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Abstract

Learning morphophonological mappings be-
tween the spoken form of a language and its un-
derlying morphological structures is crucial for
enriching resources for morphologically rich
languages like Arabic. In this work, we focus
on Egyptian Arabic as our case study and ex-
plore the integration of linguistic knowledge
with a neural transformer model. Our approach
involves learning to correct the residual errors
from hand-crafted rules to predict the spoken
form from a given underlying morphological
representation. We demonstrate that using a
minimal set of rules, we can effectively recover
errors even in very low-resource settings.

1 Introduction

Modern Standard Arabic (MSA) and Classical Ara-
bic are heavily studied and privileged with many
resources. Arabic dialects, on the other hand, are
considered to be low-resource. Some dialects, such
as Egyptian and Gulf Arabic, have dedicated re-
sources for morphological analysis but lack corre-
sponding phonological representations. A paired
representation of morphological analysis with full
phonological representation is important for down-
stream tasks like text-to-speech (TTS) and dialect
identification. Moreover, given a morphological
representation in MSA as an output from a morpho-
logical analyzer, generating the phonological repre-
sentation is straightforward using a handful of rules
due to the relative transparency of the standard or-
thography in MSA. This is, however, challenging
for dialects, which generally lack conventionalized
consistent orthography, and in which the mapping
from underlying to phonological forms may be less
transparent. While grapheme-to-phoneme mod-
els seem suitable for this task, they require large
amounts of data to train, which is not readily avail-
able for most Arabic dialects.

In Arabic, a large number of phonological pro-
cesses are sensitive to morphological structure. It is,

therefore, reasonable to map morphophonological
properties and utilize them in generating phonolog-
ical representations. Theoretical linguistics offers a
rich literature discussing various frameworks to de-
scribe these processes efficiently. However, these
frameworks are traditionally based on what is as-
sumed to be a representative subset of the language
data and are not tested against large corpora. Con-
sequently, different analyses may diverge both in
terms of the posited underlying representations and
the rules or constraints that relate these representa-
tions to the spoken forms.

In this work, we explore the task of generat-
ing spoken forms of words from their underlying
morphological representations for dialectal Arabic,
specifically the Cairene variety of Egyptian Arabic.
Our approach utilizes the expertise of a linguist
to provide morphophonological rules that map a
word’s morphological representation to its spoken
form. We then train a character-level neural trans-
former model to learn the residual errors, i.e., those
errors that remain after applying the linguist’s rules.
Thus, by comparing the linguist’s rule-based pre-
dictions and the actual spoken forms, this model
serves as an additional correction step.

2 Related Work

Modern morphological analyzers for Arabic
(Habash et al., 2012; Khalifa et al., 2017; Boud-
chiche et al., 2017; Taji et al., 2018; Khairallah
et al., 2024) provide many features beyond mor-
phosyntactic ones such as morphological tokeniza-
tion, diacritization, and root and pattern informa-
tion, but phonological representation is usually ab-
sent. Although there is some degree of phonotactic
modeling, it is typically constrained by orthogra-
phy. When fully diacritized, the standard orthog-
raphy of MSA is phonologically transparent to a
large degree, making phonological transcription of
inflected words relatively simple, as demonstrated
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by Biadsy et al. (2009a) and Habash et al. (2018).
However, dialectal Arabic lacks conventionalized
orthography and its phonological forms may be
quite distant from the standard orthography.

Biadsy et al. (2009b) modeled phonotactics for
dialectal Arabic for the dialect identification task;
however, it was based on speech signals directly.
Bouamor et al. (2018) provides phonological tran-
scription for some core lexicon entries, although
those were elicited from native speakers and are not
modeled to generate phonological representations
for new forms productively.

In our own recent work, we generate phonolog-
ical forms by learning morphophonological map-
pings automatically (Khalifa et al., 2022, 2023);
however, while explainable, our approach produces
a large number of rules and so far has modest per-
formance as an end-to-end system.

