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Abstract

Measuring advances in argument mining is one
of the main challenges in the area. Different
theories of argument, heterogeneous annota-
tions, and a varied set of argumentation do-
mains make it difficult to contextualise and un-
derstand the results reported in different work
from a general perspective. In this paper, we
present ARIES, a general benchmark for Argu-
ment Relation Identification aimed at provid-
ing a standard evaluation for argument mining
research. We evaluated three different archi-
tectures for Argument Relation Identification
on ARIES: sequence and token modelling, and
sequence-to-sequence alignment, together with
the three main Transformer-based model ar-
chitectures: encoder-only, decoder-only, and
encoder-decoder. Furthermore, the benchmark
consists of eight different argument mining
datasets, covering the most common argumen-
tation domains, and standardised with the same
annotation structures. This paper provides a
first comprehensive and comparative set of re-
sults in argument mining across a broad range
of configurations to compare with, both advanc-
ing the state-of-the-art, and establishing a stan-
dard way to measure future advances in the
area. Across varied task setups and architec-
tures, our experiments reveal consistent chal-
lenges in cross-dataset evaluation, with notably
poor results. Given the models’ struggle to ac-
quire transferable skills, the task remains chal-
lenging, opening avenues for future research.

1 Introduction

Argument mining was originally defined as the
task of automatically identifying argument struc-
tures from unstructured natural language inputs
(Mochales and Moens, 2011). Although argument
mining research has been split into several sub-
tasks in the literature such as segmentation, argu-
ment classification and argument relation identi-
fication (Lippi and Torroni, 2016; Lawrence and
Reed, 2020) it is the latter that represents the main

challenge in argument mining due to its complexity.
Argument Relation Identification (ARI) starts from
the point where all the relevant argument sequences
have been segmented, and its main objective is
to identify argumentative relations between them
building complete argumentative structures. There-
fore, it is the ARI subtask that provides us with
the argument structures from unstructured natural
language. In addition, while outstanding results
have been reported in the previous stages, results
on ARI are more limited, representing one of the
most difficult tasks in natural language processing
due to its implicitness, the lack of data, and the lack
of solid baselines with which to compare.

One of the main challenges in the area of argu-
ment mining, however, has always been to com-
pare advances in different contexts, understand-
ing these contexts as different annotation theories
or argumentative domains. Therefore, previous
work reports different findings and advances, but
it does that without providing a general picture of
them and a comprehensive understanding of their
findings for the argument mining community as a
whole. A lack of a consistent cross-domain bench-
mark, as it has been done in many other areas of nat-
ural language processing (see GLUE (Wang et al.,
2018), Superglue (Wang et al., 2019), TweetEval
(Barbieri et al., 2020), or Superb (Yang et al., 2021)
among others), hinders our advances as a research
community. Although previous effort has been
put in this direction, none of these previous work
considers state-of-the-art NLP algorithms consider-
ing multiple language modelling approaches, and
typically focused on specific tasks or domains (Co-
carascu et al., 2020; Ruosch et al., 2022). Providing
relevant results in the good direction, but limited
in terms of generalisability. Therefore, the defi-
nition of a general benchmark for state-of-the-art
argument mining is something that remains un-
addressed. This limitation, taking the success of
the GLUE benchmark for natural language under-
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standing tasks (Wang et al., 2018) into account,
motivates the development of an argument mining-
specific benchmark to comprehensively evaluate
and measure the advances done in the area.

In this paper, we present the Argument Relation
Identification Evaluation Strategy (ARIES), a ro-
bust, cross-dataset benchmark for evaluating exist-
ing and future contributions to the ARI task. ARIES

represents the first and most extensive benchmark
to evaluate ARI systems, thus providing a robust
framework for comparative evaluation of argument
mining systems. Our main contribution is the for-
mal definition of ARIES, including eight different
corpora, three different natural language modelling
approaches, and three different model architectures.
Furthermore, we carried out extensive experimen-
tation, implementing the previous natural language
modelling approaches and model architectures with
different pre-trained language models. From our
results, we do not only advance the state-of-the-art
in ARI, but also identify a concerning limitation
of the generalisation capabilities of argument min-
ing systems. This way, ARIES provides an ideal
base on which to compare, propose, and implement
argument mining systems addressing the ARI task.

2 Related Work

The latest advances in natural language process-
ing have been reflected in argument mining and
especially in ARI research, the most challenging
part of it. These natural language processing ad-
vances have been gradually integrated into argu-
ment mining systems with (in order) the use of
LSTM networks (Cocarascu and Toni, 2017), the
Transformer architecture (Ruiz-Dolz et al., 2021a),
contrastive learning (Shi et al., 2022), generative
language models (Bao et al., 2022), end-to-end
architectures (Morio et al., 2022), or the most re-
cent large language models (LLMs) (Gorur et al.,
2024). All these advances, however, are difficult
to compare and contextualise due to a lack of a
standardised set of evaluation baselines.

