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Abstract

Multimodal Argument Mining (MAM) is a re-
cent area of research aiming to extend argument
analysis and improve discourse understanding
by incorporating multiple modalities. Initial
results confirm the importance of paralinguis-
tic cues in this field. However, the research
community still lacks a comprehensive plat-
form where results can be easily reproduced,
and methods and models can be stored, com-
pared, and tested against a variety of bench-
marks. To address these challenges, we propose
MAMKit, an open, publicly available, PyTorch
toolkit that consolidates datasets and models,
providing a standardized platform for experi-
mentation. MAMKit also includes some new
baselines, designed to stimulate research on
text and audio encoding and fusion for MAM
tasks. Our initial results with MAMKit indicate
that advancements in MAM require novel an-
notation processes to encompass auditory cues
effectively.

1 Introduction

Recent studies in argumentation analysis highlight
the importance of including paralinguistic features
in argumentative discourse analysis across various
domains, including advertisements, news coverage,
and legal analytics (Kišiček, 2014; Groarke and
Kišiček, 2018). Similar considerations have been
made for fake news detection (Ivanov et al., 2023).
For these reasons, Multimodal Argument Mining
(MAM) recently emerged as an extension of Argu-
ment Mining, aiming to validate these propositions
empirically and gain a more comprehensive under-
standing of argumentative discourse by integrating
multiple modalities. MAM is a growing research
field. The tasks addressed so far include argument
detection, argument component classification, rela-
tion classification, and fallacy classification (Lippi
and Torroni, 2016a; Mestre et al., 2021a; Mancini
et al., 2022; Mestre et al., 2023; Mancini et al.,

Figure 1: Overall architecture of MAMKit.

2024). However, despite these encouraging results,
and similarly to what happens in other domains (Li
et al., 2023; Helwe et al., 2022), the lack of stan-
dardized tools is hampering progress since MAM
researchers struggle to access and evaluate models
and datasets. For one thing, MAM resources are
often hosted across various sites and repositories,
each employing its own distinct methods for load-
ing and reconstructing datasets and models. As
a consequence, a fair model comparison may be
problematic, which in turn limits the experimental
evaluation of new models.

We then introduce a PyTorch toolkit tailored for
MAM. Our toolkit, MAMKit, currently includes 4
datasets and 6 models, providing researchers with
a standardized platform for experimentation and
evaluation. MAMKit offers a simple interface to
load, reconstruct and process existing datasets, and
contribute new resources. Moreover, all models
within MAMKit are implemented uniformly, facili-
tating seamless integration and comparison across
tasks and datasets. To ensure the reproducibility
and reliability of our models, all the resources and
models in MAMKit have been validated against the
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original research papers, offering a shared interface
for benchmarking and model comparison. Besides
literature models, MAMKit explores and integrates
advanced audio encoding and fusion methods. In-
deed, previous research in MAM has largely over-
looked advanced audio encoding and fusion strate-
gies (Mancini et al., 2024), thus MAMKit intends
to present an opportunity to shed light on the sig-
nificance of audio and the synergistic interaction
between both modalities in argument mining tasks.

2 Related Work

We overview the MAM literature and the landscape
of toolkits built to address relevant AI tasks in dif-
ferent application domains.

2.1 Multimodal Argument Mining

Work in MAM started relatively recently, inspired
by studies on the connections between arguments
and emotions (Benlamine et al., 2015), with the
development of a classifier for claim detection
from speech in the domain of political debates,
and a small dataset built for the occasion (Lippi
and Torroni, 2016a). The interest in political de-
bates motivated further research and resource de-
velopment (Lawrence and Reed, 2019; Mancini
et al., 2022; Mestre et al., 2023; Mancini et al.,
2024). Notably, Mancini et al. (2022) and Mestre
et al. (2023) introduced two distinct expansions of
USED (Haddadan et al., 2019), the US presidential
election corpus. Recently, Mancini et al. (2024)
proposed an extension of USED-fallacy, releasing
the first corpus for multimodal fallacy classifica-
tion. These resources constitute the most extensive
multimodal corpora for AM to date. Another do-
main of interest is fake news detection. There,
Ivanov et al. (2023) observed enhanced classifica-
tion performance across various tasks, such as the
identification of check-worthy claims, through the
adoption of a multimodal formulation.

