson’s r with OT-based soft labels for the non-zero-shot translation directions in Test20.

son’s r), performing a statistical significance test-
ing in the same manner as for the MCCs. Table 10
demonstrates that training or fine-tuning on OT-
based labels leads to higher correlation. Unlike the
results for predicting hard labels, pre-training con-
sistently improved the correlation, irrespective of
the types of labels used for fine-tuning, with the ex-
ception of “TER-Hard” for Ro→En.

These results confirm that the labels for fine-
tuning should be consistent with those to be pre-
dicted, as discussed by Yang et al. (2023).

6 Conclusion

This paper has described the application of optimal
transport (OT) to determine pseudo-quality labels
in synthetic data for word-level TQE. Through ex-
periments, we confirmed that OT-based labels bet-
ter guide pre-training on large quantities of syn-
thetic TQE data and result in higher accuracy
in word-level TQE tasks, as measured by MCC.
Our method achieved consistently better results for
pseudo-supervised settings and in zero-shot transla-
tion directions, encouraging future applications to
less-studied translation directions.

In future work, we plan to investigate better and
finer-grained specifications of the hyper-parameters
for OT. While we determined a single value of λm,
the upper bound of the mass to be transported, for
each translation direction, we consider it should be
possible to approximate this value for each sentence
pair. We have only evaluated our method for pre-
dicting target labels; doing so for source labels is
another avenue for extension (Appendix B).
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A Preliminary Investigation

In our preliminary experiment, we first selected a
pre-trained multilingual encoder to obtain contex-
tual word embeddings for OT, using the MLQE-PE
development data and varying λm and λ in the same
manner as described in Section 4.2. We also com-
pared two encoding patterns. Table 11 summarizes
the MCCs between OT-based hard labels and TER-
based labels for the MLQE-PE development data.
Among the four candidate encoders, INFOXLMBase
achieved consistently high MCCs across all transla-
tion directions. Interestingly, “Large” models con-
sistently underperformed their “Base” counterpart.
We also confirmed that referring to the source text
leads to higher MCCs in general.

Then, we investigated the ordering of the
source text S, its MT output T ′, and its post-
edited version R as the input for INFOXLMBase,
even though R must be replaced with an indepen-
dently produced human reference when generating
synthetic TQE data. Table 12 presents the results.
Among the six permutations of these three elements,
(S, T ′, R) resulted in the highest MCC in average,
but other permutations also achieved comparable
MCCs. Assuming that focusing on T ′ would be ef-
fective for synthetic data, we used (T ′, S,R) in our
experiment. This experiment reconfirmed the use-
fulness of the source text S and revealed that deter-
mining pseudo-labels using only the source text and
MT output, i.e., (S, T ′), is infeasible.

Figure 3 visualizes the sensitivity of the two
hyper-parameters λm and λ with INFOXLMBase and
the (T ′, S,R) layout for its input.

Figure 4 depicts that the soft labels determined
by OT are highly correlated with the TER-based bi-
nary labels. Nevertheless, we consider the conti-
nuity of the labels and some discrepancies to im-
prove the prediction; discrepancies include high val-
ues with “BAD” label, such as those illustrated in
Figure 1, and potentially low values with “OK” label
for identical but unrelated word correspondences,
such as articles for different nominal elements.

B Label Types to Predict

In the MLQE-PE dataset, word-level quality labels
are assigned to both the words and gaps between
each pair of adjacent words. The former, the so-
called target label, indicates the quality of each word

in the MT output, where “BAD” indicates that the
word needs to be deleted or substituted with an-
other one. On the other hand, the latter, the so-
called gap label, represents whether some words
must be inserted in the gap between the adjacent
words (“BAD”) or not (“OK”).

We consider the task of predicting gap labels
itself is arguable, because the correct position of a
missing word is not necessarily unique: while the
positions of missing articles are deterministic, there
are multiple possible solutions for inserting untrans-
lated words and phrases. Please refer to ISO/TC37
(2024) and the MQM-based TQE task tackled at
WMT since 2022 (Zerva et al., 2022) for further dis-
cussion of the inutility of gap labels for translations
in the translation production workflow.