Some effort has been put with previous research
on the definition of benchmarks for argument min-
ing. Initially proposed in (Cabrio and Villata,
2014), the authors define NoDE, a natural language
argument benchmark consisting of three datasets
and 792 related proposition pairs. In this early
benchmark, the authors pointed out the needs of
standardising the evaluation of argument mining
systems. Following this direction, Cocarascu et al.

(2020) extended the previous benchmark with a to-
tal of ten datasets containing 35,918 related propo-
sition pairs. Both benchmarks exclusively focused
on the classification of argument relations, a subset
of the ARI task in which the relation is assumed to
be known, limiting their applicability in more gen-
eral situations. Recently in (Ruosch et al., 2022),
the authors address this limitation by proposing a
benchmark for argument mining (BAM), in which
all the argument mining subtasks are brought into
consideration together. The BAM framework, how-
ever, is proposed as a pipeline-like method combin-
ing different previously existing argument mining
systems to cover the complete argument mining
process (Ruosch et al., 2023), rather than a thor-
ough analysis of state-of-the-art NLP modelling
techniques and architectures. Furthermore, its cur-
rent version only contains argumentative informa-
tion in scientific documents, making it a valuable
resource for this domain but limiting its generalis-
ability to other application domains.

3 Benchmark

The main contribution of this paper is the definition
of ARIES, a state-of-the-art benchmark for argu-
ment relation identification in datasets of different
domain and nature, which can be used as a refer-
ence to advance and to relativise the real impact
of new findings in this area. Furthermore, ARIES

also reflects on a wide variety of model architec-
tures, providing more insight on the capabilities of
state-of-the-art algorithms. This section provides
an in-depth presentation of all the variables taken
into account in the proposed ARIES benchmark.

3.1 Data

In order to develop a robust, challenging and wide-
ranging assessment, we include eight different
datasets as part of ARIES. These eight datasets
were selected mostly based on two criteria. First,
we selected the most representative datasets on the
area of argument mining. This way, ARIES can be
used as reference, not only for future contributions,
but also for these ones already existing. Second,
our selection was determined by our goal of cre-
ating a sufficiently heterogeneous dataset in terms
of domain to be able to measure the robustness of
state-of-the art systems. Therefore, ARIES con-
sists of eight different argumentation domains. The
eight datasets included into ARIES are: MTC (Peld-
szus and Stede, 2015), AAEC (Stab and Gurevych,
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Dataset Domain Inferences Conflicts Neutral Total

MTC Structured Argumentation 272 108 713 1,093
AAEC Essay 4,841 497 10,676 16,014
CDCP Financial 694 82 1,552 2,328
ACSP Scientific 8,069 697 17,532 26,298
AMP Online 2,111* - 5,929 8,040
ABSTRCT Medical 2,290 344 4,581 7,215
US2016 Political 2,765 866 7,262 10,893
QT30 Question Answering 2,714 545 6,518 9,777

Total - 23,756 3,139 54,763 81,658

Table 1: Summary of the ARI datasets included in the
ARIES benchmark. We use * to indicate that AMP
involves only binary labels, indicating whether a relation
is present or not.

2017), CDCP (Park and Cardie, 2018), ACSP
(Lauscher et al., 2018), AMP (AMPERSAND)
(Chakrabarty et al., 2019), ABSTRCT (Mayer et al.,
2020), US2016 (Visser et al., 2020), and QT30
(Hautli-Janisz et al., 2022). A summary of the most
relevant features of these eight corpora is depicted
in Table 1.

3.2 Task

The ARIES benchmark evaluates the ARI task. ARI
consists of the identification of existing argumenta-
tive relations between two or more Argumentative
Discourse Units (ADUs). This way, this task takes
an unstructured set of ADUs as its input and out-
puts complete structured arguments, making it the
cornerstone of argument mining. For practicalities,
within the ARIES framework, we define the ARI
task as a three-class classification problem, consid-
ering the Inference, Conflict, and Neutral classes
of argumentative relations. The inference relation
represents an argumentative support, the conflict
relation represents an argumentative attack, and
the neutral class indicates that there exists no argu-
mentative relation between a set of ADUs. Some
models distinguish a fourth category of rephrase
because it has become increasingly clear in linguis-
tic work (Koszowy et al., 2022) that this is relation
is a key driver of argumentation. It is, however, far
from ubiquitous in argument mining research, and
so is not adopted in the current ARIES framework.

It is also important to emphasise that the ARIES

benchmark goes one step further compared to
the Argument Relation Classification (ARC) task,
which only considers attacks and supports. While
ARC can be framed as a sentiment analysis prob-
lem with positive and negative sentiments, and it is
based on the assumption that the existing argument
relations are all known, ARI does not make such as-
sumption, and therefore modelling the underlying

(and sometimes implicit) argumentative features
of ADUs is essential if we want an algorithm to
succeed on this task.

3.3 Models

We consider three different natural language mod-
elling approaches in the ARIES benchmark: se-
quence classification (see Figure 1a), token classi-
fication (see Figure 1b), and sequence-to-sequence
alignment (see Figure 1c). Complementing these
modelling approaches, we have also included three
different model architectures in our benchmark:
encoder only, decoder only, and encoder-decoder.
This way, we cover the majority of the existing
approaches for argument mining in the literature.

