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Abstract

DA-MSA Machine Translation is a recent
challenge due to the multitude of Arabic di-
alects and their variations. In this paper, we
present our results within the context of Sub-
task 3 of the NADI-2024 Shared Task (Abdul-
Mageed et al., 2024) that is DA-MSA Ma-
chine Translation. We utilized the DIALECTS-
MSA MADAR corpus (Bouamor et al., 2018),
the Emi-NADI corpus for the Emirati dialect
(Khered et al., 2023), and we augmented the
Palestinian and Jordanian datasets based on
NADI 2021. Our approach involves develop-
ing sentence-level machine translations from
Palestinian, Jordanian, Emirati, and Egyptian
dialects to Modern Standard Arabic (MSA).
To address this challenge, we fine-tuned mod-
els such as (Nagoudi et al., 2022) AraT5v2-
msa-small, AraT5v2-msa-base, and (Elmadany
et al., 2023) AraT5v2-base-1024 to compare
their performance. Among these, the AraT5v2-
base-1024 model achieved the best accuracy,
with a BLEU score of 0.1650 on the develop-
ment set and 0.1746 on the test set.

1 Introduction

The Arabic language includes two main variants:
Modern Standard Arabic (MSA), which is a formal
language used in newspapers, news broadcasts, and
literature, and Dialects Arabic (DA), which con-
tains a diverse array of informal languages spoken
across Arab countries, each distinguished by its
own unique characteristics (Almansor, 2018). DA-
MSA Machine Translation is a relatively recent de-
velopment in machine translation (MT), largely due
to the spread of social media and the widespread
use of dialects in daily interactions and online com-
munication. Given the multitude of Arabic dialects
and their variations. Creating accurate tools to
process Arabic social media content presents sig-
nificant challenges (Derouich et al., 2023). There-
fore, there is a need to unify these dialects under
the umbrella of MSA, which serves as a standard

form of Arabic. DA-MSA translation not only fa-
cilitates communication between speakers of dif-
ferent Arabic dialects but also enhances the com-
prehension of written or spoken content for those
who primarily use Standard Arabic. Despite its im-
portance, the availability of datasets for DA-MSA
translation is limited compared to English datasets.
Therefore, translation in English has preceded Ara-
bic. In our research, we focus on translating four
Arabic dialects (Egyptian, Emirati, Jordanian, and
Palestinian) into MSA using the MADAR paral-
lel dataset and Emi-NADI for Emirati dialect. We
augmented this dataset by extracting data from the
NADI2021 dataset for Jordanian and Palestinian
dialects. Additionally, we utilized ChatGPT to
translate these dialects into MSA, demonstrating
the capabilities of large language models. Through-
out our experiments, we fine-tuned model’s such as
AraT5v2-msa-small, AraT5v2-msa-base AraT5v2-
base-1024 to achieve accurate MSA translations.
This paper is organized as follows: In Section 2,
we review related work. In Section 3, we present
our methodology and dataset. In Section 4, we
evaluate the models accuracy and present the re-
sults. In Section 5, we provide a discussion of the
results. Finally, we conclude with an analysis of
errors observed during the experimentation.

2 Related Work

Some researchers have concentrated on translat-
ing a single dialect into Modern Standard Ara-
bic. For instance, the architecture of an RNN
sequence-to-sequence learning model (Encoder-
Decoder Model) was adopted in (Al-Ibrahim and
Duwairi, 2020) to translate the Jordanian Dialect
to MSA. The researchers trained this model to ac-
curately learn the translation probability of Jorda-
nian words/phrases to their corresponding standard
counterparts, manually collecting the dataset for
training. In another study, the focus was on the
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Tunisian Dialect (Sghaier and Zrigui, 2020). The
objective was to develop a system that translates
text written in Tunisian Dialect (TD) into Mod-
ern Standard Arabic (MSA) using a rule-based ap-
proach. This study (Faheem et al., 2024) also fo-
cused on one dialect translating Egyptian dialects
to Modern Standard Arabic (MSA) by combining
supervised and unsupervised learning techniques
in neural machine translation to improve accuracy
and reliability. On the other hand, efforts have
been directed towards translating multiple dialects.
(Derouich et al., 2023) focused on machine transla-
tion of Arabic dialects to Modern Standard Arabic
(MSA) using the DIALECT-MSA MADAR cor-
pus. The researchers employed pre-training of the
AraT5 transformer model and compared its per-
formance with existing transformer models. They
also utilized the back-translation method, which
involves using English as an intermediary language
between Dialectal Arabic and MSA, leading to im-
proved translation quality. They achieved a BLEU
score of 11.14% on the dev set and 10.02% on the
test set. In another study, (Khered et al., 2023) the
emphasis was on machine translation of text from
four Arabic dialects to Modern Standard Arabic.
The researchers fine-tuned three types of T5 mod-
els, namely, AraT5, mT5, and mT0. Additionally,
they developed a new dataset, Emi-NADI, which
contains MSA translations of sentences written in
Emirati. In our work, we emulate the second ap-
proach and focus on translating multiple Arabic
dialects into Modern Standard Arabic.

