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Introduction

Argument Mining (“argumentation mining”) is an emerging research area within computational lingui-
stics. It initially focused on automatically identifying and classifying argument elements across various
text genres. In the recent years, the field has expanded to explore argument quality and synthesis on mul-
tiple levels. This growth has led to the development of practical applications such as argument-focused
search and debating technologies, exemplified by IBM Project Debater. The increasing interest in com-
putational argumentation has resulted in the organization of several tutorials at major NLP conferences,
providing a wealth of knowledge and insights to the community.

While basic tasks such as argument element segmentation and classification are maturing, many current
and emerging tasks in diverse genres and topics still need to be solved amidst global polarization and the
emergence of large language models.

The ArgMining community is constantly growing, as demonstrated by the increasing number of sub-
missions on argument mining being accepted at top-level international conferences in NLP and AI. This
year’s 11th edition of the workshop allowed the submission of long, short, and demo papers for the main
workshop track. Also, ArgMining2024 hosted two shared tasks as part of the workshop: The Perspecti-
ve Argument Retrieval Shared Task and DialAM-2024: The First Shared Task on Dialogical Argument
Mining. We had 28 valid paper submissions; 16 were for the main workshop (13 long, 3 short), and 12
were for the two shared tasks (5 short and 1 overview long paper for each). The submissions came from
institutions in 11 countries. For the main workshop, we accepted 6 long papers and 1 short paper (44%
acceptance rate compared to 41% for last year’s ArgMining 2023). All accepted papers are included in
the proceedings.

The one-day workshop had a hybrid format. Yufang Hou from IBM Research Europe presented a key-
note on “Reconstructing Fallacies in Misrepresented Science and Argument Mining in the Wild". Also,
following the steps of the previous ArgMining workshops, we hosted a panel of distinguished resear-
chers: Joonsuk Park (University of Richmond), Iryna Gurevych (Technical University of Darmstadt),
Daniel Hershcovich (University of Copenhagen), Lucie Flek ( University of Bonn), and Johannes Kiesel
(Bauhaus-Universität, Weimar). The panel was moderated by Henning Wachsmuth (Leibniz Universität
Hannover) on the topic “The Human in Computational Argumentation”, covering personalization, sub-
jectivity, and perspectivism.

We thank our Program Committee members for their continuous support and helpful input. Also, we tha-
nk IBM for sponsoring the Best Paper award and the members of our Best Paper Selection Committee:
Benno Stein (Bauhaus-Universität, Weimar), Gabriella Lapesa (GESIS and Heinrich-Heine University
Dusseldorf), and Eduardo Blanco (University of Arizona). The awards are announced on the official
workshop website: https://argmining-org.github.io/2024/index.html.

We would like to also thank everyone who showed interest and submitted a paper this year, all of the
authors for their contributions, and all the attendees of the workshop for their support and participation.

Yamen Ajjour, Roy Bar-Haim, Roxanne El Baff, Zhexiong Liu, and Gabriella Skitalinskaya
(ArgMining 2024 Co-Chairs)
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Keynote Talk
Reconstructing Fallacies in Misrepresented Science and

Argument Mining in the Wild
Yufang Hou

IBM Research Europe - Ireland

Abstract: In this talk, Yufang Hou will discuss their recent work on applying and investigating language
model (LM)-based argument mining technologies in real-world scenarios, including fact-checking mi-
sinformation that misrepresents scientific publications and tackling traditional argument mining tasks in
various out-of-distribution (OOD) scenarios. First, she will discuss their work on reconstructing and
grounding fallacies in misrepresented science, in which health-related misinformation claims often fal-
sely cite a credible biomedical publication as evidence. The speaker will present a new argumentation
theoretical model for fallacious reasoning, together with a new dataset for real-world misinformation de-
tection that misrepresents biomedical publications. In the second part of the talk, she will discuss their
findings on LMs’ capabilities for three OOD scenarios (topic shift, domain shift, and language shift)
across eleven argument mining tasks.

Bio: Yufang Hou is a research scientist at IBM Research Ireland. She is also a visiting professor and co-
supervisor at UKP Lab - TU Darmstadt. Her research interests include referential discourse modelling,
argument mining, and scholarly document processing. Yufang received WoC Technical Innovation in
Industry Award in 2020. She has served in numerous roles for ACL conferences, recently as a Senior
Area Chair for EMNLP 22/23/24, and NAACL 24. She co-organized the 8th workshop on Argument
Mining, the first workshop on Argumentation Knowledge Graphs, Key Point Analysis Shared Task 2021,
and Dagstuhl Seminar 22432 on “Towards a Unified Model of Scholarly Argumentation".
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Panel
The Human in Computational Argumentation

Computational argumentation aims to develop methods for extracting, analyzing, and generating human
arguments. This field holds significant promise for applications ranging from automated debate syste-
ms to advanced decision-support tools. Central to these advancements are language models, which are
trained to simulate human language processing. However, a critical issue with language models is their
tendency to inherit and propagate social and stereotypical biases present in their training data. Moreover,
these models typically learn from aggregated absolute labels, which do not accurately reflect the nuan-
ced spectrum or distribution of truth in argumentation. Additionally, computational argumentation tasks,
such as assessing the persuasiveness of arguments, are inherently subjective and heavily influenced by
the author and audience.

