
Proceedings of the 11th Workshop on Argument Mining, pages 119–123
August 15, 2024 ©2024 Association for Computational Linguistics

Pungene at DialAM-2024: Identification of Propositional and Illocutionary
Relations

Sirawut Chaixanien*, Eugene Choi*, Shaden Shaar, Claire Cardie,
Cornell University

{sc2343, ec727, ss2753, ctc9}@cornell.edu

Abstract

In this paper we tackle the shared task DialAM-
2024 aiming to annotate dialogue based on the
inference anchoring theory (IAT). The task can
be split into two parts, identification of propo-
sitional relations and identification of illocu-
tionary relations. We propose a pipelined sys-
tem made up of three parts: (1) locutionary–
propositions relation detection, (2) proposi-
tional relations detection, and (3) illocutionary
relations identification. We fine-tune models
independently for each step, and combine at the
end for the final system. Our proposed system
ranks second overall compared to other partic-
ipants in the shared task, scoring an average
f1-score on both sub-parts of 63.7.

1 Introduction

This paper is a system design paper for the DialAM-
2024 task. This task involves the creation of dia-
logue annotations from dialogue text. Specifically,
annotations in the format of a graph under the In-
ference Anchoring Theory (IAT) Framework. The
IAT (Ruiz-Dolz et al., 2024) framework allows for
dialogue argumentation annotations in a way that
retains relevant information and structural data ir-
respective of domain.

For this task, we are provided with a dataset that
contains numerous .json files where each document
represents a graph under the IAT framework. The
data used is the QT30 corpus (Hautli-Janisz et al.,
2022), where dialogue is taken from 30 episodes
of the show Question Time.

Our system is a pipeline that splits the tasks into
three steps. At the first step we utilize BERTScore
to produce similarity scores to find connections.
Then, for each step, we fine-tune a BERT model
to perform multiclass classification using informa-
tion gained from previous steps as input. We fine-
tune each model separately and combine it into
a pipeline at the end where we create a finished
graph. With regards to scoring, we were second in

Figure 1: Example final output. The blue nodes on the
left are I-nodes (propositions), the blue nodes on the
right are L-nodes (locutions), the orange nodes are S-
nodes (relations), the yellow nodes are YA-nodes, and
the purple nodes are TA-nodes (which depict a transition
from one utterance to the next). The ordering of the
pipeline mentioned later is also depicted starting with
green to yellow then to red as the final step.

the General case, beating third place by 8 points.
We also scored third in the Focused setting.

2 Related Works and Background

2.1 Task Background

The main goal of this task is to construct a dialogue
graph under the IAT format. The input of this
task is an unfinished graph that contains L-nodes
(Locutions), I-nodes (Propositions), and TA-nodes
(Direct Transition). The L-nodes are all connected
in the order they were uttered in, with a TA-node
between each L-node. On the other hand, the I-
nodes are unconnected with anything else.

The expected output is a fully populated graph
(see Figure 1) that contains other node types. These
include S-nodes which go between I-nodes, YA-
nodes which go between an I- and an L-node, or
between a TA- and an S-node. Unlike the given
input nodes, these also have a type assigned to
them.

This task is split into two subtasks. Subtask

119



A: Identification of Propositional Relations which
involves the detecting argumentative relations be-
tween I-nodes and Subtask B: Identification of Illo-
cutionary Relations which involves detecting illo-
cutonary relations between I-nodes and L-nodes.

S-nodes can have the type of Default Inference
(RA-node), Default Rephrase (MA-node), or De-
fault Conflict (CA-node). YA-nodes can have the
type of Asserting, Agreeing, Arguing, Challenging,
Disagreeing, Default Illocuting, Pure Questioning,
Assertive Questioning, Rhetorical Questioning, Re-
stating, and Analysing.

2.2 Related Works

This is the first year for this shared task thus there
are no prior works on it. However, many exist-
ing systems can help in finding a solution. One
core system that was used in our approach is BERT
(Bidirectional Encoder Representations from Trans-
formers) (Devlin et al., 2019). This Large Lan-
guage Model meets many of our requirements.
Firstly, BERT is very adaptable, being able to per-
form well on a wide variety of tasks with some
fine-tuning. Furthermore, it has been pre-trained
on a large corpus allowing our approach to be able
to handle information from any domain. One such
byproduct of this system is BERTScore (Zhang*
et al., 2020) which is also used in our approach.
It is a text-generation evaluation metric that uti-
lizes BERT’s pre-trained contextual embeddings
to calculate similarity scores. A similar method is
ROUGE (Lin, 2004) which compares the words di-
rectly, causing it to be more easily fooled by similar
surface forms as compared to BERTScore.

3 Method

To tackle the problem of populating this graph, we
decided to isolate each part to create a pipeline.
Rather than following the subtasks laid out, we
split it into three different steps instead. The first
step is to connect the I- and L-nodes and label
the YA-nodes that lie between them. Secondly, as
we now know the ordering of the I-nodes, we can
then label the S-nodes that go between each I-node.
Thirdly, we would connect the TA-nodes to the
created S-nodes and label the YA-nodes that go
between them. This ordering is labeled in Figure 1
as well.