The MAM systems adopted in literature so far
uncovered the importance of tackling argumenta-
tive tasks from a multimodal standpoint, but they
did not introduce significant architectural innova-
tions. On the contrary, they mostly followed the
standard practice of merging unimodal models us-
ing fusion techniques (Toto et al., 2021): see for
instance (Mancini et al., 2022; Mestre et al., 2023;
Mancini et al., 2024). However, recent advance-
ments in Multimodal Deep Learning (MMDL) of-
fer an opportunity for exploring new architectural

solutions. Some of the new models introduced in
MAMKit extend previous work (Mancini et al.,
2022) with new MAM models based on state-of-
the-art models for audio encoding and multimodal
fusion techniques (Boulahia et al., 2021). These
include Wav2Vec 2.0 (Baevski et al., 2020), Hu-
BERT (Hsu et al., 2021) and WavLM (Chen et al.,
2022) for audio encoding, as well as early, cross-
modal (Tsai et al., 2019) and late fusion.

2.2 Toolkits

In recent years, there has been a growing emphasis
on streamlining training, evaluation, and bench-
marking processes across diverse domains of artifi-
cial intelligence (AI). Accordingly, new resources
became available to address specific tasks and ap-
plications. Regarding benchmarking, LAVIS (Li
et al., 2023), MMF (Singh et al., 2020), X-modaler
(Li et al., 2021) and UniLM (uni, 2020) provide
user-friendly interfaces for accessing datasets and
for training/evaluating language-vision models.

Furthermore, several tools have been proposed
for multimodalities. Notable examples are Torch-
Multimodal (tor, 2022) for accessing several state-
of-the-art multimodal models, ViLMedic (Del-
brouck et al., 2022) for vision and language in
medical AI, pyannote.metrics (Bredin, 2017) and
pyannote.audio (Bredin, 2023) for speaker diariza-
tion, and Muskits (Shi et al., 2022) for end-to-end
music processing.

Moreover, several specialized NLP libraries and
tools focus on specific tasks. They include Logi-
Torch (Helwe et al., 2022) for logical reasoning in
natural language, TextBox 2.0 (Tang et al., 2022)
for text generation using pre-trained language mod-
els, mahaNLP (Magdum et al., 2023) for Marathi
NLP, DeepPavlov (Burtsev et al., 2018) for dia-
logue systems, TextAttack (Morris et al., 2020) and
OpenAttack (Zeng et al., 2021) for adversarial at-
tacks in NLP, LambdaKG (Xie et al., 2023) for
knowledge graph embeddings, nerblackbox (Stol-
lenwerk, 2023) for named entity recognition, News-
RecLib (Iana et al., 2023) for news recommenda-
tion, and NeuralQA (Dibia, 2020) for question an-
swering cater to specific NLP tasks.

To the best of our knowledge, there are no such
resources to support argument mining/MAM re-
search, so MAMKit is the first toolkit in this area.
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3 MAMKit

MAMKit is an open-source, publicly available1

PyTorch toolkit designed to access and develop
datasets, models, and benchmarks for MAM. It
provides a flexible interface for accessing and inte-
grating datasets, models, and preprocessing strate-
gies through composition or custom definition.
MAMKit is designed to be extendible, ensure repli-
cability, and provide a shared interface as a com-
mon foundation for experimentation in the field.
At the time of writing, MAMKit offers 4 datasets
and 6 distinct model architectures, along with au-
dio and text processing capabilities, organized in 5
main components (see Figure 1).

3.1 Description of toolkit components
Datasets The mamkit.data package covers
dataset creation (data.datasets) and preprocess-
ing (data.preprocessing and data.collators).
The data.datasets module provides the Loader
interface, a general-purpose wrapper for datasets,
covering data downloading, task-specific data pars-
ing, and data interfacing. Regarding the latter func-
tionality, the module includes ad-hoc implementa-
tions for unimodal (UnimodalDataset) and multi-
modal (MultimodalDataset) data based on the Py-
Torch Dataset interface. The data.processing
module provides the Processor interface for
defining custom data processing and implements
unimodal (UnimodalProcessor) and multimodal
(MultimodalProcessor) processing steps. For in-
stance, the AudioTransformer class implements
transformer-based audio processing. Similarly to
data.processing, the data.collators module
is designed to address input processing at batch-
level, in compliance with PyTorch DataLoader
APIs. The module includes implementations for
unimodal (UnimodalCollator) and multimodal
(MultimodalCollator) input batches.

Models The mamkit.models package holds
definitions for the supported models. It
provides models.audio, models.text and
models.text_audio modules. Each model
implements the torch.nn.Module interface that
can be extended to define the models for each input
configuration.

Modules The mamkit.modules package handles
the definition of the shared model layers such as
transformer_modules.