3.3.1 Sequence Classification
First, our benchmark reports results when address-
ing ARI as a sequence (pair) classification task.
This way, our sequence classification benchmark
models the conditional probability of the most
likely relation class (i.e., ŝ) for a given pair of
ADUs as depicted in Equation 1.

ŝ = argmax
s∈S

P (s|xN1 , yM1 ) (1)

where S stands for the complete set of possible
argumentative relations (i.e., Inference, Conflict,
or Neutral), xN1 represents the first ADU of length
N , and yM1 is the second ADU of length M . With
this framing, the two ADU inputs are treated as a
whole sequence of text, modelling natural language
at a higher level and looking for sequence features
that can be helpful to determine whether a pair of
propositions is related with an inference, a conflict,
or presents no relation between them. This is one
of the most widely researched approaches when it
comes to the identification of argument relations
(Cocarascu and Toni, 2017; Ruiz-Dolz et al., 2021a;
Shi et al., 2022; Kikteva et al., 2023; Gorur et al.,
2024).

The loss (Lclass) for the argument relation classi-
fication task is computed using the standard cross-
entropy loss based on the predicted logits and true
labels for the argument relation type.

Lclass = − 1

B

B∑

i=1

log(softmax(rpredi )) · rtruei (2)

where rtruei represents the true label of the ar-
gument relation type for the i-th sample and rpredi
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(c) Sequence-to-sequence alignment.

Figure 1: The architecture for the three tasks: (a) sequence classification, (b) token classification, and (c) sequence-
to-sequence alignment. In this paper, we evaluate only the ARI output (highlighted in light blue), while the token
classification and token prediction outputs (highlighted in light yellow) serve as auxiliary tasks and are not evaluated.

denotes the predicted logits of the argument rela-
tion type for the i-th sample.

3.3.2 Token Classification

Second, we also benchmark ARI as a token classi-
fication task, aiming to predict the span of conclu-
sions given a premise or vice versa, while simulta-
neously predicting the argument relation between
the premise and conclusion in a multi-task setup.
Inspired by Eger et al. (2017), who modeled argu-
ment mining as a token classification task, jointly
addressing component identification and relation
identification, assigning each token a label indicat-
ing the category of the component and the argu-
ment relation type, our work acknowledges their
finding of sub-optimal coupling between the two
tasks and advocates for treating them separately
while modelling them jointly. Consequently, we
adopt a multi-task setting that independently mod-
els both tasks. The multi-task learning setup en-
compasses two primary objectives: span prediction
and argument relation identification.

For the span prediction sub-task, given an argu-
ment (i.e., the complete structure resulting from the
concatenation of the premises and conclusion), we
model the boundaries of the conclusion within the
argument given the premises and vice-versa (See
Appendix A.2 for more details regarding the input
format). Our token classification approach, there-
fore, first models the conditional probability of the
most likely span boundaries (i.e., t̂) as depicted in
Equation 3.

t̂ = argmax
t∈T

P (t|n1, ..., ni−1, ni) (3)

where T represents the set of possible token la-
bels (i.e., beginning (B), inside (I), or outside (O)),
and ni represents each token at a given position i,
followed by the previously observed tokens in the
complete argument sequence. This approach treats
tokens in a more independent way than in sequence
classification, allowing to look for lower level fea-
tures, where each token is assigned a specific label.
The loss (Ls) for the span prediction sub-task is
computed using the standard cross-entropy loss
based on the predicted and true labels for each to-
ken in the argument.

Lspan = − 1

N

N∑

i=1

C∑

j=1

Y true
p,ij · log(Y pred

p,ij ) (4)

where N represents the total number of tokens
in the argument, C is the set of token labels, Y true

p,ij

denotes the ground truth probability of token i be-
longing to class j, and Y pred

p,ij is the predicted prob-
ability of token i belonging to class j.

The second step in the token classification ap-
proach is the identification of argumentative re-
lations. This second task involves predicting the
argument relation between the premise and conclu-
sion in a similar way as described in Equation 1.
It takes both the premise and conclusion resulting
from the previous span detection sub-task as inputs
and predicts the argument relation. Since the pri-
mary focus is on ARI, the span detection serves as

4



an auxiliary task. The loss from the token classifi-
cation approach results from adding the previously
defined span prediction loss Lspan to the sequence
classification loss Lclass (see Equation 2), resulting
in the overall loss (Ltotal) as defined in Equation 5.

Ltotal = Lspan + Lclass (5)

3.3.3 Sequence-to-sequence Alignment
Finally, the third approach included in the ARIES

benchmark corresponds to a sequence-to-sequence
alignment modelling of the relation between ar-
gument proposition pairs. In this last approach,
we address ARI in a similar way as machine
translation is done, where the model is trained to
predict a complete sequence related to the input
(Stahlberg, 2020). Therefore, we consider the ar-
gument premise as the input and provide the ar-
gument claim as the expected output, modelling
this way the semantic connections between both
propositions resulting in the argumentative relation
between premise and claim as depicted in Equation
6.

