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Abstract

Argument Mining (AM) is the task of auto-
matically analysing arguments, such that the
unstructured information contained in them is
converted into structured representations. Un-
dercut is a unique structure in arguments, as it
challenges the relationship between a premise
and a claim, unlike direct attacks which chal-
lenge the claim or the premise itself. Undercut
is also an important counterargument device
as it often reflects the value of arguers. How-
ever, undercuts have not received the attention
in the filed of AM they should have — there
is neither much corpus data about undercuts,
nor an existing AM model that can automati-
cally recognise them. In this paper, we present
a real-world dataset of arguments with explic-
itly annotated undercuts, and the first computa-
tional model that is able to recognise them. The
dataset consists of 400 arguments, containing
326 undercuts. On this dataset, our approach
beats a strong baseline in undercut recognition,
with F1 = 38.8%, which is comparable to
the performance on recognising direct attacks.
We also conduct experiments on a benchmark
dataset containing no undercuts, and prove that
our approach is as good as the state of the art
in terms of recognising the overall structure
of arguments. Our work pioneers the system-
atic analysis and computational modelling of
undercuts in real-world arguments, setting a
foundation for future research in the role of
undercuts in the dynamics of argumentation.

1 Introduction

Social media allows people to express divergent
opinions on the same subject and to reach many
more people than was possible in earlier times.
However, the ubiquity of the internet and social
media also has some negative consequences. One
of these is the growing polarisation between indi-
viduals holding different beliefs and opinions. It is
thus increasingly important to promote productive
communication and understanding among people

with opposing perspectives. This is where Argu-
ment Mining (AM) comes into play. AM aims to
automatically identify and extract arguments from
natural language texts (Peldszus and Stede, 2013;
Green et al., 2014). It can convert unstructured
textual information into structured argument data,
which not only identifies the argumentative text
segments in the text but also the relations between
them (Prakken and Vreeswijk, 2002; Lawrence and
Reed, 2020).

A critical aspect of AM is recognising and un-
derstanding various argumentative structures, in-
cluding undercuts. An undercut challenges the re-
lationship between a premise and a claim (Pollock,
1987), unlike direct attacks that challenge the claim
or the premise itself. Due to its complex structure,
it is difficult to annotate undercuts or to computa-
tionally model them. There exist some AM datasets
with annotation of undercuts (Peldszus and Stede,
2015a; Visser et al., 2020), but they are often lim-
ited in the size, the quality of source text, or the
annotation scheme. To our best knowledge, there
is no existing AM models that can automatically
recognise undercuts.

To addresses this gap, in this paper we present
a novel dataset of real-world arguments from
Quora1, a popular question-answering platform.
Our dataset consists of 400 arguments, including
326 explicitly annotated undercuts, making it the
largest AM dataset with such annotations to date.
We also develop the first computational approach
capable of recognising undercuts, proposing an in-
novative undercut-inclusive dependency represen-
tation and a GNN-based neural dependency parser.

Our work contributes to the field of AM in sev-
eral ways. Firstly, we provide a comprehensive
dataset with detailed annotations of undercuts, of-
fering a valuable resource for future research. Sec-
ondly, our undercut-inclusive representation allows

1https://www.quora.com
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existing neural dependency parsers to process un-
dercuts effectively, preserving their unique status
within argument structures. Lastly, our experimen-
tal results demonstrate that our GNN-based parser
outperforms existing biaffine parsers in recognis-
ing undercuts and maintains state-of-the-art perfor-
mance in the general AM task.

2 Related Work

Our work is closely related to existing approaches
to AM, and the studies on undercuts in the field of
AM.

2.1 AM Approaches

There are two kinds of approaches to AM in
general, pipelined and end-to-end. Pipelined ap-
proaches break down AM into several subtasks
and process them sequentially, such as in Pers-
ing and Ng (2016), Mayer et al. (2020), and Ruiz-
Dolz et al. (2021). End-to-end approaches to ar-
gument mining allow for the prediction of the full
argument structure with a single model, and have
been gaining popularity due to their advantages
over pipelined approaches, including avoiding er-
ror propagation and eliminating the need for de-
signing different models for different subtasks (Ye
and Teufel, 2021).