To the best of our knowledge, there is no effort
focusing primarily on producing phonological rep-
resentations from morphological ones for dialectal
Arabic. In this work, we take inspiration from Za-
mani et al. (2018): we train a model to correct the
predictions of hand-crafted rules.

3 Linguistic Background

Phonology is one of the most salient differences
between MSA and dialectal Arabic. While most
phonotactics for MSA can be derived through mor-
photactics on the level of orthography, the same
is not necessarily true for dialects. Naturally oc-
curring dialectal text is usually spelled sponta-
neously, and even in conventional spelling, it is
undiacritized, and thus far less reflective of phonol-
ogy compared to MSA.

In this work, we focus on modeling the map-
ping from morphology to phonology through mor-
phophonological mappings, specifically at the
phonemic level rather than the phonetic one. In
addition to some morpheme-specific rules, most
phonological processes in Egyptian Arabic are trig-
gered by strict requirements on how segments are
organized into syllables. One such requirement
is that each syllable must begin with exactly one
consonant; when an underlying representation be-
gins with a vowel, that onset consonant is supplied
either by resyllabification of the final consonant
of a preceding word or by insertion of a glottal
stop (hamza). A second requirement is that, ex-
cept in phrase-final position, syllables may end
with no more than one consonant; thus, when con-

catenation of morphemes creates a triconsonantal
sequence, a vowel is inserted following the second
consonant. A third requirement restricts long vow-
els to either high or low positions in the vocal tract
and to stressed syllables; underlyingly long vow-
els are therefore shortened when unstressed and
raised if underlyingly mid. Similarly, long vowels
are restricted to open syllables except in word-final
position. Finally, a word-internal short high vowel
[i] is deleted when the consonants surrounding the
vowel can be reassigned to neighboring syllables.

4 Data

In this work, we chose the Egyptian Colloquial Ara-
bic Lexicon (ECAL; Kilany et al., 2002) to acquire
the spoken forms (SF). ECAL also provides de-
tailed morphological analysis for its entries but only
in the form of a complex part-of-speech (POS) tag
and has minimal segmentation. Since our goal is to
map the morphological representation (MR) of the
word, we need to generate a fine-grained tokenized
MR. To do so, we use the CALIMAEGY morpho-
logical analyzer (Habash et al., 2012) with the ana-
lyzer engine from CamelTools (Obeid et al., 2020).
We utilize the undiacritized orthographic form pro-
vided by ECAL and run it through CALIMAEGY

and extract the tokenization from the best match-
ing analysis based on the similarities between the
POS tags and lemmas provided by both resources.
CALIMAEGY uses a conventional orthographic rep-
resentation for its entries that balances both phonol-
ogy and etymology (Habash et al., 2018). We map
the different morphs in the tokenized form from
their orthographic form to their phonemic form.
We note that this phonemic form is hypothesized
based on certain assumptions about the underly-
ing representation of the different morphs (Chom-
sky and Halle, 1968; Hyman, 2018). For example,
word-final vowels are considered to be underly-
ingly short (Broselow, 1976; Abdel-Massih et al.,
1979; Hamid, 1984; Haddad, 1984) although others
have argued in favor of underlyingly long final vow-
els in various dialects (Abdo, 1969; Abu-Mansour,
1987; McCarthy, 2005). While we acknowledge
the diverse hypotheses concerning underlying rep-
resentations, our focus here is on comparing the
performance of different systems, assuming a spe-
cific set of underlying representations. Since rules
consider context from the underlying representa-
tion, adopting a different set of underlying repre-
sentations would not necessarily affect the final pre-

259



dictions. In addition to these fundamental choices
about the underlying representation, we perform
other orthographic-specific changes to convert the
orthography-oriented representation coming out of
CALIMAEGY into a phonemic representation: a)
long vowels that are represented orthographically
with a short vowel and a glide are normalized into
a single symbol: ‘iy’,‘uw’ –> ‘I’,‘U’1, b) all glottal
stop shapes are normalized into a bare hamza, c)
consonants with unconditional sound change (i.e.,
/q/, /j/, /D/, and /T/ ��, h. , �H, and 	X) preserve their
etymological spelling as it is not central to mor-
phophonological processes.