ĉN1 = argmax
cN1

P (cN1 |pM1 ) (6)

Where cN1 stands for the output claim sequence
of length N , and pM1 for the input premise se-
quence of length M . The sequence-to-sequence
alignment approach is divided into two steps. First,
we do the sequence-to-sequence modelling accord-
ing to Equation 6 attempting to improve the em-
bedding representation of our argumentative inputs
(i.e., premise-claim pairs). Second, we leverage
the embedding of the premise-claim representa-
tions to train a classifier that predicts our three
relation classes in a similar way as described in
Equation 1. Although less researched in the litera-
ture, sequence-to-sequence approaches have also
been recently investigated in the area of argument
mining thus making them an important addition to
our global benchmark (Kawarada et al., 2024).

The loss (Lseq) for the sequence-to-sequence
alignment approach is computed using the standard
cross-entropy loss based on the predicted logits
and true labels for each token in the conclusion
sequence.

Lseq = − 1

B

B∑

i=1

N∑

j=1

log(softmax(cpredij )) · ctrueij

(7)

Where B indicates the batch size, N is the length
of the conclusion sequence, ctrueij denotes the true

label of the j-th token in the i-th sample, cpredij

represents the predicted logits of the j-th token
in the i-th sample, and softmax(·) represents the
output of the softmax function.

The loss (Lclass) for argument relation classifica-
tion is computed using the same loss function as
in the sequence classification approach defined in
Equation 2. The overall loss (L) is the sum of both
losses:

L = Lseq + Lclass (8)

This hybrid approach, combining sequence-to-
sequence modelling with ARI, allows us to capture
the relationship between the premise and conclu-
sion while effectively predicting argument relation
types.

3.3.4 Model Architectures
In addition to the three natural language modelling
approaches, we have also included the three main
model architectures in state-of-the-art natural lan-
guage processing. This way, we consider encoder-
only (Devlin et al., 2019), decoder-only (Brown
et al., 2020), and encoder-decoder (Vaswani et al.,
2017) architectures. For the first two natural lan-
guage modelling approaches (i.e., sequence and
token classification), the ARIES benchmark consid-
ers the three possible architectures. However, for
the sequence-to-sequence alignment approach, we
can only rely on the encoder-decoder architecture,
given its nature requiring both encoder and decoder
(see Appendix A.2 for more details).

4 Experiments

4.1 Experimental Setup
We use Adam optimisation (Kingma and Ba, 2014)
to minimise the loss function, using a learning
rate of 2 × 10−5 and categorical cross-entropy
loss and a batch size of 16 (more details on the
experimental setup is provided in Appendix A).
The dataset is randomly partitioned, with 70%,
10%, and 20% allocation for training, validation,
and testing respectively, ensuring uniformity
throughout the dataset. Refer to Table 1 for the
breakdown of argument relations. All our results
represent the average of three runs using different
random seeds. Precision, recall, and F1-score
are computed, and macro-averaged F1-scores
are reported for the test dataset. The code used
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Task Architecture Model Eval Dataset
MTC AAEC CDCP ACSP AMP AbstRCT US2016 QT30

SeqCls ED RoBERTa ID 63 75 72 82 84* 84 76 83
CD 35 47 40 50 51* 40 48 45

DD DialoGPT ID 66 78 72 84 84* 82 79 85
CD 40 48 41 49 52* 39 49 49

ED-DD T5 ID 65 74 71 83 80* 80 74 84
CD 37 37 36 38 40* 37 38 39

TokCls ED RoBERTa ID 61 76 68 80 - 81 73 82
CD 33 42 31 37 - 33 37 35

DD DialoGPT ID 63 77 70 82 - 80 75 82
CD 34 42 33 39 - 35 38 37

ED-DD T5 ID 62 73 65 81 - 78 71 80
CD 33 35 34 36 - 33 35 33

SeqAln ED-DD T5 ID 68 75 70 81 78* 83 76 83
CD 41 42 42 42 46* 41 43 41

Table 2: In-dataset (ID) and cross-dataset (CD) macro-averaged F1-score results. We use * to denote that the
evaluation results reported on the AMP represent binary predictions.

in our experiments can be publicly accessed
at https://github.com/debelatesfaye/
ArgumentMining24-ARIES-Benchmark.

4.2 Evaluation Setup

In-Dataset Evaluation. In the in-dataset (ID) eval-
uation, each model configuration is trained and
evaluated on the same dataset, enabling us to as-
sess the performance of models within the same do-
main. Each of the three task setups: sequence clas-
sification (SeqCls), token classification (TokCls),
and sequence-to-sequence alignment (SeqAln), are
trained and evaluated across the datasets. The three
task setups are evaluated on eight datasets, with
the exception of TokCls, which is evaluated on
all datasets except AMP. This exception arises be-
cause AMP solely focuses on the pair of proposi-
tions, while TokCls requires the entire argument
in addition to the pair of propositions. Within Se-
qCls and TokCls, the three transformer architec-
tures—Encoder only (ED), Decoder only (DD),
and Encoder-Decoder (ED-DD)—are evaluated.
However, considering the specific requirements of
the SeqAlg task and its architectural demands, only
the ED-DD configuration is evaluated. This pro-
vides three architecture variants for the SeqCls task:
ED-based SeqCls, DD-based SeqCls, and ED-DD-
based SeqCls, each of which undergoes training
and evaluation across eight datasets, providing a
total of 24 configurations, respectively. The Tok-
Cls task encompasses 21 configurations across the
seven datasets, whereas the Seq-Alg task is limited
to the ED-DD configuration across eight datasets,
totaling eight configurations.