This panel session will discuss the role of the human in computational argumentation, exploring ways
of creating more representative, fair, and effective computational models of argumentation that better
capture the complexities of human discourse. The discussion will focus on two strategies of capturing
human context, views, and preferences: perspectivism and personalization. While personalization aims
at integrating information about the speaker and target audience (e.g., values and culture) in training or
instructing language models, perspectivism aims at ensuring that the views captured by models are re-
presentative of the relevant social groups. The panel will look at the consequences, opportunities, and
challenges of adapting perspectivism and personalization in computational argumentation.
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ARIES: A General Benchmark for Argument Relation Identification

Debela Gemechu, Ramon Ruiz-Dolz and Chris Reed
Centre for Argument Technology (ARG-tech)

University of Dundee
Dundee DD1 4HN, United Kingdom

Abstract

Measuring advances in argument mining is one
of the main challenges in the area. Different
theories of argument, heterogeneous annota-
tions, and a varied set of argumentation do-
mains make it difficult to contextualise and un-
derstand the results reported in different work
from a general perspective. In this paper, we
present ARIES, a general benchmark for Argu-
ment Relation Identification aimed at provid-
ing a standard evaluation for argument mining
research. We evaluated three different archi-
tectures for Argument Relation Identification
on ARIES: sequence and token modelling, and
sequence-to-sequence alignment, together with
the three main Transformer-based model ar-
chitectures: encoder-only, decoder-only, and
encoder-decoder. Furthermore, the benchmark
consists of eight different argument mining
datasets, covering the most common argumen-
tation domains, and standardised with the same
annotation structures. This paper provides a
first comprehensive and comparative set of re-
sults in argument mining across a broad range
of configurations to compare with, both advanc-
ing the state-of-the-art, and establishing a stan-
dard way to measure future advances in the
area. Across varied task setups and architec-
tures, our experiments reveal consistent chal-
lenges in cross-dataset evaluation, with notably
poor results. Given the models’ struggle to ac-
quire transferable skills, the task remains chal-
lenging, opening avenues for future research.

1 Introduction

Argument mining was originally defined as the
task of automatically identifying argument struc-
tures from unstructured natural language inputs
(Mochales and Moens, 2011). Although argument
mining research has been split into several sub-
tasks in the literature such as segmentation, argu-
ment classification and argument relation identi-
fication (Lippi and Torroni, 2016; Lawrence and
Reed, 2020) it is the latter that represents the main

challenge in argument mining due to its complexity.
Argument Relation Identification (ARI) starts from
the point where all the relevant argument sequences
have been segmented, and its main objective is
to identify argumentative relations between them
building complete argumentative structures. There-
fore, it is the ARI subtask that provides us with
the argument structures from unstructured natural
language. In addition, while outstanding results
have been reported in the previous stages, results
on ARI are more limited, representing one of the
most difficult tasks in natural language processing
due to its implicitness, the lack of data, and the lack
of solid baselines with which to compare.

One of the main challenges in the area of argu-
ment mining, however, has always been to com-
pare advances in different contexts, understand-
ing these contexts as different annotation theories
or argumentative domains. Therefore, previous
work reports different findings and advances, but
it does that without providing a general picture of
them and a comprehensive understanding of their
findings for the argument mining community as a
whole. A lack of a consistent cross-domain bench-
mark, as it has been done in many other areas of nat-
ural language processing (see GLUE (Wang et al.,
2018), Superglue (Wang et al., 2019), TweetEval
(Barbieri et al., 2020), or Superb (Yang et al., 2021)
among others), hinders our advances as a research
community. Although previous effort has been
put in this direction, none of these previous work
considers state-of-the-art NLP algorithms consider-
ing multiple language modelling approaches, and
typically focused on specific tasks or domains (Co-
carascu et al., 2020; Ruosch et al., 2022). Providing
relevant results in the good direction, but limited
in terms of generalisability. Therefore, the defi-
nition of a general benchmark for state-of-the-art
argument mining is something that remains un-
addressed. This limitation, taking the success of
the GLUE benchmark for natural language under-
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standing tasks (Wang et al., 2018) into account,
motivates the development of an argument mining-
specific benchmark to comprehensively evaluate
and measure the advances done in the area.

In this paper, we present the Argument Relation
Identification Evaluation Strategy (ARIES), a ro-
bust, cross-dataset benchmark for evaluating exist-
ing and future contributions to the ARI task. ARIES

represents the first and most extensive benchmark
to evaluate ARI systems, thus providing a robust
framework for comparative evaluation of argument
mining systems. Our main contribution is the for-
mal definition of ARIES, including eight different
corpora, three different natural language modelling
approaches, and three different model architectures.
Furthermore, we carried out extensive experimen-
tation, implementing the previous natural language
modelling approaches and model architectures with
different pre-trained language models. From our
results, we do not only advance the state-of-the-art
in ARI, but also identify a concerning limitation
of the generalisation capabilities of argument min-
ing systems. This way, ARIES provides an ideal
base on which to compare, propose, and implement
argument mining systems addressing the ARI task.

