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Abstract
Social media platforms have become essen-
tial in daily life, enabling users to express
their opinions and stances on various topics.
Stance detection is a task that identifies the
viewpoint expressed in text toward a target sub-
ject. Despite the growing importance of Ara-
bic tweets in shaping public opinion, there is
a lack of research on stance detection in this
domain. In this work, we evaluate the effective-
ness of fine-tuning three Large Language Mod-
els (LLMs) in detecting target-specific stances
in the MAWQIF dataset (Alturayeif et al.,
2022). The LLMs assessed are ChatGPT-3.5-
turbo, Meta-Llama-3-8B-Instruct, and Falcon-
7B-Instruct. Our findings demonstrate that fine-
tuning substantially enhances the stance detec-
tion capabilities of LLMs in Arabic tweets.
GPT-3.5-Turbo exhibits the highest perfor-
mance among the evaluated models, achieving
a macro-F1 score of 82.93. Our work ranked
second in the StanceEval2024 leaderboard, on
a blind test set (Alturayeif et al., 2024).

1 Introduction

In the age of digital communication, social media
platforms have become the norm in people’s daily
lives, not just as a medium for social interaction
but also as a platform for expressing opinions and
stances towards a wide array of topics, from poli-
tics and events to services and controversial issues.
This amplified the need for advanced stance de-
tection technologies, aimed at detecting whether
the author of a text is in favor, against, or neutral
towards a specific subject, which is a task that is be-
coming increasingly important for decision-making
processes across various sectors such as businesses
and public authorities (Alturayeif et al., 2022).

Stance detection operates primarily on analyz-
ing textual input to predict the author’s viewpoint,
which may be explicitly or implicitly conveyed.
Other author’s social activities such as retweets and
likes can be used to enhance model performance.

The task is further categorized into target-specific,
cross-target, and target-independent detection, each
with its unique challenges and requirements, em-
phasizing the complexity of this field.

Initially, identifying viewpoints relied mostly
on rules and traditional machine-learning meth-
ods. For instance, support vector machines (SVM)
were highly regarded in the early stages (Moham-
mad et al., 2016; Walker et al., 2012; Anand et al.,
2011). However, the emergence of deep learning
models transformed this landscape significantly.
These models excelled in processing vast amounts
of data and uncovering intricate patterns within it
(Zhang et al., 2019; Huang et al., 2018; Dey et al.,
2018; Zarrella and Marsh, 2016; Wei et al., 2016).
Subsequently, pre-trained language models, such
as BERT emerged, aiding in a richer comprehen-
sion of text through contextual analysis (Kawintira-
non and Singh, 2021; Li et al., 2021; Devlin et al.,
2018).

Nowadays, LLMs such as OpenAI’s ChatGPT
and Meta AI’s LLaMa-2 are revolutionizing natural
language processing (NLP) (Touvron et al., 2023;
Qin et al., 2023). These models, trained on exten-
sive datasets, demonstrate a remarkable ability to
mimic human language nuances with high accuracy
(Yin et al., 2023; Zhao et al., 2023). Unlike older
models, they can tackle different types of questions
and grasp language nuances better, making them
valuable for NLP tasks, including stance detection.

Refining LLMs such as GPT, LLaMa3, and Fal-
con for particular tasks through fine-tuning im-
proves their accuracy and applicability for contex-
tually sensitive stance detection on social media
channels (Zhang et al., 2023d). By tailoring to the
unique linguistic patterns and expressions preva-
lent in social media discourse, these models are
empowered to exceed traditional methods, demon-
strating remarkable proficiency in understanding
sentiments and viewpoints.

This research examines the improved perfor-
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mance of fine-tuned LLMs with the Mawqaf
dataset to analyze diverse user opinions. We
demonstrate that fine-tuning greatly enhances the
models’ comprehension of user perspectives, pro-
viding a more profound understanding of online
discussions. Our study emphasizes the benefits of
fine-tuning in natural language processing (NLP),
particularly for stance detection, and showcases
its advantages over conventional, less customized
approaches.