The tree or graph structure of arguments en-
ables some end-to-end approaches to formulate
argument mining as a dependency parsing prob-
lem. For example, Morio et al. (2020) use bidi-
rectional LSTMs (BiLSTMs) (He et al., 2016) to
encode argument components, and a biaffine depen-
dency parser (Dozat and Manning, 2018) to classify
components and their relations. Bao et al. (2021)
propose a neural transition-based model to predict
the dependency structure of arguments. These ap-
proaches all assume that the input text is already
segmented.

In contrast, Eger et al. (2017) and Ye and Teufel
(2021) take raw text as input in their end-to-end
approaches based on dependency parsing. Ye and
Teufel (2021) report better results than those by
Eger et al. (2017), crediting the improvement to
their token-level dependency representation of ar-
gument and the biaffine dependency parser they
use. Our approach is based on the work by Ye and
Teufel (2021), except that ours can computationally
model undercuts.

2.2 Studies on Undercuts

Undercuts play a critical role in challenging the
soundness or validity of an argument. They have
been well defined in various theoretical argumen-
tation models, such as Pollock’s argumentation
model (Pollock, 1987) and Besnard and Hunter’s
argumentation model (Besnard and Hunter, 2009).

In the field of AM, some datasets based on the
Argument Interchange Format (Chesnevar et al.,
2006) may include undercuts, for example, the
QT30 corpus by Hautli-Janisz et al. (2022). How-
ever, their inclusion of undercuts is incidental and
will form a small part of the overall dataset.

The Microtext dataset (Peldszus and Stede,
2015a) is one of the few AM datasets that con-
tain explicitly annotated undercuts. The source text
was produced in a highly controlled text generation
experiment. The size of this dataset is small (7,846
tokens in total), each document only containing
about five segments. Also, its creators do not cat-
egorise these undercuts or provide any automatic
method to recognise them in their follow-up exper-
iments. Mim et al. (2022) present some ideas that
touch upon the phenomenon of undercuts in their
dataset, although they do not explicitly mention
undercuts when doing so. But nobody has studied
which kinds of undercut strategies exist, nor is there
large corpus data about them available. In contrast,
to the best of our knowledge, the QuoraAM dataset
we present is the biggest AM dataset that contains
annotation of undercuts. We provide a taxonomy
of undercuts after manually examining the annota-
tion of our dataset, along with its distribution in our
dataset. Moreover, we propose the first approach
to computationally modelling undercuts.

3 The QuoraAM Dataset

We collected 400 arguments from Quora, and
named this dataset as the QuoraAM dataset.

Compared to user-generated content on other on-
line discussion platforms such as ChangeMyView,
Kialo, idebate.org, and Twitter, arguments on
Quora are more in line with our research inter-
est. On Quora, users can present detailed and
well-reasoned points of view in their answers to
a question. As a result, each answer on Quora can
be seen as containing a stand-alone cogently struc-
tured complete argument, often supplemented with
explanations and supporting evidence. Platforms
including ChangeMyView, Kialo and idebate.org
are specifically designed for interactive debates and

60



Figure 1: An example argument graph using our an-
notation scheme. Nodes in different colours represent
components of different categories. Edges represent re-
lations: arrow-head = SUPPORT, circle-head = ATTACK.

discussions, with a focus on the process of chang-
ing one’s mind through constructive conversations.
Each post on such platforms may only contain an
incomplete argument, and intertextual referencing
is frequent among posts, making the analysis of
such posts more difficult. Twitter, unlike those
previous platforms, is a more open and informal
platform, where arguments can take on a more com-
bative tone. As a result, arguments there may not
always be rational and often lack the depth and nu-
ance seen on the other platforms. Additionally, due
to Twitter’s character limit, arguments in tweets
tend to be very short, with structures that may be
too simplistic to warrant a detailed analysis. There-
fore, we chose Quora over other online discussion
platforms.

We first manually pre-segmented the QuoraAM
dataset, and then trained two annotators to anno-
tate this dataset using our annotation scheme. This
dataset will be used for our experiments in this
paper. To the best of our knowledge, this is the
biggest argument mining dataset that contains ex-
plicit annotation of undercuts.

3.1 Annotation Scheme

Our scheme is illustrated in Figure 1. It includes
four argument component categories and two argu-
ment relation types.