Figure 2: Each combination of locution and proposi-
tion is assigned a similarity score. The matching that
maximizes the total similarity score with no overlap is
chosen as the ideal matching.

3.1 Step 1: I- and L-node Connection and
Classification

This step can be further split into 2 subtasks.
Namely, the identification of a connection between
a locution and a proposition, and the classification
of the node type that connects the two.

To tackle the first subtask of identifying the con-
nection to create a pairing, we decided to use dif-
ferent evaluation metrics in order to get a similarity
score between propositions and locutions. For each
locution, we would compare it to every proposi-
tion and select the proposition with the highest
similarity score to that locution to be a pair. We cal-
culated accuracy by taking the number of correct
pairs over all the pairs in the dataset. We tried 3 dif-
ferent evaluation metrics: ROUGE-1, ROUGE-2,
and BERTScore. Here, we found that BERTScore
had the highest accuracy (97%) in identifying con-
nections followed by ROUGE-2 (96%) and then
ROUGE-1 (94%).

For a more complex approach, we also tried fine-
tuning a BERT model to perform inference as to
whether a locution and a proposition were con-
nected. The data we used for this was created by
going through each document in the dataset ex-
tracting each locution and proposition. We traverse
through the graph to find every instance of a con-
nection of L-node to YA-node to I-node. For each
instance of this, we say that that L-node and that
I-node are connected. Next, we generate every pos-
sible pair of L-node and I-node. These pairs have
a label of 1 if they are connected and 0 otherwise.
By doing so, we are able to create a larger dataset
through negative sampling.

The results of the fine-tuned BERT not only took
more time to infer but also did not perform as well
as simply using BERTScore. We believe that this
is because a lot of the time the proposition is just
a rephrasing of the locution therefore allowing a
simple technique to work fine.

120



As a result, we decided to use BERTScore in
our final system (see Figure 2). However, rather
than simply sorting by the highest similarity score
and picking one by one, we used an algorithm that
maximized the total similarity score by checking
the total score of every possible pairing.

For the second subtask, we also decided to use a
BERT model as they also perform well on classifi-
cation tasks. We first decided to fine-tune a Distil-
BERT model (Sanh et al., 2019) to perform multi-
class classification to select what type of YA-node
would go between the locution and proposition
pair. Due to low performance, we tried BERT-base
which performed much better.

The data used for this step was just taking each
example of a YA-node in between an I- and an L-
node. The downside of this straightforward method
is that the amount of data was quite small due to
the small dataset already being a limiting factor.
Furthermore, out of all the labels, "Asserting" was
the most common one at 14765 samples while the
rest had less than a thousand samples. Because
of this class imbalance, we duplicated every other
class 10 times.

To finish this step we update the graph with new
nodes and edges and pass the updated graph along
to the next step.

3.2 Step 2: I-node Connection and
Classification

The purpose of this step is connect the I-nodes that
follow one another and label the S-node that goes
between them. Since all the I-nodes are connected
to an L-node, this means that an ordering has al-
ready been established. Thus, the only thing we
need to do is to decide whether or not two I-nodes
have a connecting S-node and what the label of the
S-node is. Figure 3 shows what a possible result of
step 2 looks like.

This part is quite similar to step 1 where we
need to decide whether there is a connection or not
and then label what type of connection it is. How-
ever, unlike the first step, we already know what
the pairing is (namely I-node n and I-node n+1).
Therefore, instead of splitting it into two parts like
the first step, we decided to do it in one go. We
decide to follow a similar method of fine-tuning a
BERT model to perform multiclass classification.
The model would take in the two I-nodes and have
the option of no connection or any one of the pos-
sible labels. The four options are: RA (Default
Inference), MA (Default Rephrase), CA (Default

Figure 3: Possible result of the second step. Some I-
nodes have an S-node between them and some don’t.
This image also contains the results from the first step
namely the YA-nodes between the connected I- and
L-nodes.

Conflict), or no connection.
The input of this model is the pair of I-nodes.

We considered using other nearby nodes to provide
more information, however, our results show that
adding more information does not improve perfor-
mance. Using only the two I-nodes gives us an
F1 score of 52.5 while adding the nearby L- and
YA-nodes results in a lowered F1 score of 51.6.

To fine-tune the model, the data we used was
all the real connections as well as pairing up non-
adjacent I-nodes. These non-adjacent sampels
would be used as samples for the option of no con-
nection. From this, RA had 5,566 samples, MA
had 4,508 samples, CA had 882 samples, and no
connection had 8,186 samples. Due to CA having
such a low number up samples, we decided to up-
sample it by adding copies of the samples into the
dataset. We multiplied it by 4 to give CA a total of
3,528 samples.