1https://github.com/lt-nlp-lab-unibo/mamkit

Utility The mamkit.utility package contains
classes and methods used by other modules. For ex-
ample, the utility.data module contains meth-
ods for downloading data from web storages or
GitHub repositories, while utility.model man-
ages the overall training and evaluation lifecycles.
Currently, the MAMKitLightningModel class and
the to_lightning_model() method are used to
wrap models as PyTorch Lightning (Falcon and The
PyTorch Lightning team, 2019) models to lever-
age its functionalities for training and evaluation.
Incorporating PyTorch Lightning in our toolkit
streamlines training and evaluation with a simpli-
fied loop, standardized interface, reproducibility,
performance optimizations, accelerator integration,
logging capabilities, and extensive community sup-
port.

Configs The mamkit.configs package serves as
a streamlined interface for accessing model config-
urations across three modalities: audio, text, and
text-audio. At its core, the config.base module
establishes two fundamental classes: ConfigKey,
defining configuration keys, and BaseConfig, pro-
viding a base configuration structure. This architec-
ture simplifies benchmarking efforts by enabling
users to instantiate models via designated configu-
ration keys. Consequently, leveraging models with
exact parameter setups for benchmarking or further
experimentation becomes straightforward, enhanc-
ing research reproducibility and efficiency within
the toolkit.

3.2 Example Usage

MAMKit’s design facilitates access to existing
datasets and models and supports future develop-
ment. In this section, we present several examples
to illustrate common use cases.

3.2.1 Data Loading
An important feature of MAMKit is its unified
and straightforward interface for data access. Sev-
eral MAM datasets are included in MAMKit.
Adding a new dataset to MAMKit requires defin-
ing a new subclass of Loader, extending it with
the specific information needed to access and re-
construct the dataset. In the example that fol-
lows, a dataset is loaded using the MMUSED class
from mamkit.data.datasets, which extends the
Loader interface and implements specific func-
tionalities for data loading and retrieval. Users
can specify task and input mode (text-only,
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audio-only, or text-audio) when loading the
data, with options to use default splits or load splits
from previous works. The example uses splits
from Mancini et al. (2022).

from mamkit.data.datasets import UKDebates,
InputMode↪→

loader = UKDebates(
task_name='asd',
input_mode=InputMode.TEXT_ONLY,
base_data_path=base_data_path)

split_info =
loader.get_splits('mancini-et-al-2022')↪→

The get_splits method of the loader
returns data splits in the form of a
data.datasets.SplitInfo. The latter wraps
split-specific data, each implementing Pytorch’s
Dataset interface and compliant to the specified
input modality (i.e., text-only).

The Loader interface also allows users to inte-
grate methods defining custom splits as follows:

from mamkit.data.datasets import SplitInfo

def custom_splits(self) -> List[SplitInfo]:
train_df = self.data.iloc[:50]
val_df = self.data.iloc[50:100]
test_df = self.data.iloc[100:]
fold_info =

self.build_info_from_splits(train_df=...)↪→
return [fold_info]

loader.add_splits(method=custom_splits,
key='custom')

split_info = loader.get_splits('custom')

3.2.2 Modelling
MAMKit offers a simple method for defining cus-
tom models and leveraging models from the lit-
erature. Utilizing the same interface for both
tasks aims to simplify access to existing mod-
els and establish new ones with a coherent struc-
ture. This will hopefully facilitate the spread
of established models and encourage the devel-
opment of new ones by maintaining consistency
throughout the process. The example below il-
lustrates that defining a custom model is straight-
forward. It entails creating the model within
the models package, specifically by extending
either the AudioOnlyModel, TextOnlyModel, or
TextAudioModel classes in the models.audio,
models.text, or models.text_audio modules,
respectively, depending on the input modality han-
dled by the model.

from mamkit.models.text import Transformer

model = Transformer(
model_card='bert-base-uncased',
dropout_rate=0.1, ...)

The following example demonstrates how to in-
stantiate a model with a configuration found in the
literature. This configuration is identified by a key,
ConfigKey, containing all the defining information.
The key is used to fetch the precise configuration
of the model from the configs package. Subse-
quently, the model is retrieved from the models
package and configured with the specific parame-
ters outlined in the configuration.

from mamkit.configs.base import ConfigKey
from mamkit.configs.text import TransformerConfig
from mamkit.data.datasets import InputMode

config_key = ConfigKey(
dataset='mmused',
task_name='asd',
input_mode=InputMode.TEXT_ONLY,
tags={'mancini-et-al-2022'})

config = TransformerConfig.from_config(
key=config_key)

model = Transformer(
model_card=config.model_card,
dropout_rate=config.dropout_rate
...)