C Computation Time

Table 13 summarizes the computation time in GPU
hours for each process.

D Limitations

Our experiment covered only 11 translation direc-
tions, and our results do not guarantee the same con-
clusions on other translation directions. As demon-
strated by our experiments, the accuracy can be sub-
stantially different even for the same translation di-
rection (see Tables 4 and 5). This implies that the
difficulty of the task depends on the characteristics
of the test data, the MT systems used for generat-
ing MT outputs, and human annotators recruited for
manual PE.

All experiments were carried out with up
to eight NVIDIA Tesla V100 GPUs. If we
had a more powerful environment, higher accu-
racy could be achieved, for instance, by employ-
ing larger pre-trained multilingual encoders, such
as XLM-RoBERTaXL and XLM-RoBERTaXXL

(Goyal et al., 2021), larger batch sizes, longer train-
ing, and ensembling multiple models.

E Ethics Statement

As shown in our experiments, the predicted labels
do not perfectly correlate with the gold-standard la-
bels obtained through manual PE. Therefore, such
predicted labels could mislead potential users. This
is not specific to our work, but common in the TQE
task.
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Backbone encoder Input En→De En→Zh Ro→En Et→En Ne→En Si→En

XLM-RoBERTaBase (T ′, R) 0.855 0.802 0.864 0.796 0.671 0.685
XLM-RoBERTaBase (T ′, S,R) 0.854 0.771 0.881 0.801 0.687 0.693
XLM-RoBERTaLarge (T ′, R) 0.650 0.682 0.655 0.639 0.562 0.579
XLM-RoBERTaLarge (T ′, S,R) 0.669 0.700 0.702 0.665 0.606 0.610
INFOXLMBase (T ′, R) 0.865 0.829 0.869 0.796 0.677 0.689
INFOXLMBase (T ′, S,R) 0.870 0.833 0.876 0.804 0.680 0.699
INFOXLMLarge (T ′, R) 0.713 0.710 0.743 0.704 0.628 0.640
INFOXLMLarge (T ′, S,R) 0.752 0.760 0.772 0.714 0.645 0.654

Table 11: MCCs between OT-based hard labels and TER-based labels for the MLQE-PE development data
with different pre-trained multilingual encoders: S, T ′, and R denote the source text, its MT output, and its
post-edited version, respectively. Bold and underline indicate the highest and second-highest values, respec-
tively.

Backbone encoder Input En→De En→Zh Ro→En Et→En Ne→En Si→En

INFOXLMBase

(S, T ′) 0.052 0.048 0.167 0.042 0.032 0.077

(T ′, R) 0.865 0.829 0.869 0.796 0.677 0.689
(R, T ′) 0.862 0.826 0.868 0.796 0.680 0.688

(S, T ′, R) 0.866 0.838 0.873 0.808 0.686 0.705
(S,R, T ′) 0.866 0.838 0.875 0.805 0.684 0.702
(T ′, S,R) 0.870 0.833 0.876 0.804 0.680 0.699
(R,S, T ′) 0.867 0.835 0.874 0.802 0.680 0.697
(T ′, R, S) 0.865 0.839 0.875 0.811 0.679 0.699
(R, T ′, S) 0.869 0.835 0.871 0.805 0.682 0.697

Table 12: MCCs for the MLQE-PE development data with different orderings of S, T ′, and R.

Step En→De En→Zh Ro→En Et→En Ne→En Si→En

Generating synthetic TQE data
Fine-tuning M2M-100 9 10 2 2 2 2
Translation with M2M-100 963 856 173 31 6 7
OT-based labeling 103 80 15 4 1 2

TQE model training
Pre-training with TER-based hard labels 372
Pre-training with OT-based hard labels 372
Pre-training with OT-based soft labels 366
Fine-tuning a classification model 5
Fine-tuning a regression model 5
Direct training a classification model 5
Direct training a regression model 5

Table 13: GPU hours spent for each phase of TQE model training.
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Figure 3: MCC for the MLQE-PE development data with different values for λm and λ.
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Figure 4: Distribution of OT-based soft labels for each of the {“OK,” “BAD”} labels in the MLQE-PE
development data, determined by the optimal λm in Table 3: the dark bar indicates the median.
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