
Proceedings of The Second Arabic Natural Language Processing Conference, pages 692–696
August 16, 2024 ©2024 Association for Computational Linguistics

MISSION at KSAA-CAD 2024:
AraT5 with Arabic Reverse Dictionary

THAMER MASEER ALHARBI
tamr4947@gmail.com

Abstract

This research paper presents our approach for
the KSAA-CAD 2024 competition, focusing
on Arabic Reverse Dictionary (RD) task (Al-
shammari et al., 2024). Leveraging the func-
tionalities of the Arabic Reverse Dictionary,
our system allows users to input glosses and
retrieve corresponding words. We provide all
associated notebooks and developed models on
GitHub and Hugging face, respectively. Our
task entails working with a dataset comprising
dictionary data and word embedding vectors,
utilizing three different architectures of con-
textualized word embeddings: AraELECTRA,
AraBERTv2, and camelBERT-MSA. We fine-
tune the AraT5v2-base-1024 model for predict-
ing each embedding, considering various hy-
perparameters for training and validation. Eval-
uation metrics include ranking accuracy, mean
squared error (MSE), and cosine similarity. The
results demonstrate the effectiveness of our ap-
proach on both development and test datasets,
showcasing promising performance across dif-
ferent embedding types.

1 Introduction

This research paper is prepared for KSAA-CAD
2024 (Alshammari et al., 2024) and describes our
approach1 as part of our contribution to this compe-
tition. All associated notebooks can be accessed on
GitHub2, and the developed models are available
on Hugging face 3. This task focuses on Arabic
Reverse Dictionary word and gloss to word embed-
ding, leveraging the Arabic Reverse Dictionary’s
functionality. It enables users to input glosses and
receive corresponding words for better comprehen-
sion. For instance, if you forget a word, you can

1https://github.com/thxa/KSAA-CAD2024/blob/
main/RD_TASK.ipynb

2https://github.com/thxa/KSAA-CAD2024
3https://huggingface.co/7H4M3R/

AraT5-multi-word-embedding/tree/main

describe it, and the model will provide either the ex-
act word or the closest synonym. This process facil-
itates gloss to word embedding. The task involves
working with a dataset comprising dictionary data
and word embedding vectors, utilizing three dif-
ferent architectures of contextualized word embed-
dings. The dataset includes three dictionaries of
Contemporary Arabic Language: C̈ontemporary
Arabic Language Dictionary" by Ahmed Mokhtar
Omar (Omar, 2008), "Mu’jam Arriyadh" dictio-
nary of Arabic contemporary language (Altamimi
et al., 2023), "Al Wassit LMF Arabic Dictionary"
(Namly, 2015)(Alshammari et al., 2024).

These dictionaries conform to the ISO Lexical
Markup Framework (LMF) standard (Francopoulo
et al., 2006) and are based on lemmas, including
glosses, part of speech (POS) tags, and examples.
Previous experiments indicated that fixed word
embeddings like word2vec did not perform well,
prompting a shift to contextualized word embed-
dings using advanced models such as Electra(Clark
et al., 2020), BERT(Devlin et al., 2018), AraELEC-
TRA(Antoun et al., 2021), AraBERTv2(Antoun
et al.), and camelBERT-MSA(Inoue et al., 2021).
AraELECTRA, based on the ELECTRA frame-
work (Clark et al., 2020), trains a discriminator
model, while AraBERTv2 uses Farasa segmenta-
tion(Darwish and Mubarak, 2016) and camelBERT-
MSA is pretrained on Modern Standard Arabic
(MSA) corpora, built on the BERT architecture
(Alshammari et al., 2024).

2 Datasets

A simplified version of the input data is shown in
Table 1, and the data in JSON format is illustrated
in Figure 1. The target output of embeddings, as
shown in Figure 1, utilizes the following models:

• AraELECTRA is represented as Electra (An-
toun et al., 2021).

692

https://github.com/thxa/KSAA-CAD2024/blob/main/RD_TASK.ipynb
https://github.com/thxa/KSAA-CAD2024/blob/main/RD_TASK.ipynb
https://github.com/thxa/KSAA-CAD2024
https://huggingface.co/7H4M3R/AraT5-multi-word-embedding/tree/main
https://huggingface.co/7H4M3R/AraT5-multi-word-embedding/tree/main

• AraBERTv2 is represented as bertSEG (An-
toun et al.).

• camelBERT-MSA is represented as bertMSA
(Inoue et al., 2021).

The statistics of the dataset are summarized in
Table 2.

id ar.962714

word
�Y �Ò
�
»
�
@

pos V

gloss �I.
�
Ê ��®Ë @ �	��Q�Ó

�
@ �ð ��Ñ �	«

Table 1: Example of definition in Arabic.