The unit of annotation for components is a seg-
ment that can be part of a sentence, a sentence or
a sequence of sentences. We define four compo-
nent categories in our annotation scheme, including
PROPOSITION, STAKE, ANECDOTE, and ANAL-
OGY. These categories are decided based on our
manual observation of arguments on Quora and the
argumentation schemes by Walton et al. (2008).

Our scheme only has two relation categories,

namely SUPPORT (e.g. component 2 supporting
component 1) and ATTACK (e.g. component 7 at-
tacking component 3). In our scheme, the represen-
tation of undercuts does not rely on relation labels,
but on the target of an attacking relation: if the
target is a relation, an undercut occurs (e.g. com-
ponent 4 undercutting the relation between com-
ponent 5 and component 2); otherwise it is just a
typical direct SUPPORT.

Component 9 in Figure 1 is a STAKE, and is a
stand-alone component, In our scheme, STAKEs
are always stand-alone components, which do not
hold any relation to other components or relations.

3.2 Dataset Creation

In order to collect 400 answers from Quora, we first
selected the first 20 topics in the topic catalogue
on Kialo2 (e.g. “Politics”, “Society”, and “Tech-
nology”). Under each topic, we identified the top
five popular questions, resulting in 100 candidate
questions (5 questions per topic). These Kialo ques-
tions were then used to search for corresponding
questions on Quora.

In the second step, we aimed to select one rel-
evant question on Quora for each topic. We used
the full string of each Kialo question as a query on
Quora. Suitable questions were those relevant to
the Kialo query and with at least 50 answers. If no
suitable question was found, we refined our search
using key terms from the Kialo question. If we
still could not find a suitable Quora question, we
proceeded to the next Kialo question. This process
yielded 20 selected Quora questions.

In the third step, we chose 20 answers for each
selected Quora question. A qualified answers must:
1) directly address the topic; 2) contain at least 30%
argumentative material; and 3) be between 60 and
800 wordpieces after being tokenised by the BERT
WordPiece tokeniser (Wolf et al., 2020).

Using this data collection method, we selected
400 (20×20) answers that cover various topics such
as politics, environment, education, and equality.
Since arguments on Quora happen in a question-
answering context, each answer was appended to
its corresponding question, forming a “document”
for our dataset.

We manually segmented the raw text in the Quo-
raAM dataset and trained two annotators to apply
our annotation scheme. The two annotators first

2https://www.kialo.com. We turned to Kialo for topic se-
lection because Quora does not provide such a catalogue.
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annotated the same 60 documents for the annota-
tion study. The remaining 340 documents were
randomly split into two equal subsets. Each subset
was assigned to one annotator for annotation. The
annotation process took approximately 80 hours
per annotator. To compile the final collection of
400 annotated documents, we randomly selected
one of the doubly annotated documents from the
first step and combined it with the 340 documents
from the second step.

Inter-annotator agreement was measured using
Krippendorff’s alpha (Krippendorff, 2018) for com-
ponent classification and graph similarity measures
(Kirschner et al., 2015; Putra et al., 2022) for re-
lation identification. For component classification,
the score of Krippendorff’s alpha is α = 0.78
(N = 7, 883, n = 2, k = 5). According to the
interpretation scale in Krippendorff (2018), this
score is acceptable for “drawing tentative conclu-
sions” (α ≥ 0.67), and is close to the thresh-
old (α ≥ 0.80) for being considered “reliable”.
For relation identification, the graph similarity
scores are: Kirschnermean = 0.69, Kirschnerf =
0.67, MARlink = 0.64, MARpath = 0.54, and
MARdSet = 0.84.

3.3 Dataset Statistics

Table 1 shows the statistics of the QuoraAM dataset.
The dataset contains a total of 118,573 tokens,
which is much larger than the Microtext dataset
(7,846 tokens). There are over 7,800 segments in
the dataset, with approximately 56% being argu-
mentative. The QuoraAM dataset as distributed
is randomly divided into three subsets: 280 docu-
ments for training, 40 for development, and 80 for
testing.

Table 2 shows the distribution of components
and relations. The dataset includes over 4,000
PROPOSITIONS, around 200 ANALOGIES, 79
ANECDOTES, and 28 STAKES. Due to the small
number of STAKES, we merged them with ANEC-

All Per document

Token 118,573 296.4

Segment 7,883 19.7

Component 4,381 11.0

Sentence 6,398 16.0

Paragraph 2,826 7.1

Table 1: Statistics of the QuoraAM dataset.