While converting the single morphs from orthog-
raphy to phonology is relatively straightforward,
generating the full spoken form is not due to the
complex interactions as explained in §3.

The resulting dataset contains pairs of MR and
SF. An example entry for the word /kita:bha/ ‘her
book’ AîE. A�J» 2 below, where ‘#’ represents word
boundaries and ‘=’ is the stem-suffix boundary:

(1) MR: #kitAb=ha# SF: #kitabha#

We followed the splits for TRAIN/DEV/EVAL

that were provided by ECAL.

5 Linguist Rules

Linguistic formalisms, such as phonological rules
or constraints, provide an efficient framework
for describing generalized linguistic phenomena.
Trained, well-versed linguists develop formal gram-
mars mapping posited underlying representation to
spoken forms based on extensive study of collected
data points representing spoken language.

In this work, we use a minimal set of
morphophonological rewrite rules provided by
Broselow, a linguist experienced in Egyptian Ara-
bic phonology. Six rules in total were provided
based on Broselow (1976, 2017), as well as syllabi-
fication and stress assignment operations. Because
rules that concern the organization of segments
into syllables may interact, they must be applied in
order. The rules we use are as follows (in order):

1. Definite Article /l/ Assimilation
(sun_letters) Similar to MSA, the /l/
in the definite article /(P)il/ assimilates to a
following coronal consonant.

1We use the same romanization script that was used by
the LDC for our data with minor modification for readability.
Check the appendix for the full map.

2Arabic script spelling follows CODA (Habash et al.,
2018).

2. First Vowel Deletion (FVD) When a proclitic
ends with a short vowel, and the stem starts
with a short vowel, the first vowel deletes,
vx-vy → vy; where - is a prefix boundary.

3. Vowel insertion (VI) An epenthetic vowel
is inserted to avoid a sequence of three con-
sonants. CCC → CCvC. While some pronoun
enclitics require a specific vowel, the default
for insertion is /i/.

Syllabification (syllabify) An operation to
add syllable boundaries “.” with the condition
that there are no onsetless syllables, i.e., a
syllable must start with a consonant.

4. High Vowel Deletion (HVD) The deletion of /i/
when it falls in the following context VCi.CV;
where V denotes a short or a long vowel.

5. Long Vowel Shortening (VLS) Any long vow-
els in closed syllables are shortened, unless
the syllable is word-final. VVCCV→ VCCV.

Stress Assignment (stress_assign) An op-
eration to assign stress according to Mitchell
(1978).

6. Unstressed Long Vowel Shortening (ULVS)
Any long vowel that remains unstressed must
be shortened.

Figure 1 shows the process of applying the rules in
order.

6 Approach: Learning the Residual

Preliminary analysis of the rule predictions on a
sample of data has shown that while the rules cover
a wide range of phenomena, they don’t predict
everything correctly. This is due to several factors:
a) a mismatch between the expectation of the form
of the MR and the automatically generated MR; b)
less frequent phonological processes that were not
addressed by the current set of rules; c) some of the
MRs which we automatically generated from the
ECAL corpus have non-trivial errors that require
extensive manual adjustments. To correct for these
cases, we train a character-level neural transformer
to learn the residual between the rule-predicted SF
and the gold SF.

There are two principal goals to this effort: a) To
understand the coverage of the set of rules proposed
by the linguist on naturally occurring data. b) To
evaluate the efficacy of learning the residuals when
presented with a small amount of training data, as
most Arabic dialects are low-resource.

