@inproceedings{ibrahim-2024-cufe-stanceeval2024,
title = "{CUFE} at {S}tance{E}val2024: {A}rabic Stance Detection with Fine-Tuned Llama-3 Model",
author = "Ibrahim, Michael",
editor = "Habash, Nizar and
Bouamor, Houda and
Eskander, Ramy and
Tomeh, Nadi and
Abu Farha, Ibrahim and
Abdelali, Ahmed and
Touileb, Samia and
Hamed, Injy and
Onaizan, Yaser and
Alhafni, Bashar and
Antoun, Wissam and
Khalifa, Salam and
Haddad, Hatem and
Zitouni, Imed and
AlKhamissi, Badr and
Almatham, Rawan and
Mrini, Khalil",
booktitle = "Proceedings of The Second Arabic Natural Language Processing Conference",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.arabicnlp-1.93",
doi = "10.18653/v1/2024.arabicnlp-1.93",
pages = "807--810",
abstract = "In NLP, stance detection identifies a writer{'}s position or viewpoint on a particular topic or entity from their text and social media activity, which includes preferences and relationships.Researchers have been exploring techniques and approaches to develop effective stance detection systems.Large language models{'} latest advancements offer a more effective solution to the stance detection problem. This paper proposes fine-tuning the newly released 8B-parameter Llama 3 model from Meta GenAI for Arabic text stance detection.The proposed method was ranked ninth in the StanceEval 2024 Task on stance detection in Arabic language achieving a Macro average $F_1$ score of 0.7647.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ibrahim-2024-cufe-stanceeval2024">
<titleInfo>
<title>CUFE at StanceEval2024: Arabic Stance Detection with Fine-Tuned Llama-3 Model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Ibrahim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of The Second Arabic Natural Language Processing Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nizar</namePart>
<namePart type="family">Habash</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ramy</namePart>
<namePart type="family">Eskander</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nadi</namePart>
<namePart type="family">Tomeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ibrahim</namePart>
<namePart type="family">Abu Farha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ahmed</namePart>
<namePart type="family">Abdelali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Samia</namePart>
<namePart type="family">Touileb</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Injy</namePart>
<namePart type="family">Hamed</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bashar</namePart>
<namePart type="family">Alhafni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wissam</namePart>
<namePart type="family">Antoun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Salam</namePart>
<namePart type="family">Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hatem</namePart>
<namePart type="family">Haddad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Imed</namePart>
<namePart type="family">Zitouni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Badr</namePart>
<namePart type="family">AlKhamissi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rawan</namePart>
<namePart type="family">Almatham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalil</namePart>
<namePart type="family">Mrini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In NLP, stance detection identifies a writer’s position or viewpoint on a particular topic or entity from their text and social media activity, which includes preferences and relationships.Researchers have been exploring techniques and approaches to develop effective stance detection systems.Large language models’ latest advancements offer a more effective solution to the stance detection problem. This paper proposes fine-tuning the newly released 8B-parameter Llama 3 model from Meta GenAI for Arabic text stance detection.The proposed method was ranked ninth in the StanceEval 2024 Task on stance detection in Arabic language achieving a Macro average F₁ score of 0.7647.</abstract>
<identifier type="citekey">ibrahim-2024-cufe-stanceeval2024</identifier>
<identifier type="doi">10.18653/v1/2024.arabicnlp-1.93</identifier>
<location>
<url>https://aclanthology.org/2024.arabicnlp-1.93</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>807</start>
<end>810</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CUFE at StanceEval2024: Arabic Stance Detection with Fine-Tuned Llama-3 Model
%A Ibrahim, Michael
%Y Habash, Nizar
%Y Bouamor, Houda
%Y Eskander, Ramy
%Y Tomeh, Nadi
%Y Abu Farha, Ibrahim
%Y Abdelali, Ahmed
%Y Touileb, Samia
%Y Hamed, Injy
%Y Onaizan, Yaser
%Y Alhafni, Bashar
%Y Antoun, Wissam
%Y Khalifa, Salam
%Y Haddad, Hatem
%Y Zitouni, Imed
%Y AlKhamissi, Badr
%Y Almatham, Rawan
%Y Mrini, Khalil
%S Proceedings of The Second Arabic Natural Language Processing Conference
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F ibrahim-2024-cufe-stanceeval2024
%X In NLP, stance detection identifies a writer’s position or viewpoint on a particular topic or entity from their text and social media activity, which includes preferences and relationships.Researchers have been exploring techniques and approaches to develop effective stance detection systems.Large language models’ latest advancements offer a more effective solution to the stance detection problem. This paper proposes fine-tuning the newly released 8B-parameter Llama 3 model from Meta GenAI for Arabic text stance detection.The proposed method was ranked ninth in the StanceEval 2024 Task on stance detection in Arabic language achieving a Macro average F₁ score of 0.7647.
%R 10.18653/v1/2024.arabicnlp-1.93
%U https://aclanthology.org/2024.arabicnlp-1.93
%U https://doi.org/10.18653/v1/2024.arabicnlp-1.93
%P 807-810
Markdown (Informal)
[CUFE at StanceEval2024: Arabic Stance Detection with Fine-Tuned Llama-3 Model](https://aclanthology.org/2024.arabicnlp-1.93) (Ibrahim, ArabicNLP-WS 2024)
ACL