2 Related Work

The latest advances in natural language process-
ing have been reflected in argument mining and
especially in ARI research, the most challenging
part of it. These natural language processing ad-
vances have been gradually integrated into argu-
ment mining systems with (in order) the use of
LSTM networks (Cocarascu and Toni, 2017), the
Transformer architecture (Ruiz-Dolz et al., 2021a),
contrastive learning (Shi et al., 2022), generative
language models (Bao et al., 2022), end-to-end
architectures (Morio et al., 2022), or the most re-
cent large language models (LLMs) (Gorur et al.,
2024). All these advances, however, are difficult
to compare and contextualise due to a lack of a
standardised set of evaluation baselines.

Some effort has been put with previous research
on the definition of benchmarks for argument min-
ing. Initially proposed in (Cabrio and Villata,
2014), the authors define NoDE, a natural language
argument benchmark consisting of three datasets
and 792 related proposition pairs. In this early
benchmark, the authors pointed out the needs of
standardising the evaluation of argument mining
systems. Following this direction, Cocarascu et al.

(2020) extended the previous benchmark with a to-
tal of ten datasets containing 35,918 related propo-
sition pairs. Both benchmarks exclusively focused
on the classification of argument relations, a subset
of the ARI task in which the relation is assumed to
be known, limiting their applicability in more gen-
eral situations. Recently in (Ruosch et al., 2022),
the authors address this limitation by proposing a
benchmark for argument mining (BAM), in which
all the argument mining subtasks are brought into
consideration together. The BAM framework, how-
ever, is proposed as a pipeline-like method combin-
ing different previously existing argument mining
systems to cover the complete argument mining
process (Ruosch et al., 2023), rather than a thor-
ough analysis of state-of-the-art NLP modelling
techniques and architectures. Furthermore, its cur-
rent version only contains argumentative informa-
tion in scientific documents, making it a valuable
resource for this domain but limiting its generalis-
ability to other application domains.

3 Benchmark

The main contribution of this paper is the definition
of ARIES, a state-of-the-art benchmark for argu-
ment relation identification in datasets of different
domain and nature, which can be used as a refer-
ence to advance and to relativise the real impact
of new findings in this area. Furthermore, ARIES

also reflects on a wide variety of model architec-
tures, providing more insight on the capabilities of
state-of-the-art algorithms. This section provides
an in-depth presentation of all the variables taken
into account in the proposed ARIES benchmark.

3.1 Data

In order to develop a robust, challenging and wide-
ranging assessment, we include eight different
datasets as part of ARIES. These eight datasets
were selected mostly based on two criteria. First,
we selected the most representative datasets on the
area of argument mining. This way, ARIES can be
used as reference, not only for future contributions,
but also for these ones already existing. Second,
our selection was determined by our goal of cre-
ating a sufficiently heterogeneous dataset in terms
of domain to be able to measure the robustness of
state-of-the art systems. Therefore, ARIES con-
sists of eight different argumentation domains. The
eight datasets included into ARIES are: MTC (Peld-
szus and Stede, 2015), AAEC (Stab and Gurevych,
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Dataset Domain Inferences Conflicts Neutral Total

MTC Structured Argumentation 272 108 713 1,093
AAEC Essay 4,841 497 10,676 16,014
CDCP Financial 694 82 1,552 2,328
ACSP Scientific 8,069 697 17,532 26,298
AMP Online 2,111* - 5,929 8,040
ABSTRCT Medical 2,290 344 4,581 7,215
US2016 Political 2,765 866 7,262 10,893
QT30 Question Answering 2,714 545 6,518 9,777

Total - 23,756 3,139 54,763 81,658

Table 1: Summary of the ARI datasets included in the
ARIES benchmark. We use * to indicate that AMP
involves only binary labels, indicating whether a relation
is present or not.

2017), CDCP (Park and Cardie, 2018), ACSP
(Lauscher et al., 2018), AMP (AMPERSAND)
(Chakrabarty et al., 2019), ABSTRCT (Mayer et al.,
2020), US2016 (Visser et al., 2020), and QT30
(Hautli-Janisz et al., 2022). A summary of the most
relevant features of these eight corpora is depicted
in Table 1.

3.2 Task

The ARIES benchmark evaluates the ARI task. ARI
consists of the identification of existing argumenta-
tive relations between two or more Argumentative
Discourse Units (ADUs). This way, this task takes
an unstructured set of ADUs as its input and out-
puts complete structured arguments, making it the
cornerstone of argument mining. For practicalities,
within the ARIES framework, we define the ARI
task as a three-class classification problem, consid-
ering the Inference, Conflict, and Neutral classes
of argumentative relations. The inference relation
represents an argumentative support, the conflict
relation represents an argumentative attack, and
the neutral class indicates that there exists no argu-
mentative relation between a set of ADUs. Some
models distinguish a fourth category of rephrase
because it has become increasingly clear in linguis-
tic work (Koszowy et al., 2022) that this is relation
is a key driver of argumentation. It is, however, far
from ubiquitous in argument mining research, and
so is not adopted in the current ARIES framework.