Cross-Dataset Evaluation. The cross-dataset

(CD) evaluation setup involves training each model
on one dataset and subsequently evaluating its per-
formance on each of the remaining seven datasets,
providing insights into their generalisation and do-
main adaptability. Accordingly, for both the Se-
qCls and TokCls tasks, the three transformer ar-
chitectures are trained on eight and seven train-
ing datasets, respectively, resulting in a total of 45
models (24 for SeqCls and 21 for TokCls tasks).
Subsequently, each model is evaluated on the re-
maining datasets not used for training, resulting in
an evaluation matrix encompassing a total of 294
configurations (3 architectures * 8 training datasets
* 7 evaluation datasets for SeqCls and 3 architec-
tures * 7 training datasets * 6 evaluation datasets
for TokCls). Conversely, the Seq-Alg task, involves
training the ED-DD configuration across the eight
training datasets and evaluated on the remaining 7
dataset not used for training, resulting in an eval-
uation matrix encompassing 56 configurations (1
architecture * 8 training datasets * 7 evaluation
datasets).

4.3 Results

Table 2 illustrates the macro F1-scores achieved
in both ID and CD evaluation scenarios. In the
ID evaluation configuration, the F1-scores are de-
termined from models trained and evaluated on
the same dataset. Conversely, in the CD evalua-
tion setup, each model undergoes training on one
dataset, and evaluated on the remaining datasets.
The average F1-scores of each model trained on
one dataset and evaluated on the remaining is re-
ported in Table 2. The comprehensive CD evalua-
tion results can be found in Tables 4 and 5, located
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in the Appendix.
As can be seen from Table 2, in the ID evalua-

tion, an average F1-score of 76.1% was achieved
across the three tasks and architectures. Conversely,
in the CD evaluation, the average F1-score was
notably lower at 42.7%. To facilitate a direct com-
parison among the three task setups, we calculate
the average performance across the entire dataset,
excluding AMP, as TokCls does not undergo eval-
uation on this specific dataset. Accordingly, the
sequence-classification setup attains an average F1-
score of 77.5%, 40.2% across all architectures in
both ID and CD evaluations, respectively, while
token-classification models achieve an average F1-
score of 74.3%, 35.5%. Sequence-to-sequence
alignment task achieves comparable performance
with sequence classification task with an average
F1-score of 76.8% and 40.4% on ID and CD setups,
respectively. It is noteworthy that the average F1-
score of the ED-DD architecture for sequence clas-
sification and token classification is 34.7% in CD
evaluations. This represents a 5.7% improvement
in the task performance in the CD evaluation setup.
This observed gain underscores the task’s effective-
ness, especially when compared to the lower perfor-
mance achieved by the same underlying model (T5)
in the other two task setups, highlighting its ability
to learn transferable features across domains. This
phenomenon could be attributed to the inherent na-
ture of the task setup, which presents challenging
learning scenarios, potentially combating shortcut
learning and encouraging the model to learn more
generalised representations. Moreover, it might
also suggests the task allowing to learn the align-
ment of the premise and conclusion based on the
outputs of the encoder and decoder.

Sequence classification models exhibited faster
convergence during training compared to token
classification and sequence-to-sequence alignment
counterparts, indicating their ability to learn and
adapt more efficiently to the task at hand. The
slower convergence observed in token classifica-
tion and sequence-to-sequence alignment setups
could be attributed to the complexity of the tasks,
requiring the model to learn token-level relation-
ships to predict argument relations.

Across all dataset and task combinations, ED
(RoBERTa) configurations demonstrate an average
F1-score of 75.4%, 38.4% in ID and CD evaluation
settings, respectively. In contrast, DD configura-
tions achieve an F1-score of 76.8%, 39% in the ID
and CD evaluation settings, respectively. Config-

urations using DialoGPT exhibit a 1.4% improve-
ment over RoBERTa across datasets and tasks in
ID evaluation. DialoGPT’s superior performance
could be attributed to its pre-training strategy and
dataset, which specifically target dialogical datasets
extracted from Reddit comment chains. As Di-
aloGPT is exclusively pre-trained on dialogical
data, configuration utilising the model could lever-
age the argument-relevant features encoded dur-
ing its pre-training stage. This advantage might
enable DialoGPT based configurations to outper-
form configurations based on models pre-trained on
generic datasets. The specificity of DialoGPT’s pre-
training strategy likely helps capture the subtleties
of argumentation and discourse, thereby enhancing
performance in ARI tasks.

