SMASH at StanceEval 2024: Prompt Engineering LLMs for Arabic Stance Detection

Youssef Al Hariri, Ibrahim Abu Farha


Abstract
This paper presents our submission for the Stance Detection in Arabic Language (StanceEval) 2024 shared task conducted by Team SMASH of the University of Edinburgh. We evaluated the performance of various BERT-based and large language models (LLMs). MARBERT demonstrates superior performance among the BERT-based models, achieving F1 and macro-F1 scores of 0.570 and 0.770, respectively. In contrast, Command R model outperforms all models with the highest overall F1 score of 0.661 and macro F1 score of 0.820.
Anthology ID:
2024.arabicnlp-1.92
Volume:
Proceedings of The Second Arabic Natural Language Processing Conference
Month:
August
Year:
2024
Address:
Bangkok, Thailand
Editors:
Nizar Habash, Houda Bouamor, Ramy Eskander, Nadi Tomeh, Ibrahim Abu Farha, Ahmed Abdelali, Samia Touileb, Injy Hamed, Yaser Onaizan, Bashar Alhafni, Wissam Antoun, Salam Khalifa, Hatem Haddad, Imed Zitouni, Badr AlKhamissi, Rawan Almatham, Khalil Mrini
Venues:
ArabicNLP | WS
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
800–806
Language:
URL:
https://aclanthology.org/2024.arabicnlp-1.92
DOI:
10.18653/v1/2024.arabicnlp-1.92
Bibkey:
Cite (ACL):
Youssef Al Hariri and Ibrahim Abu Farha. 2024. SMASH at StanceEval 2024: Prompt Engineering LLMs for Arabic Stance Detection. In Proceedings of The Second Arabic Natural Language Processing Conference, pages 800–806, Bangkok, Thailand. Association for Computational Linguistics.
Cite (Informal):
SMASH at StanceEval 2024: Prompt Engineering LLMs for Arabic Stance Detection (Al Hariri & Abu Farha, ArabicNLP-WS 2024)
Copy Citation:
PDF:
https://aclanthology.org/2024.arabicnlp-1.92.pdf