It is also important to emphasise that the ARIES

benchmark goes one step further compared to
the Argument Relation Classification (ARC) task,
which only considers attacks and supports. While
ARC can be framed as a sentiment analysis prob-
lem with positive and negative sentiments, and it is
based on the assumption that the existing argument
relations are all known, ARI does not make such as-
sumption, and therefore modelling the underlying

(and sometimes implicit) argumentative features
of ADUs is essential if we want an algorithm to
succeed on this task.

3.3 Models

We consider three different natural language mod-
elling approaches in the ARIES benchmark: se-
quence classification (see Figure 1a), token classi-
fication (see Figure 1b), and sequence-to-sequence
alignment (see Figure 1c). Complementing these
modelling approaches, we have also included three
different model architectures in our benchmark:
encoder only, decoder only, and encoder-decoder.
This way, we cover the majority of the existing
approaches for argument mining in the literature.

3.3.1 Sequence Classification
First, our benchmark reports results when address-
ing ARI as a sequence (pair) classification task.
This way, our sequence classification benchmark
models the conditional probability of the most
likely relation class (i.e., ŝ) for a given pair of
ADUs as depicted in Equation 1.

ŝ = argmax
s∈S

P (s|xN1 , yM1 ) (1)

where S stands for the complete set of possible
argumentative relations (i.e., Inference, Conflict,
or Neutral), xN1 represents the first ADU of length
N , and yM1 is the second ADU of length M . With
this framing, the two ADU inputs are treated as a
whole sequence of text, modelling natural language
at a higher level and looking for sequence features
that can be helpful to determine whether a pair of
propositions is related with an inference, a conflict,
or presents no relation between them. This is one
of the most widely researched approaches when it
comes to the identification of argument relations
(Cocarascu and Toni, 2017; Ruiz-Dolz et al., 2021a;
Shi et al., 2022; Kikteva et al., 2023; Gorur et al.,
2024).

The loss (Lclass) for the argument relation classi-
fication task is computed using the standard cross-
entropy loss based on the predicted logits and true
labels for the argument relation type.

Lclass = − 1

B

B∑

i=1

log(softmax(rpredi )) · rtruei (2)

where rtruei represents the true label of the ar-
gument relation type for the i-th sample and rpredi

3
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(a) Sequence classification.
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(c) Sequence-to-sequence alignment.

Figure 1: The architecture for the three tasks: (a) sequence classification, (b) token classification, and (c) sequence-
to-sequence alignment. In this paper, we evaluate only the ARI output (highlighted in light blue), while the token
classification and token prediction outputs (highlighted in light yellow) serve as auxiliary tasks and are not evaluated.

denotes the predicted logits of the argument rela-
tion type for the i-th sample.

3.3.2 Token Classification

Second, we also benchmark ARI as a token classi-
fication task, aiming to predict the span of conclu-
sions given a premise or vice versa, while simulta-
neously predicting the argument relation between
the premise and conclusion in a multi-task setup.
Inspired by Eger et al. (2017), who modeled argu-
ment mining as a token classification task, jointly
addressing component identification and relation
identification, assigning each token a label indicat-
ing the category of the component and the argu-
ment relation type, our work acknowledges their
finding of sub-optimal coupling between the two
tasks and advocates for treating them separately
while modelling them jointly. Consequently, we
adopt a multi-task setting that independently mod-
els both tasks. The multi-task learning setup en-
compasses two primary objectives: span prediction
and argument relation identification.

For the span prediction sub-task, given an argu-
ment (i.e., the complete structure resulting from the
concatenation of the premises and conclusion), we
model the boundaries of the conclusion within the
argument given the premises and vice-versa (See
Appendix A.2 for more details regarding the input
format). Our token classification approach, there-
fore, first models the conditional probability of the
most likely span boundaries (i.e., t̂) as depicted in
Equation 3.

t̂ = argmax
t∈T

P (t|n1, ..., ni−1, ni) (3)

where T represents the set of possible token la-
bels (i.e., beginning (B), inside (I), or outside (O)),
and ni represents each token at a given position i,
followed by the previously observed tokens in the
complete argument sequence. This approach treats
tokens in a more independent way than in sequence
classification, allowing to look for lower level fea-
tures, where each token is assigned a specific label.
The loss (Ls) for the span prediction sub-task is
computed using the standard cross-entropy loss
based on the predicted and true labels for each to-
ken in the argument.

Lspan = − 1

N

N∑

i=1

C∑

j=1

Y true
p,ij · log(Y pred

p,ij ) (4)

where N represents the total number of tokens
in the argument, C is the set of token labels, Y true

p,ij

denotes the ground truth probability of token i be-
longing to class j, and Y pred

p,ij is the predicted prob-
ability of token i belonging to class j.