In both the described use cases, the model is then
encapsulated into a Pytorch Lightning model, and
training and evaluation are conducted by leveraging
the methods provided by this wrapper.

from mamkit.utility.model import
to_lighting_model↪→

import lightning

model = to_lighting_model(model=model,
num_classes=config.num_classes,
loss_function=...,
optimizer_class=...)

trainer = lightning.Trainer(max_epochs=100,
accelerator='gpu',
...)

trainer.fit(model,
train_dataloaders=train_dataloader,
val_dataloaders=val_dataloader)

3.2.3 Benchmarking
The mamkit.configs package simplifies reproduc-
ing literature results in a structured manner. Upon
loading the dataset, experiment-specific configu-
rations can be easily retrieved via a configuration
key. Specifically, unlike the examples reported
in Section 3.2.2, where configurations refer just
to a model implementation, in the below example,
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they encompass both data processing and model
parameterization based on previous literature work.

This enables instantiating a processor using the
same features processor employed in the experi-
ment. In the example below, we adopt a configu-
ration akin to (Mancini et al., 2022), employing a
BiLSTM model with audio encoded with MFCCs
features. Hence, we define a MFCCExtractor pro-
cessor using configuration parameters. Data splits
are loaded using the experiment reference key, mir-
roring what was shown in Section 3.2.1.

from mamkit.configs.audio import
BiLSTMMFCCsConfig↪→

from mamkit.configs.base import ConfigKey
from mamkit.data.datasets import UKDebates,

InputMode↪→
from mamkit.data.processing import MFCCExtractor,

UnimodalProcessor↪→
from mamkit.models.audio import BiLSTM

loader = UKDebates(task_name='asd',
input_mode=InputMode.AUDIO_ONLY)

config = BiLSTMMFCCsConfig.from_config(
key=ConfigKey(dataset='ukdebates',
input_mode=InputMode.AUDIO_ONLY,
task_name='asd',
tags='mancini-et-al-2022'))

for split_info in loader.get_splits(
key='mancini-et-al-2022'):

processor =
UnimodalProcessor(

features_processor=MFCCExtractor(
mfccs=config.mfccs, ...))

split_info.train =
processor(split_info.train)↪→

...
model = BiLSTM(embedding_dim=

config.embedding_dim, ...)

3.3 Models
MAMKit comes with 3 models from the MAM lit-
erature and 3 original models we contribute based
on state-of-the-art unimodal audio encoders and
fusion strategies. All models comply with the fol-
lowing architecture: text and audio modules for
encoding individual modalities, a fusion layer to
merge them, and a final classification head tailored
to the downstream task of interest. Table 1 provides
a summary. Illustrations of our original architec-
tures are shown in Appendix A. We refer to the
fusion strategies as follows:

• Concatenation: combines features (early fu-
sion) or embeddings from single modality ar-
chitectures (late fusion) from all modalities
into a single vector by concatenating them;

• Average: merges features (early fusion) or
embeddings from single modality architec-
tures (late fusion) by simply averaging infor-
mation from each modality;

• Crossmodal Attention: attends to interac-
tions between multimodal sequences across
distinct time steps and facilitates the transfer
of streams from one modality to another.

BiLSTM (Mancini et al., 2022) The text module
comprises a pre-trained GloVe (Pennington et al.,
2014) embedding layer and a stack of BiLSTM
layers. Similarly, the audio module is a stack of
BiLSTM layers. The fusion strategy is vector con-
catenation. The classification head is a Multi-Layer
Perceptron (MLP).

MM-BERT, MM-RoBERTa (Mancini et al.,
2024) The text module comprises a trainable text
embedding model and a dropout layer on top. The
audio module comprises a pre-trained audio em-
bedding model, a BiLSTM layer, and a dropout
layer. The output of the text and audio modules is
concatenated and fed to the classification module,
defined as a stack of dense layers.

CSA (Ours) A multimodal transformer inspired
by Yu et al. (2023), whereby text and audio embed-
dings are concatenated along the time dimension,
and a self-attention layer is employed to obtain a
cross-modal text and audio embedding. This em-
bedding is averaged over time and fed to a classi-
fication head. The main issue of this architecture
is the significant difference between the lengths of
the audio and text sequences. Even with downscal-
ing, the audio embeddings tend to be significantly
longer (often by a factor of ∼10). Consequently,
audio features dominate the early stages of train-
ing, leading to underwhelming performance. To
address this issue, we develop a novel transformer
variant in which we reweight the attention scores
of text and audio sequences for each layer. Let
m be the length of the text sequence and n the
length of the audio sequence, we rescale the atten-
tion scores of the text sequence by m+n

2m and of
the audio sequence by m+n

2n . This reweighting en-
sures that text and audio sequences have the same
total weight. Figure 2 in Appendix A summarizes
our Concatenation-based early fusion with Self-
Attention (CSA) transformer model.