{
"id" : "ar.962714",

"word" : "
�Y �Ò
�
»
�
@",

"pos" : "V",

"gloss" : " �I.
�
Ê ��®Ë @ �	��Q�Ó

�
@ �ð ��Ñ �	«",

"electra" : [0.22,...], // length 256
"bertseg" : [0.13, ...], // length 768
"bertmsa" : [-1.05,...] // length 768
}

Figure 1: Example of data in JSON format.

Task Dev Train Test
RD entries 3921 31372 3922

Table 2: Data Statistics.

3 Metrcies

The model evaluation process follows a hierarchi-
cal approach using multiple metrics.

3.1 Ranking Metric
The ranking metric evaluates how accurately the
model ranks predictions against the ground truth
(Alshammari et al., 2024). The following equations
describe the computation steps:

First, normalize the vectors:

xnorm =
x

||x|| (1)

Then, compute the similarity matrix between the
normalized predictions and the targets:

A = xnorm,preds · x⊤
norm,targets (2)

Next, calculate the rank matrix:

r =
∑

(A ≥ diag(A)), axis = 1 (3)

Compute the mean rank:

m = mean(r) (4)

Finally, normalize the mean rank by the number
of elements N :

n =
m

N
(5)

The equations are derived from the code provided
in appendix B.

3.2 Mean Squared Error (MSE)
Measures the average of the squares of the errors
between predicted and actual values, providing in-
sight into the model’s overall accuracy (PyTorch,
2024b).

MSE =
1

n

n∑

i=1

(yi − ŷi)
2 (6)

3.3 Cosine Similarity
Assesses the cosine of the angle between two non-
zero vectors, providing additional insights into
the similarity between predicted and actual values
based on their direction (PyTorch, 2024a).

cosine_similarity(x1,x2) =
x1 · x2

||x1||||x2||
(7)

4 System

4.1 Hardware
We utilized Google Colab4 with GPU acceleration,
specifically NVIDIA A100-SXM4-40GB, for train-
ing the model.

4.2 Model
We fine-tune the AraT5v2-base-1024 model (El-
madany et al., 2023). The model undergoes three
separate fine-tuning processes, each aimed at pre-
dicting different embeddings (e.g., AraELECTRA
(Antoun et al., 2021), AraBERTv2 (Antoun et al.),
camelBERT-MSA(Inoue et al., 2021)). The model
consists of the T5 architecture (Raffel et al., 2023),
followed by a final linear layer for embedding gen-
eration. The inputs to the model are token IDs
(tokenized input sequences or glosses), attention
masks (to avoid attending to padding tokens), and
labels (target word tokens used to compute the loss

4https://colab.research.google.com/

693

https://colab.research.google.com/

during training). The outputs from the model are
the sequence-to-sequence loss used for training and
the final word embedding generated by the model
as shown in 2.

4.3 Train and Validation
Table 3 lists the hyperparameters used for both
training and validation. The loss function em-
ployed is Mean Squared Error (MSE) 3.2, and
model selection is based on cosine similarity 3.3
evaluated on the validation data at each epoch. The
only difference between the models is the number
of epochs, due to budget constraints. A batch size
of 32 was chosen to avoid crashes due to limited
computing power, with the other hyperparameters
kept the same as the baseline.

Here is an explanation of each hyperparameter:

• EPOCHS: Number of complete passes
through the training dataset.

• BATCH SIZE: Number of training examples
used in one iteration.

• LEARNING RATE: Step size at each iteration
while moving toward a minimum of the loss
function.

• BETA1: Exponential decay rate for the first
moment estimates in the AdamW optimizer.

• BETA2: Exponential decay rate for the sec-
ond moment estimates in the AdamW opti-
mizer.

• WEIGHT DECAY: Regularization term to pre-
vent overfitting by penalizing large weights.

• Optimizer: AdamW, which is a variant of the
Adam optimizer that includes weight decay
for better regularization.

The models for predicting embeddings are de-
ployed on Hugging Face as follows:

• Electra model5 (trained for 20 epochs).

• bertMSA model6 (trained for 10 epochs).

• bertSEG model7 (trained for 10 epochs).

5https://huggingface.co/7H4M3R/
AraT5-multi-word-embedding/blob/main/best_model_
electra_v3.pt

6https://huggingface.co/7H4M3R/
AraT5-multi-word-embedding/blob/main/best_model_
bertmsa_v1.pt

7https://huggingface.co/7H4M3R/
AraT5-multi-word-embedding/blob/main/best_model_
bertseg_v1.pt

Hyper Parameter Value
EPOCHS 10,20
BATCH_SIZE 32
LEARNING_RATE 1.0e-4
BETA1 0.9
BETA2 0.999
WEIGHT_DECAY 1.0e-6
Optimizer AdamW

Table 3: Hyper Parameters.

