
Proceedings of The Second Arabic Natural Language Processing Conference, pages 894–898
August 16, 2024 ©2024 Association for Computational Linguistics

mucAI at WojoodNER 2024: Arabic Named Entity Recognition with
Nearest Neighbor Search

Ahmed Abdou
Technical University of Munich, Germany

ahmed.abdou@tum.de

Tasneem Mohsen
Helwan University of Cairo, Egypt

tasneem_20210239@fci.helwan.edu.eg

Abstract

Named Entity Recognition (NER) is a task in
Natural Language Processing (NLP) that aims
to identify and classify entities in text into pre-
defined categories. However, when applied
to Arabic data, NER encounters unique chal-
lenges stemming from the language’s rich mor-
phological inflections, absence of capitaliza-
tion cues, and spelling variants, where a single
word can comprise multiple morphemes. In
this paper, we introduce Arabic KNN-NER,
our submission to the Wojood NER Shared
Task 2024 (ArabicNLP 2024). We have par-
ticipated in the shared sub-task 1 Flat NER. In
this shared sub-task, we tackle fine-grained flat-
entity recognition for Arabic text, where we
identify a single main entity and possibly zero
or multiple sub-entities for each word. Arabic
KNN-NER augments the probability distribu-
tion of a fine-tuned model with another label
probability distribution derived from perform-
ing a KNN search over the cached training data.
Our submission achieved 91% on the test set on
the WojoodFine dataset, placing Arabic KNN-
NER on top of the leaderboard for the shared
task.

1 Introduction

Named Entity Recognition (NER) is a downstream
task within Natural Language Processing (NLP)
that entails identifying the entity type for each
word in a given sentence. These entities usually
belong to predefined tags such as persons, loca-
tions, or dates. NER has proven beneficial for
several downstream tasks, including relation ex-
traction, machine translation, co-reference resolu-
tion, and information extraction. The significance
of the NER task has led to the development of
various approaches, including span-based classi-
fication (Zaratiana et al., 2022), sequence label-
ing, and sequence-to-sequence generation. Re-
cently, with the widespread adoption of large-scale
pre-trained language models (PLMS), in-context

learning-based approaches (Chen et al., 2023) have
also emerged as a prominent method.

However, applying NER to Arabic data presents
additional challenges. Unlike English, Arabic does
not use capital letters at the beginning of words,
making it more challenging to identify nouns and
determine the start and end of entities. Multiple
word variants can also refer to the same semantic
meaning (Qu et al., 2023). Furthermore, Arabic is
rich in morphological inflections, meaning that a
single word can consist of multiple morphemes (Be-
najiba and Rosso, 2008). Finally, annotated Arabic
corpora for the NER task are limited compared to
those available for English (Qu et al., 2023).

Previous attempts to enrich the Arabic NER cor-
pus as the multilingual dataset ACE (Walker et al.,
2005), ANERCorp (Benajiba et al., 2007), and
Ontonotes5 (Weischedel et al., 2013). More re-
cently, the Wojood (Jarrar et al., 2023) dataset was
introduced, a large-scale Arabic NER dataset col-
lected from multiple sources covering Modern Stan-
dard Arabic (MSA) and dialects. However, all of
these datasets are all annotated with coarse-grained
entity types (Jarrar et al., 2023). The most recent
corpus is WojoodFine (Jarrar et al., 2024), which
extends Wojood by providing 31 fine-grained anno-
tations, introducing subtypes for some of the main
entity types.

In this paper, we tackle the shared subtask Flat
NER with subtypes using the WojoodFine dataset;
we comprehensively describe the data in section
3. We propose enhancing a fine-tuned NER model
by integrating KNN search over the training enti-
ties during the inference phase. KNN-NER (Wang
et al., 2022) is a framework that can be applied to
models that have already been fine-tuned, requiring
no additional training or fine-tuning. Applying the
KNN-NER framework has achieved a 91% micro-
F1 score and placed us on top of the leaderboard
for the shared subtask 1 Flat NER.

