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Abstract

Recognizing the nuanced spectrum of dialect-
ness in Arabic text poses a significant challenge
for natural language processing (NLP) tasks.
Traditional dialect identification (DI) methods
treat the task as binary, overlooking the con-
tinuum of dialect variation present in Arabic
speech and text. In this paper, we describe our
submission to the NADI shared Task of Ara-
bicNLP 2024. We participated in Subtask 2 -
ALDi Estimation, which focuses on estimating
the Arabic Level of Dialectness (ALDi) for Ara-
bic text, indicating how much it deviates from
Modern Standard Arabic (MSA) on a scale
from 0 to 1, where 0 means MSA and 1 means
high divergence from MSA. We explore di-
verse training approaches, including contrastive
learning, applying a random weighted sampler
along with fine-tuning a regression task based
on the AraBERT model, after adding a linear
and non-linear layer on top of its pooled out-
put. Finally, performing a brute force ensemble
strategy increases the performance of our sys-
tem. Our proposed solution achieved a Root
Mean Squared Error (RMSE) of 0.1406, rank-
ing second on the leaderboard.

1 Introduction

The Arabic language exhibits a duality of forms:
Modern Standard Arabic (MSA) serves as the
standardized variety taught in schools and used
in formal settings and communication across the
Arab world. In contrast, numerous regional vari-
eties of Dialectal Arabic (DA) dominate everyday
spoken communication, including interactions on
social media. These dialects significantly differ
from MSA in phonology, grammar, and vocabulary
(Habash, 2010).

This bifurcation of the language, coupled with
frequent code-switching between MSA and DA,
presents significant challenges for Arabic NLP sys-
tems (Sakr and Torki, 2023). Researchers have de-
veloped numerous systems to address Dialect Iden-

tification (DI), often at the sentence level (Zaidan
and Callison-Burch, 2011; Elfardy and Diab, 2013;
Salameh et al., 2018) and occasionally at the to-
ken level to identify instances of code-switching
(Solorio et al., 2014; Molina et al., 2016). However,
these approaches often adopt a binary perspective,
categorizing a sentence or token as either MSA or
DA.

To tackle these challenges, (Keleg et al., 2023)
introduced the AOC-ALDi dataset, which contains
127,835 sentences labeled for their level of dialec-
tal variation, derived from the AOC dataset (Zaidan
and Callison-Burch, 2011). The AOC dataset in-
cludes user comments from three newspapers, rep-
resenting Egyptian, Levantine, and Gulf dialects.

In this paper, we explore the use of pre-trained
transformer-based language models. Given that the
AOC-ALDi dataset is imbalanced, with approxi-
mately 50% consisting of MSA samples labeled as
0, transformer models often overfit in this context.
Therefore, we fine-tuned the linear and non-linear
layers on top of these pre-trained language models
and explored different training strategies, includ-
ing contrastive learning and the use of a weighted
random sampler in the data loader. Combining
these approaches resulted in further improvements
in system performance. Finally, employing a brute-
force ensemble strategy with the collaboration of
5 checkpoints from different training paradigms
further increased the effectiveness of our system.

Throughout this paper, we use the following ab-
breviations: Weighted Random Sampler (WRS),
Contrastive Loss (CL), Temperature Parameter for
NT-Xent loss (T), Remove Non-Arabic Letters and
Links (RMNALL), and Drop 43,000 Samples from
Majority Label (DS).

2 Related Work

Early research on Arabic Dialect Identification (DI)
focused on both binary MSA-DA classification and
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multi-class problems involving various DA vari-
ants (Althobaiti, 2020; Keleg and Magdy, 2023).
Arabic DI has garnered significant attention, lead-
ing to multiple shared tasks (Zampieri et al., 2014;
Abdul-Mageed et al., 2020) and datasets (Zaidan
and Callison-Burch, 2011; Abdelali et al., 2021;
Althobaiti, 2022). Research has been conducted
at both the sentence and token levels, but exist-
ing methods often struggle to differentiate between
sentences that share similar dialectal cues but ex-
hibit varying levels of dialectness. To address these
issues, (Keleg et al., 2023) introduced the AOC-
ALDi dataset, which includes 127,835 sentences la-
beled for dialectness, derived from user comments
on articles from three newspapers representing
Egyptian, Levantine, and Gulf dialects (Zaidan and
Callison-Burch, 2011). They employed a BERT-
based regression model, fine-tuning a regression
head atop MarBERT (Abdul-Mageed et al., 2021a),
and conducted multiple rounds of fine-tuning with
different random seeds to ensure consistency.