The second step in the token classification ap-
proach is the identification of argumentative re-
lations. This second task involves predicting the
argument relation between the premise and conclu-
sion in a similar way as described in Equation 1.
It takes both the premise and conclusion resulting
from the previous span detection sub-task as inputs
and predicts the argument relation. Since the pri-
mary focus is on ARI, the span detection serves as
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an auxiliary task. The loss from the token classifi-
cation approach results from adding the previously
defined span prediction loss Lspan to the sequence
classification loss Lclass (see Equation 2), resulting
in the overall loss (Ltotal) as defined in Equation 5.

Ltotal = Lspan + Lclass (5)

3.3.3 Sequence-to-sequence Alignment
Finally, the third approach included in the ARIES

benchmark corresponds to a sequence-to-sequence
alignment modelling of the relation between ar-
gument proposition pairs. In this last approach,
we address ARI in a similar way as machine
translation is done, where the model is trained to
predict a complete sequence related to the input
(Stahlberg, 2020). Therefore, we consider the ar-
gument premise as the input and provide the ar-
gument claim as the expected output, modelling
this way the semantic connections between both
propositions resulting in the argumentative relation
between premise and claim as depicted in Equation
6.

ĉN1 = argmax
cN1

P (cN1 |pM1 ) (6)

Where cN1 stands for the output claim sequence
of length N , and pM1 for the input premise se-
quence of length M . The sequence-to-sequence
alignment approach is divided into two steps. First,
we do the sequence-to-sequence modelling accord-
ing to Equation 6 attempting to improve the em-
bedding representation of our argumentative inputs
(i.e., premise-claim pairs). Second, we leverage
the embedding of the premise-claim representa-
tions to train a classifier that predicts our three
relation classes in a similar way as described in
Equation 1. Although less researched in the litera-
ture, sequence-to-sequence approaches have also
been recently investigated in the area of argument
mining thus making them an important addition to
our global benchmark (Kawarada et al., 2024).

The loss (Lseq) for the sequence-to-sequence
alignment approach is computed using the standard
cross-entropy loss based on the predicted logits
and true labels for each token in the conclusion
sequence.

Lseq = − 1

B

B∑

i=1

N∑

j=1

log(softmax(cpredij )) · ctrueij

(7)

Where B indicates the batch size, N is the length
of the conclusion sequence, ctrueij denotes the true

label of the j-th token in the i-th sample, cpredij

represents the predicted logits of the j-th token
in the i-th sample, and softmax(·) represents the
output of the softmax function.

The loss (Lclass) for argument relation classifica-
tion is computed using the same loss function as
in the sequence classification approach defined in
Equation 2. The overall loss (L) is the sum of both
losses:

L = Lseq + Lclass (8)

This hybrid approach, combining sequence-to-
sequence modelling with ARI, allows us to capture
the relationship between the premise and conclu-
sion while effectively predicting argument relation
types.

3.3.4 Model Architectures
In addition to the three natural language modelling
approaches, we have also included the three main
model architectures in state-of-the-art natural lan-
guage processing. This way, we consider encoder-
only (Devlin et al., 2019), decoder-only (Brown
et al., 2020), and encoder-decoder (Vaswani et al.,
2017) architectures. For the first two natural lan-
guage modelling approaches (i.e., sequence and
token classification), the ARIES benchmark consid-
ers the three possible architectures. However, for
the sequence-to-sequence alignment approach, we
can only rely on the encoder-decoder architecture,
given its nature requiring both encoder and decoder
(see Appendix A.2 for more details).

4 Experiments

4.1 Experimental Setup
We use Adam optimisation (Kingma and Ba, 2014)
to minimise the loss function, using a learning
rate of 2 × 10−5 and categorical cross-entropy
loss and a batch size of 16 (more details on the
experimental setup is provided in Appendix A).
The dataset is randomly partitioned, with 70%,
10%, and 20% allocation for training, validation,
and testing respectively, ensuring uniformity
throughout the dataset. Refer to Table 1 for the
breakdown of argument relations. All our results
represent the average of three runs using different
random seeds. Precision, recall, and F1-score
are computed, and macro-averaged F1-scores
are reported for the test dataset. The code used
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Task Architecture Model Eval Dataset
MTC AAEC CDCP ACSP AMP AbstRCT US2016 QT30

SeqCls ED RoBERTa ID 63 75 72 82 84* 84 76 83
CD 35 47 40 50 51* 40 48 45

DD DialoGPT ID 66 78 72 84 84* 82 79 85
CD 40 48 41 49 52* 39 49 49

ED-DD T5 ID 65 74 71 83 80* 80 74 84
CD 37 37 36 38 40* 37 38 39

TokCls ED RoBERTa ID 61 76 68 80 - 81 73 82
CD 33 42 31 37 - 33 37 35

DD DialoGPT ID 63 77 70 82 - 80 75 82
CD 34 42 33 39 - 35 38 37

ED-DD T5 ID 62 73 65 81 - 78 71 80
CD 33 35 34 36 - 33 35 33

SeqAln ED-DD T5 ID 68 75 70 81 78* 83 76 83
CD 41 42 42 42 46* 41 43 41

Table 2: In-dataset (ID) and cross-dataset (CD) macro-averaged F1-score results. We use * to denote that the
evaluation results reported on the AMP represent binary predictions.

in our experiments can be publicly accessed
at https://github.com/debelatesfaye/
ArgumentMining24-ARIES-Benchmark.