3 Methodology

3.1 Dataset

This section describes the datasets utilized in train-
ing our models, as shown in Table 1. Our approach
began with the use of the MADAR parallel cor-
pus, which includes data covering the dialects of
25 Arabic-speaking cities, as well as English and
Modern Standard Arabic (MSA). It is important
to note that the MADAR corpus does not include
a parallel corpus for the Emirati dialect. To ad-
dress this gap, we incorporated another parallel cor-
pus called Emi-NADI. Additionally, we augmented
the dataset for Jordanian and Palestinian dialects,
which were underrepresented in the MADAR cor-
pus. We extracted data from the NADI2021 dataset
for these dialects, yielding 420 instances for the
Palestinian dialect and 426 instances for the Jorda-
nian dialect. To showcase the capabilities of large

language models, we employed OpenAI’s Chat-
GPT, specifically the GPT-3.5 version, to translate
Jordanian and Palestinian dialects into MSA. Our
approach involved crafting prompts for ChatGPT
to carry out these translations. This process was
facilitated through the web user interface provided
by OpenAI, enabling us to interact directly with
ChatGPT via a browser. The model was used in
its original form without any additional training or
fine-tuning. After generating the translations, we
thoroughly reviewed the content to assess its qual-
ity and accuracy. Finally, we performed preprocess-
ing on the dataset extracted from NADI2021. This
preprocessing included removing URLs, punctua-
tion marks, digits, extra white spaces, and vowels
to clean and standardize the data for training.

Dataset Total

MADAR + Jor-Pla- NADI 91,758
4 dialects + Jor-Pla-NAD 20, 557
Emi-NADI 2,758
Jor-Pla- NADI 846

Table 1: Dataset

NADI provided both development and testing
datasets. The development data comprised 400 en-
tries, with 100 entries for each dialect. Each entry
in the development data had a corresponding MSA
equivalent. In contrast, the testing data consisted of
2000 entries, with 500 entries per dialect, but did
not include MSA equivalents.

3.2 Fine-tuning pre-trained Language Models
We utilized the AraT5v2 model, Arabic Text-To-
Text Transfer Transformer, which was trained on an
extensive corpus of Arabic text (both unlabeled and
labeled) that includes all categories of Arabic (i.e.,
Classical Arabic (CA), Dialectal Arabic (DA), and
Modern Standard Arabic (MSA)). The model was
fine-tuned for specific downstream tasks, includ-
ing translation, summarization, question answer-
ing, and text generation (Elmadany et al., 2023). In
our experiments, we used three variants from the
AraT5v2 series: AraT5v2-msa-small, AraT5v2-
msa-base, and AraT5v2-base-1024. We chose
AraT5v2-base-1024 as the basis for our experi-
ments due to its high accuracy.

3.3 Hyperparameter Optimization
We trained our models using Nvidia A100 GPUs
in Google Colab. All models accepted input se-
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Figure 1: An example of alson model

quences with a maximum length of either 105 or
128 tokens and generated output text with the same
respective maximum lengths of either 105 or 128
tokens. The learning rates were configured to ei-
ther 5e-5 or 7e-5, while batch sizes were set to 16
or 8, chosen based on the model’s complexity and
resource requirements. The maximum number of
epochs was set to 20.

4 Results

All models for Subtask 3 were evaluated using
the Bilingual Evaluation Understudy (BLEU), a
metric for automatically machine translated text
(Papineni et al., 2002). We obtained two sets
of results: one set for the 4 dialects + Jor-Pla-
NADI dataset, and another set for the MADAR
+ Jor-Pla-NADI dataset. The results for the 4 di-
alects + Jor-Pla-NADI dataset outperformed those
for the MADAR + Jor-Pla-NADI dataset in terms
of accuracy. We utilized three variants from the
AraT5v2 series: AraT5v2-msa-small, AraT5v2-
msa-base, and AraT5v2-base-1024. Our initial
experiments were conducted using AraT5v2-msa-
small, which produced low accuracy, with the high-
est achieved accuracy being 0.024 at epoch 30.
Subsequently, we employed AraT5v2-msa-base,
which although better and more complex than the
first model, still resulted in low accuracy, albeit
slightly improved with the highest achieved accu-
racy of 0.056 at epoch 10. Finally, we proceeded
with AraT5v2-base-1024 as the last variant, which
proved to be the most effective among them. The re-
sults were based on experiments conducted on two

datasets with different epochs. We observed that
in all experiments, the 4 dialects + Jor-Pla-NADI
dataset consistently outperformed the MADAR +
Jor-Pla-NADI dataset across randomly different
epochs. This comparison was conducted to deter-
mine which dataset yielded better performance, as
illustrated in Figure 2. And the highest result we
achieved on the development dataset, trained on
the 4 dialects + Jor-Pla-NADI dataset, was 0.1650.
Additionally, the highest result we achieved on the
test dataset, also trained on the 4 dialects + Jor-
Pla-NADI dataset, was 0.1746. These results were
obtained with a learning rate of 7e-5, a batch size of
16, and an epoch of 2. See Table 2 for details. Fig-
ure 1 shows sample output generated by the alson
model, randomly selected from the prediction file.
These examples illustrate the model’s performance,
demonstrating that it achieves satisfactory results.