260
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MR: #bi-a-qUl=l=hum#

#bi-a-qUl=l=hum#

#ba-qUl=l=hum#

#ba-qUl=luhum#

#ba.qUl.lu.hum#

#ba.qUl.lu.hum#

#ba.qul.lu.hum#

#ba.qul.`lu.hum#

#ba.qul.`lu.hum#

SF: #baqulluhum#

Figure 1: An example of applying the set of the six rules
on the word /baPulluhum/ ‘I am telling them’ ÑêË Èñ�̄ AK. .
Grayed out rules indicate no effect on the input. Mor-
pheme boundaries are removed before syllabification.

6.1 Experimental Setup

Data We partitioned TRAIN (12K words) using
frequency-weighted sampling into smaller sets to
evaluate the learning curve, starting from a tiny
set of examples until the full set. The splits range
from 100-1,000 examples with increments of 100,
and then from 1,000 to full TRAIN with increments
of 1,000. For evaluation, we extracted data points
from DEV (5K) that were not seen in TRAIN, there-
fore creating OOV-DEV (2K). The respective EVAL

and OOV-EVAL portions are reserved for further
experiments.

Baselines

• DONOTHING Copy MR as is (without mor-
pheme boundaries).

• TRNF Train the character-level neural trans-
former described in (Wu et al., 2021) using the
grapheme-to-phoneme task setting to predict
SF given MR.

Systems

• RULES Apply the set of linguist’s rules de-
scribed in §5. The rules are implemented us-
ing regular expressions. Note that the rules

were provided independently of our corpus;
they are based on the linguist’s expertise.

• TRNF-RES Train the TRNF to predict SF
from the (possibly wrong) SF predicted by
RULES (RSF).

7 Evaluation and Discussion

We evaluate different configurations using OOV-
DEV. For the first set of experiments, we evaluate
the overall performance of all systems across the
different learning curve training sizes. TRNF is
trained on MR-SF pairs for each of the splits, while
TRNF-RES is trained on RSF-SF pairs after apply-
ing RULES at each split. The accuracy across the
different sizes is shown in Figure 2. We see that at
the lowest setting (100-1,000), the rules alone per-
form best. However, within the same setup, TRNF-
RES performs notably better than TRNF, which
indicates the value of learning the residuals. One
could argue that learning the residual may seem
easier since the pairs are more similar. However,
the significantly lower performance of TRNF com-
pared to DONOTHING suggests that this family of
models is not well equipped to learn to copy. As
the data size increases, both neural models quickly
catch up and the difference becomes negligible.

size
TRNF-RES

TRNF
1 2 3 4 5 All

100 6.7% 6.7% 7.4% 9.8% 9.6% 11.1% 4.6%
200 28.1% 31.3% 32.5% 43.8% 46.3% 49.0% 22.5%
300 42.4% 41.4% 44.7% 51.6% 56.6% 60.5% 32.6%
400 54.2% 54.2% 57.4% 63.3% 67.0% 71.5% 43.9%
500 62.1% 62.2% 61.2% 69.1% 72.6% 76.0% 49.7%
600 64.8% 65.9% 67.8% 72.2% 74.1% 76.3% 57.5%
700 68.1% 69.5% 71.1% 74.4% 74.7% 80.0% 59.4%
800 69.3% 71.4% 72.6% 75.9% 78.2% 76.8% 64.1%
900 73.5% 73.7% 74.7% 78.6% 77.5% 79.3% 65.9%
1,000 74.5% 74.8% 75.3% 79.3% 78.2% 81.6% 69.2%
Rules 64.3% 68.5% 70.5% 73.2% 78.2% 86.5%
DoNth 61.1%

Table 1: Accuracy on OOV-DEV for extremely low-
resource settings. TRNF-RES is trained on the residuals
using incremental sets of rules. Bolded numbers mean
that the accuracy for the specific TRNF-RES is higher
than its respective RULES.