4.2 Evaluation Setup

In-Dataset Evaluation. In the in-dataset (ID) eval-
uation, each model configuration is trained and
evaluated on the same dataset, enabling us to as-
sess the performance of models within the same do-
main. Each of the three task setups: sequence clas-
sification (SeqCls), token classification (TokCls),
and sequence-to-sequence alignment (SeqAln), are
trained and evaluated across the datasets. The three
task setups are evaluated on eight datasets, with
the exception of TokCls, which is evaluated on
all datasets except AMP. This exception arises be-
cause AMP solely focuses on the pair of proposi-
tions, while TokCls requires the entire argument
in addition to the pair of propositions. Within Se-
qCls and TokCls, the three transformer architec-
tures—Encoder only (ED), Decoder only (DD),
and Encoder-Decoder (ED-DD)—are evaluated.
However, considering the specific requirements of
the SeqAlg task and its architectural demands, only
the ED-DD configuration is evaluated. This pro-
vides three architecture variants for the SeqCls task:
ED-based SeqCls, DD-based SeqCls, and ED-DD-
based SeqCls, each of which undergoes training
and evaluation across eight datasets, providing a
total of 24 configurations, respectively. The Tok-
Cls task encompasses 21 configurations across the
seven datasets, whereas the Seq-Alg task is limited
to the ED-DD configuration across eight datasets,
totaling eight configurations.

Cross-Dataset Evaluation. The cross-dataset

(CD) evaluation setup involves training each model
on one dataset and subsequently evaluating its per-
formance on each of the remaining seven datasets,
providing insights into their generalisation and do-
main adaptability. Accordingly, for both the Se-
qCls and TokCls tasks, the three transformer ar-
chitectures are trained on eight and seven train-
ing datasets, respectively, resulting in a total of 45
models (24 for SeqCls and 21 for TokCls tasks).
Subsequently, each model is evaluated on the re-
maining datasets not used for training, resulting in
an evaluation matrix encompassing a total of 294
configurations (3 architectures * 8 training datasets
* 7 evaluation datasets for SeqCls and 3 architec-
tures * 7 training datasets * 6 evaluation datasets
for TokCls). Conversely, the Seq-Alg task, involves
training the ED-DD configuration across the eight
training datasets and evaluated on the remaining 7
dataset not used for training, resulting in an eval-
uation matrix encompassing 56 configurations (1
architecture * 8 training datasets * 7 evaluation
datasets).

4.3 Results

Table 2 illustrates the macro F1-scores achieved
in both ID and CD evaluation scenarios. In the
ID evaluation configuration, the F1-scores are de-
termined from models trained and evaluated on
the same dataset. Conversely, in the CD evalua-
tion setup, each model undergoes training on one
dataset, and evaluated on the remaining datasets.
The average F1-scores of each model trained on
one dataset and evaluated on the remaining is re-
ported in Table 2. The comprehensive CD evalua-
tion results can be found in Tables 4 and 5, located
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in the Appendix.
As can be seen from Table 2, in the ID evalua-

tion, an average F1-score of 76.1% was achieved
across the three tasks and architectures. Conversely,
in the CD evaluation, the average F1-score was
notably lower at 42.7%. To facilitate a direct com-
parison among the three task setups, we calculate
the average performance across the entire dataset,
excluding AMP, as TokCls does not undergo eval-
uation on this specific dataset. Accordingly, the
sequence-classification setup attains an average F1-
score of 77.5%, 40.2% across all architectures in
both ID and CD evaluations, respectively, while
token-classification models achieve an average F1-
score of 74.3%, 35.5%. Sequence-to-sequence
alignment task achieves comparable performance
with sequence classification task with an average
F1-score of 76.8% and 40.4% on ID and CD setups,
respectively. It is noteworthy that the average F1-
score of the ED-DD architecture for sequence clas-
sification and token classification is 34.7% in CD
evaluations. This represents a 5.7% improvement
in the task performance in the CD evaluation setup.
This observed gain underscores the task’s effective-
ness, especially when compared to the lower perfor-
mance achieved by the same underlying model (T5)
in the other two task setups, highlighting its ability
to learn transferable features across domains. This
phenomenon could be attributed to the inherent na-
ture of the task setup, which presents challenging
learning scenarios, potentially combating shortcut
learning and encouraging the model to learn more
generalised representations. Moreover, it might
also suggests the task allowing to learn the align-
ment of the premise and conclusion based on the
outputs of the encoder and decoder.

Sequence classification models exhibited faster
convergence during training compared to token
classification and sequence-to-sequence alignment
counterparts, indicating their ability to learn and
adapt more efficiently to the task at hand. The
slower convergence observed in token classifica-
tion and sequence-to-sequence alignment setups
could be attributed to the complexity of the tasks,
requiring the model to learn token-level relation-
ships to predict argument relations.

