DRU at WojoodNER 2024: A Multi-level Method Approach
Hadi Hamoud, Chadi Chakra, Nancy Hamdan, Osama Mraikhat, Doha Albared, Fadi Zaraket
Abstract
In this paper, we present our submission for the WojoodNER 2024 Shared Tasks addressing flat and nested sub-tasks (1, 2). We experiment with three different approaches. We train (i) an Arabic fine-tuned version of BLOOMZ-7b-mt, GEMMA-7b, and AraBERTv2 on multi-label token classifications task; (ii) two AraBERTv2 models, on main types and sub-types respectively; and (iii) one model for main types and four for the four sub-types. Based on the Wojood NER 2024 test set results, the three fine-tuned models performed similarly with AraBERTv2 favored (F1: Flat=.8780 Nested=.9040). The five model approach performed slightly better (F1: Flat=.8782 Nested=.9043).- Anthology ID:
- 2024.arabicnlp-1.104
- Volume:
- Proceedings of The Second Arabic Natural Language Processing Conference
- Month:
- August
- Year:
- 2024
- Address:
- Bangkok, Thailand
- Editors:
- Nizar Habash, Houda Bouamor, Ramy Eskander, Nadi Tomeh, Ibrahim Abu Farha, Ahmed Abdelali, Samia Touileb, Injy Hamed, Yaser Onaizan, Bashar Alhafni, Wissam Antoun, Salam Khalifa, Hatem Haddad, Imed Zitouni, Badr AlKhamissi, Rawan Almatham, Khalil Mrini
- Venues:
- ArabicNLP | WS
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 874–879
- Language:
- URL:
- https://aclanthology.org/2024.arabicnlp-1.104
- DOI:
- 10.18653/v1/2024.arabicnlp-1.104
- Bibkey:
- Cite (ACL):
- Hadi Hamoud, Chadi Chakra, Nancy Hamdan, Osama Mraikhat, Doha Albared, and Fadi Zaraket. 2024. DRU at WojoodNER 2024: A Multi-level Method Approach. In Proceedings of The Second Arabic Natural Language Processing Conference, pages 874–879, Bangkok, Thailand. Association for Computational Linguistics.
- Cite (Informal):
- DRU at WojoodNER 2024: A Multi-level Method Approach (Hamoud et al., ArabicNLP-WS 2024)
- Copy Citation:
- PDF:
- https://aclanthology.org/2024.arabicnlp-1.104.pdf
Export citation
@inproceedings{hamoud-etal-2024-dru, title = "{DRU} at {W}ojood{NER} 2024: A Multi-level Method Approach", author = "Hamoud, Hadi and Chakra, Chadi and Hamdan, Nancy and Mraikhat, Osama and Albared, Doha and Zaraket, Fadi", editor = "Habash, Nizar and Bouamor, Houda and Eskander, Ramy and Tomeh, Nadi and Abu Farha, Ibrahim and Abdelali, Ahmed and Touileb, Samia and Hamed, Injy and Onaizan, Yaser and Alhafni, Bashar and Antoun, Wissam and Khalifa, Salam and Haddad, Hatem and Zitouni, Imed and AlKhamissi, Badr and Almatham, Rawan and Mrini, Khalil", booktitle = "Proceedings of The Second Arabic Natural Language Processing Conference", month = aug, year = "2024", address = "Bangkok, Thailand", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2024.arabicnlp-1.104", doi = "10.18653/v1/2024.arabicnlp-1.104", pages = "874--879", abstract = "In this paper, we present our submission for the WojoodNER 2024 Shared Tasks addressing flat and nested sub-tasks (1, 2). We experiment with three different approaches. We train (i) an Arabic fine-tuned version of BLOOMZ-7b-mt, GEMMA-7b, and AraBERTv2 on multi-label token classifications task; (ii) two AraBERTv2 models, on main types and sub-types respectively; and (iii) one model for main types and four for the four sub-types. Based on the Wojood NER 2024 test set results, the three fine-tuned models performed similarly with AraBERTv2 favored (F1: Flat=.8780 Nested=.9040). The five model approach performed slightly better (F1: Flat=.8782 Nested=.9043).", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="hamoud-etal-2024-dru"> <titleInfo> <title>DRU at WojoodNER 2024: A Multi-level Method Approach</title> </titleInfo> <name type="personal"> <namePart type="given">Hadi</namePart> <namePart type="family">Hamoud</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Chadi</namePart> <namePart type="family">Chakra</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Nancy</namePart> <namePart type="family">Hamdan</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Osama</namePart> <namePart type="family">Mraikhat</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Doha</namePart> <namePart type="family">Albared</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Fadi</namePart> <namePart type="family">Zaraket</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2024-08</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of The Second Arabic Natural Language Processing Conference</title> </titleInfo> <name type="personal"> <namePart type="given">Nizar</namePart> <namePart type="family">Habash</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Houda</namePart> <namePart type="family">Bouamor</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ramy</namePart> <namePart