5 Result

The results are as shown in table8 4.

Embedding Data Rank MSE Cos
Electra Dev 0.2469 0.2297 0.5515

Test 0.2482 0.2298 0.5507

bertMSA Dev 0.3334 0.3257 0.7188
Test 0.3315 0.3224 0.7219

bertSEG Dev 0.4126 0.0777 0.7745
Test 0.4165 0.0781 0.7731

Table 4: Results on DevSet and TestSet for RD Task.

5.1 Analysis
From the table 4, we observe the following:

• Electra shows the lowest rank and MSE but
also the lowest cosine similarity, indicating it
may not perform as well in capturing semantic
similarity compared to the other models.

• bertMSA shows a balanced performance with
moderate scores in all metrics.

• bertSEG achieves the highest cosine similarity,
suggesting better semantic representation, but
it has higher rank and MSE values.

6 Discussion

The results from Table 4 indicate varying perfor-
mance levels across the different embeddings when
predicted using the AraT5-base-1024 model. The
results highlight the trade-offs between different
embedding models. A model like Electra, which
performs well in ranking and error metrics, might
not capture semantic similarities as effectively as
bertSEG. Choosing the right model depends on the
specific requirements of the task. For tasks that re-
quire precise semantic understanding, models with

8https://codalab.lisn.upsaclay.fr/
competitions/18510#results

694

https://huggingface.co/7H4M3R/AraT5-multi-word-embedding/blob/main/best_model_electra_v3.pt
https://huggingface.co/7H4M3R/AraT5-multi-word-embedding/blob/main/best_model_electra_v3.pt
https://huggingface.co/7H4M3R/AraT5-multi-word-embedding/blob/main/best_model_electra_v3.pt
https://huggingface.co/7H4M3R/AraT5-multi-word-embedding/blob/main/best_model_bertmsa_v1.pt
https://huggingface.co/7H4M3R/AraT5-multi-word-embedding/blob/main/best_model_bertmsa_v1.pt
https://huggingface.co/7H4M3R/AraT5-multi-word-embedding/blob/main/best_model_bertmsa_v1.pt
https://huggingface.co/7H4M3R/AraT5-multi-word-embedding/blob/main/best_model_bertseg_v1.pt
https://huggingface.co/7H4M3R/AraT5-multi-word-embedding/blob/main/best_model_bertseg_v1.pt
https://huggingface.co/7H4M3R/AraT5-multi-word-embedding/blob/main/best_model_bertseg_v1.pt
https://codalab.lisn.upsaclay.fr/competitions/18510##results
https://codalab.lisn.upsaclay.fr/competitions/18510##results

higher cosine similarity like bertSEG are preferable.
For tasks where ranking and minimizing errors are
more important, models like Electra may be more
suitable. bertMSA offers a balanced performance,
making it a strong candidate for general-purpose
use across a variety of NLP tasks.

7 Future Work

• Conduct more extensive testing on different
datasets and tasks to gain a deeper understand-
ing of the strengths and weaknesses of each
embedding model.

• Explore hybrid models or ensemble ap-
proaches that combine the strengths of dif-
ferent embeddings to potentially yield better
performance across all metrics.

• Fine-tune these models on more specific
datasets or tasks to improve their performance
further, especially in capturing the nuances of
the Arabic language.

• Investigate new architectures such as Mamba
(Gu and Dao, 2024) or KAN (Liu et al., 2024),
or create a new architecture.

8 Conclusion

The study highlights the varying strengths and
weaknesses of different Arabic embeddings pre-
dicted using the AraT5-base-1024 model. By un-
derstanding these differences, practitioners can
make more informed choices about which embed-
ding model to use for specific NLP tasks.

Acknowledgments

I would like to acknowledge the organizers of
KSAA-CAD for their support, and I extend my
thanks to all the teams from the previous version
for their contributions.

References
Rawan Al-Matham, Waad Alshammari, Abdulrahman

AlOsaimy, Sarah Alhumoud, Asma Wazrah, Afrah
Altamimi, Halah Alharbi, and Abdullah Alaifi. 2023.
KSAA-RD shared task: Arabic reverse dictionary.
In Proceedings of ArabicNLP 2023, pages 450–460,
Singapore (Hybrid). Association for Computational
Linguistics.

Waad Alshammari, Amal Almazrua, Asma Al Wazrah,
Rawan Almatham, Muneera Alhoshan, Abdulrahman
AlOsaimy, and Alfaifi Abdullah Altamimi, Afrah and.

2024. KSAA-CAD: Contemporary Arabic dictionary
shared task. In Proceedings of the 2nd Arabic Natu-
ral Language Processing Conference (Arabic-NLP),
Part of the ACL 2024. Association for Computational
Linguistics.