Across all dataset and task combinations, ED
(RoBERTa) configurations demonstrate an average
F1-score of 75.4%, 38.4% in ID and CD evaluation
settings, respectively. In contrast, DD configura-
tions achieve an F1-score of 76.8%, 39% in the ID
and CD evaluation settings, respectively. Config-

urations using DialoGPT exhibit a 1.4% improve-
ment over RoBERTa across datasets and tasks in
ID evaluation. DialoGPT’s superior performance
could be attributed to its pre-training strategy and
dataset, which specifically target dialogical datasets
extracted from Reddit comment chains. As Di-
aloGPT is exclusively pre-trained on dialogical
data, configuration utilising the model could lever-
age the argument-relevant features encoded dur-
ing its pre-training stage. This advantage might
enable DialoGPT based configurations to outper-
form configurations based on models pre-trained on
generic datasets. The specificity of DialoGPT’s pre-
training strategy likely helps capture the subtleties
of argumentation and discourse, thereby enhancing
performance in ARI tasks.

Moreover, the performance variations among the
transformers architectures can be indicative of the
relevance of the underlying pre-training objectives
and architectures to ARI. Notably, the next sen-
tence prediction objective, crafted for classification
tasks involving sequence pairs, aligns with ARI,
as the task involves pairs of propositions. How-
ever, RoBERTa, which does not involve the next
sentence prediction objective, demonstrates com-
petitive performance in ARI tasks (Ruiz-Dolz et al.,
2021a), suggesting the absence of this objective
does not hinder the model’s ability to capture ar-
gument relations. Similarly, the ED-DD architec-
tures is relevant to ARI since it allows learning
the alignment of pair of sequences (the pair of
propositions in ARI). Our result shows that the
architecture attains competitive performance only
in the sequence-to-sequence alignment task setup.
This can be evidenced by the performance improve-
ment of T5 on sequence-to-sequence alignment
task over both sequence-classification and token-
classification tasks.

These findings highlight the critical significance
of tailoring task setups, architectures, and evalua-
tion methodologies to suit the unique intricacies of
ARI tasks.

5 Discussion

To contextualise the results reported in the ARIES

benchmark, providing a better understanding of
their impact in the argument mining community,
we compared the best model architecture observed
in ARIES with the best performing and most recent
identified previous work addressing ARI in each
of the datasets individually. Works by Morio et al.
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(2022), Ruosch et al. (2022), Chakrabarty et al.
(2019), Ruiz-Dolz et al. (2021a), and Kikteva et al.
(2023) represent the best possible reference with
which to compare ARIES, given the similarity in the
way that the ARI task is approached. The resulting
comparison is depicted in Table 3.

As it can be observed, ARIES represents a signif-
icant jump in performance compared to previous
works. Our benchmark consistently outperforms
the previously reported results in the most similar
instances of the ARI task considering the same
eight selected datasets. The direct comparison,
however, is difficult to do due to the high vari-
ability in which different authors address the task
and interpret argumentative concepts. For exam-
ple, Morio et al. (2022) does it with an end-to-end
model, and although we selected the reported re-
sults assuming an oracle system for ADU segmen-
tation, the proposed models are not entirely focused
on ARI, considering other aspects of argument min-
ing such as component classification. Other works
such as (Ruiz-Dolz et al., 2021a) and (Kikteva et al.,
2023) consider an additional relation for ARI, the
rephrase between two argument propositions. Thus
making the ARI a four-class classification problem
instead of considering the three classes included
in ARIES. Therefore, this comparison needs to
be understood as a motivation and a starting point
towards a more consistent and unified way of evalu-
ating argument mining systems rather than a direct
comparison between works. While worse results
in a simpler version of the task should be taken
as concerning, worse results in a more complex
version of it do not need to mean that the system is
worse. With our benchmark, we expect that future
contributions in argument mining can be better con-
textualised and evaluated, moving forward together
as a community rather than reporting specific re-
sults for heterogeneous setups that are difficult to
compare and understand from a broader viewpoint.

Furthermore, we clearly observed how in the
CD evaluation of the different natural language
modelling approaches and architectures, the perfor-
mance consistently dropped to the point of being
close to the majority baseline. Thus limiting the
usability of the resulting models in different do-
mains than the ones included during training. Al-
though some work has investigated cross-domain
and cross-language argument mining (Al Khatib
et al., 2016; Eger et al., 2018), this issue has never
been systematically explored in-depth, leaving the
door open to a new challenging direction: robust-

ness in argument mining (Ruiz-Dolz et al., 2024).
Considering the relevance of language and domain
in natural language argumentation, developing ro-
bust systems is a main issue if we want to be able
to effectively deploy them in real-world scenar-
ios. For this purpose, ARIES represents a valuable
resource, allowing not only to compare between
different datasets, but also to measure the cross-
dataset robustness of the developed argument min-
ing systems.

Finally, we would also like to mention that re-
cently, Gorur et al. (2024) conducted a thorough
study comparing the performance of generative
LLMs (i.e., decoder-based architectures) for ARC.
Although some of the reported results might seem
higher than the ones included in the ARIES bench-
mark, as noted in the beginning of this paper, re-
lation classification assumes that the relation has
already been identified and classifies it as an at-
tack or a support, significantly simplifying the task.
Therefore, we excluded these results from our com-
parison, being a significantly different task highly
dependant on a previous step. Instead, ARI repre-
sents a completely independent task embedding the
main purposes of argument mining (i.e., identify-
ing argument structures from unstructured natural
language inputs).