All Per doc

Component

PROPOSITION 4,075 (51.7%) 10.2

STAKE 28 (0.4%) 0.1

ANECDOTE 79 (1.0%) 0.2

ANALOGY 199 (2.5%) 0.5

Total 4,381 11.0

Non-arg 3,502 (44.4%) 8.8

Relation

SUPPORT 2,752 (69.8%) 6.9

ATTACK 1,190 (30.2%) 3.0

Normal attack 864 (72.6%) 2.2

Undercut 326 (27.4%) 0.8

Total 3,942 9.9

Table 2: Component and relation distribution of the
QuoraAM dataset.

DOTES in our experiments in Section 5, though the
original categories are preserved in the dataset for
future research.

In terms of relations, the QuoraAM dataset in-
cludes 2,752 instances of SUPPORT and 1,190 in-
stances of ATTACK. There are 326 undercuts in the
dataset, which constitutes approximately 27% of
all ATTACKs. This result confirms the prevalence
of undercuts in Quora arguments.

3.4 Categories of Undercuts
We manually examined all undercuts in the Quo-
raAM dataset, classifying them into three cate-
gories:

• Rejection: Rejecting the relation by denying
the relevance between the source component
and the target component.

• Low importance: Questioning the impor-
tance of the relation, or providing more impor-
tant reasons.

• Alternative option: Stating that the current
solution is not the only option, or providing
alternative options. This kind of undercuts
often appears in arguments about policies.

Figure 2 shows the distribution of undercuts in
the QuoraAM dataset. “Low importance” (41%) is
the most frequent, followed by “Alternative option”
(36%), “Rejection” (15%), and others (8%). This
indicates that Quora authors prefer less direct meth-
ods of undercutting relations, often pointing out
weaknesses or suggesting alternatives rather than
outright rejection.
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Figure 2: Distribution of undercuts in the QuoraAM
dataset.

4 Computational Modelling of Undercuts

Through a redesign of an existing dependency rep-
resentation of arguments by Ye and Teufel (2021),
we are able to directly use existing neural depen-
dency parsers to computationally model undercuts.
We also apply a modified GNN-based dependency
parser for improved performance.

4.1 Undercut-inclusive Dependency
Representation

Following Ye and Teufel (2021), we also frame
AM as a dependency parsing task. They propose
a token-level dependency representation for argu-
ments in order to approach argument mining in an
end-to-end fashion. However, their dependency
representation cannot be used for arguments con-
taining undercuts, as undercuts involve relations
between a component and a relation, and a relation
cannot be a dependent or a head in typical depen-
dency representations. Therefore, we designed an
undercut-inclusive dependency representation for
arguments (shown in Figure 3) to allow existing
neural parsers to process undercuts directly. It is
a modification of the undercut-exclusive represen-
tation by Ye and Teufel (2021). This figure uses
the category labels in the Persuasive Essays dataset
(Stab and Gurevych, 2017) to be consistent with the
figure in Ye and Teufel (2021). New features of our
undercut-inclusive representation are as follows:

• A relation node (shown as dashed-line nodes
in Figure 3) for each token in the argument
is added. Each relation node is indexed with
the token number of its corresponding token,
followed by a prime. The relation nodes are
meant to represent relations. This is very dif-
ferent from the undercut-exclusive representa-
tion, where relations are represented by edges.

• The relation node (e.g. relation node 7
′
) of

the last token (token 7) in a component is al-
ways the head of that token, and represents
the relation from that component to its tar-
get, or the other way around. The edge la-
bel between the last token in a component
and its corresponding relation node is written
as (segment_label, REL), where REL means
“relation”. For example, the label of the edge
between token 7 and relation node 7

′
is (P,

REL).

• If the relation is a SUPPORT or a direct
ATTACK, the relation node’s outgoing edge
points to the last token in the source compo-
nent. Its incoming edge comes from the last
token of the target component. For example,
the fact that “it killed much marine life” (to-
kens 3-7) supports “tourism has threatened
nature” (tokens 9-12) is expressed by the in-
coming edge of relation node 7

′
from token 12,

and the outgoing edge of relation node 7
′

to
node 7.

