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Abstract

Automatic readability assessment is relevant to
building NLP applications for education, con-
tent analysis, and accessibility. However, Ara-
bic readability assessment is a challenging task
due to Arabic’s morphological richness and lim-
ited readability resources. In this paper, we
present a set of experimental results on Arabic
readability assessment using a diverse range of
approaches, from rule-based methods to Arabic
pretrained language models. We report our re-
sults on a newly created corpus at different tex-
tual granularity levels (words and sentence frag-
ments). Our results show that combining differ-
ent techniques yields the best results, achieving
an overall macro F1 score of 86.7 at the word
level and 87.9 at the fragment level on a blind
test set. We make our code, data, and pretrained
models publicly available.1

1 Introduction

The task of automatic readability assessment aims
at modeling the reading and comprehension diffi-
culty of a given piece of text for a particular target
audience. This is relevant to building and enhanc-
ing pedagogical natural language processing (NLP)
applications, which aid students in language learn-
ing (Xia et al., 2016; Vajjala and Meurers, 2012),
help teachers with designing curricula and writ-
ing assessments (Collins-Thompson and Callan,
2004b), and enable the personalization of NLP sys-
tems’ output to target users with different read-
ability levels (Marchisio et al., 2019; Agrawal and
Carpuat, 2019). Research on English automatic
readability assessment have garnered substantial
interest in terms of dataset creation (Heilman et al.,
2007; Vajjala and Meurers, 2013; Xia et al., 2016;
Vajjala and Lučić, 2018) and modeling advance-
ments (Deutsch et al., 2020; Martinc et al., 2021;
Lee and Vajjala, 2022). In contrast, other languages
such as Arabic have not received as much attention.

1https://github.com/CAMeL-Lab/
samer-arabic-readability

Arabic is a morphologically rich and orthograph-
ically ambiguous language. Words have many in-
flected forms varying in terms of gender, number,
person, case, aspect, mood, voice, as well as a large
number of attachable clitics, such as pronominal
objects and prepositions (Habash, 2010). Arabic’s
high level of complexity poses a significant chal-
lenge for new learners. Furthermore, while Mod-
ern Standard Arabic (MSA) is used in education
and the media, modern-day Arabs natively speak
a variety of Arabic dialects that differ from MSA,
making MSA readability a relevant issue for them
too. There are growing research efforts on Arabic
readability assessment (Al-Khalifa and Al-Ajlan,
2010; Al Tamimi et al., 2014; El-Haj and Rayson,
2016; Saddiki et al., 2018). However, we are not
aware of any work that systematically explores
modeling approaches for Arabic readability at dif-
ferent textual granularity levels. In this paper, we
present Arabic readability assessment results us-
ing diverse approaches relying on frequency and
rule-based models as well as pretrained language
models (PLMs). We use the newly created SAMER
Arabic Text Simplification Corpus (Alhafni et al.,
2024) and report on word-level and fragment-level
readability. Our contributions are as follows:

• We systematically explore different model-
ing approaches to report on the task of Ara-
bic readability assessment, ranging from rule-
based methods to Arabic PLMs.

• We benchmark our models on a new corpus
with different readability levels.

• We show that combining different modeling
techniques yields optimal results: 86.7 word-
level macro F1 and 87.9 fragment-level macro
F1 on a blind test set.

We discuss related work in §2, provide an
overview of our dataset in §3, describe our models
for Arabic readability assessment in §4, and discuss
results in §5.
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2 Related Work

2.1 Readability Assessment Datasets

Automatic readability assessment has received con-
siderable attention, leading to the development of
many resources (Collins-Thompson and Callan,
2004a; Pitler and Nenkova, 2008; Feng et al., 2010;
Vajjala and Meurers, 2012; Xu et al., 2015; Xia
et al., 2016; Nadeem and Ostendorf, 2018; Vajjala
and Lučić, 2018; Deutsch et al., 2020; Lee et al.,
2021). Most of the English datasets were initially
derived from textbooks as they are considered to
be naturally suited for readability assessment re-
search, given that the linguistic characteristics of
texts become more complex as school grade in-
creases (Vajjala, 2022). However, many textbooks
are under copyright restrictions and may not be
accessible in a digitized form. This led to relying
on crowd sourcing to annotate data collected from
the web (Vajjala and Meurers, 2012; Vajjala and
Lučić, 2018) or from English assessment exams
targeting second-language (L2) learners (Xia et al.,
2016), where the Common European Framework
of Reference (CEFR) (Council of Europe, 2001) is
used.