Ensemble (Ours) This architecture consists of
two independent unimodal models for text and
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Model Text Encoding Audio Encoding Fusion

BiLSTM (Mancini et al., 2022) GloVe + BiLSTM (Wav2Vec2 ∨ MFCCs) + BiLSTM Concat-Late
MM-BERT (Mancini et al., 2024) BERT (Wav2Vec2 ∨ HuBERT ∨ WavLM) + BiLSTM Concat-Late
MM-RoBERTa (Mancini et al., 2024) RoBERTa (Wav2Vec2 ∨ HuBERT ∨ WavLM) + BiLSTM Concat-Late
CSA (Ours) BERT (Wav2Vec2 ∨ HuBERT ∨ WavLM) + Transformer Concat-Early
Ensemble (Ours) BERT (Wav2Vec2 ∨ HuBERT ∨ WavLM) + Transformer Avg-Late
Mul-TA (Ours) BERT (Wav2Vec2 ∨ HuBERT ∨ WavLM) + Transformer Cross

Table 1: Multimodal models available in MAMKit. For each model, we summarize its text and audio encoding
modules and its fusion strategy. Concat: Concatenation; Avg: Average; Cross: Crossmodal Attention.

audio, respectively. A weighted average of the
probability vectors of the unimodal classification
heads constitutes the final prediction. The text-only
model involves averaging BERT embeddings along
the time dimension and feeding them to a two-layer
classification head. The audio-only model follows
the same architecture as the text-only model, al-
though with a custom transformer which is trained
along with the head. The main challenge is deter-
mining how to merge the outputs of the two uni-
modal classification heads. We compute a weighted
average with weight we defined as follows:

we = l + (u− l) · tanhw + 1

2
(1)

where w is a learnable parameter in the [l, u]
range. Bounding ensures that the ensemble is
forced to exploit the output of both classification
heads, preventing a dead neuron situation where
the ensemble focuses on a single modality only.
We set l = 0.3 and u = 0.7 for learning stability.
Figure 3 in Appendix A summarizes Ensemble.

Mul-TA (Ours) We propose a variant of the
MulT architecture (Tsai et al., 2019): a trans-
former model for carrying out multimodal tasks
without the need for modality alignment. The core
module of MulT is the directional pairwise cross-
modal attention layer, which captures interdepen-
dencies between multimodal sequences and seam-
lessly adjusts information flow between modalities.
In practice, the cross-modal attention layer uses
one modality A as the query vector and another
modality B as key and value vectors. The layer
is applied for each pair of input modalities. Pairs
with the same B modality are combined into a uni-
fied sequence using a self-attention layer. Lastly,
each unified sequence is averaged over the time
dimension and concatenated. The resulting embed-
ding vector is fed to a classification head. While
MulT was developed for three modalities, totaling
six (A,B) pairs, our variant uses only two, total-
ing two (A,B) pairs. Additionally, we replace

the self-attention unification step with an average.
Figure 4 in Appendix A summarizes Mul-TA, our
MulT architecture variant, tailored to text and audio
modality.

3.4 Data

We now provide an overview of MAM datasets
currently available in MAMKit.

UKDebates (Lippi and Torroni, 2016a) The
first MAM dataset. It contains transcriptions and
audio sequences of three candidates for UK Prime
Ministerial elections of 2015 in a two-hour debate
aired by Sky News. The candidates are David
Cameron, Nick Clegg, and Ed Miliband. The
dataset contains 386 sentences and corresponding
audio samples. Two domain experts annotated sen-
tences as containing or not containing a claim. The
inter-annotator agreement measured via Cohen’s
kappa (Carletta, 1996) is 0.53 (fair to good).

M-Arg (Mestre et al., 2021b) A multimodal
dataset built around the 2020 US Presidential elec-
tions. The dataset contains transcriptions and audio
sequences of four candidates and a debate mod-
erator concerning 18 topics. The authors design
a controlled crowdsourcing data annotation pro-
cess whereby each crowd worker labels sentence
pairs as describing support, attack, or no relation.
In total, the dataset contains 4,104 sentence pairs
with corresponding aligned audio samples. A high-
quality subset of the M-Arg, M-Argγ , containing
2,443 sentence pairs with high agreement confi-
dence γ ≥ 85% is commonly considered for model
evaluation.

MM-USED (Mancini et al., 2022) A multi-
modal extension of the dataset introduced in Had-
dadan et al. (2019). It contains presidential candi-
dates’ debate transcripts and corresponding audio
recordings aired from 1960 to 2016. In Haddadan
et al. (2019), annotators labeled text sentences as
containing a claim, a premise, or neither of them.
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Later Mancini et al. (2022) enriched the dataset
with the audio modality and aligned text sentences
to audio recording snippets. This dataset consists
of 26,781 labeled sentences and corresponding au-
dio samples covering 39 debates and 26 different
speakers, making it the largest MAM resource to
date.