Wissam Antoun, Fady Baly, and Hazem Hajj. Arabert:
Transformer-based model for arabic language under-
standing. In LREC 2020 Workshop Language Re-
sources and Evaluation Conference 11–16 May 2020,
page 9.

Wissam Antoun, Fady Baly, and Hazem Hajj. 2021.
AraELECTRA: Pre-training text discriminators for
Arabic language understanding. In Proceedings of
the Sixth Arabic Natural Language Processing Work-
shop, pages 191–195, Kyiv, Ukraine (Virtual). Asso-
ciation for Computational Linguistics.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than generators.
Preprint, arXiv:2003.10555.

Kareem Darwish and Hamdy Mubarak. 2016. Farasa:
A new fast and accurate Arabic word segmenter. In
Proceedings of the Tenth International Conference
on Language Resources and Evaluation (LREC’16),
pages 1070–1074, Portorož, Slovenia. European Lan-
guage Resources Association (ELRA).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. Preprint, arXiv:1810.04805.

Ahmed Elbakry, Mohamed Gabr, Muhammad El-
Nokrashy, and Badr AlKhamissi. 2023. Rosetta stone
at KSAA-RD shared task: A hop from language mod-
eling to word–definition alignment. In Proceedings
of ArabicNLP 2023, pages 477–482, Singapore (Hy-
brid). Association for Computational Linguistics.

AbdelRahim Elmadany, El Moatez Billah Nagoudi, and
Muhammad Abdul-Mageed. 2023. Octopus: A mul-
titask model and toolkit for Arabic natural language
generation. In Proceedings of ArabicNLP 2023,
pages 232–243, Singapore (Hybrid). Association for
Computational Linguistics.

Gil Francopoulo, Monte George, Nicoletta Calzolari,
Monica Monachini, Nuria Bel, Mandy Pet, and Clau-
dia Soria. 2006. Lexical markup framework (LMF).
In Proceedings of the Fifth International Conference
on Language Resources and Evaluation (LREC’06),
Genoa, Italy. European Language Resources Associ-
ation (ELRA).

Albert Gu and Tri Dao. 2024. Mamba: Linear-
time sequence modeling with selective state spaces.
Preprint, arXiv:2312.00752.

Go Inoue, Bashar Alhafni, Nurpeiis Baimukan, Houda
Bouamor, and Nizar Habash. 2021. The interplay
of variant, size, and task type in Arabic pre-trained

695

https://doi.org/10.18653/v1/2023.arabicnlp-1.39
https://aclanthology.org/2021.wanlp-1.20
https://aclanthology.org/2021.wanlp-1.20
https://arxiv.org/abs/2003.10555
https://arxiv.org/abs/2003.10555
https://aclanthology.org/L16-1170
https://aclanthology.org/L16-1170
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://doi.org/10.18653/v1/2023.arabicnlp-1.43
https://doi.org/10.18653/v1/2023.arabicnlp-1.43
https://doi.org/10.18653/v1/2023.arabicnlp-1.43
https://doi.org/10.18653/v1/2023.arabicnlp-1.20
https://doi.org/10.18653/v1/2023.arabicnlp-1.20
https://doi.org/10.18653/v1/2023.arabicnlp-1.20
http://www.lrec-conf.org/proceedings/lrec2006/pdf/577_pdf.pdf
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2312.00752

language models. In Proceedings of the Sixth Ara-
bic Natural Language Processing Workshop, Kyiv,
Ukraine (Online). Association for Computational Lin-
guistics.

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian
Ruehle, James Halverson, Marin Soljačić, Thomas Y.
Hou, and Max Tegmark. 2024. Kan: Kolmogorov-
arnold networks. Preprint, arXiv:2404.19756.

PyTorch. 2024a. Cosine similarity. Accessed: 2024-06-
27.

PyTorch. 2024b. Mean squared error loss. Accessed:
2024-06-27.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2023. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Preprint, arXiv:1910.10683.

A Model Architecture

Figure 2: Model Architecture

B Ranking Metric

The code is derived from the baseline (Alshammari
et al., 2024).

d e f r a n k _ c o s i n e (p reds , t a r g e t s) :
a s s o c s = F . n o r m a l i z e (p r e d s) @ F . n o r m a l i z e (t a r g e t s) . T
r e f s = t o r c h . d i a g o n a l (a s s o c s , 0) . unsqueeze (1)
r a n k s = (a s s o c s >= r e f s) . sum (1) . f l o a t ()
a s s e r t r a n k s . numel () == p r e d s . s i z e (0)
r a n k s = r a n k s . mean () . i t em ()
r e t u r n r a n k s / p r e d s . s i z e (0)

696

https://arxiv.org/abs/2404.19756
https://arxiv.org/abs/2404.19756
https://pytorch.org/docs/stable/generated/torch.nn.CosineSimilarity.html
https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683