Moreover, the performance variations among the
transformers architectures can be indicative of the
relevance of the underlying pre-training objectives
and architectures to ARI. Notably, the next sen-
tence prediction objective, crafted for classification
tasks involving sequence pairs, aligns with ARI,
as the task involves pairs of propositions. How-
ever, RoBERTa, which does not involve the next
sentence prediction objective, demonstrates com-
petitive performance in ARI tasks (Ruiz-Dolz et al.,
2021a), suggesting the absence of this objective
does not hinder the model’s ability to capture ar-
gument relations. Similarly, the ED-DD architec-
tures is relevant to ARI since it allows learning
the alignment of pair of sequences (the pair of
propositions in ARI). Our result shows that the
architecture attains competitive performance only
in the sequence-to-sequence alignment task setup.
This can be evidenced by the performance improve-
ment of T5 on sequence-to-sequence alignment
task over both sequence-classification and token-
classification tasks.

These findings highlight the critical significance
of tailoring task setups, architectures, and evalua-
tion methodologies to suit the unique intricacies of
ARI tasks.

5 Discussion

To contextualise the results reported in the ARIES

benchmark, providing a better understanding of
their impact in the argument mining community,
we compared the best model architecture observed
in ARIES with the best performing and most recent
identified previous work addressing ARI in each
of the datasets individually. Works by Morio et al.
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(2022), Ruosch et al. (2022), Chakrabarty et al.
(2019), Ruiz-Dolz et al. (2021a), and Kikteva et al.
(2023) represent the best possible reference with
which to compare ARIES, given the similarity in the
way that the ARI task is approached. The resulting
comparison is depicted in Table 3.

As it can be observed, ARIES represents a signif-
icant jump in performance compared to previous
works. Our benchmark consistently outperforms
the previously reported results in the most similar
instances of the ARI task considering the same
eight selected datasets. The direct comparison,
however, is difficult to do due to the high vari-
ability in which different authors address the task
and interpret argumentative concepts. For exam-
ple, Morio et al. (2022) does it with an end-to-end
model, and although we selected the reported re-
sults assuming an oracle system for ADU segmen-
tation, the proposed models are not entirely focused
on ARI, considering other aspects of argument min-
ing such as component classification. Other works
such as (Ruiz-Dolz et al., 2021a) and (Kikteva et al.,
2023) consider an additional relation for ARI, the
rephrase between two argument propositions. Thus
making the ARI a four-class classification problem
instead of considering the three classes included
in ARIES. Therefore, this comparison needs to
be understood as a motivation and a starting point
towards a more consistent and unified way of evalu-
ating argument mining systems rather than a direct
comparison between works. While worse results
in a simpler version of the task should be taken
as concerning, worse results in a more complex
version of it do not need to mean that the system is
worse. With our benchmark, we expect that future
contributions in argument mining can be better con-
textualised and evaluated, moving forward together
as a community rather than reporting specific re-
sults for heterogeneous setups that are difficult to
compare and understand from a broader viewpoint.

Furthermore, we clearly observed how in the
CD evaluation of the different natural language
modelling approaches and architectures, the perfor-
mance consistently dropped to the point of being
close to the majority baseline. Thus limiting the
usability of the resulting models in different do-
mains than the ones included during training. Al-
though some work has investigated cross-domain
and cross-language argument mining (Al Khatib
et al., 2016; Eger et al., 2018), this issue has never
been systematically explored in-depth, leaving the
door open to a new challenging direction: robust-

ness in argument mining (Ruiz-Dolz et al., 2024).
Considering the relevance of language and domain
in natural language argumentation, developing ro-
bust systems is a main issue if we want to be able
to effectively deploy them in real-world scenar-
ios. For this purpose, ARIES represents a valuable
resource, allowing not only to compare between
different datasets, but also to measure the cross-
dataset robustness of the developed argument min-
ing systems.

Finally, we would also like to mention that re-
cently, Gorur et al. (2024) conducted a thorough
study comparing the performance of generative
LLMs (i.e., decoder-based architectures) for ARC.
Although some of the reported results might seem
higher than the ones included in the ARIES bench-
mark, as noted in the beginning of this paper, re-
lation classification assumes that the relation has
already been identified and classifies it as an at-
tack or a support, significantly simplifying the task.
Therefore, we excluded these results from our com-
parison, being a significantly different task highly
dependant on a previous step. Instead, ARI repre-
sents a completely independent task embedding the
main purposes of argument mining (i.e., identify-
ing argument structures from unstructured natural
language inputs).

6 Conclusion

In this paper we presented ARIES, a global bench-
mark for the identification of natural language ar-
guments. ARIES represents an effort to ease the
understanding of argument mining contributions
and their impact to the community. We achieve
this by providing solid results comparing the three
main modelling approaches in NLP (i.e., sequence
and token classification, and sequence-to-sequence
alignment) combined with the three main model
architectures (i.e., encoder, decoder, and encoder-
decoder). Our benchmark goes all over eight differ-
ent corpora, presenting new state-of-the-art results
for the ARI task, and setting a new reference for
research in argument mining. Furthermore, we
pointed out the limitations of domain-specific ar-
gument mining systems, showing poor results in
cross-dataset evaluation. This limitation raises the
question of how useful argument extraction sys-
tems can be when deployed in the wild, given their
limited generalisability, highlighting the need to
investigate the robustness of argument mining sys-
tems.
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MTC AAEC CDCP ACSP AMP AbstRCT US2016 QT30
(1) ARIES (1) ARIES (1) ARIES (2) ARIES (3) ARIES (1) ARIES (4) ARIES (5) ARIES

F1-score 47 71 56 78 21 72 32 84 40 84 51 84 70* 79 56* 85

Table 3: Comparison of the ARIES benchmark with the previous reported results for ARI in terms of macro-averaged
F1-scores. We use * to indicate that the ARI results included rephrase as an additional relation type. For readability
purposes we have represented the references in the table as follows (1): (Morio et al., 2022), (2): (Ruosch et al.,
2022), (3): (Chakrabarty et al., 2019), (4): (Ruiz-Dolz et al., 2021a), (5): (Kikteva et al., 2023).

As future work, we foresee expanding the
ARIES benchmark to more languages than En-
glish. Although argument mining has been mostly
researched in English, corpora in Catalan (Ruiz-
Dolz et al., 2021b), Spanish (Cantador et al., 2020),
Japanese (Kimura et al., 2022), or Chinese (Wu
et al., 2023) among others have been annotated and
publicly released in the recent years. Increasing
the language richness in argument mining research
can be beneficial, not only for implementing more
robust models, but also to help us investigating
the differences between relevant natural language
argument features underlying different languages.
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A Experiment Setup

A.1 Training Procedure

Hyper-parameters: We employ Adam optimisa-
tion (Kingma and Ba, 2014) to minimise the cost
function, using a learning rate of 2 × 10−5 and
categorical cross-entropy loss and a batch size of
16.

Gradient Clipping: To prevent exploding
gradients during training, we applied gradient
clipping. We used a maximum gradient norm
(max_grad_norm) parameter to determine the
threshold for gradient clipping.

Warm-up and Learning Rate Schedule: We
employed a linear warm-up strategy for the learn-
ing rate. The number of warm-up steps was set
to 10% of the total training steps. Following the
warm-up phase, the learning rate schedule was de-
termined by a lambda function. This function lin-
early increases the learning rate during the warm-
up phase and decreases it linearly thereafter.

A.1.1 Input Setup
For the sequence classification task, we combine
the premise and conclusion using a special to-
ken [SEP]. In the sequence-alignment task, the
encoder receives the premise while the decoder
processes the conclusion separately. The token-
classification task is provided with the entire argu-
ment along with one of the propositions (say the
premise). To ensure consistency across architec-
tures, the maximum input length is set to 512. In
the sequence-to-sequence alignment task, where
inputs are provided separately to the encoder and
decoder, we set the maximum input size to 256
for both components to enable direct comparison.
For the token-classification configuration, if the in-
put length exceeds 512, we extract a span of the
argument relevant to the premise and conclusion.
Initially, we measure the size of one proposition

11



(the premise) and if the combined size of the ar-
gument and premise is less than 512, we use the
entirety of both. Otherwise, we use the following
heuristic to extract the relevant part of the argu-
ment: extract a span of argument involving both
the premise and conclusion if the size of the span
and the premise is less than 512. If not, expand the
span in the direction of the conclusion until the size
constraint is met and append the conclusion to the
argument span.

A.2 Model Configurations

To facilitate direct comparisons between architec-
tures and configurations, we ensure comparable
model sizes across all setups. Specifically, we em-
ploy RoBERTa-large (Liu et al., 2019) (355 million
parameters) for the ED, DialoGPT-medium (Zhang
et al., 2020) (345 million parameters) for the DD,
and T5-base (Raffel et al., 2020) (220 million pa-
rameters) for the ED-DD configuration.

A.3 Sequence-to-sequence Alignment Task

For the sequence-to-sequence alignment task, we
try two configurations. First, we leverage the
T5ForConditionalGeneration1 implementation,
fine-tuned to generate conclusions given premises.
We also concatenate the final hidden state of
the encoder with that of the decoder which is
then fed into a linear layer to predict the ar-
gument relation between the premise and con-
clusion. In an alternative approach, we em-
ploy the T5ForSequenceClassification2 imple-
mentation, where the model is fine-tuned in the
identification of argument relations, without the
added complexity of conclusion generation given
a premise. Across the configurations, the premise
is provided as input to the encoder, while the con-
clusion serves as the input to the decoder. Our ex-
periment reveals that T5ForConditionalGeneration
configuration provides better result and all the ex-
perimental results on the SeqAln task is reported
based on this configuration.