MM-USED-fallacy (Mancini et al., 2024) A
multimodal extension of the dataset introduced
by Goffredo et al. (2022) about argumentative falla-
cies. In Goffredo et al. (2022), the authors consider
the dataset curated by Haddadan et al. (2019), carry
out an annotation process for labeling text spans
as argumentative fallacies, and introduce a taxon-
omy for categorizing them. Mancini et al. (2024)
enrich the existing dataset with the audio modality
by first converting annotations to the sentence level
and then aligning them to audio recording snip-
pets. The dataset contains 1,891 sentences labeled
as argumentative fallacies belonging to six distinct
categories.

3.5 Tasks
The tasks currently supported by MAMKit are de-
rived from literature (Lippi and Torroni, 2016b;
Lawrence and Reed, 2019)

Argumentative Sentence Detection Given an in-
put sentence x, the task of argumentative sentence
detection (ASD) consists of determining whether
x contains an argument (arg) or not (not-arg). We
extend this definition to include component detec-
tion. For instance, the task of claim detection (Levy
et al., 2014; Lippi and Torroni, 2015) consists of
classifying x as containing a claim (claim) or not
(not-claim).

Argumentative Component Classification
Given an argumentative sentence x, the task of
argumentative component classification (ACC)
consists of classifying x as containing one or
more argumentative components according to
a reference argument model. Following the
claim-premise argument model (Walton, 2009),
ACC involves identifying claims (claim) and
premises (premise) in x.

Argumentative Relation Classification Given a
pair of argumentative sentences xi and xj , the task
of argumentative relation classification (ARC) con-
sists of classifying the pair (xi, xj) as yielding an
argumentative relation xi → xj of support, attack,
or neither if no argumentative relation exists.

Argumentative Fallacy Classification Given an
argumentative sentence x identified as a fallacy, the
task of argumentative fallacy classification (AFC)
consists of categorizing x against a given taxonomy
of fallacies.

4 Experiments

We employ MAMKit to provide a robust and re-
producible overview of a significant share of the
work published on MAM so far. In particular, we
evaluate MAMKit supported models on all avail-
able tasks and datasets. We build our evaluation as
follows. Regarding model evaluation, we compute
macro F1-score except on UKDebates for which we
report binary F1-score (Lippi and Torroni, 2016a).
We carry out a repeated five-fold cross-validation
routine for UKDebates and M-Argγ using the same
folds defined in Mancini et al. (2022). Similarly,
we perform a repeated train and test routine for
MM-USED on official data splits (Haddadan et al.,
2019). We set the number of repetitions to three in
both cases. Lastly, we perform a leave-one-out rou-
tine for MM-USED-fallacy Mancini et al. (2024).
See Appendix B for additional details.

5 Results

Table 2 reports the best classification performance
for each model (See Appendix C for all results).

UKDebates We observe no notable benefits in in-
tegrating the audio modality in all models, compa-
rable to the results reported in Mancini et al. (2022).
Specifically, multimodal models show equal or
lesser classification performance than their text-
only modules.

M-Argγ Our results significantly differ from
those reported in Mancini et al. (2022). In par-
ticular, Ensemble and Mul-TA, are noticeably un-
derperforming compared to their text-only coun-
terparts. The only exceptions are MM-BERT and
CSA with slightly higher performance. Addition-
ally, audio-only models fail to learn the task.

MM-USED We observe a small performance gap
between audio-only and text-only models, suggest-
ing that the audio modality may be a valuable indi-
cator in both ASD and ACC tasks. However, multi-
modal models achieve comparable performance to
their text-only counterparts, with minor improve-
ments only for MM-BERT (+1.7), CSA (+0.9), En-
semble (+0.2) and Mul-TA (+1.3) in ASD, CSA
(+1.4), and Mul-TA (+1.8) in ACC.
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Model UKDebates
(ASD)

M-Argγ

(ARC)
MM-USED

(ASD)
MM-USED

(ACC)
MM-USED-fallacy

(AFC)

Text Only

BiLSTM (T1) .552±.047 .120±.006 .811±.004 .663±.002 .525±.113

BERT (T2) .654±.003 .132±.004 .824±.009 .679±.004 .594±.122

RoBERTa (T3) .692±.005 .172±.015 .839±.010 .680±.001 .615±.097

Audio Only

BiLSTM (A1) .393±.040 .024±.012 .774±.008 .596±.005 .657±.000

Transformer (A2) .455±.004 .000±.000 .771±.019 .526±.004 .629±.162

Text Audio

BiLSTM (T1 +A1) .533±.009 .084±.016 .815±.006 .667±.000 .572±.099

MM-BERT (T2 +A1) .662±.004 .160±.015 .841±.005 .680±.004 .599±.128

MM-RoBERTa (T3 +A1) .687±.010 .178±.012 .837±.009 .678±.003 .624±.074

CSA (T2 +A2) .663±.014 .160±.015 .833±.011 .693±.001 .582±.114

Ensemble (T2 +A2) .586±.015 .011±.011 .826±.011 .681±.002 .612±.134

Mul-TA (T2 +A2) .616±.019 .098±.031 .837±.006 .697±.003 .605±.110

Table 2: Test classification performance on MAM datasets. For each multimodal model, we report their constituting
text module (Ti) and audio module (Aj).

