@inproceedings{zhang-braun-2024-twente,
title = "Twente-{BMS}-{NLP} at {P}erspective{A}rg 2024: Combining Bi-Encoder and Cross-Encoder for Argument Retrieval",
author = "Zhang, Leixin and
Braun, Daniel",
editor = "Ajjour, Yamen and
Bar-Haim, Roy and
El Baff, Roxanne and
Liu, Zhexiong and
Skitalinskaya, Gabriella",
booktitle = "Proceedings of the 11th Workshop on Argument Mining (ArgMining 2024)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.argmining-1.17",
doi = "10.18653/v1/2024.argmining-1.17",
pages = "164--168",
abstract = "The paper describes our system for the Perspective Argument Retrieval Shared Task. The shared task consists of three scenarios in which relevant political arguments have to be retrieved based on queries (Scenario 1). In Scenario 2 explicit socio-cultural properties are provided and in Scenario 3 implicit socio-cultural properties within the arguments have to be used. We combined a Bi-Encoder and a Cross-Encoder to retrieve relevant arguments for each query. For the third scenario, we extracted linguistic features to predict socio-demographic labels as a separate task. However, the socio-demographic match task proved challenging due to the constraints of argument lengths and genres. The described system won both tracks of the shared task.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-braun-2024-twente">
<titleInfo>
<title>Twente-BMS-NLP at PerspectiveArg 2024: Combining Bi-Encoder and Cross-Encoder for Argument Retrieval</title>
</titleInfo>
<name type="personal">
<namePart type="given">Leixin</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Braun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 11th Workshop on Argument Mining (ArgMining 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yamen</namePart>
<namePart type="family">Ajjour</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roy</namePart>
<namePart type="family">Bar-Haim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roxanne</namePart>
<namePart type="family">El Baff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhexiong</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gabriella</namePart>
<namePart type="family">Skitalinskaya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The paper describes our system for the Perspective Argument Retrieval Shared Task. The shared task consists of three scenarios in which relevant political arguments have to be retrieved based on queries (Scenario 1). In Scenario 2 explicit socio-cultural properties are provided and in Scenario 3 implicit socio-cultural properties within the arguments have to be used. We combined a Bi-Encoder and a Cross-Encoder to retrieve relevant arguments for each query. For the third scenario, we extracted linguistic features to predict socio-demographic labels as a separate task. However, the socio-demographic match task proved challenging due to the constraints of argument lengths and genres. The described system won both tracks of the shared task.</abstract>
<identifier type="citekey">zhang-braun-2024-twente</identifier>
<identifier type="doi">10.18653/v1/2024.argmining-1.17</identifier>
<location>
<url>https://aclanthology.org/2024.argmining-1.17</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>164</start>
<end>168</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Twente-BMS-NLP at PerspectiveArg 2024: Combining Bi-Encoder and Cross-Encoder for Argument Retrieval
%A Zhang, Leixin
%A Braun, Daniel
%Y Ajjour, Yamen
%Y Bar-Haim, Roy
%Y El Baff, Roxanne
%Y Liu, Zhexiong
%Y Skitalinskaya, Gabriella
%S Proceedings of the 11th Workshop on Argument Mining (ArgMining 2024)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F zhang-braun-2024-twente
%X The paper describes our system for the Perspective Argument Retrieval Shared Task. The shared task consists of three scenarios in which relevant political arguments have to be retrieved based on queries (Scenario 1). In Scenario 2 explicit socio-cultural properties are provided and in Scenario 3 implicit socio-cultural properties within the arguments have to be used. We combined a Bi-Encoder and a Cross-Encoder to retrieve relevant arguments for each query. For the third scenario, we extracted linguistic features to predict socio-demographic labels as a separate task. However, the socio-demographic match task proved challenging due to the constraints of argument lengths and genres. The described system won both tracks of the shared task.
%R 10.18653/v1/2024.argmining-1.17
%U https://aclanthology.org/2024.argmining-1.17
%U https://doi.org/10.18653/v1/2024.argmining-1.17
%P 164-168
Markdown (Informal)
[Twente-BMS-NLP at PerspectiveArg 2024: Combining Bi-Encoder and Cross-Encoder for Argument Retrieval](https://aclanthology.org/2024.argmining-1.17) (Zhang & Braun, ArgMining 2024)
ACL