A.4 Sequence Classification Task

For the ED architecture, we utilise the final
output of the HuggingFace implementation of

1https://huggingface.co/docs/
transformers/en/model_doc/t5#transformers.
T5ForConditionalGeneration

2https://huggingface.co/docs/
transformers/en/model_doc/t5#transformers.
T5ForSequenceClassification

RoBERTaForSequenceClassification3. Similarly,
DD architecture, we leverage the final output
of the HuggingFace implementation of DialoG-
PTForSequenceClassification 4. For the ED-
DD, we use the final output of the decoder
based on the HuggingFace implementation of
T5ForSequenceClassification5. Across the se-
quence classification task, the input to the respec-
tive models is the concatenation of the premise and
conclusion.

3https://huggingface.co/docs/transformers/
en/model_doc/RoBERTa#transformers.
RoBERTaForSequenceClassification

4https://huggingface.co/docs/transformers/en/
model_doc/dialogpt

5https://huggingface.co/docs/
transformers/en/model_doc/t5#transformers.
T5ForSequenceClassification
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Model Train Data AAEC ACSP ABstRACT US2016 QT30 CDCP MTC AMP

DialogPT AAEC - 0.402 0.473 0.462 0.410 0.454 0.465 0.573*
CDCP 0.365 0.390 0.432 0.425 0.390 - 0.312 0.564*
ACSP 0.413 - 0.425 0.413 0.434 0.336 0.467 0.562*
QT30 0.470 0.479 0.472 0.479 - 0.480 0.467 0.553*
ABstRACT 0.281 0.342 - 0.365 0.340 0.400 0.435 0.610*
MTC 0.363 0.291 0.434 0.356 0.316 0.381 - 0.631*
US2016 0.461 0.430 0.424 - 0.463 0.471 0.461 0.563*
AMP 0.532* 0.551* 0.523* 0.574* 0.621* 0.465* 0.346* -

RoBERTa AAEC - 0.390 0.459 0.399 0.446 0.454 0.535 0.561*
CDCP 0.322 0.312 0.411 0.403 0.373 - 0.379 0.562*
ACSP 0.479 - 0.489 0.520 0.560 0.379 0.504* 0.542*
QT30 0.388 0.370 0.491 0.501 - 0.405 0.479 0.523*
ABstRACT 0.332 0.358 - 0.345 0.362 0.475 0.491 0.586*
MTC 0.309 0.302 0.319 0.361 0.331 0.284 - 0.542*
US2016 0.399 0.426 0.512 - 0.456 0.420 0.420 0.571*
AMP 0.512* 0.551* 0.502* 0.566* 0.614* 0.479* 0.348* -

T5 AAEC - 0.306 0.342 0.395 0.339 0.355 0.390 0.491*
CDCP 0.356 0.362 0.363 0.355 0.368 - 0.261 0.501*
ACSP 0.304 - 0.378 0.336 0.339 0.305 0.444 0.456*
QT30 0.351 0.322 0.344 0.359 - 0.349 0.419 0.541*
ABstRACT 0.342 0.305 - 0.320 0.333 0.376 0.376 0.511*
MTC 0.319 0.312 0.346 0.351 0.359 0.315 - 0.529*
US2016 0.345 0.328 0.364 - 0.389 0.399 0.355 0.473*
AMP 0.486* 0.462* 0.396* 0.421* 0.441* 0.365* 0.245* -

Table 4: CD evaluation performance of each model architecture on the SeqCls task setup. We use * to denote that
the evaluation results reported on the AMP represent binary predictions.
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Model Train Data AAEC ACSP ABstRACT US2016 QT30 CDCP MTC

DialogPT AAEC - 0.312 0.40 0.441 0.467 461 0.479
CDCP 0.277 0.285 0.355 0.376 0.335 - 0.335
ACSP 0.368 - 0.418 0.427 0.414 0.319 0.366
QT30 0.346 0.358 0.268 0.500 - 0.479 0.267
ABstRACT 0.334 0.311 - 0.377 0.320 0.322 0.423
MTC 0.347 0.297 0.397 0.423 0.322 0.274 -
US2016 0.389 0.378 0.287 - 0.519 0.400 0.279

RoBERTa AAEC - 0.294 0.447 0.440 0.433 0.442 0.450
CDCP 0.267 0.265 0.334 0.341 0.307 - 0.323
ACSP 0.349 - 0.411 0.411 0.407 0.300 0.337
QT30 0.328 0.316 0.256 0.509 - 0.237 0.238
ABstRACT 0.290 0.297 - 0.354 0.319 0.291 0.404
MTC 0.335 0.264 0.380 0.417 0.336 0.286 -
US2016 0.311 0.307 0.230 - 0.359 0.246 0.246

T5 AAEC - 0.269 0.365 0.365 0.342 366 0.365
CDCP 267 0.279 0.352 0.361 0.307 - 0.342
ACSP 0.332 - 0.411 0.401 0.413 0.281 0.332
QT30 0.321 0.298 0.241 0.486 - 0.423 0.237
ABstRACT 0.265 0.282 - 0.361 0.324 0.318 0.413
MTC 0.323 0.264 0.380 0.421 0.336 0.286 -
US2016 0.333 0.317 0.251 - 0.522 0.398 0.266

Table 5: CD evaluation performance of each model architecture on the TokCls task setup.
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