894

2 Task Definition

The shared subtask 1 is Flat NER with subtypes.
In this task, for a given sentence, the objective is
to identify and classify named entities, which may
span multiple words. For each identified entity,
the task is to determine the main entity type and
up to two levels of subtypes, if they exist. For
example, in Figure 1 (b), the main entity DATE
spans two words and has no subtypes. Mean-
while, the entity ORG spans four words and has
two levels of subtypes. The first-level subtype is
ORG_FAC (a subtype of ORG), and the second-
level subtypes are COM (a subtype of ORG) and
BUILDING-OR-GROUND (a subtype of FAC).
More formally, given a sequence of tokens T of
length m denoted as T = (t1, t2,, tm), the
goal is to identify and output a set of named enti-
ties. Each named entity is represented as a tuple
(s, e,main_tag, [sub_tags]), where s and e are
the start and end tokens of the entity, respectively.
The tuple also includes the main entity tag and up
to two levels of subtypes.

3 Data

We conducted our work in WojoodFine dataset
(Liqreina et al., 2023) provided in the shared task
(Jarrar et al., 2024). WojoodFine is an extended ver-
sion of Wojood (Jarrar et al., 2022) dataset, which
is a NER dataset with 550,000 tokens manually
annotated across 21 entity types; approximately
80% of Wojood’s data was sourced from Modern
Standard Arabic (MSA) articles, while 12% was
gathered from social media content in Palestinian
and Lebanese dialects. WojoodFine extends the
Wojood dataset by providing fine-grain annotations
for entity sub-types. Namely, each of the words
that has one of the main entity types (Geopoliti-
cal Entity (GPE), Organization (ORG), Location
(LOC), and Facility (FAC)) can have from zero to
multiple subtypes from the predefined 31 subtypes.
For example, in Figure 1 (a), words with the same
main entity can have different subtypes. The train
and development entities distribution can be found
in Figure 2. For the exact mapping of main entities
to subtypes, we refer the reader to check (Liqreina
et al., 2023).

4 System Description

Our approach is centered on fine-tuning a language
model based on BERT’s transformer architecture
(Devlin et al., 2018). Our methodology is inspired

Figure 1: Examples from WojoodFine illustrating (a)
same main entities with different subtypes. (b) main
entity with zero and multiple subtypes.

by (Wang et al., 2022), which employs a two-step
process: joint vanilla fine-tuning followed by KNN
at inference time.

4.1 Joint Finetuning
The architecture of our solution, illustrated in Fig-
ure 3, uses BERT as the backbone for generating
word embeddings. These embeddings are then fed
into two MLP heads that are trained jointly. The
first head predicts one of the predefined 21 main
entity tags. It is designed with 43 output neurons
(the outside tag, main tags prefixed with ’I’, and
main tags prefixed with ’B’). This head is followed
by a softmax layer and trained using cross-entropy
loss:

Pmain = Softmax(MLP1(ei)) (1)

. The second head predicts one of the predefined 31
sub-entities. It has 62 output neurons (sub-entities
prefixed with ’I’ and ’B’). This head is followed by
a sigmoid function applied to each output neuron
and trained with binary cross-entropy loss, with
each neuron’s output thresholded at 0.5

Psub = Sigmoid(MLP2(ei)) (2)

.

4.2 KNN-NER
4.2.1 Datastore Construction
Post fine-tuning, we obtain contextualized repre-
sentations ei for every token in each sentence of
the training set using the trained model. The data-
store is built by performing a single forward pass
over the entire training set. The datastore K,V

895

Figure 2: Distribution of NER tags in WojoodFine Sub-
task1 (i.e., FlatNER) across the training, development
splits.

comprises all contextualized representation-entity
main-label pairs for each word in each sentence in
the training set Dt, defined as:

{K,V} = {(ei, li)|∀ei ∈ s, ∀li ∈ l, (s, l) ∈ Dt} (3)

Where ei is the ith token in the sentence s, and
li is the word corresponding label.

4.2.2 KNN Inference
During inference time, we query the datastore using
the contextualized representation of every token in
each test sentence to find the k-nearest neighbors
N according to a similarity score sim(., .). Then,
we derive the distribution of labels PkNN using
labels of the retrieved neighbors while aggregating
probability mass for each label across all its occur-
rences in the retrieved neighbors (labels that do not
appear in the retrieved N are assigned zero prob-
ability). Intuitively, the closer a neighbor is to the

Figure 3: The proposed Model workflow for flat NER
with subtypes, jointly fine-tuned with two MLP heads
for main entity and subtype prediction. KNN search is
applied during inference to enhance prediction accuracy.

test instance, the larger its weight is. Moreover, the
higher the number of neighbors having the same
label, the higher the probability mass of this label
in the derived PkNN probability distribution. More
formally,

PkNN ∝
∑

(k,v)∈N
1li=v exp(

sim(ei, k)

τ
) (4)

sim(a, b) =
a · b
|a||b| (5)

Where τ denotes the temperature hyper-
parameter and sim(a, b) is the cosine similarity
between two vectors a and b. Finally, we interpo-
late the Pmain with PkNN with an interpolation
factor λ as :

Pfinal = λPmain + (1− λ)PkNN (6)

5 Results

5.1 Experimental Setup

After reviewing the performance of various solu-
tions and foundational models used in the 2023
WojoodNER task (Jarrar et al., 2023), we selected
AraBERTv02 to be our base model.