When it comes to Arabic, specifically Modern
Standard Arabic (MSA), early work on readabil-
ity assessment relied mainly on academic curricula
(Al-Khalifa and Al-Ajlan, 2010; Al Tamimi et al.,
2014; Forsyth, 2014; Khalil et al., 2018). More
recently, there have been more efforts to create
Arabic readability assessment resources. Khallaf
and Sharoff (2021) consolidated multiple annotated
L2 datasets and mapped their readability levels to
CEFR. Habash and Palfreyman (2022) created the
ZAEBUC dataset that contains essays written by
native Arabic speakers, which were manually cor-
rected and annotated for writing proficiency using
the CEFR levels. Naous et al. (2023) introduced
a manually annotated multi-domain multilingual
dataset for readability assessment. In our work,
we use the newly introduced publicly available
SAMER Arabic Text Simplification Corpus (Al-
hafni et al., 2024), which was manually annotated
for readability leveling. We discuss the corpus in
more detail in §3. It is noteworthy that this cor-
pus is one of the publicly available resources cre-
ated by the Simplification of Arabic Masterpieces
for Extensive Reading (SAMER) project which
includes a readability leveled lexicon (Al Khalil
et al., 2020a; Jiang et al., 2020), and a Google Doc
add-on (Hazim et al., 2022).

2.2 Approaches to Readability Assessment

Early approaches for automatic readability assess-
ment relied on surface-level features that could be
extracted from raw text such as the average num-
ber words per sentence and the average number of
characters per word. Such approaches include com-
monly used readability measures such as the Dale-
Chall Readability Score (Dale and Chall, 1948) and
the Flesch-Kincaid Grade Level (FKGL) (Flesch,
1948). With the emergence of machine learning and
data driven methods, approaches were extended to
leverage statisical language models (Si and Callan,
2001) and linguistic features (Heilman et al., 2007;
Petersen and Ostendorf, 2009; Ambati et al., 2016).
More recently, deep learning approaches were ex-
plored (Cha et al., 2017; Jiang et al., 2018; Azpiazu
and Pera, 2019), including the use of Transfomer-
based PLMs (Deutsch et al., 2020; Lee and Vajjala,
2022; Naous et al., 2023; Imperial and Kochmar,
2023).

Although a lot of this research evolved on En-
glish, approaches to modeling Arabic readability
assessment witnessed a similar trend. Inspired
by English readability formulas, Al-Tamimi et al.
(2014) developed the Arabic Automatic Readabil-
ity Index (AARI). Similarly, El-Haj and Rayson
(2016) introduced OSMAN, an adaptation of con-
ventional readability formulas such as FKGL to
Arabic. When it comes to machine learning models,
the majority were based on linguistic features such
as perplexity scores from statistical language mod-
els (Al-Khalifa and Al-Ajlan, 2010), morphologi-
cal information (e.g., lemmas, morphemes, part-of-
speech tags) (Cavalli-Sforza et al., 2014; Forsyth,
2014; Saddiki et al., 2015; Nassiri et al., 2017), and
syntactic features (Saddiki et al., 2018). Despite the
various efforts on modeling Arabic readability as-
sessment, only few attempts were made to explore
deep learning approaches. Khallaf and Sharoff
(2021) and Naous et al. (2023) presented results
on using BERT (Devlin et al., 2019; Antoun et al.,
2020) for readability assessment. Moreover, it is
worth noting that the majority of research on Ara-
bic readability assessment report results at either
the document or sentence levels.

In our work, we draw inspiration from previous
efforts to explore various modeling approaches for
Arabic readability assessment at both the word and
fragment levels, encompassing a spectrum from
rule-based models to PLMs and their combinations.
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الفتى یمین إلى واحد فربض إلیھا فأشارت

الفتى یمین إلى واحد فجلس إلیھا فأشارت

الفتى یمین إلى واحد فجلس إلیھا فلوحت

Word Level
Original

Level 4

Level 3

3 3 3 3 5 3 4

She signaled to them (the dogs) and one of them lodged itself
to the right of the boy

She signaled to them and one of them sat to the right of the boy

She pointed to them and one of them sat to the right of the boy

Figure 1: An example illustrating the word-level labeling process. A word in the original text is labeled at the lowest
level where it appears unchanged across the parallel versions of the text in the SAMER Corpus.