• If the relation is an undercut, the relation
node’s outgoing edge points to the last token
in the undercutting component. The incom-
ing edge comes from another relation node,
rather than the last token in a component. For
example, the fact that tokens 14-15 undercuts
the relation between tokens 3-7 and tokens
9-12 is expressed by the incoming edge of re-
lation node 15

′
from relation node 7

′
, and the

outgoing edge of relation node 15
′

to node 15.

This design treats all relations as nodes, en-
abling undercuts to be modelled as relations be-
tween nodes while preserving their unique status.
In this way, existing neural dependency parsers are
able to process undercuts directly.

4.2 GNN-based Neural Dependency Parser

We modified the GNN-based dependency parser
proposed by Ji et al. (2019), which uses Graph At-
tention Networks (GANs) (Veličković et al., 2017)
to model higher-order dependencies. Compared to
the biaffine parser used by Ye and Teufel (2021),
we expect our GNN-based parser to capture global
argument structure and higher-order dependencies
more effectively.

The mathematical description of our GNN-based
parser is as follows:
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Figure 3: The structure of an example argument with a pseudo undercutting component (written as “An undercut”),
and its undercut-inclusive dependency representation. C = CLAIM, P = PREMISE, Sup = SUPPORT, N = non-
argumentative, App = append, Rel = relation.

rS = BERT(s1s2...sn) (1)

rROOT = FFNROOT(mean(rS), axis=0) (2)

R = [rS ; rROOT ], axis=0 (3)

He_h, H l_h, He_d, H l_d = FFN(R) (4)

He_h
r , H l_h

r , He_d
r , H l_d

r =
{
FFNrel_node(R) if undercut_inclusive
∅ if undercut_exclusive

(5)

He_h
G , H l_h

G , He_d
G , H l_d

G = GNNlayer=2(

([He_h;H l_h], axis=1), ([He_d;H l_d], axis=1),

([He_h
r ;H l_h

r ], axis=1), ([He_d
r ;H l_d

r ], axis=1)

)

(6)

Biaff(x, y) = x⊤Uy +W(x⊕ y) + b (7)

scedge = Biaffedge(He_h
G , He_d

G ) (8)

sclabel = Biaff label(H l_h
G , H l_d

G ) (9)

y
′edge
i,j = {scedgei,j ≥ 0} (10)

y
′label
i,j = argmax sclabeli,j (11)

We calculate four representations for all
tokens (He_h, H l_h, He_d, H l_d) in Equa-
tions 1-4. Relation nodes’ representations
(He_h

r , H l_h
r , He_d

r , H l_d
r ) are produced in Equa-

tion 5 when necessary.
In Equation 6, the eight representations above

are fed into a two-layer GNN encoder, forming a

fully connected graph. The head representation
and the dependant representation of each node are
concatenated to form a general representation. The
general representation of each node is then aggre-
gated and updated through the GNN layers. A de-
tailed explanation can be found in Ji et al. (2019).

The GNN-encoded representations are then used
for edge and label prediction, as described in Equa-
tions 7-11.

The final loss is calculated in the same way as
that in Ji et al. (2019).

5 Experiments

We conducted two experiments in order to test:

• Experiment 1 – the effectiveness of our
undercut-inclusive representation and GNN-
based parser on undercut recognition;

• Experiment 2 – the impact of our undercut-
inclusive representation on arguments without
undercuts.

Results from these experiments can also be used
to test the effectiveness of our GNN-based parser
on AM in general.

5.1 Datasets

In Experiment 1, we used our QuoraAM dataset,
processing each document as a data point to cap-
ture argument relations spanning paragraphs. This
is because relations in the QuoraAM dataset are
more likely to span across paragraphs, rather than
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operating within individual paragraphs, as para-
graph breaks are often not used consistently in this
dataset. We merged all instances of STAKE and
ANECDOTE in the QuoraAM dataset to form a new
category called STAKE+ANECDOTE, as discussed
in Section 3.3.

In Experiment 2, we used the Persuasive Essays
dataset, which is a benchmark constructed by Stab
and Gurevych (2017). This dataset is also used in
Ye and Teufel (2021). It comprises 402 persuasive
essays randomly selected from an online forum,
with 322 essays used for training and 80 essays
for testing. Considering that most relations hold
within paragraphs in this dataset, each paragraph
was processed as a separate argument, aligning
with Ye and Teufel (2021).

