DRU at WojoodNER 2024: A Multi-level Method Approach

Hadi Hamoud, Chadi Chakra, Nancy Hamdan, Osama Mraikhat, Doha Albared, Fadi Zaraket


Abstract
In this paper, we present our submission for the WojoodNER 2024 Shared Tasks addressing flat and nested sub-tasks (1, 2). We experiment with three different approaches. We train (i) an Arabic fine-tuned version of BLOOMZ-7b-mt, GEMMA-7b, and AraBERTv2 on multi-label token classifications task; (ii) two AraBERTv2 models, on main types and sub-types respectively; and (iii) one model for main types and four for the four sub-types. Based on the Wojood NER 2024 test set results, the three fine-tuned models performed similarly with AraBERTv2 favored (F1: Flat=.8780 Nested=.9040). The five model approach performed slightly better (F1: Flat=.8782 Nested=.9043).
Anthology ID:
2024.arabicnlp-1.104
Volume:
Proceedings of The Second Arabic Natural Language Processing Conference
Month:
August
Year:
2024
Address:
Bangkok, Thailand
Editors:
Nizar Habash, Houda Bouamor, Ramy Eskander, Nadi Tomeh, Ibrahim Abu Farha, Ahmed Abdelali, Samia Touileb, Injy Hamed, Yaser Onaizan, Bashar Alhafni, Wissam Antoun, Salam Khalifa, Hatem Haddad, Imed Zitouni, Badr AlKhamissi, Rawan Almatham, Khalil Mrini
Venues:
ArabicNLP | WS
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
874–879
Language:
URL:
https://aclanthology.org/2024.arabicnlp-1.104
DOI:
10.18653/v1/2024.arabicnlp-1.104
Bibkey:
Cite (ACL):
Hadi Hamoud, Chadi Chakra, Nancy Hamdan, Osama Mraikhat, Doha Albared, and Fadi Zaraket. 2024. DRU at WojoodNER 2024: A Multi-level Method Approach. In Proceedings of The Second Arabic Natural Language Processing Conference, pages 874–879, Bangkok, Thailand. Association for Computational Linguistics.
Cite (Informal):
DRU at WojoodNER 2024: A Multi-level Method Approach (Hamoud et al., ArabicNLP-WS 2024)
Copy Citation:
PDF:
https://aclanthology.org/2024.arabicnlp-1.104.pdf