896

Model P R F1-score
Dev Set

joint finetuning 92.47 91.24 91.87
+KNN 92.62 91.66 92.15

Test Set
joint finetuning 90.23 89.95 90.00
+KNN 91.00 90.00 91.00

Table 1: Results on Flat NER

Team F1-score Rank
mucAI (ours) 91.00 1
muNERa 90.00 2
Addax 90.00 2
Baseline 89.00
DRU - Arab Center 87.00 4
Bangor 86.00 5

Table 2: Shared task leaderboard and micro-F1

All experiments were conducted using a single
V100 GPU on Google Colab. We utilized the val-
idation dataset to select the hyperparameters of
the model and the KNN search. The maximum
input sequence length was set to 512; sequences
exceeding this length were truncated, while shorter
sequences were padded. Each experiment was run
for 20 epochs. We used the AdamW optimizer
(Loshchilov and Hutter, 2017) with a learning rate
of η = 2e−5, an exponential learning rate sched-
uler with a gamma of γ = 0.95, a batch size of
B = 16, and a dropout rate of 0.1. For the KNN
search, we perform a grid search by varying the
number of retrieved neighbors N and the interpo-
lation factor λ. Specifically, we explore multiple
powers of two for N ranging from 23 to 29 and ad-
just the interpolation factor from 0 to 1 in 0.1 step.
In all inference variants, we set the temperature τ
to 1. All models are implemented using PyTorch,
and Huggingface Transformers. The code used for
the experiments is available on GitHub1.

5.2 Results

We present the micro F1, precision, and recall
scores for the development and test sets in Tables
1, both for vanilla fine-tuning and for using KNN
search at inference time. Furthermore, Table 2
highlights our performance in comparison to other
teams.

1https://github.com/AhmedAbdel-Aal/WNER_24_
sharedtask

Figure 4: Sensitivity of KNN search to number of neigh-
bors (N), and interpolation factor λ.

6 Discussion

The results from our experiments demonstrate the
effectiveness of incorporating KNN search at in-
ference time for the flat NER task in Arabic. The
comparison between vanilla fine-tuning without
and with KNN search reveals a consistent improve-
ment in the F1-score, as shown in Table 1; this is
analogous to the results presented in (Wang et al.,
2022).

We show in Figure 4 the sensitivity of our sys-
tem’s micro F1-score for different values of N and
interpolation factor λ. If the interpolation factor
is One (λ = 1), the final distribution converges to
only the baseline,

Pfinal = Pmain (7)

while if (λ = 0) the final distribution converges
to only use the KNN-RR.

Pfinal = PkNN (8)

Using only KNN-RR appears to be competitive
or even better than using the fine-tuned model for
small values of N. However, its performance drops
to 88.5% when N = 512. This decline can be at-
tributed to class imbalance between entity tags and
the label O. As the number of retrieved neighbors
increases, more neighbors with the label O are re-
trieved, thereby increasing the probability mass of
the label O in PkNN .

7 Limitations and Future Work

A limitation of this study is that KNN-NER was
not evaluated on multiple models, which limits the
assessment of its robustness and model-agnostic
property of the KNN-NER framework. Another

897

https://github.com/AhmedAbdel-Aal/WNER_24_sharedtask
https://github.com/AhmedAbdel-Aal/WNER_24_sharedtask

limitation is the increased inference time. Since
KNN requires searching for labels in the datastore
during inference, the overall inference time is ex-
tended by both the model’s processing time and
the additional time required for the KNN search.
This increased inference time may affect the prac-
ticality and efficiency of our model in real-world
applications. Another limitation is that we did not
explore other similarity scores than cosine similar-
ity, nor assessed the quality of the similarity scores
it produced. Finally, Future work should include
exploring applying KNN-NER to subtypes.