2 Related Work

2.1 Stance Detection

Stance detection is a well-studied task in natural
language processing that involves identifying an
entity’s opinion about a specific target (Ng and
Carley, 2022). Unlike sentiment analysis, which
can operate independently of context, stance clas-
sification requires understanding the context and
target. This task is significant across various fields,
prompting the development of numerous bench-
mark datasets and methodologies. Historically, the
focus has been on supervised machine learning
models, such as Support Vector Machines, which
performed well in the SemEval-2016 stance detec-
tion competition (Lai et al., 2018; Elfardy and Diab,
2016; Mohammad et al., 2016). Neural network-
based models, including convolutional neural net-
works (Wei et al., 2016), recurrent neural networks
(Zarrella and Marsh, 2016), and advanced archi-
tectures using textual entailment (Zhao and Yang,
2020) and data augmentation (Kawintiranon and
Singh, 2021), are also widely used. Recent ap-
proaches have explored multi-task learning and
transfer learning with transformer-based neural net-
works (Alturayeif et al., 2023; Yang et al., 2019;
Zhao and Yang, 2020). Despite strong in-domain
performance, these models often struggle to gener-
alize to new data or targets (Ng and Carley, 2022;
Alturayeif et al., 2023).

While supervised learning with human annota-
tions dominates the field, unsupervised techniques
are also explored. Unsupervised stance label-
ing uses language homogeneity for classification
(Zhang et al., 2023c). For instance, graph neural
networks analyze information from Twitter users
to infer stances based on their past tweets and in-
teractions (Zhang et al., 2023c). Another method
involves label propagation within user interaction
networks, mapping user relationships, and deriving
stances from aggregated data within these networks

(Pick et al., 2022; Weber et al., 2013). These meth-
ods do not require predefined stance labels but often
rely on specific assumptions about user behavior
and language.

Zero-shot methods, which allow models to clas-
sify items without prior examples, are also used
in stance classification. (Allaway and McKeown,
2023) discuss zero-shot stance detection techniques
and introduce adaptations of the SemEval-2016
dataset and their VAST dataset for zero-shot classi-
fication. They outline three main paradigms: topic,
language, and genre. In these paradigms, the model
is trained on all data except for one element re-
served for testing. Although zero-shot models typi-
cally underperform compared to fully supervised
models, they provide valuable insights into stance
detection without prior exposure to specific cases
(Allaway and McKeown, 2023).

2.2 Large Language Models for Stance
Detection

LLMs excel in tasks such as reading comprehen-
sion and solving math problems. They are trained
on extensive datasets and can evaluate sentences
and generate responses based on given prompts.
Recent research has explored their application in
stance detection, which will be discussed in the
section.

Despite the development of various LLMs, much
of the research has concentrated on the GPT fam-
ily (e.g., ChatGPT, GPT-3) (Achiam et al., 2023),
yielding mixed results. For instance, (Zhang et al.,
2022) found that ChatGPT, using an instruction-
based prompt, outperformed supervised models on
the SemEval2016 benchmark dataset. Conversely,
(Aiyappa et al., 2023) noted that while ChatGPT
shows performance improvements in stance detec-
tion, the reliability of these results might be com-
promised by potential data contamination from its
extensive training data. (Mets et al., 2024) eval-
uated ChatGPT for zero-shot stance detection on
a custom dataset concerning immigration topics
in news articles across multiple languages. Their
findings indicated that although ChatGPT’s per-
formance approached that of the best supervised
models, it was still inferior for stance classifica-
tion. Recent studies have introduced various Chain-
of-Thought prompting techniques, demonstrating
improved performance by leveraging LLMs’ rea-
soning abilities (Zhang et al., 2023a,b). (Lan et al.,
2023) achieved state-of-the-art results on bench-
mark stance datasets using a multistage Tree-of-
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Thought-like prompt.
Given the overlap between stance and sentiment

classification, (Kheiri and Karimi, 2023) exam-
ined several OpenAI models for sentiment anal-
ysis, concluding that GPT models, especially when
fine-tuned, surpass other models. Despite these
advances, the effectiveness of LLMs in stance clas-
sification, particularly with prompt engineering and
without fine-tuning, remains uncertain.