There has been an interest in contrastive learning
(Chen et al., 2020) in recent years due to its signifi-
cant advancements in various NLP tasks. However,
its application within the Arabic context has been
relatively limited. This trend has shifted as demon-
strated by (Shapiro et al., 2022), who showcased
the efficacy of contrastive learning in Arabic hate
speech detection, resulting in substantial improve-
ments over baseline methods.

Recent studies in computer vision (Pintea et al.,
2023) have shown that incorporating a classifi-
cation loss alongside a regression loss enhances
the performance of deep regression models. They
found that this approach is particularly beneficial
for regression tasks with imbalanced data distribu-
tions.

3 Data

For our experiments, we used the training AOC-
ALDi dataset provided by the shared task. We con-
ducted an extensive analysis of the dataset to gain
insights that could aid us in effectively addressing
the problem. The dataset comprises 102,886 data
samples with 68 unique labels ranging from 0 to 1
where 0 represents MSA, and 1 signifies high diver-
gence from MSA. The distribution of the dataset is
illustrated in Figure 1.

We observed a significant imbalance in the
dataset, where the MSA label predominates over
other labels. Specifically, there are 53,844 data

samples labeled as 0 (MSA), accounting for approx-
imately 52.3% of the total dataset. To mitigate this
imbalance, we employed WRS in the data loader.
Additionally, we explored undersampling the ma-
jority class by removing around 43,000 samples
from the MSA data samples.

We also performed simple data preprocessing
by removing non-Arabic letters from the sentences,
but it decreased the system’s performance. Finally,
we split this dataset into an 85% training set and
a 15% dev set. Our dev set serves to monitor the
training process and detect issues such as overfit-
ting or underfitting and to keep the best checkpoints
of the training procedure.

For the shared task provided dev set, we found
that it has 107 data samples, which have a slightly
different distribution from the provided training
dataset. The distribution of the shared task dev set
can be found in Figure 2 for this circumstance,
we saved the top 4 checkpoints of any training
paradigm on our dev set and then tested them all
on the subtask 2 dev set to choose the best one.

4 System

4.1 Encoders Selection
We use the following BERT-based models in our
experiments:

4.1.1 AraBERTv2-Twitter
AraBERT (Antoun et al.) is based on Google’s
BERT (Devlin et al., 2019) architecture. It is an
Arabic pre-trained language model. There are mul-
tiple versions of this model. We chose AraBERTv2-
Twitter1 because it is pre-trained on 77 GB of MSA
text plus 60 million Arabic dialect tweets. We use
the Large2 version of it, which has more parame-
ters, totaling 371 million.

4.1.2 MARBERTv2
MARBERTv2 (Abdul-Mageed et al., 2021a) is a
large-scale Arabic language model that focuses
also on MSA and different dialects. We chose
MARBERTv23 because it is trained on 1 billion
Arabic tweets, similar to MARBERTv14 (Abdul-
Mageed et al., 2021b), in addition to the same MSA
texts as ARBERT in addition to AraNews dataset
with a bigger sequence length of 512 tokens.

1https://huggingface.co/aubmindlab/bert-base-
arabertv02-twitter

2https://huggingface.co/aubmindlab/bert-large-
arabertv02

3https://huggingface.co/UBC-NLP/MARBERTv2
4UBC-NLP/MARBERT
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Figure 1: Provided training AOC-ALDi
dataset distribution Figure 2: Provided Dev set distribution

4.2 Baseline Architecture

We utilized the Huggingface’s library (Wolf et al.,
2020) to fine-tune the encoders described in Sec-
tion 4.1 on a regression task for Sub-task 2 (Abdul-
Mageed et al., 2024). Our baseline system, shown
in Figure 3 consists of three main components: a
transformer-based encoder, customizable regressor
layers, and dropout regularization. The BERT en-
coder serves as the backbone for extracting contex-
tualized representations of input tokens. These rep-
resentations are then passed through the regressor,
which consists of multiple linear layers, dropout
layers, and activation functions, to learn non-linear
mappings between the input features and the re-
gression target.