MM-USED-fallacy In contrast to other tasks and
datasets, in MM-USED-fallacy, audio-only models
are the best-performing ones. The performance of
text-audio models is slightly better than that of the
corresponding text-only models but below that of
audio-only models. Alternative fusion strategies
yielded only a moderate, non-systematic improve-
ment.

6 Conclusion

MAM is a new, exciting and largely unexplored
research domain with interesting applications. We
believe that, at present, an open and collabora-
tive standardized platform for experimentation and
benchmarking has the potential to build a stronger
community around it, that will be able to focus on
the innovations needed to push the envelope. To
this end, we developed an open-source PyTorch
toolkit named MAMKit. MAMKit offers several
datasets, state-of-the-art models, and processing
strategies. This paper introduces the platform and
discusses some initial empirical results we obtained
with it.

Remarkably, the advanced audio encoding and
fusion techniques we introduced do not yield the
performance improvement we hoped for. This re-
sult might be ascribed to weaknesses in the archi-
tectures, and motivate further research on novel
encoding and fusion methods. However, the nega-
tive result might also be attributed to the fact that, in
the available datasets, annotations were first made
on the transcripts, and only later extended to the
audio modality. As noted by Mancini et al. (2024),

such a procedure does not exploit acoustic insights,
hence it should be expected that the potential of
MAM architectures may not be fully leveraged, un-
til datasets become available, that natively include
auditory cues in the annotation process. This issue
affects all MAM datasets in MAMKit, therefore
a revision of the existing annotations would be re-
quired to effectively include auditory cues.

In conclusion, further research is needed to un-
derstand audio characteristics better and devise
methods to integrate them with textual annotations.
That will necessitate collaboration across fields like
argumentation and signal processing. MAMKit
could be a valuable resource for fostering such a
collaboration. In a broader perspective, MAMKit
holds potential for further development and appli-
cation, including its extension to additional modal-
ities like images and video (Birdsell and Groarke,
1996). For instance, we plan to incorporate the Im-
ageArg dataset (Liu et al., 2022), which has been
developed to address argument stance classifica-
tion and image persuasiveness classification tasks.
The ImageArg dataset was notably extended during
ImageArg-2023 (Liu et al., 2023), the first shared
task in MAM, providing additional annotated sam-
ples. This dataset has been leveraged in various
studies (Sharma et al., 2023; Zong et al., 2023)
proposing diverse strategies for vision-language
MAM, thereby presenting an opportunity for inte-
grating new models within MAMKit. Additionally,
we plan to include in MAMKit the MMClaims
dataset (Cheema et al., 2022), designed for multi-
modal claim detection in social media.
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Furthermore, we aim to improve our understand-
ing of multimodal discourse analysis and its prac-
tical implications through further experimentation
with new datasets and by exploring transfer learn-
ing techniques to enhance model generalization
across diverse domains.

7 Limitations

PyTorch Dependency. Currently, the toolkit
only supports PyTorch. While PyTorch is a widely
used deep learning framework, this limitation may
pose challenges for researchers who prefer or re-
quire other frameworks, such as TensorFlow, as
well as the integration of previous work built on
these frameworks.

Incomplete Dataset and Model Integration.
Not all existing datasets and models for MAM re-
search are included. For instance, the VivesDebate-
Speech dataset (Ruiz-Dolz and Iranzo-Sánchez,
2023), the ImageArg dataset (Liu et al., 2022), the
MMClaims dataset (Cheema et al., 2022) and mod-
els like M-ArgNet (Mestre et al., 2021b) are cur-
rently not implemented. We plan to integrate these
and other resources in the future, and we encourage
MAM researchers to include their resources on our
platform.

Scope Limitation. At present, the toolkit focuses
solely on text and audio modalities. We recognize
the importance of expanding to other modalities,
such as visual AM. Resources for these additional
modalities will be integrated in future work.
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Appendix

A Model Architectures

We provide a comprehensive visual representation
of the novel model architectures presented in this
work. Figures 2, 3, and 4 show the CSA, Ensemble,
and Mul-TA models, respectively.

Figure 2: The CSA model architecture.

Figure 3: The Ensemble model architecture.