In both experiments, we performed the same
post-processing steps as Ye and Teufel (2021).

5.2 Systems

In Experiment 1, since no existing approaches
model undercuts computationally, we built a new
baseline model Biaff_exc_r, using the biaffine
parser in Ye and Teufel (2021) with their undercut-
exclusive representation. We simulate Peldszus and
Stede (2015b)’s approach by transforming all un-
dercuts into direct ATTACKs during training. Dur-
ing inference, we randomly convert all predicted
direct ATTACKs to undercuts in proportion to the ra-
tio of undercuts to overall ATTACKs in the original
QuoraAM dataset.

In Experiment 2, we selected two baseline
models: Biaff_exc (the BiPAM model in Ye and
Teufel (2021)), the biaffine parser in Ye and Teufel
(2021) with their undercut-exclusive representa-
tion; and GNN_exc, our GNN-based parser with
the undercut-exclusive representation in Ye and
Teufel (2021).

We implemented two models in the two exper-
iments to compare with the baselines: Biaff_inc,
the biaffine parser with our undercut-inclusive rep-
resentation; and GNN_inc, our GNN-based parser
with our undercut-inclusive representation.

6 Results and Discussion

Table 3 shows the F1 scores for component and
relation identification in Experiment 1. Table 4
shows the results for Experiment 2. We used per-
mutation tests from Ye and Teufel (2021) to test
the significance of our results.

In Experiment 1, for undercut recognition, both

Biaff_exc_r Biaff_inc GNN_inc

Component 62.4 62.4 66.2

Relation 35.2 41.7 45.8

SUPPORT 45.2 45.1 48.0

ATTACK 11.7 33.8 39.9

Direct ATTACK 14.0 38.4 40.3

Undercut 5.8 21.6 38.8

Table 3: F1 scores for models on the QuoraAM dataset
in Experiment 1.

Model Component Relation

Biaff_exc 72.9 45.9
Biaff_inc 72.8 45.9
GNN_exc 73.8 49.4
GNN_inc 73.8 49.4

Table 4: F1 scores for models on the Persuasive Essays
dataset in Experiment 2.

models significantly outperform the baseline (i.e.
Biaff_exc_r) by a large margin. Biaff_inc out-
performs the baseline by 15.8% (Biaff_inc =
21.6%, baseline = 5.8%, p < 0.01), which
suggests that our undercut-inclusive representa-
tion can significantly improve undercut recogni-
tion compared to the undercut-inclusive represen-
tation by Ye and Teufel (2021). The increase
is 33.0% for GNN_inc (GNN_inc = 38.8%,
baseline = 5.8%, p < 0.01). The performance on
undercut recognition of GNN_inc is comparable to
that on recognising direct ATTACKs (Undercut =
38.8%, DirectAttack = 40.3%). This suggests
that undercuts, despite their intricate nature, are
structures that can be effectively recognised using
our approach. It also shows that the GNN-based
parser is better than the biaffine parser at recog-
nising undercuts: GNN_inc significantly outper-
forms Biaff_inc by 17.2% (GNN_inc = 38.8%,
Biaff_inc = 21.6%, p < 0.01).

The results from two experiments suggest that
the GNN-based parser is more efficient than
the biaffine parser. In Experiment 1, GNN_inc
significantly outperforms Biaff_inc by 3.8% for
component identification (GNN_inc = 66.2%,
Biaff_inc = 62.4%, p < 0.01) and 4.1%
for relation identification (GNN_inc = 45.8%,
Biaff_inc = 41.7%, p < 0.01); in Experiment 2,
GNN_inc significantly outperforms Biaff_inc by
1.0% for component identification (GNN_inc =
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73.8%, Biaff_inc = 72.8%, p < 0.01) and 3.5%
for relation identification (GNN_inc = 49.4%,
Biaff_inc = 45.9%, p < 0.01).

Regarding the comparison between the undercut-
exclusive and the undercut-inclusive representa-
tions in Experiment 2, the results reveals no sig-
nificant difference in performance. Both repre-
sentations yield similar F1 scores for component
and relation identification, which implies that our
undercut-inclusive representation can also be used
for arguments containing no undercuts, without
performance compromise. This result suggests the
flexibility of our undercut-inclusive representation.