Level 3 Level 4 Level 5 All

Train 5,947 4,543 3,766 14,256
Dev 1,256 926 766 2,948
Test 1,477 901 776 3,154
Total 8,680 6,370 5,308 20,358

Table 1: SAMER Corpus fragment readability level
statistics per split.

3 Data

3.1 SAMER Corpus

We extensively use the SAMER Arabic Text Sim-
plification Corpus (Alhafni et al., 2024). The cor-
pus consists of original texts selected from 15 pub-
licly available Arabic fiction novels. It includes
two simplified parallel versions for each text target-
ing learners at two readability levels (Level 4 and
Level 3). The levels are based on Al Khalil et al.
(2020a)’s five-level lexical readability scale which
ranges from Level 1 (Low Difficulty/Easy Readabil-
ity) to Level 5 (High Difficulty/Hard Readability).
The SAMER Corpus simplification guidelines con-
sider the readability level of a text to be equal to the
highest readability level found among the words in
the text. So, a Level 4 text cannot have any Level 5
words, but must have at least one Level 4 word.
As part of the manual simplification process, the
human annotators simplified the original text to
Level 4, and then to Level 3. This was done by first
automatically obtaining the word-level readabil-
ity of the original text using the SAMER Google
Doc add-on (Hazim et al., 2022) and then manually
performing minimal replacements, insertions, and
deletions to simplify the text from a higher to lower
readability levels. In some cases the annotators
minimally modified some words to maintain gram-

All Tokens Train Tokens

Level 3 136,805 86.6% 97,616 86.5%
Level 4 14,145 8.9% 10,151 9.0%
Level 5 7,104 4.5% 5,056 4.5%
Total 158,054 100% 112,823 100%

Table 2: SAMER Corpus word token readability level
statistics after the word-level labeling process.

matical agreement without changing their lexical
readability levels. The add-on was used to con-
firm the target levels were reached; however, the
annotators were allowed to overwrite incorrect au-
tomatically assigned word readability levels. The
SAMER Corpus release includes the original para-
graphs and their simplified counterparts segmented
into smaller parallel sentence fragments using punc-
tuation marks. Our readability assessment exper-
iments only use the original text fragments. The
release also includes the final word readability lev-
els; however, we do not use them as we opted to
employ a more generic solution for word-level read-
ability assignment, which we discuss next.

3.2 Fragments, Words, and Readability Levels

We model readability assessment on three levels:
Levels 5, 4, and 3, at the word level and fragment
level. To assign a readability label to each word in
the original fragments, we first obtain word-level
alignments between the original fragments and the
simplified parallels using an edit distance word
alignment tool (Alhafni et al., 2023; Khalifa et al.,
2021). We then derive the readability labels based
on whether the words in the original fragments
were changed in the simplified Levels 4 and 3 texts.
See example in Figure 1. Similar to the SAMER
Corpus, we consider the readability level of the
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Resources Used

SAMER CAMeL CAMeL SAMER
Model Corpus BERT Tools Lexicon

Lexicon X X X
BERT X X
Frequency X Counts
MLE X
Default L3

Table 3: Resources used in the word-level models.

fragment to be equal to the highest word readabil-
ity level found among the words in the fragment.
Tables 1 and 2 present the statistics of the corpus
at the fragment and word levels, respectively.

While this alignment-based approach is appli-
cable to any parallel original-simplified text, it
struggles to distinguish between lexical readabil-
ity changes and grammatical agreement changes.
Nevertheless, this holistic approach is valuable for
text simplification tasks that require altering both
words and their grammatical dependents. Impor-
tantly, this limitation does not affect the readability
level of the text fragments.

4 Approach

We present below the set of models we use for
word-level and fragment-level readability labeling.

4.1 Word-Level Readability Labeling

We investigate four models to label words ac-
cording to their readability levels: Maximum
Likelihood Estimation (MLE), Lexicon lookup,
Frequency-based labeling, and BERT-based token
classification. Each model relies on different re-
sources as summarized in Table 3. Moreover, each
model has a different set of parameters, which were
tuned to optimize the performance on the Dev set.
We further investigate combining the models in a
cascaded setup, leveraging their complementary
strengths to address the limitations of each model
individually.

4.1.1 Maximum Likelihood Estimation
The MLE model assigns the readability level
R that maximizes the conditional probability
P (R|W ), where R is the readability level of word
W as estimated over the training data. Among
in-vocabulary words, 97.2% appear with one read-
ability level in the training, and 0.2% appear with

all three. For out-of-vocabulary (OOV) words, we
back-off to a default readability level or to one of
other models we discuss below.

4.1.2 Lexicon
Our second model, Lex, leverages the SAMER
Readability Lexicon (Al Khalil et al., 2020a),
which consists of over 40K lemmas manually anno-
tated with their readability levels (1 to 5). For the
purposes of our task, we consider lemmas of Lev-
els 1 and 2 to be included under Level 3. During
inference, we use Inoue et al. (2022)’s morpho-
logical disambiguator as implemented in CAMel
Tools (Obeid et al., 2020) to identify the lemma
and part-of-speech tag for each word. We infer the
readability level of the word using its lemma’s read-
ability level in the SAMER lexicon. In cases where
the morphological disambiguator returns multiple
top lemma analyses, we select the lowest readabil-
ity associated with these lemmas. For OOV words,
we back-off to a default readability level or to one
of other models we discuss below.

4.1.3 Frequency-Based Models
Given the limited vocabulary seen the SAMER
Corpus, we explore different approaches to de-
rive readability levels from frequency data building
on the known observation about the inverse cor-
relation between frequency and readability levels
(Al Khalil et al., 2020b): more frequent words have
easier/lower readability levels. We leverage our
SAMER Corpus training data and link it with type
frequency data from a corpus of 12.6B word tokens
(11.4M types) used to pretrain the CAMeLBERT
models (Inoue et al., 2021).2 We sort the 11.4M
word types by frequency and divide them into ad-
jacent bins for which we assign readability levels
using one of two methods:

Distribution-based Labeling (Dist-Freq) In this
method, we divide the word types into three bins
that mirror the distribution of readability levels
in our training data (as seen in Table 2). More
concretely, the most frequent words that account
for 86.5% of the total distribution mass are assigned
to Level 3, followed by 9.0% assigned to Level 4,
and the remaining tail assigned to Level 5.

Example-based Labeling (Ex-Freq) Based on
the assumption that types of a certain readability
level tend to have similar frequencies in a large

2https://github.com/CAMeL-Lab/Camel_Arabic_
Frequency_Lists
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corpus, we divide the frequency-sorted types into
equally sized bins based on cumulative frequency.
Utilizing our training data as training examples, we
assign a readability level to all the types within each
bin according to the majority readability level of
training words found in that bin. During inference,
if words are not observed in any bin, we default
to assigning a readability level of 5, reflecting the
expectation that rare words are typically harder to
read. We empirically experiment with different
numbers of bins and found that 10,000 bins yield
the highest performance in terms of macro F1 score.

4.1.4 BERT Token Classification

We build a word-level classifier by leveraging a
Transformer-based PLM. There are many Arabic
monolingual BERT (Devlin et al., 2019) models
available such as AraBERT (Antoun et al., 2020),
ARBERT (Abdul-Mageed et al., 2021), and JABER
(Ghaddar et al., 2022). However, we chose to
use CAMeLBERT MSA (Inoue et al., 2021) as
it was pretrained on the largest MSA dataset to
date, and following the recommendations of Inoue
et al. (2021) to use it for tasks on MSA. We fine-
tune CAMeLBERT MSA using Hugging Face’s
Transformers (Wolf et al., 2020) by adding a fully-
connected linear layer with a softmax on top of
its architecture. Given that BERT operates at the
subword-level (i.e., wordpieces), we assign to each
subword the readability level of the word it belongs
to. During inference, we label each word according
to the highest readability level among its subwords.
We fine-tune our model on a single GPU for 10
epochs with a learning rate of 1e-5, a batch size of
32, and a maximum sequence length of 30.

4.1.5 System Combination

In addition to evaluating the various models dis-
cussed above, we consider their combinations to
exploit their complementarities. Our approach to
combining the systems runs the Lex and MLE
models first (independently and together in differ-
ent orders – four combinations) followed by one
of the following six models: default level 3, 4, or
5, Dist-Freq, Ex-Freq, or BERT. The total is 24
combinations layered in two or three steps. See
Table 9 in Appendix A. Since the early layers, Lex
and MLE, do not handle unknown words, the later
layers resolve these cases. We evaluate all these
system combinations on both word and fragment
leveling in terms of accuracy and macro F1 score.

4.2 Fragment-Level Readability Labeling
We consider two approaches to fragment-level la-
beling: a direct BERT-based approach and an ag-
gregation of the word-level predictions.

4.2.1 BERT Fragment Classification
We train a fragment-level classifier by fine-tuning
CAMeLBERT MSA. We add a fully connected lin-
ear layer on top of the representation of the whole
fragment. We experiment with different ways of ob-
taining the fragment representation from the BERT
model: using the [CLS] token, mean-pooling, and
max-pooling, and found mean-pooling to outper-
form the other representations in all evaluation met-
rics. We fine-tune our model using Hugging Face’s
Transformers (Wolf et al., 2019) on a single GPU
for 10 epochs with a learning rate of 5e-5, a batch
size of 32, and a maximum sequence length of 20.

4.2.2 Aggregating Word-Level Predictions
Finally, we aggregate the word-level labels pro-
duced by the various models discussed in §4.1
above to assign fragment-level labels: the fragment
label equals the highest readability level found
among its words.

5 Results

We present and discuss the results of our evaluation
below. The complete set of results for word-level
and fragment-level labeling across all experimental
setups is available in Appendix A.

5.1 Word-Level Labeling Results
Table 4 presents the results on the Dev set. We
start off with the results of the standalone models
in Table 4(a). The frequency-based approaches
(Dist-Freq and Ex-Freq) improve over the majority
class baseline (Default Level 3). However, they are
outperformed by BERT. This improvement is at-
tributed to the significant increase in the F1 scores
for Level 4 and Level 5 words. In Table 4(b) we
show that the results improve further when com-
bining the MLE model with BERT as a back-off
system.

Results in Table 4(c) show that using the
frequency-based and BERT models as back-off
systems to Lex improve the results compared to
defaulting to Level 3, with Lex → BERT being the
best performer. However, the improvements when
using a back-off model to Lex are not as large as
the ones observed when using the MLE model (Ta-
ble 4(b)). This is due to the larger coverage the
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Model F1(3) F1(4) F1(5) F1 Acc.

(a)

Default Level 3 92.8 0.0 0.0 30.9 86.5
. Dist-Freq 84.2 20.8 28.6 44.5 71.1

Ex-Freq 93.0 21.5 14.7 43.1 86.4
BERT 96.5 67.9 59.3 74.6 92.4

(b)

MLE → Level 3 95.1 57.5 41.2 64.6 91.0
MLE → Dist-Freq 91.6 51.0 39.8 60.8 83.1

MLE → Ex-Freq 95.0 56.9 42.4 64.7 90.3
MLE → BERT 96.7 69.9 61.0 75.9 92.8

(c)

Lex → Level 3 97.8 85.2 74.1 85.7 95.7
Lex → Dist-Freq 97.8 84.5 75.2 85.8 95.5

Lex → Ex-Freq 97.8 85.1 74.6 85.8 95.7
Lex → BERT 98.0 85.1 76.5 86.5 95.9

(d)

Lex → MLE → Level 3 97.8 85.2 74.5 85.8 95.8
Lex → MLE → BERT 98.0 85.1 76.5 86.5 95.9

MLE → Lex → Level 3 98.0 85.7 76.9 86.8 96.0
MLE → Lex → BERT 98.1 85.5 78.8 87.5 96.2

Tuned-MLE → Lex → BERT 98.2 86.1 79.4 87.9 96.3

Table 4: Word-level results on the Dev set. F1(3), F1(4), and F1(5) are the macro F1 scores for levels 3, 4, and 5,
respectively. F1 is the overall macro F1 score. Underlined numbers represent the best results in each subcategory of
experiments. Best overall results are in bold.

Model F1(3) F1(4) F1(5) F1 Acc.

BERT (Fragment-Level) 88.7 68.2 58.8 71.9 79.4
BERT (Word-Level) 85.1 70.2 69.4 74.9 76.4
Lex → MLE → Level 3 90.9 85.0 81.1 85.7 86.6
Lex → MLE → BERT 91.2 85.3 82.9 86.4 87.2
MLE → Lex → Level 3 91.2 85.9 83.0 86.7 87.5
MLE → Lex → BERT 91.6 86.1 84.6 87.5 88.1
Tuned-MLE → Lex → BERT 92.1 86.7 84.9 87.9 88.6

Table 5: Fragment-level results on the Dev set.

Lexicon has on the Dev set (96.4% of all tokens)
compared to the MLE system (79.0%).

Finally, in Table 4(d) we present the maximal
combination results. We find that using the MLE
model, followed by Lex and then BERT yields
the best results. We further tune this combination
by considering different probability thresholds at
which to back-off from MLE. We found 85% MLE
minimum probability to give the best results on
the Dev set. Our best model combination is thus
Tuned-MLE → Lex → BERT with 87.9 F1.

5.2 Fragment-Level Labeling Results

Table 5 presents the fragment-level results on the
Dev set. We find that, although the fragment-level

BERT classifier does better than its word-level
counterpart, the aggregated word-level models per-
form better on the fragment-level. We obtain the
best results using the (Tuned-MLE → Lex →
BERT) model, achieving an F1 score of 87.9. It
is interesting to note that the best system coinci-
dentally achieves the same overall F1 macro at the
word and fragment levels. Our best system is better
at predicting Level 3 words compared to Level 3
fragments (98.2 v.s. 92.1). Conversely, the system
is better at predicting Level 4 and Level 5 fragments
compared to the words. This makes sense given
that Level 3 fragments are exclusively composed
of Level 3 words, any word-level error on a Level 3
fragment leads to fragment error. In sum, the 3.7%
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Fragment Word # of FragmentsLabel Errors

Correct 0 2,300 78.% 78.0%

Correct 1 239 8.1%
10.6%Correct 2 56 1.9%

Correct 3+ 16 0.5%

Incorrect 1 283 9.6%
11.4%Incorrect 2 38 1.3%

Incorrect 3+ 16 0.5%

Table 6: Summary of fragment-word error combinations
on the Dev set. We identify three groups: correct frag-
ments with no word errors, correct fragments with some
word errors, and incorrect fragments with word errors.

accuracy errors at the word level lead to 11.4% ac-
curacy errors at the fragment level. Table 6 presents
a detailed breakdown of the combinations of word
and fragment errors.

Finally, we revisit our best model combination
Tuned-MLE → Lex → BERT in Table 7, where
we give a summary of the decisions and mistakes
made by each of its three components and their ef-
fect on word-level and fragment-level performance.
We notice that most of the decisions were taken
by the MLE model, which had the lowest error
rate, and the lowest rate of error propagation to the
fragment level. However, when errors at the word
level happen, there is a large chance a fragment
error will follow suit in all three models. Moreover,
we note that the performance is highly degraded
by the last model (BERT) decisions, with 35.6%
word-level and 67.7% fragment-level errors.

5.3 Blind Test Results

Table 8 presents the results on the Test set. We
observe consistent conclusions to the Dev results.
Our best system (Tuned-MLE → Lex → BERT)
achieves an overall F1 score of 86.7 at the word
level and 87.9 at the fragment level.

5.4 Manual Error Analysis

We manually classified 100 cases of word readabil-
ity errors from the Dev set (out of 814 or 3.7%
of all words) into seven distinct error types. We
provide a brief description of each error type be-
low, with its percentage of occurrence. The errors
are presented in order of precedence, so if there is
an Input error, we do not consider any other error
below it, and so on.

MLE LEX BERT

Decisions 17,058 4,843 174
Mistakes 377 375 62
Applied 77.3% 21.9% 0.8%
Word Error 2.2% 7.7% 35.6%
Fragment Error 41.4% 56.3% 67.7%

Table 7: The word-level decisions taken by each of the
layers of the best-performing system on the Dev set’s
22,075 tokens, and their error rates in terms of word-
level and fragment-level labeling.

Input Error: 3% The word is malformed in
terms of spelling; e.g., �é 	̄PAªÓ mςArfh̄ instead of

é 	̄PAªÓ mςArfh ‘his features’.

Gold Reference Annotation Error: 18% The
human annotator made a mistake of under-
simplification or over-simplification, e.g., rewriting
��K
Q¢Ë@ Q��»


@ Aª¢�® 	̄ ‘they crossed most of the road’

as ��K
Q¢Ë@ Q��»

@ AJ
 ��Ô 	̄ ‘they walked most of the road’

(L4) is unnecessary since the original is not L5.

Gold Reference Determination Error: 8% As
discussed in §3.2, our process to determine the
word-level readability confused grammatical agree-
ment changes with lexical simplification changes,
e.g., the phrase �èYªj. �JÖÏ @ ém×CÓ mlAmHh Almtjςdh̄
‘his wrinkled features’ is simplified correctly to
Yªj. �JÖÏ @ éêk. ð wjhh Almtjςd ‘his wrinkled face’ by
changing the first word’s lemma and only changing
the gender agreement of the second word; however
both are considered changed and thus assigned a
higher level.

MLE Error: 22% The MLE model misclassi-
fied a word, e.g., confusing YêÓ mahd ‘cradle’ (L5)
with the verb mah∼ad ‘he paved’ (L4).

Disambiguation Error: 31% The Lex model
misclassified a word whose lemma is in the lexi-
con, because of morphosyntactic or lemmatization
choice errors, e.g.,

	Y 	® 	JÓ manfað ‘outlet’ (L4) is
incorrectly identified as munaf∼ið ‘executor’ (L3).

Lexicon Error: 11% The correct lemma is not
in the lexicon, and an incorrect lemma is chosen,
e.g., for the word A�ÓB lAmsA the system chose
the verbal analysis laAmas ‘touched’ instead of the
nominal active participle laAmis ‘touching’.
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Model
Word-Level Fragment-Level

F1(3) F1(4) F1(5) F1 Acc. F1(3) F1(4) F1(5) F1 Acc.

BERT 96.8 70.4 56.9 74.7 92.9 87.9 71.8 66.8 75.5 78.3
MLE → BERT 96.9 71.9 58.0 75.6 93.2 88.7 73.4 67.5 76.5 79.3
Lexicon → BERT 97.8 84.8 72.5 85.0 95.6 91.1 85.6 79.4 85.4 86.7
Tuned-MLE → Lex → BERT 98.1 86.2 75.9 86.7 96.2 93.3 87.3 82.9 87.9 89.1

Table 8: Results on the Test set at both the word and fragment levels.

BERT Error: 7% The word is OOV in the lex-
icon, and BERT misclassified it, e.g., the lemma
Õç'Ag HAŷm ‘hovering’ (annotators assigned L5) is
not in the lexicon, and BERT misclassified it as L4.

The lexicon and disambiguation errors take a
significant share of all errors and direct us towards
working on improving these resources in the fu-
ture; as better generalizing models are developed,
we would rely less on the MLE model. The rate
of gold errors is low and within reason given the
complexity of the task.

6 Conclusions and Future Work

We explored the problem of Arabic readability as-
sessment using a diverse set of approaches rely-
ing on frequency and rule-based models as well as
Arabic pretrained language models (PLMs). We
reported results using a newly manually created
corpus at both the word and fragment levels. We
further highlighted the strengths and weaknesses
of each approach and underscored the importance
of employing different strategies to address Ara-
bic readability assessment effectively. Our find-
ings demonstrate that combining different model-
ing techniques yields the best results, achieving an
overall macro F1 score of 86.7 at the word level
and 87.9 at the fragment level.

In future work, we plan to explore the effect of
various linguistic features in enhancing machine
learning models for Arabic readability assessment.
We plan to continue to improve basic enabling tech-
nologies such as morphological disambiguation
and lemmatization and study their effect on read-
ability models. We further plan to employ our best
results in the development of online tools to support
pedagogical NLP applications.
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We acknowledge the following limitations.

• By focusing on lexical readability, the ap-
proach used to create the SAMER corpus
ignores many readability related phenomena
such as phonological, morphological and syn-
tactic complexity.

• The SAMER corpus does not cover all varia-
tions of Arabic text genres, which limits the
robustness of the results.

• The assessment at three readability levels
might not capture the full complexity of text
readability at wider age and education level
ranges.

• The study lacks human evaluation to corrob-
orate the automatic readability assessments,
which is crucial for validating the practical
effectiveness of the models.
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A All Word-level Model Combination Results

Model
Word-Level Fragment-Level

F1(3) F1(4) F1(5) F1 Acc. F1(3) F1(4) F1(5) F1 Acc.

Default level 3 92.8 0 0 30.9 86.5 59.8 0 0 19.9 42.6
Default level 4 0 16.3 0 5.4 8.9 0 47.8 0 15.9 31.4
Default level 5 0 0 8.7 2.9 4.6 0 0 41.2 13.7 26.0
Dist-Freq 84.2 20.8 28.6 44.5 71.1 39.2 27.1 49.0 38.4 40.3
Ex-Freq 93.0 21.5 14.7 43.1 86.4 64.9 29.3 29.5 41.3 50.5
BERT 96.5 67.9 59.3 74.6 92.4 85.1 70.2 69.4 74.9 76.4
MLE → L3 95.1 57.5 41.2 64.6 91.0 75.1 62.1 50.2 62.5 67.1
MLE → L4 89.9 46.0 41.2 59.0 81.0 54.6 57.6 50.2 54.1 55.4
MLE → L5 89.9 57.5 29.8 59.1 79.7 54.6 26.6 49.4 43.5 46.7
MLE → Dist-Freq 91.6 51.0 39.8 60.8 83.1 60.5 44.0 55.9 53.5 54.2
MLE → Ex-Freq 95.0 56.9 42.4 64.7 90.3 75.7 60.8 56.0 64.2 67.3
MLE → BERT 96.7 69.9 61.0 75.9 92.8 85.4 71.0 70.7 75.7 77.1
MLE → Lex → L3 98.0 85.7 76.9 86.8 96.0 91.2 85.9 83.0 86.7 87.5
MLE → Lex → L4 98.0 82.9 76.9 85.9 95.8 91.0 83.3 83.0 85.8 86.5
MLE → Lex → L5 98.0 85.7 77.5 87.1 96.0 91.0 85.5 83.5 86.7 87.3
MLE → Lex → Dist-Freq 98.0 85.5 78.0 87.2 96.0 91.4 85.9 84.1 87.2 87.8
MLE → Lex → Ex-Freq 98.0 85.6 77.2 86.9 96.0 91.3 85.8 83.4 86.9 87.6
MLE → Lex → BERT 98.1 85.5 78.8 87.5 96.2 91.6 86.1 84.6 87.4 88.1
Lex → L3 97.8 85.2 74.1 85.7 95.7 90.7 85.0 80.9 85.5 86.5
Lex → L4 97.3 78.6 74.1 83.4 94.6 88.6 80.3 80.9 83.2 83.9
Lex → L5 97.3 85.2 68.8 83.8 94.9 88.6 82.3 77.5 82.8 83.5
Lex → Dist-Freq 97.8 84.5 75.2 85.8 95.5 90.6 84.4 82.1 85.7 86.3
Lex → Ex-Freq 97.8 85.1 74.6 85.8 95.7 90.9 84.9 81.5 85.8 86.6
Lex → BERT 98.0 85.1 76.5 86.5 95.9 91.3 85.4 83.0 86.6 87.3
Lex → MLE → L3 97.8 85.2 74.5 85.8 95.8 90.9 85.0 81.1 85.7 86.6
Lex → MLE → L4 97.9 82.5 74.5 84.9 95.5 90.8 82.4 81.1 84.8 85.6
Lex → MLE → L5 97.9 85.2 75.3 86.1 95.7 90.8 84.9 82.3 86.0 86.7
Lex → MLE → Dist-Freq 97.9 85.1 75.8 86.2 95.7 91.1 85.1 82.6 86.3 87.0
Lex → MLE → Ex-Freq 97.8 85.1 74.8 85.9 95.7 91.1 84.9 81.6 85.9 86.7
Lex → MLE → BERT 98.0 85.1 76.5 86.5 95.9 91.2 85.3 82.9 86.4 87.2
Tuned-MLE → Lex → BERT 98.2 86.1 79.4 87.9 96.3 92.1 86.7 84.9 87.9 88.6

Table 9: Word-level results on the Dev set for all the layered experiments.
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