@inproceedings{alharbi-2024-mission,
title = "{MISSION} at {KSAA}-{CAD} 2024: {A}ra{T}5 with {A}rabic Reverse Dictionary",
author = "Alharbi, Thamer",
editor = "Habash, Nizar and
Bouamor, Houda and
Eskander, Ramy and
Tomeh, Nadi and
Abu Farha, Ibrahim and
Abdelali, Ahmed and
Touileb, Samia and
Hamed, Injy and
Onaizan, Yaser and
Alhafni, Bashar and
Antoun, Wissam and
Khalifa, Salam and
Haddad, Hatem and
Zitouni, Imed and
AlKhamissi, Badr and
Almatham, Rawan and
Mrini, Khalil",
booktitle = "Proceedings of The Second Arabic Natural Language Processing Conference",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.arabicnlp-1.76",
doi = "10.18653/v1/2024.arabicnlp-1.76",
pages = "692--696",
abstract = "This research paper presents our approach for the KSAA-CAD 2024 competition, focusing on Arabic Reverse Dictionary (RD) task (Alshammari et al., 2024). Leveraging the functionalities of the Arabic Reverse Dictionary, our system allows users to input glosses and retrieve corresponding words. We provide all associated notebooks and developed models on GitHub and Hugging face, respectively. Our task entails working with a dataset comprising dictionary data and word embedding vectors, utilizing three different architectures of contextualized word embeddings: AraELECTRA, AraBERTv2, and camelBERT-MSA. We fine-tune the AraT5v2-base-1024 model for predicting each embedding, considering various hyperparameters for training and validation. Evaluation metrics include ranking accuracy, mean squared error (MSE), and cosine similarity. The results demonstrate the effectiveness of our approach on both development and test datasets, showcasing promising performance across different embedding types.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="alharbi-2024-mission">
<titleInfo>
<title>MISSION at KSAA-CAD 2024: AraT5 with Arabic Reverse Dictionary</title>
</titleInfo>
<name type="personal">
<namePart type="given">Thamer</namePart>
<namePart type="family">Alharbi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of The Second Arabic Natural Language Processing Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nizar</namePart>
<namePart type="family">Habash</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ramy</namePart>
<namePart type="family">Eskander</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nadi</namePart>
<namePart type="family">Tomeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ibrahim</namePart>
<namePart type="family">Abu Farha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ahmed</namePart>
<namePart type="family">Abdelali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Samia</namePart>
<namePart type="family">Touileb</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Injy</namePart>
<namePart type="family">Hamed</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bashar</namePart>
<namePart type="family">Alhafni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wissam</namePart>
<namePart type="family">Antoun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Salam</namePart>
<namePart type="family">Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hatem</namePart>
<namePart type="family">Haddad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Imed</namePart>
<namePart type="family">Zitouni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Badr</namePart>
<namePart type="family">AlKhamissi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rawan</namePart>
<namePart type="family">Almatham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalil</namePart>
<namePart type="family">Mrini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This research paper presents our approach for the KSAA-CAD 2024 competition, focusing on Arabic Reverse Dictionary (RD) task (Alshammari et al., 2024). Leveraging the functionalities of the Arabic Reverse Dictionary, our system allows users to input glosses and retrieve corresponding words. We provide all associated notebooks and developed models on GitHub and Hugging face, respectively. Our task entails working with a dataset comprising dictionary data and word embedding vectors, utilizing three different architectures of contextualized word embeddings: AraELECTRA, AraBERTv2, and camelBERT-MSA. We fine-tune the AraT5v2-base-1024 model for predicting each embedding, considering various hyperparameters for training and validation. Evaluation metrics include ranking accuracy, mean squared error (MSE), and cosine similarity. The results demonstrate the effectiveness of our approach on both development and test datasets, showcasing promising performance across different embedding types.</abstract>
<identifier type="citekey">alharbi-2024-mission</identifier>
<identifier type="doi">10.18653/v1/2024.arabicnlp-1.76</identifier>
<location>
<url>https://aclanthology.org/2024.arabicnlp-1.76</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>692</start>
<end>696</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T MISSION at KSAA-CAD 2024: AraT5 with Arabic Reverse Dictionary
%A Alharbi, Thamer
%Y Habash, Nizar
%Y Bouamor, Houda
%Y Eskander, Ramy
%Y Tomeh, Nadi
%Y Abu Farha, Ibrahim
%Y Abdelali, Ahmed
%Y Touileb, Samia
%Y Hamed, Injy
%Y Onaizan, Yaser
%Y Alhafni, Bashar
%Y Antoun, Wissam
%Y Khalifa, Salam
%Y Haddad, Hatem
%Y Zitouni, Imed
%Y AlKhamissi, Badr
%Y Almatham, Rawan
%Y Mrini, Khalil
%S Proceedings of The Second Arabic Natural Language Processing Conference
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F alharbi-2024-mission
%X This research paper presents our approach for the KSAA-CAD 2024 competition, focusing on Arabic Reverse Dictionary (RD) task (Alshammari et al., 2024). Leveraging the functionalities of the Arabic Reverse Dictionary, our system allows users to input glosses and retrieve corresponding words. We provide all associated notebooks and developed models on GitHub and Hugging face, respectively. Our task entails working with a dataset comprising dictionary data and word embedding vectors, utilizing three different architectures of contextualized word embeddings: AraELECTRA, AraBERTv2, and camelBERT-MSA. We fine-tune the AraT5v2-base-1024 model for predicting each embedding, considering various hyperparameters for training and validation. Evaluation metrics include ranking accuracy, mean squared error (MSE), and cosine similarity. The results demonstrate the effectiveness of our approach on both development and test datasets, showcasing promising performance across different embedding types.
%R 10.18653/v1/2024.arabicnlp-1.76
%U https://aclanthology.org/2024.arabicnlp-1.76
%U https://doi.org/10.18653/v1/2024.arabicnlp-1.76
%P 692-696
Markdown (Informal)
[MISSION at KSAA-CAD 2024: AraT5 with Arabic Reverse Dictionary](https://aclanthology.org/2024.arabicnlp-1.76) (Alharbi, ArabicNLP-WS 2024)
ACL