CUFE at NADI 2024 shared task: Fine-Tuning Llama-3 To Translate From Arabic Dialects To Modern Standard Arabic

Michael Ibrahim


Abstract
LLMs such as GPT-4 and LLaMA excel in multiple natural language processing tasks, however, LLMs face challenges in delivering satisfactory performance on low-resource languages due to limited availability of training data. In this paper, LLaMA-3 with 8 Billion parameters is finetuned to translate among Egyptian, Emirati, Jordanian, Palestinian Arabic dialects, and Modern Standard Arabic (MSA). In the NADI 2024 Task on DA-MSA Machine Translation, the proposed method achieved a BLEU score of 21.44 when it was fine-tuned on thedevelopment dataset of the NADI 2024 Task on DA-MSA and a BLEU score of 16.09 when trained when it was fine-tuned using the OSACT dataset.
Anthology ID:
2024.arabicnlp-1.87
Volume:
Proceedings of The Second Arabic Natural Language Processing Conference
Month:
August
Year:
2024
Address:
Bangkok, Thailand
Editors:
Nizar Habash, Houda Bouamor, Ramy Eskander, Nadi Tomeh, Ibrahim Abu Farha, Ahmed Abdelali, Samia Touileb, Injy Hamed, Yaser Onaizan, Bashar Alhafni, Wissam Antoun, Salam Khalifa, Hatem Haddad, Imed Zitouni, Badr AlKhamissi, Rawan Almatham, Khalil Mrini
Venues:
ArabicNLP | WS
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
769–773
Language:
URL:
https://aclanthology.org/2024.arabicnlp-1.87
DOI:
10.18653/v1/2024.arabicnlp-1.87
Bibkey:
Cite (ACL):
Michael Ibrahim. 2024. CUFE at NADI 2024 shared task: Fine-Tuning Llama-3 To Translate From Arabic Dialects To Modern Standard Arabic. In Proceedings of The Second Arabic Natural Language Processing Conference, pages 769–773, Bangkok, Thailand. Association for Computational Linguistics.
Cite (Informal):
CUFE at NADI 2024 shared task: Fine-Tuning Llama-3 To Translate From Arabic Dialects To Modern Standard Arabic (Ibrahim, ArabicNLP-WS 2024)
Copy Citation:
PDF:
https://aclanthology.org/2024.arabicnlp-1.87.pdf