To finish this step, we update the graph with the
new S-nodes and edges and pass the updated graph
to the next step along the pipeline.

3.3 Step 3: YA-node between TA- and S-nodes
Classification

The main purpose of this step is to label the YA-
node that lies between every S- and TA-node in the
same rank (For example S-node 1 and TA-node 2 in
Figure 3). To do this, we used the same method of
fine-tuning a BERT model. We took every instance

121



of YA-nodes between S- and TA-nodes as our data.
We also faced a similar problem of class imbal-
ance which we decided to solve by upsampling the
classes with fewer samples.

The input into our model was all the surrounding
nodes, many of which were created in the previous
steps. For example, in Figure 3, figure out the
label of the YA-node between S-node 1 and TA-
node 2, our inputs would be L-nodes 2 and 3, I-
nodes 2 and 3, YA-nodes 2 and 3 and S-node 1.
The input would be one long chunk of text that
concatenated the texts of the I- and L-nodes and
the labels of the YA- and S-nodes represented as
an integer. The information from each node would
be separated by a [SEP] token. Example input:
there’s obviously some schools are going
to go back on 1st June [SEP] Fiona Bruce :
There’s obviously some schools are going
to go back on 1st June [SEP] 0 [SEP] some
schools are not going to go back on the
1st June [SEP] Fiona Bruce : Some are not
[SEP] 0 [SEP] 2.

4 Experiment Details

4.1 Step 1
For the connection part, we used the Hugging Face
implementation of BERTScore and our own algo-
rithm for trying every matching. For the classifica-
tion model, we used bert-base-cased. We finetuned
on a GPU with a batch size of 32 and a learning
rate of 5e-5 for 5 epochs.

4.2 Step 2 and 3
For the two classification models for steps 2 and
3, we used the same parameters. They both used
bert-large-uncased and were fine-tuned on a CPU
with a batch size of 8 and a learning rate of 2e-5
for 3 epochs.

5 Results and Analysis

The main method used to measure the success of
our system is by calculating precision, recall, and
macro-F1. A score will be calculated for Subtask A
(ARI) and Subtask B (ILO) each as well as a global
score which is the aggregate of the two. Further-
more, they will be split into two different versions:
Focused and General. Focused evaluates the per-
formance looking at only the related classes in the
evaluation files only while General also includes
the non-related class. This means that a high per-
formance in the General version but low perfor-

Metric F1
ARI - Focused 20.51
ARI - General 46.22
ILO - Focused 69.95
ILO - General 81.17
GLOBAL - Focused 45.23
GLOBAL - General 63.70

Table 1: F1 Score for each evaluation metric. Both
Focused and General ILO are quite high. The Focused
ARI has a low score while General ARI has a better
score. Overall GLOBAL score, which is the aggregate
of the two, is good with the General case performing
better.

mance in the Focused versions shows a pessimistic
approach (overly relies on the non-related class)
while the inverse shows an optimistic approach that
relates too many propositions and locutions.

Another thing to note is that a big downside
of our pipelined system is that it is very prone to
cascading errors. This is also an additional reason
as to why in step 2 we opted to use as few inputs as
possible in order to prevent the cascading of errors.
The only part which used a lot of the information
from the previous steps was step 3. However, the
added information allowed the model to get an F1
score of 96.2 which is very strong.

From Table 1 we can see that the main part that
performs well is Subtask B (ILO). Both focused
and general cases perform quite well indicating a
good balance of predictions in every class.

6 Conclusion and Future Work

Overall our system performed quite well, especially
on Subtask B which was the identification of illocu-
tionary relations. The recurring technique that we
used was fine-tuning a BERT model which proved
to be quite effective. A strong point of our system
is its ability to get quite similar scores among both
General and Focused cases. This is likely due to
our upsampling which helped with the largely im-
balanced dataset. The one downside in our system
seems to be the issue of cascading errors. This is
reflected in the scores as we do part of Subtask B
first before moving on to Subtask A and the ILO
scores are much higher than our ARI scores. Mov-
ing forward we will need some way to eliminate
the impact of these errors.

122



References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Annette Hautli-Janisz, Zlata Kikteva, Wassiliki Siskou,
Kamila Gorska, Ray Becker, and Chris Reed. 2022.
QT30: A corpus of argument and conflict in broad-
cast debate. In Proceedings of the Thirteenth Lan-
guage Resources and Evaluation Conference, pages
3291–3300, Marseille, France. European Language
Resources Association.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Ramon Ruiz-Dolz, John Lawrence, Ella Schad, and
Chris Reed. 2024. Overview of DialAM-2024: Argu-
ment Mining in Natural Language Dialogues. In Pro-
ceedings of the 11th Workshop on Argument Mining,
Thailand. Association for Computational Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. ArXiv,
abs/1910.01108.

Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

123

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/2022.lrec-1.352
https://aclanthology.org/2022.lrec-1.352
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://api.semanticscholar.org/CorpusID:203626972
https://api.semanticscholar.org/CorpusID:203626972
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr

