Correct Metadata for
Abstract
In this paper, we present a high-performing model for Arabic stance detection on the STANCEEVAL2024 shared task part ofARABICNLP2024. Our model leverages ARABERTV1; a pre-trained Arabic language model, within a single-task learning framework. We fine-tuned the model on stance detection data for three specific topics: COVID19 vaccine, digital transformation, and women empowerment, extracted from the MAWQIF corpus. In terms of performance, our model achieves 73.30 macro-F1 score for women empowerment, 70.51 for digital transformation, and 64.55 for COVID-19 vaccine detection.- Anthology ID:
- 2024.arabicnlp-1.100
- Volume:
- Proceedings of the Second Arabic Natural Language Processing Conference
- Month:
- August
- Year:
- 2024
- Address:
- Bangkok, Thailand
- Editors:
- Nizar Habash, Houda Bouamor, Ramy Eskander, Nadi Tomeh, Ibrahim Abu Farha, Ahmed Abdelali, Samia Touileb, Injy Hamed, Yaser Onaizan, Bashar Alhafni, Wissam Antoun, Salam Khalifa, Hatem Haddad, Imed Zitouni, Badr AlKhamissi, Rawan Almatham, Khalil Mrini
- Venues:
- ArabicNLP | WS
- SIG:
- SIGARAB
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 842–846
- Language:
- URL:
- https://aclanthology.org/2024.arabicnlp-1.100/
- DOI:
- 10.18653/v1/2024.arabicnlp-1.100
- Bibkey:
- Cite (ACL):
- Anas Melhem, Osama Hamed, and Thaer Sammar. 2024. TAO at StanceEval2024 Shared Task: Arabic Stance Detection using AraBERT. In Proceedings of the Second Arabic Natural Language Processing Conference, pages 842–846, Bangkok, Thailand. Association for Computational Linguistics.
- Cite (Informal):
- TAO at StanceEval2024 Shared Task: Arabic Stance Detection using AraBERT (Melhem et al., ArabicNLP 2024)
- Copy Citation:
- PDF:
- https://aclanthology.org/2024.arabicnlp-1.100.pdf
Export citation
@inproceedings{melhem-etal-2024-tao, title = "{TAO} at {S}tance{E}val2024 Shared Task: {A}rabic Stance Detection using {A}ra{BERT}", author = "Melhem, Anas and Hamed, Osama and Sammar, Thaer", editor = "Habash, Nizar and Bouamor, Houda and Eskander, Ramy and Tomeh, Nadi and Abu Farha, Ibrahim and Abdelali, Ahmed and Touileb, Samia and Hamed, Injy and Onaizan, Yaser and Alhafni, Bashar and Antoun, Wissam and Khalifa, Salam and Haddad, Hatem and Zitouni, Imed and AlKhamissi, Badr and Almatham, Rawan and Mrini, Khalil", booktitle = "Proceedings of the Second Arabic Natural Language Processing Conference", month = aug, year = "2024", address = "Bangkok, Thailand", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2024.arabicnlp-1.100/", doi = "10.18653/v1/2024.arabicnlp-1.100", pages = "842--846", abstract = "In this paper, we present a high-performing model for Arabic stance detection on the STANCEEVAL2024 shared task part ofARABICNLP2024. Our model leverages ARABERTV1; a pre-trained Arabic language model, within a single-task learning framework. We fine-tuned the model on stance detection data for three specific topics: COVID19 vaccine, digital transformation, and women empowerment, extracted from the MAWQIF corpus. In terms of performance, our model achieves 73.30 macro-F1 score for women empowerment, 70.51 for digital transformation, and 64.55 for COVID-19 vaccine detection." }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="melhem-etal-2024-tao"> <titleInfo> <title>TAO at StanceEval2024 Shared Task: Arabic Stance Detection using AraBERT</title> </titleInfo> <name type="personal"> <namePart type="given">Anas</namePart> <namePart type="family">Melhem</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Osama</namePart> <namePart type="family">Hamed</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Thaer</namePart> <namePart type="family">Sammar</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2024-08</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of the Second Arabic Natural Language Processing Conference</title> </titleInfo> <name type="personal"> <namePart type="given">Nizar</namePart> <namePart type="family">Habash</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Houda</namePart> <namePart type="family">Bouamor</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ramy</namePart> <namePart type="family">Eskander</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Nadi</namePart> <namePart type="family">Tomeh</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ibrahim</namePart> <namePart type="family">Abu Farha</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ahmed</namePart> <namePart type="family">Abdelali</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Samia</namePart> <namePart type="family">Touileb</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Injy</namePart> <namePart type="family">Hamed</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yaser</namePart> <namePart type="family">Onaizan</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Bashar</namePart> <namePart type="family">Alhafni</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Wissam</namePart> <namePart type="family">Antoun</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Salam</namePart> <namePart type="family">Khalifa</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hatem</namePart> <namePart type="family">Haddad</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Imed</namePart> <namePart type="family">Zitouni</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Badr</namePart> <namePart type="family">AlKhamissi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Rawan</namePart> <namePart type="family">Almatham</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Khalil</namePart> <namePart type="family">Mrini</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>Association for Computational Linguistics</publisher> <place> <placeTerm type="text">Bangkok, Thailand</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>In this paper, we present a high-performing model for Arabic stance detection on the STANCEEVAL2024 shared task part ofARABICNLP2024. Our model leverages ARABERTV1; a pre-trained Arabic language model, within a single-task learning framework. We fine-tuned the model on stance detection data for three specific topics: COVID19 vaccine, digital transformation, and women empowerment, extracted from the MAWQIF corpus. In terms of performance, our model achieves 73.30 macro-F1 score for women empowerment, 70.51 for digital transformation, and 64.55 for COVID-19 vaccine detection.</abstract> <identifier type="citekey">melhem-etal-2024-tao</identifier> <identifier type="doi">10.18653/v1/2024.arabicnlp-1.100</identifier> <location> <url>https://aclanthology.org/2024.arabicnlp-1.100/</url> </location> <part> <date>2024-08</date> <extent unit="page"> <start>842</start> <end>846</end> </extent> </part> </mods> </modsCollection>
%0 Conference Proceedings %T TAO at StanceEval2024 Shared Task: Arabic Stance Detection using AraBERT %A Melhem, Anas %A Hamed, Osama %A Sammar, Thaer %Y Habash, Nizar %Y Bouamor, Houda %Y Eskander, Ramy %Y Tomeh, Nadi %Y Abu Farha, Ibrahim %Y Abdelali, Ahmed %Y Touileb, Samia %Y Hamed, Injy %Y Onaizan, Yaser %Y Alhafni, Bashar %Y Antoun, Wissam %Y Khalifa, Salam %Y Haddad, Hatem %Y Zitouni, Imed %Y AlKhamissi, Badr %Y Almatham, Rawan %Y Mrini, Khalil %S Proceedings of the Second Arabic Natural Language Processing Conference %D 2024 %8 August %I Association for Computational Linguistics %C Bangkok, Thailand %F melhem-etal-2024-tao %X In this paper, we present a high-performing model for Arabic stance detection on the STANCEEVAL2024 shared task part ofARABICNLP2024. Our model leverages ARABERTV1; a pre-trained Arabic language model, within a single-task learning framework. We fine-tuned the model on stance detection data for three specific topics: COVID19 vaccine, digital transformation, and women empowerment, extracted from the MAWQIF corpus. In terms of performance, our model achieves 73.30 macro-F1 score for women empowerment, 70.51 for digital transformation, and 64.55 for COVID-19 vaccine detection. %R 10.18653/v1/2024.arabicnlp-1.100 %U https://aclanthology.org/2024.arabicnlp-1.100/ %U https://doi.org/10.18653/v1/2024.arabicnlp-1.100 %P 842-846
Markdown (Informal)
[TAO at StanceEval2024 Shared Task: Arabic Stance Detection using AraBERT](https://aclanthology.org/2024.arabicnlp-1.100/) (Melhem et al., ArabicNLP 2024)
- TAO at StanceEval2024 Shared Task: Arabic Stance Detection using AraBERT (Melhem et al., ArabicNLP 2024)
ACL
- Anas Melhem, Osama Hamed, and Thaer Sammar. 2024. TAO at StanceEval2024 Shared Task: Arabic Stance Detection using AraBERT. In Proceedings of the Second Arabic Natural Language Processing Conference, pages 842–846, Bangkok, Thailand. Association for Computational Linguistics.