@inproceedings{ahmed-etal-2024-alclam,
title = "{A}lcla{M}: {A}rabic Dialect Language Model",
author = "Ahmed, Murtadha and
Alfasly, Saghir and
Wen, Bo and
Addeen, Jamal and
Ahmed, Mohammed and
Liu, Yunfeng",
editor = "Habash, Nizar and
Bouamor, Houda and
Eskander, Ramy and
Tomeh, Nadi and
Abu Farha, Ibrahim and
Abdelali, Ahmed and
Touileb, Samia and
Hamed, Injy and
Onaizan, Yaser and
Alhafni, Bashar and
Antoun, Wissam and
Khalifa, Salam and
Haddad, Hatem and
Zitouni, Imed and
AlKhamissi, Badr and
Almatham, Rawan and
Mrini, Khalil",
booktitle = "Proceedings of the Second Arabic Natural Language Processing Conference",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.arabicnlp-1.14/",
doi = "10.18653/v1/2024.arabicnlp-1.14",
pages = "153--159",
abstract = "Pre-trained Language Models (PLMs) are integral to many modern natural language processing (NLP) systems. Although multilingual models cover a wide range of languages, they often grapple with challenges like high inference costs and a lack of diverse non-English training data. Arabic-specific PLMs are trained predominantly on modern standard Arabic, which compromises their performance on regional dialects. To tackle this, we construct an Arabic dialectal corpus comprising 3.4M sentences gathered from social media platforms. We utilize this corpus to expand the vocabulary and retrain a BERT-based model from scratch. Named AlcLaM, our model was trained using only 13GB of text, which represents a fraction of the data used by existing models such as CAMeL, MARBERT, and ArBERT, compared to 7.8{\%}{\%}, and 21.3{\%}, respectively. Remarkably, AlcLaM demonstrates superior performance on a variety of Arabic NLP tasks despite the limited training data. AlcLaM is available at: https://github.com/amurtadha/Alclam."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ahmed-etal-2024-alclam">
<titleInfo>
<title>AlclaM: Arabic Dialect Language Model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Murtadha</namePart>
<namePart type="family">Ahmed</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saghir</namePart>
<namePart type="family">Alfasly</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bo</namePart>
<namePart type="family">Wen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jamal</namePart>
<namePart type="family">Addeen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammed</namePart>
<namePart type="family">Ahmed</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yunfeng</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Arabic Natural Language Processing Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nizar</namePart>
<namePart type="family">Habash</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ramy</namePart>
<namePart type="family">Eskander</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nadi</namePart>
<namePart type="family">Tomeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ibrahim</namePart>
<namePart type="family">Abu Farha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ahmed</namePart>
<namePart type="family">Abdelali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Samia</namePart>
<namePart type="family">Touileb</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Injy</namePart>
<namePart type="family">Hamed</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bashar</namePart>
<namePart type="family">Alhafni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wissam</namePart>
<namePart type="family">Antoun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Salam</namePart>
<namePart type="family">Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hatem</namePart>
<namePart type="family">Haddad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Imed</namePart>
<namePart type="family">Zitouni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Badr</namePart>
<namePart type="family">AlKhamissi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rawan</namePart>
<namePart type="family">Almatham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalil</namePart>
<namePart type="family">Mrini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Pre-trained Language Models (PLMs) are integral to many modern natural language processing (NLP) systems. Although multilingual models cover a wide range of languages, they often grapple with challenges like high inference costs and a lack of diverse non-English training data. Arabic-specific PLMs are trained predominantly on modern standard Arabic, which compromises their performance on regional dialects. To tackle this, we construct an Arabic dialectal corpus comprising 3.4M sentences gathered from social media platforms. We utilize this corpus to expand the vocabulary and retrain a BERT-based model from scratch. Named AlcLaM, our model was trained using only 13GB of text, which represents a fraction of the data used by existing models such as CAMeL, MARBERT, and ArBERT, compared to 7.8%%, and 21.3%, respectively. Remarkably, AlcLaM demonstrates superior performance on a variety of Arabic NLP tasks despite the limited training data. AlcLaM is available at: https://github.com/amurtadha/Alclam.</abstract>
<identifier type="citekey">ahmed-etal-2024-alclam</identifier>
<identifier type="doi">10.18653/v1/2024.arabicnlp-1.14</identifier>
<location>
<url>https://aclanthology.org/2024.arabicnlp-1.14/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>153</start>
<end>159</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T AlclaM: Arabic Dialect Language Model
%A Ahmed, Murtadha
%A Alfasly, Saghir
%A Wen, Bo
%A Addeen, Jamal
%A Ahmed, Mohammed
%A Liu, Yunfeng
%Y Habash, Nizar
%Y Bouamor, Houda
%Y Eskander, Ramy
%Y Tomeh, Nadi
%Y Abu Farha, Ibrahim
%Y Abdelali, Ahmed
%Y Touileb, Samia
%Y Hamed, Injy
%Y Onaizan, Yaser
%Y Alhafni, Bashar
%Y Antoun, Wissam
%Y Khalifa, Salam
%Y Haddad, Hatem
%Y Zitouni, Imed
%Y AlKhamissi, Badr
%Y Almatham, Rawan
%Y Mrini, Khalil
%S Proceedings of the Second Arabic Natural Language Processing Conference
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F ahmed-etal-2024-alclam
%X Pre-trained Language Models (PLMs) are integral to many modern natural language processing (NLP) systems. Although multilingual models cover a wide range of languages, they often grapple with challenges like high inference costs and a lack of diverse non-English training data. Arabic-specific PLMs are trained predominantly on modern standard Arabic, which compromises their performance on regional dialects. To tackle this, we construct an Arabic dialectal corpus comprising 3.4M sentences gathered from social media platforms. We utilize this corpus to expand the vocabulary and retrain a BERT-based model from scratch. Named AlcLaM, our model was trained using only 13GB of text, which represents a fraction of the data used by existing models such as CAMeL, MARBERT, and ArBERT, compared to 7.8%%, and 21.3%, respectively. Remarkably, AlcLaM demonstrates superior performance on a variety of Arabic NLP tasks despite the limited training data. AlcLaM is available at: https://github.com/amurtadha/Alclam.
%R 10.18653/v1/2024.arabicnlp-1.14
%U https://aclanthology.org/2024.arabicnlp-1.14/
%U https://doi.org/10.18653/v1/2024.arabicnlp-1.14
%P 153-159
Markdown (Informal)
[AlclaM: Arabic Dialect Language Model](https://aclanthology.org/2024.arabicnlp-1.14/) (Ahmed et al., ArabicNLP 2024)
ACL
- Murtadha Ahmed, Saghir Alfasly, Bo Wen, Jamal Addeen, Mohammed Ahmed, and Yunfeng Liu. 2024. AlclaM: Arabic Dialect Language Model. In Proceedings of the Second Arabic Natural Language Processing Conference, pages 153–159, Bangkok, Thailand. Association for Computational Linguistics.