6.1 Recognising undercuts: biaffine parser vs.
GNN-based parser

To understand the disparity between the biaffine
parser and the GNN-based parser in recognising
undercuts, we compared the errors made by both
parsers, so that we can discern which parts of an
undercut are most error-prone for the GNN-based
parser.

Figure 4 shows the structure of an undercut with
its dependency representation. Nodes 1-3 are com-
ponents, with nodes 1’ and 2’ as their correspond-
ing relation nodes. An undercut has three elements:
an undercutting component (e.g. node 1 in Fig-
ure 4), its target relation (“node 2 ⇐ node 2’ ⇐
node 3”), and the link between them (“node 1’ ⇐
node 2”’). Errors can occur in recognising any
single element or a combination of them. We fo-
cused on three error types illustrated in Figure 4:
type I (errors in recognising the undercutting com-
ponent); type II (errors in recognising the target
relation); and type III (errors only in recognising
the link between them). Please note that type III
only include the cases where the link is incorrectly
predicted but the undercutting component and the
target relation are correctly predicted.

We performed an error analysis by counting the

Figure 4: The dependency representation of an undercut,
and three types of error in undercut recognition.
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Figure 5: Distribution of three types of error in undercut
recognition.

errors made by our models. Figure 5 shows the
error distribution among all undercuts (N=58) in
the test set. Due to the small sample size, we refrain
from testing the statistical significance of the results
in this figure, and instead interpret the numbers
only qualitatively. According to Figure 5, Biaff_inc
produces relatively 20% more type I errors and
26% more type II errors than GNN_inc. For type III
errors, the difference becomes much bigger, which
is 300%. This pattern suggests that the GNN-based
parser recognises all three elements of an undercut
more effectively, especially the link between the
undercutting component and the target relation.

Regarding the disparity in link recognition be-
tween the GNN-based parser and the biaffine parser,
we hypothesise that the GNN-parser’s advantage
in identifying higher-order dependencies is cru-
cial. Figure 6 illustrates the number of hops re-
quired for different relation representations: (a)
in the undercut-exclusive representation, a direct
ATTACK requires one hop; (b) in the undercut-
inclusive representation, a direct ATTACK requires
two hops; (c) in the undercut-inclusive representa-
tion, an undercut requires three hops.

A direct ATTACK is a 1-hop relation in the
undercut-exclusive representation, but becomes a
2-hop relation in the undercut-inclusive representa-
tion. Despite this, performance on the Persuasive
Essays dataset shows no significant loss, imply-

Figure 6: Illustration of the number of hops required for
different relation representations.
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ing neither parser suffers from the transition from
1-hop to 2-hop relations.

However, when comparing direct ATTACKs and
undercuts in the undercut-inclusive representation
(2-hop vs. 3-hop relations), both models show
weaker performance for undercuts. According to
Table 3, the F1 score of Biaff_inc for undercuts lags
by 16.8% compared to direct ATTACKs, while for
GNN_inc the difference is only 1.5%. This suggests
the GNN-based parser handles the increase from
two to three hops better than the biaffine parser, sup-
porting our earlier prediction that the GNN-based
parser excels at capturing higher-order dependen-
cies.

7 Conclusion

In this study, we addressed a critical gap in AM by
focusing on the computational recognition of under-
cuts, a complex yet essential structure in arguments.
Existing AM research has largely overlooked under-
cuts, primarily due to the lack of annotated datasets
and effective computational models.

To tackle this, we introduced a novel dataset
sourced from Quora. This dataset, is the largest
that contains undercuts, providing a valuable re-
source for future AM research. We also developed
the first computational approach capable of recog-
nising undercuts, featuring an undercut-inclusive
dependency representation and a GNN-based neu-
ral dependency parser.

Our experiments indicated that our undercut-
inclusive representation can be effectively used for
undercut recognition, and it does not compromise
performance on datasets without undercuts, show-
casing its flexibility and robustness. The results
also demonstrated that the GNN-based parser is ef-
fective in general AM as well as in recognising un-
dercuts. The GNN-based parser’s ability to capture
higher-order dependencies was evident, showing
a notable advantage in accurately identifying the
intricate structures of undercuts.
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