type="family">Eskander</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Nadi</namePart> <namePart type="family">Tomeh</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ibrahim</namePart> <namePart type="family">Abu Farha</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ahmed</namePart> <namePart type="family">Abdelali</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Samia</namePart> <namePart type="family">Touileb</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Injy</namePart> <namePart type="family">Hamed</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yaser</namePart> <namePart type="family">Onaizan</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Bashar</namePart> <namePart type="family">Alhafni</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Wissam</namePart> <namePart type="family">Antoun</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Salam</namePart> <namePart type="family">Khalifa</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hatem</namePart> <namePart type="family">Haddad</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Imed</namePart> <namePart type="family">Zitouni</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Badr</namePart> <namePart type="family">AlKhamissi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Rawan</namePart> <namePart type="family">Almatham</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Khalil</namePart> <namePart type="family">Mrini</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>Association for Computational Linguistics</publisher> <place> <placeTerm type="text">Bangkok, Thailand</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>In this paper, we present our submission for the WojoodNER 2024 Shared Tasks addressing flat and nested sub-tasks (1, 2). We experiment with three different approaches. We train (i) an Arabic fine-tuned version of BLOOMZ-7b-mt, GEMMA-7b, and AraBERTv2 on multi-label token classifications task; (ii) two AraBERTv2 models, on main types and sub-types respectively; and (iii) one model for main types and four for the four sub-types. Based on the Wojood NER 2024 test set results, the three fine-tuned models performed similarly with AraBERTv2 favored (F1: Flat=.8780 Nested=.9040). The five model approach performed slightly better (F1: Flat=.8782 Nested=.9043).</abstract> <identifier type="citekey">hamoud-etal-2024-dru</identifier> <identifier type="doi">10.18653/v1/2024.arabicnlp-1.104</identifier> <location> <url>https://aclanthology.org/2024.arabicnlp-1.104</url> </location> <part> <date>2024-08</date> <extent unit="page"> <start>874</start> <end>879</end> </extent> </part> </mods> </modsCollection>
%0 Conference Proceedings %T DRU at WojoodNER 2024: A Multi-level Method Approach %A Hamoud, Hadi %A Chakra, Chadi %A Hamdan, Nancy %A Mraikhat, Osama %A Albared, Doha %A Zaraket, Fadi %Y Habash, Nizar %Y Bouamor, Houda %Y Eskander, Ramy %Y Tomeh, Nadi %Y Abu Farha, Ibrahim %Y Abdelali, Ahmed %Y Touileb, Samia %Y Hamed, Injy %Y Onaizan, Yaser %Y Alhafni, Bashar %Y Antoun, Wissam %Y Khalifa, Salam %Y Haddad, Hatem %Y Zitouni, Imed %Y AlKhamissi, Badr %Y Almatham, Rawan %Y Mrini, Khalil %S Proceedings of The Second Arabic Natural Language Processing Conference %D 2024 %8 August %I Association for Computational Linguistics %C Bangkok, Thailand %F hamoud-etal-2024-dru %X In this paper, we present our submission for the WojoodNER 2024 Shared Tasks addressing flat and nested sub-tasks (1, 2). We experiment with three different approaches. We train (i) an Arabic fine-tuned version of BLOOMZ-7b-mt, GEMMA-7b, and AraBERTv2 on multi-label token classifications task; (ii) two AraBERTv2 models, on main types and sub-types respectively; and (iii) one model for main types and four for the four sub-types. Based on the Wojood NER 2024 test set results, the three fine-tuned models performed similarly with AraBERTv2 favored (F1: Flat=.8780 Nested=.9040). The five model approach performed slightly better (F1: Flat=.8782 Nested=.9043). %R 10.18653/v1/2024.arabicnlp-1.104 %U https://aclanthology.org/2024.arabicnlp-1.104 %U https://doi.org/10.18653/v1/2024.arabicnlp-1.104 %P 874-879
Markdown (Informal)
[DRU at WojoodNER 2024: A Multi-level Method Approach](https://aclanthology.org/2024.arabicnlp-1.104) (Hamoud et al., ArabicNLP-WS 2024)
- DRU at WojoodNER 2024: A Multi-level Method Approach (Hamoud et al., ArabicNLP-WS 2024)
ACL
- Hadi Hamoud, Chadi Chakra, Nancy Hamdan, Osama Mraikhat, Doha Albared, and Fadi Zaraket. 2024. DRU at WojoodNER 2024: A Multi-level Method Approach. In Proceedings of The Second Arabic Natural Language Processing Conference, pages 874–879, Bangkok, Thailand. Association for Computational Linguistics.