B Experimental Setup Details

Model Hyper-parameters Table 3 reports the
main hyper-parameters used in our experiments.
All model configurations can be inspected in the
mamkit.configs package.

Training Models are trained with cross-entropy
loss as standard practice for classification tasks. We
additionally apply class weighting to address class
imbalance in all datasets except for MM-USED
ACC, where weighting is not needed. We monitor

Figure 4: The Mul-TA model architecture.

General

optimizer AdamW
batch_size 4
gradient accumulation steps 3
effective batch_size 12
max_epochs 20
early_stopping patience 5
early_stopping monitor val_loss
cross-validation seeds 42, 2024, 666
leave-one-out seeds 42
train and test seeds 42, 2024, 666

Table 3: General model hyper-parameters in our experi-
ments.

validation loss during training and load the best
model checkpoint based on this metric for evalua-
tion on validation and test splits.

Hardware We employ an NVIDIA 2080Ti GPU
with 12 GB VRAM and an NVIDIA 3060Ti GPU
with 8 GB VRAM to run our experiments. All ex-
periments regarding a dataset are run on the same
device for reproducibility and fair comparison. Fur-
thermore, individual experiments were run on a
single device.

C Additional Results

Table 4 reports results for all model combinations
evaluated.
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Model UKDebates
(ASD)

M-Argγ

(ARC)
MM-USED

(ASD)
MM-USED

(ACC)
MMUSED-fallacy

(AFC)

Text Only

BiLSTM .552±.047 .120±.006 .811±.004 .663±.002 .525±.113

BERT .654±.003 .132±.004 .824±.009 .679±.004 .594±.122

RoBERTa .692±.005 .172±.015 .839±.010 .680±.001 .615±.097

Audio Only

BiLSTM w/ MFCCs .302±.047 .003±.005 .722±.027 .527±.004 .657±.000

BiLSTM w/ Wav2Vec2 .376±.023 .000±.000 .774±.008 .596±.005 .655±.117

BiLSTM w/ HuBERT .364±.012 .024±.012 .745±.009 .566±.007 .638±.000

BiLSTM w/ WavLM .393±.040 .010±.010 .772±.015 .583±.002 .652±.000

Transformer w/ Wav2Vec2 .440±.030 .000±.000 .771±.019 .514±.000 .567±.225

Transformer w/ HuBERT .425±.033 .000±.000 .765±.016 .524±.004 .629±.162

Transformer w/ WavLM .455±.004 .000±.000 .768±.005 .526±.004 .594±.217

Text Audio

BiLSTM w/ MFCCs .528±.039 .065±.014 .807±.010 .662±.006 .572±.099

BiLSTM w/ Wav2Vec2 .533±.009 .079±.014 .808±.012 .665±.004 .505±.168

BiLSTM w/ HuBERT .409±.017 .055±.020 .807±.013 .653±.003 .456±.131

BiLSTM w/ WavLM .501±.022 .084±.016 .815±.006 .667±.000 .526±.174

MM-BERT w/ Wav2Vec2 662±.004 .153±.017 841±.005 .677±.003 .561±.114

MM-BERT w/ HuBERT .626±.003 .160±.015 .840±.006 .677±.004 .599±.128

MM-BERT w/ WavLM .654±.019 .152±.008 .836±.005 .680±.004 .580±.103

MM-RoBERTa w/ Wav2Vec2 .674±.009 .178±.012 .833±.006 .678±.003 .608±.126

MM-RoBERTa w/ HuBERT .624±.015 .147±.004 .837±.003 .677±.008 .576±.097

MM-RoBERTa w/ WavLM .687±.010 .165±.018 .837±.009 678±.003 .624±.074

CSA w/ Wav2Vec2 .663±.014 .137±.027 .822±.002 .693±.001 .555±.118

CSA w/ HuBERT .632±.018 .160±.015 .813±.004 .693±.001 .582±.114

CSA w/ WavLM .655±.029 .155±.030 .833±.011 .697±.001 .535±.102

Ensemble w/ Wav2Vec2 .586±.015 .011±.011 .825±.004 .681±.002 .612±.134

Ensemble w/ HuBERT .531±.039 .010±.004 .822±.007 .681±.003 .611±.107

Ensemble w/ WavLM .576±.006 .002±.003 .826±.011 .680±.003 .605±.136

Mul-TA w/ Wav2Vec2 .592±.034 .098±.031 .826±.011 .695±.001 .605±.110

Mul-TA w/ HuBERT .616±.019 .079±.053 .829±.011 .697±.003 .594±.091

Mul-TA w/ WavLM .602±.017 .063±.015 .837±.006 .690±.003 .605±.082

Table 4: Test classification performance on MAM datasets. In bold, the best-performing model for each configura-
tion.
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