Figure 2: Model accuracy
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Model Overall Egy. Emi. Jor. Pal.

AraT5v2-base-1024

Dev 0.1650 0.1709 0.1273 0.1817 0.1618
Test 0.1746 0.1676 0.1253 0.2094 0.1843

Table 2: Model Performance on Development and Test
Sets

5 Discussion

In our study, we observed that the AraT5v2-base-
1024 model, which was trained on four dialects +
Jor-Pla-NADI, outperforms other models. This is
due to its training on a large and diverse Arabic
dataset. This suggests that pre-trained models on
extensive and diverse Arabic language data achieve
better performance in translating dialects to Mod-
ern Standard Arabic (MSA). We also noted that
the dataset with the four dialects + Jor-Pla-NADI
yields better results than the MADAR + Jor-Pla-
NADI dataset because focusing on a specific num-
ber of dialects helps the model learn more effec-
tively. Conversely, training on a large number of
dialects may weaken the model’s predictive ability
and overall performance. Additionally, the simi-
larity between dialects and the variation in word
meanings across dialects may additionally compro-
mise the model’s effectiveness. On adjusting the
model parameters, such as batch size and max tar-
get input, we experimented with values but noticed
only marginal performance differences. Similarly,
varying the learning rate yielded high accuracy with
values of 5e-5 and 7e-5. Increasing the epoch count
to 20 or 15 did not significantly impact accuracy
but consumed more time and resources. In fact,
it sometimes even resulted in a decrease in accu-
racy. Furthermore, our model achieved low BLEU
scores when trained on AraT5v2-msa-small and
AraT5v2-msa-base models. At the level of each di-
alect separately, we noticed that the Egyptian (Egy)
dialect, despite having a high number of rows in
the training data, did not achieve highest accuracy.
This could be due to the influence of Modern Stan-
dard Arabic (MSA). On the other hand, the Emirati
(Emi) dialect showed lowest accuracy, possibly due
to foreign dialects. The Jordanian (Jor) and Pales-
tinian (Pal) dialects achieved high accuracy, with
minimal differences between them, likely because
of their high similarity to each other and to MSA.
This similarity enhances the model’s performance
in translating these dialects to MSA.

6 Error Analysis

In our research, we conducted a comprehensive
error analysis of our language model, which was
specifically trained to translate four distinct Arabic
dialects Egyptian, Emirati, Jordanian, and Pales-
tinian into MSA. Following our error analysis, we
observed that the model faces considerable chal-
lenges with dialect-specific words and culturally
nuanced expressions, particularly in the Egyptian
and Emirati dialects. For instance, in the Egyp-
tian dialect, the letter (h. ) is often pronounced as
( ��) and in the Emirati dialect, (¼) is frequently al-
tered to (h. ). These phonetic changes are unique to
each dialect and often lead to mistranslations or the
model failing to translate the words. This difficulty
arises because these words far significantly from
their MSA counterparts. Consequently, our find-
ings suggest that the closer a word or phrase is to
MSA, the more effectively the model can translate
it. Conversely, as the words become more distinct
from MSA, the model’s ability to translate them
declines. Furthermore, the model sometimes fails
to translate verbs into their correct tenses or ac-
curately translate repetitive structures in dialects.
This indicates a need for the model to be more
finely attuned to the subtleties and nuances of each
dialect. Fine-tuning with specialized datasets that
capture these dialect-specific characteristics is es-
sential for enhancing the model’s translation ac-
curacy. Improving the model’s ability to manage
these phonetic and structural variations is crucial
for better performance. As illustrated in Figure 3,
the current model output shows several instances
of poor translation for each dialect.

Figure 3: Translation Examples for Different Dialects
to MSA

7 Conclusion, Future Work, and
limitations

In this work, we introduced our fine-tuned
AraT5v2-base-1024 model for NADI Subtask 3
(Open Dialect-to-MSA), aimed at translating four
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dialects to MSA. While our results are satisfactory,
there’s always opportunity for improvement. In
future directions, we plan to expand our transla-
tion capabilities to include more Arabic dialects
using APIs such as GPT or other large language
models designed specifically for the Arabic lan-
guage. Additionally, we aim to engage volunteer
reviewers to assess the quality of translations. We
also envision practical applications for our work
in the real-world. Regarding limitations, we faced
resource constraints on Google Colab Pro, which
prevented us from conducting more experiments
with larger datasets. We encountered issues with
RAM limitations, causing occasional crashes dur-
ing model testing. To address this, we divided the
test file into ten segments, which were then con-
catenated and uploaded to CodaLab. However, we
recognize the need for larger servers with advanced
resources to support our tasks effectively.
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