Fine-tuning LLMs poses significant challenges
due to their immense size, often requiring multi-
ple high-end GPUs and extensive memory capacity.
These models, containing billions of parameters,
require vast amounts of data and extensive train-
ing time, leading to high costs that can be prohibit
individual researchers or small organizations. In
response, techniques like Low-Rank Adaptation
(LoRA) have been developed to mitigate the re-
source intensity of fine-tuning LLMs. LoRA intro-
duces trainable low-rank matrices that modify the
pre-trained weights during the adaptation phase,
rather than retraining all parameters. This signif-
icantly reduces the number of trainable parame-
ters, lowering memory usage and decreasing com-
putational demands, allowing these models to be
adapted with fewer resources and making it feasi-
ble using consumer-grade GPUs. (Hu et al., 2021)

LLMs operate based on prompts—free-text in-
puts that instruct the model on the desired output.
The field of prompt engineering has emerged to
optimize these inputs for better outputs (Schmidt
et al., 2023; White et al., 2023; Ramlochan, 2023).
Prominent prompt engineering techniques include
zero-shot prompting, where the LLM receives
only the task description, and few-shot prompting,
which includes a few examples within the prompt
(White et al., 2023; Brown et al., 2020; Wei et al.,
2023). Unlike fine-tuning, these examples do not
involve adjusting model weights but provide con-
text to aid understanding. Although effective, few-
shot prompting can be unstable due to factors like
the order of examples (Zhao et al., 2021; Lu et al.,
2021). While these techniques have shown promise,
the optimal approach for using LLMs in stance de-
tection remains an open question in research.

3 Methods

3.1 Models

We fine-tuned different LLMs and assessed their
performance in detecting the author’s stance.
We selected three models for evaluation: GPT-

3.5-Turbo-0125, Meta-Llama-3-8B-Instruct, and
Falcon-7B-Instruct. We choose the Instruct vari-
ants given their pre-trained nature towards instruc-
tions. Since the dataset includes Arabic tweets
with special characters such as emojis, we pre-
processed them using the AraBERT pre-processor
before passing them to the models.

3.2 Dataset

The experiment is based on the MAWQIF dataset,
which consists of 4,121 tweets in multi-dialectal
Arabic. Each tweet is annotated with a stance (Fa-
vor, Against, None) toward one of three targets:
COVID-19 vaccine, Digital Transformation, and
Women Empowerment. Additionally, it includes
annotations for Sentiment (Positive, Negative, Neu-
tral) and Sarcasm (Yes, No) polarities (Alturayeif
et al., 2022).

3.3 System Prompt

The following example applies to Meta-Llama-3-
8B-Instruct and Falcon-7B-Instruct training. For
GPT-3.5-Turbo-0125, we followed the guideline
provided by OpenAI. However, the system prompt
part is shared between all models. An example of
the prompt with input and output used for training
follows:

Figure 1: Example of a Tweet against Women Empow-
erment

3.4 Evaluation Metrics

We followed the standard evaluation protocols in
(Alturayeif et al., 2024). The primary evaluation
metric used is the macro F1-score. The macro F1-
score is calculated as the average of the F1-scores
for the "Favor" and "Against" categories. The score
for the "None" stance is ignored since it is under-
sampled in the dataset. This metric is computed for
each target separately, and then the overall macro
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Model Target F1-scores
Favor Against Average

Meta-Llama-3-8B-Instruct

Women Empowerment 0.8922 0.7342 0.8132
COVID-19 Vaccine 0.8466 0.7248 0.7857

Digital Transformation 0.9141 0.3478 0.6309
Overall 0.7433

Falcon-7B-Instruct

Women Empowerment 0.8013 0.0392 0.4203
COVID-19 Vaccine 0.5840 0.1569 0.3704

Digital Transformation 0.8623 0.0000 0.4312
Overall 0.4073

GPT-3.5-Turbo-0125

Women Empowerment 0.9266 0.8817 0.9042
COVID-19 Vaccine 0.9172 0.8852 0.9012

Digital Transformation 0.8571 0.8000 0.8286
Overall 0.8293

Table 1: Macro F1-scores for on the validation split.

F1-score is computed across all targets, which is
given as follows:

Fmacro =
Ffavor + Fagainst

2

3.5 Experimentation
We fine-tuned GPT-3.5-Turbo-0125 through Ope-
nAI’s web services, and the two open-source mod-
els locally. To reduce the model sizes to a manage-
able scale for the local training, we applied Low-
Rank Adaptation (LoRA) (Hu et al., 2021) using
the LitGPT (AI, 2023) framework. The dataset was
divided into an 85-15% train-validation split with
stratification based on stance.

All models were fine-tuned over 3 epochs using
a single NVIDIA A100 PCIE with 40GB RAM.
The hyperparameters for fine-tuning include LoRA
rank of 32, α of 16, dropout rate of 0.05, batch
size of 8, 10 warm-up steps, and a learning rate of
2× 10−4. Meta-Llama-3-8B-Instruct and Falcon-
7B-Instruct required around 20 and 15 minutes to
train respectively, whereas GPT-3.5-Turbo-0125
took around 30 minutes.

4 Results

Our results, shown in Table 1, GPT-3.5-Turbo
demonstrated the highest overall performance,
achieving a macro F1-score of 82.93%. It per-
formed consistently well across all target cate-
gories: Women Empowerment (90.42%), COVID-
19 Vaccine (90.12%), and Digital Transformation
(82.86%). This indicates GPT-3.5-Turbo-0125’s ro-
bust generalization capabilities and superior ability
to handle multi-dialectal Arabic tweets.

Meta-Llama-3-8B-Instruct showed moderate
performance with a macro F1-score of 74.33%.
It performed well in detecting ’favor’ stances but
struggled with ’against’ stances, particularly in the

Digital Transformation category. This suggests
limitations in the model’s comprehension and clas-
sification capabilities.

Falcon-7B-Instruct had the lowest performance,
with a macro F1-score of 40.73%. The model’s per-
formance varied significantly across different cate-
gories: Women Empowerment (42.03%), COVID-
19 Vaccine (37.04%), and Digital Transformation
(43.12%). The model struggled particularly with
the ’against’ class, achieving scores of 3.92% for
Women Empowerment, 15.69% for COVID-19
Vaccine, and 0% for Digital Transformation. The
exact reasons for Falcon-7B-Instruct’s poor perfor-
mance remain uncertain, but it seems the model
struggles significantly with accurately classifying
’against’ stances, which heavily impacted its over-
all effectiveness.

fine-tuning LLMs significantly enhances their
ability to detect stances in Arabic tweets. GPT-3.5-
Turbo-0125 emerged as the most effective model,
while Meta-Llama-3-8B-Instruct and Falcon-7B-
Instruct showed potential but need further optimiza-
tion. Future research can focus on refining hy-
perparameters, and instruction sets, or integrating
Retrieval-Augmented Generation (RAG) to ingest
a few examples similar to the input query as context
to the model to improve LLM performance.

5 Conclusion

In this paper, we conducted a detailed analysis
of stance detection on the MAWQIF dataset, an
Arabic-language corpus annotated for multiple
opinion dimensions across various dialects. Our ex-
periments demonstrate the effectiveness of LLMs
in enhancing the accuracy of stance detection. We
evaluated the performance of three different LLMs,
GPT-3.5-Turbo-0125, Meta-Llama-3-8B-Instruct,
and Falcon-7B-Instruct and observed notable dif-
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ferences in their ability to handle the complexities
of multi-dialectal Arabic in social media texts.

The results indicate that fine-tuning LLMs sig-
nificantly improves their ability to understand and
detect stances in Arabic tweets. Notably, GPT-3.5-
Turbo-0125 emerged as the top performer, achiev-
ing remarkable precision in identifying both ’favor’
and ’against’ stances, underscoring the potential
of fine-tuned LLMs for language-specific applica-
tions. The effectiveness of fine-tuning is further
validated by the significant improvement over base-
line models. Additionally, the research highlights
the challenges associated with fine-tuning LLMs,
such as the substantial computational resources re-
quired and the complexities of adapting these mod-
els to specialized tasks. However, techniques like
LoRA have proven effective in mitigating these
challenges, facilitating more accessible and effi-
cient fine-tuning processes.

As we move forward, the insights gained from
this study can guide future research towards en-
hancing model robustness, exploring more diverse
datasets, and refining computational techniques
to better meet the evolving needs of natural lan-
guage processing applications. The integration of
stance detection models into practical applications
promises to improve decision-making processes,
social media monitoring, and public sentiment anal-
ysis, making significant strides towards more in-
formed and responsive digital communication plat-
forms.
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