This architecture offers flexibility in configura-
tions, such as adjusting the dropout rate and the
dimensions of the hidden layers in the regressor.

4.3 Implementation

We utilized the AdamW optimizer (Loshchilov and
Hutter, 2019) with a learning rate of 5× 10−6 and
an epsilon value of 1× 10−8 to update model pa-
rameters during training. The default RMSE loss
function is employed. A dropout rate of 0.2 is ap-
plied for regularization. The regressor component
consists of consecutive layers: dropout, linear (in-
put size: 768, output size: 512), ReLU (Agarap,
2018) activation, dropout, linear (input size: 512,
output size: 256), ReLU activation, and linear (in-
put size: 256, output size: 1). Initially, we applied
a sigmoid activation (Dubey et al., 2022) to bound
the output between 0 and 1, but this led to a de-
crease in system performance.

4.4 Weighted Random Sampler (WRS)

The WRS in Torch (Paszke et al., 2019) involves
sampling instances from the dataset with probabili-
ties proportional to their weights. In this paper, we

used the inverse frequency of the labels to assign
these probabilities to each sample. This ensured
that instances with lower frequencies, which are
more challenging, were given higher probabilities
of being selected during training.

4.5 Contrastive Loss
We delve into a different training approach (Pintea
et al., 2023) known as contrastive learning (Cole
et al., 2022; Shapiro et al., 2022). It aims to reduce
the gap in pooled BERT representations between
similar pairs while widening the distance between
dissimilar pairs. One commonly used contrastive
loss is the Normalized Temperature-scaled Cross
Entropy (NT-Xent) loss (Chen et al., 2020), which
we used in our experiments. Its name is derived
from its components. Firstly, the term "Normal-
ized" refers to the utilization of cosine similarity,
which generates a standardized score within the
range of -1.0 to +1.0. Secondly, "Temperature-
scaled" indicates that a temperature parameter ad-
justs the cosine similarity among all pairs before
the computation of the cross-entropy loss. In our
training, we try temperature parameters of 0.3 and
0.5 as used by (Chen et al., 2020), and 1. Lastly, the
core of this loss function lies in the "Cross-entropy
loss" which is fundamentally a multi-class (single-
label) cross-entropy loss. In our system, we used
the pooled output twice, first passing it through the
regressor part of the model, and secondly, passing
it to the NT-Xent loss along with the labels dur-
ing the training process. Integrating the NT-Xent
loss with the RMSE loss significantly enhanced our
system’s performance.

4.6 Ensemble
Ensemble methods in NLP involve combining pre-
dictions by leveraging diverse models or variations
of the same model to enhance performance. In
our system, we apply a brute-force strategy with
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Figure 3: Workflow of Architectural Model Training

many checkpoints coming from different training
paradigms, trying to maximize the score on the
subtask 2 dev set. This approach includes models
with varying temperature parameters in the NT-
Xent loss, models trained on the complete training
dataset, and models trained after undersampling the
majority class (MSA samples) with zero labels. We
also experimented with various strategies for ag-
gregating predictions within our ensemble system,
such as majority voting, averaging, and median
prediction. Among these methods, we found that
using the median of the predictions consistently
yielded the best results.

5 Results

We saved the best 4 checkpoints on our dev set,
which represents 15% from the subtask 2 provided
training data, then tested those 4 checkpoints in the
shared task dev set to get the best checkpoint. The
results on the subtask 2 dev set and test set are given
in Table 2. Experiments 1, 2, 3, 5, and 6 determined
the use of the AraBERTv2-Twitter-Base encoder
in subsequent experiments. Experiments 1 and 4
determined that we would not do any additional
preprocessing on the given dataset. Experiment
6 showed improvement when adding WRS to the
system. Experiment 7 showed improvement when
adding CL to the system compared to Experiment 2.

Experiments 8, 9, 10, and 11 showed that combin-
ing WRS with CL made further improvements to
our system. Experiment 13 showed that our brute-
force ensemble strategy when taking the median of
the predictions, achieved the best result.