The second set of experiments targets under-
standing the effects of using a limited number of
rules. This setup is expected when we have a true
low-resource scenario with a very limited number
of examples and linguistic knowledge: does de-
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Figure 2: Accuracy on OOV-DEV for all baselines and systems across different sets of training sizes. The x-axis is
in log scale. Note that RULES scores don’t change; the rules are derived independently of the training data.

vising a small number of hand-crafted rules make
a difference? We train TRNF-RES on the resid-
uals of applying the rules incrementally, starting
with the first rule and up to all six rules, follow-
ing the order provided by the linguist. We focused
on the lower training sizes as shown in Table 1.
First, we observe that across the board, TRNF is
consistently behind all TRNF-RES models, which
suggests that in low-resource settings, any number
of rules improves performance over a transformer
alone. Second, we see that in the lowest half of
the learning curve, rules alone outperform their
TRNF-RES counterparts. However, starting at 600
examples, TRNF-RES transformers catch up to or
outperform the rules which they have learned to
correct.

7.1 Error Analysis

We conducted an error analysis for all baselines and
systems at training size 900 where TRNF-RES-4
outperformed both TRNF and RULES-4 with ac-
curacies 78.6%, 65.9%, and 73.2%, respectively.
We sampled 200 entries from the OOV-DEV and
compared them for all three systems. First, we
analyzed cases where TRNF-RES-4 succeeds and
TRNF fails (18% of the time). The errors commit-
ted by TRNF fall primarily into three classes: i)
adding gemination, ii) dropping consonants, and
iii) erroneous vowel operations. Within the same
set of data points, the cases where RULES-4 failed
were mostly due to the absence of the missing 6th
rule, with only two cases where the first five rules
didn’t cover the processes correctly. Second, we
examined the set where RULES-4 succeeded and
TRNF-RES-4 failed (7% of the time). In this case,

the errors committed by TRNF-RES-4 were less se-
vere than those of TRNF. They were mostly wrong
vowel operations with the occasional added gemi-
nation. These analyses suggest that training to learn
the residual makes the resulting residual model less
prone to hallucination errors, and it successfully
recovers cases which rules have missed.

8 Conclusion

We study the problem of generating the spoken
form of words from their underlying morphological
representation for Egyptian Arabic. Our approach
uses state-of-the-art character-level neural trans-
former models to train a “residual” model which
mitigates the shortcomings of using rules based
on linguistic knowledge.3 We find that a compre-
hensive set of hand-crafted linguistic rules is more
accurate than any neural system (full or residual)
in very low-resource settings (< 1,000 words of
training data). However, when we do not have a
full rule set, but we do have around 600 to 1,000
training examples, the residual model outperforms
both the rules it has been trained to improve on,
and a neural model trained without rules.

We aim to explore this effort in the context of
child language acquisition, where children effi-
ciently hypothesize and generalize rules from lim-
ited input. Furthermore, we will examine scenarios
with limited data from one dialect and linguistic
knowledge from a closely related dialect and ana-
lyze how learning the residuals can facilitate knowl-
edge transfer.

3https://github.com/slkh/morphophono-res
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A Transcription Map

Map: Arabic /IPA/ (LDC):

@ ð' @ ø' /Pa/ (’),

H. /b/ (b), h. /j/ (j), X /d/ (d), è /h/ (h), ð /w/ (w),
	P /z/ (z), h /h. / (H),   /tQ/ (T), ø
 /y/ (y), ¼ /k/ (k),

È /l/ (l), Ð /m/ (m), 	à /n/ (n), � /s/ (s), ¨ /Q/ (E),
	¬ /f/ (f), � /sQ/ (S), �� /q/ (q), P /r/ (r), �� /S/ ($),
�H /t/ (t), �è /-a(t)/ (a,at), �H /T/ (v), p /x/ (x), 	X /D/ (∗),
	� /dQ/ (D),

	̈
/G/ (g), 	  /DQ/ (Z), �� /a/ (a), �� /u/ (u),

�� /i/ (i), ø @ /a:/ (A), ð /u:/ (U), ø
 /i:/ (I).
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