8 Conclusion

In this shared task, we tackled flat NER with sub-
types on the WojoodFine corpus, where we trained
the model jointly with two MLP heads, one for
predicting the main entity and the other for pre-
dicting possibly multiple subtypes. We finetuned
Arabert and applied KNN search over the training
set during inference time to enhance the model’s ca-
pability of predicting the main entity type for each
token in the test set. The motivation behind incor-
porating KNN search was to improve the model’s
performance without requiring any further training
after the initial fine-tuning phase. This approach
aimed to efficiently utilize the trained model by
leveraging KNN over the training set. The results
show an improvement with the incorporation of
KNN search. Specifically, the micro-F1 scores for
the development set increased from 91.62 to 92.90,
and for the test set from 90.09 to 91.00, indicating a
robust enhancement in performance. Our approach
ranked first in the shared task leaderboard.

References
Yassine Benajiba and Paolo Rosso. 2008. Arabic named

entity recognition using conditional random fields. In
Proc. of Workshop on HLT & NLP within the Arabic
World, LREC, volume 8, pages 143–153.

Yassine Benajiba, Paolo Rosso, and José Miguel
Benedíruiz. 2007. Anersys: An arabic named en-
tity recognition system based on maximum entropy.
In Computational Linguistics and Intelligent Text
Processing: 8th International Conference, CICLing
2007, Mexico City, Mexico, February 18-24, 2007.
Proceedings 8, pages 143–153. Springer.

Jiawei Chen, Yaojie Lu, Hongyu Lin, Jie Lou, Wei
Jia, Dai Dai, Hua Wu, Boxi Cao, Xianpei Han,
and Le Sun. 2023. Learning in-context learn-
ing for named entity recognition. arXiv preprint
arXiv:2305.11038.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Mustafa Jarrar, Muhammad Abdul-Mageed, Mo-
hammed Khalilia, Bashar Talafha, AbdelRahim El-
madany, Nagham Hamad, and Alaa’ Omar. 2023.
Wojoodner 2023: The first arabic named entity recog-
nition shared task. arXiv preprint arXiv:2310.16153.

Mustafa Jarrar, Nagham Hamad, Mohammed Khalilia,
Bashar Talafha, and Muhammad Elmadany, Abdel-
Rahim Abdul-Mageed. 2024. WojoodNER 2024:
The second Arabic named entity recognition shared
task. In Proceedings of the 2nd Arabic Natural Lan-
guage Processing Conference (Arabic-NLP), Part of
the ACL 2024. Association for Computational Lin-
guistics.

Mustafa Jarrar, Mohammed Khalilia, and Sana Ghanem.
2022. Wojood: Nested arabic named entity cor-
pus and recognition using bert. arXiv preprint
arXiv:2205.09651.

Haneen Liqreina, Mustafa Jarrar, Mohammed Khalilia,
Ahmed El-Shangiti, and Muhammad Abdul Mageed.
2023. Arabic fine-grained entity recognition. In
Proceedings of ArabicNLP 2023, pages 310–323.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Xiaoye Qu, Yingjie Gu, Qingrong Xia, Zechang Li,
Zhefeng Wang, and Baoxing Huai. 2023. A survey
on arabic named entity recognition: Past, recent ad-
vances, and future trends. IEEE Transactions on
Knowledge and Data Engineering.

Christopher Walker, Stephanie Strassel, Julie Medero,
and Kazuaki Maeda. 2005. Ace 2005 multilingual
training corpus-linguistic data consortium. URL:
https://catalog. ldc. upenn. edu/LDC2006T06.

Shuhe Wang, Xiaoya Li, Yuxian Meng, Tianwei Zhang,
Rongbin Ouyang, Jiwei Li, and Guoyin Wang. 2022.
k nn-ner: Named entity recognition with nearest
neighbor search. arXiv preprint arXiv:2203.17103.

Ralph Weischedel, Martha Palmer, Mitchell Marcus,
Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Ni-
anwen Xue, Ann Taylor, Jeff Kaufman, Michelle
Franchini, et al. 2013. Ontonotes release 5.0
ldc2013t19. Linguistic Data Consortium, Philadel-
phia, PA, 23:170.

Urchade Zaratiana, Nadi Tomeh, Pierre Holat, and
Thierry Charnois. 2022. Named entity recognition
as structured span prediction. In Proceedings of the
Workshop on Unimodal and Multimodal Induction of
Linguistic Structures (UM-IoS), pages 1–10.

898