6 Qualitative Results

In this section, we provide practical examples
drawn from the dev set of the shared task. Sub-
sequently, we conduct a comparative analysis be-
tween the outputs generated by our best system
based on the ensemble and the actual ground truth,
as detailed in Table 1. Examples numbered 1, and
2 are deemed unsatisfactory instances where our
model’s predictions were notably inaccurate. In
Example 1, the sub-sentence

Õº 	�Q« i 	� 	®K
 é<Ë @
, may lead to a lower in the dialect score as pre-
dicted by our system. In Example 2, the atypical
practice of writing English words in an Arabic style,
not commonly found in the training set, likely con-
founds the model. In contrast, Examples 3 and
4 feature words and sub-sentences that frequently
appear in the training set, such as

èXAÓ , �HQ» 	Y�K , �I 	® �� ÐñK
 , èY» éJ
Ë , ¨ñ 	�ñÖÏ @
, which showcase successful predictions and under-
score the effectiveness of our approach.
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No Text PRD GT
1 YK
PYÓ_ Cë # ��ð 	Q 	k # I. «B Q 	ª�B 	QK
Q�
K. 	áÓ Õº 	�Q« i 	� 	®K
 é<Ë @ A 	KðP 	Q 	̄ 0.576 0.888

2 	QK
X Q�� 	̄ @ ��
 	̄ ñ�K ��
 	̄ ���Ë AêËñ�̄ @ 0.792 1.0

3 èY» éJ
Ë ñK
XPA¿ ¨ I. ËA
�̄ ¨ñ 	�ñÖÏ @ ñë 0.791 0.799

4 �I�
�	�ð AîD.j��. �I	J» èXAÓ ø
 Y
	J« �HQ» 	Y�K é«A�Ë@ �I�̄ñË@ �I 	® �� ÐñK
 0.665 0.666

Table 1: Qualitative Results and Comparison between Prediction (PRD) results and Ground Truth (GT)

Experiment Model RMSE
Dev Set Test Set

1 AraBERTv2-Twitter-Large-RMSE 0.1352 -
2 AraBERTv2-Twitter-Base-RMSE 0.1487 -
3 MARBERTv2-RMSE 0.1664 -
4 AraBERTv2-Twitter-Large-RMNALL-RMSE 0.1386 -
5 AraBERTv2-Twitter-Large-WRS-RMSE 0.1366 -
6 AraBERTv2-Twitter-Base-WRS-RMSE 0.1203 -
7 AraBERTv2-Twitter-Base-RMSE-CL (T = 0.5) 0.1368 -
8 AraBERTv2-Twitter-Base-WRS-RMSE-CL (T = 0.3) 0.1138 -
9 AraBERTv2-Twitter-Base-WRS-RMSE-CL (T = 0.5) 0.1113 0.1427
10 AraBERTv2-Twitter-Base-WRS-RMSE-CL (T = 1) 0.1122 -
11 AraBERTv2-Twitter-Base-DS-WRS-RMSE-CL (T = 0.5) 0.1172 -
12 Ensemble Averaging 0.1087 -
13 Ensemble Median 0.1060 0.1406

Table 2: Results on Subtask 2 Dev Set and Test Set (Leader board Results)

7 Discussion

In Experiment 4, we cleaned the dataset by RM-
NALL. Surprisingly, this led to a decrease in perfor-
mance. This decline might be due to inconsisten-
cies among the dataset annotators, who could have
considered these elements when scoring the sam-
ples. As a result of the reduced performance, we
chose not to implement these preprocessing steps.

Considering the imbalanced distribution of the
given training set, we sought techniques to mitigate
bias towards the majority class. Finally adding the
WRS and combining the RMSE with contrastive
loss (experiments 6,7, and 9) led to a significant
improvement in the results.

Experiments 1, 2, 5, and 6 showed that adding
WRS led to an increase in the performance of the
AraBERTv2-Twitter base rather than the large ver-
sion. This is because WRS led to overfitting to
the minority samples, so we needed to reduce the
complexity of the model.

The noticeable difference between the results of

the shared task dev set and test set (leaderboard
results) in Experiment 9, 13 in Table 2 may be
due to the shared task dev set containing only 107
samples, whereas the blind test set includes 857
samples. Thus, this dev set may not be a good
representation of the blind test set.

8 Conclusion

In this paper, we address the challenge of recogniz-
ing the nuanced spectrum of dialectness in Arabic
text. We developed a sophisticated approach that
surpasses binary classification by acknowledging
the continuum of dialect variation. By using WRS,
CL, and a robust ensemble strategy, our solution
achieved a noteworthy RMSE of 0.1406, ranking
second on the leaderboard.
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