6 Conclusion

In this paper we presented ARIES, a global bench-
mark for the identification of natural language ar-
guments. ARIES represents an effort to ease the
understanding of argument mining contributions
and their impact to the community. We achieve
this by providing solid results comparing the three
main modelling approaches in NLP (i.e., sequence
and token classification, and sequence-to-sequence
alignment) combined with the three main model
architectures (i.e., encoder, decoder, and encoder-
decoder). Our benchmark goes all over eight differ-
ent corpora, presenting new state-of-the-art results
for the ARI task, and setting a new reference for
research in argument mining. Furthermore, we
pointed out the limitations of domain-specific ar-
gument mining systems, showing poor results in
cross-dataset evaluation. This limitation raises the
question of how useful argument extraction sys-
tems can be when deployed in the wild, given their
limited generalisability, highlighting the need to
investigate the robustness of argument mining sys-
tems.
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MTC AAEC CDCP ACSP AMP AbstRCT US2016 QT30
(1) ARIES (1) ARIES (1) ARIES (2) ARIES (3) ARIES (1) ARIES (4) ARIES (5) ARIES

F1-score 47 71 56 78 21 72 32 84 40 84 51 84 70* 79 56* 85

Table 3: Comparison of the ARIES benchmark with the previous reported results for ARI in terms of macro-averaged
F1-scores. We use * to indicate that the ARI results included rephrase as an additional relation type. For readability
purposes we have represented the references in the table as follows (1): (Morio et al., 2022), (2): (Ruosch et al.,
2022), (3): (Chakrabarty et al., 2019), (4): (Ruiz-Dolz et al., 2021a), (5): (Kikteva et al., 2023).

As future work, we foresee expanding the
ARIES benchmark to more languages than En-
glish. Although argument mining has been mostly
researched in English, corpora in Catalan (Ruiz-
Dolz et al., 2021b), Spanish (Cantador et al., 2020),
Japanese (Kimura et al., 2022), or Chinese (Wu
et al., 2023) among others have been annotated and
publicly released in the recent years. Increasing
the language richness in argument mining research
can be beneficial, not only for implementing more
robust models, but also to help us investigating
the differences between relevant natural language
argument features underlying different languages.
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A Experiment Setup

A.1 Training Procedure

Hyper-parameters: We employ Adam optimisa-
tion (Kingma and Ba, 2014) to minimise the cost
function, using a learning rate of 2 × 10−5 and
categorical cross-entropy loss and a batch size of
16.

Gradient Clipping: To prevent exploding
gradients during training, we applied gradient
clipping. We used a maximum gradient norm
(max_grad_norm) parameter to determine the
threshold for gradient clipping.

Warm-up and Learning Rate Schedule: We
employed a linear warm-up strategy for the learn-
ing rate. The number of warm-up steps was set
to 10% of the total training steps. Following the
warm-up phase, the learning rate schedule was de-
termined by a lambda function. This function lin-
early increases the learning rate during the warm-
up phase and decreases it linearly thereafter.

A.1.1 Input Setup
For the sequence classification task, we combine
the premise and conclusion using a special to-
ken [SEP]. In the sequence-alignment task, the
encoder receives the premise while the decoder
processes the conclusion separately. The token-
classification task is provided with the entire argu-
ment along with one of the propositions (say the
premise). To ensure consistency across architec-
tures, the maximum input length is set to 512. In
the sequence-to-sequence alignment task, where
inputs are provided separately to the encoder and
decoder, we set the maximum input size to 256
for both components to enable direct comparison.
For the token-classification configuration, if the in-
put length exceeds 512, we extract a span of the
argument relevant to the premise and conclusion.
Initially, we measure the size of one proposition
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(the premise) and if the combined size of the ar-
gument and premise is less than 512, we use the
entirety of both. Otherwise, we use the following
heuristic to extract the relevant part of the argu-
ment: extract a span of argument involving both
the premise and conclusion if the size of the span
and the premise is less than 512. If not, expand the
span in the direction of the conclusion until the size
constraint is met and append the conclusion to the
argument span.

A.2 Model Configurations

To facilitate direct comparisons between architec-
tures and configurations, we ensure comparable
model sizes across all setups. Specifically, we em-
ploy RoBERTa-large (Liu et al., 2019) (355 million
parameters) for the ED, DialoGPT-medium (Zhang
et al., 2020) (345 million parameters) for the DD,
and T5-base (Raffel et al., 2020) (220 million pa-
rameters) for the ED-DD configuration.

A.3 Sequence-to-sequence Alignment Task

For the sequence-to-sequence alignment task, we
try two configurations. First, we leverage the
T5ForConditionalGeneration1 implementation,
fine-tuned to generate conclusions given premises.
We also concatenate the final hidden state of
the encoder with that of the decoder which is
then fed into a linear layer to predict the ar-
gument relation between the premise and con-
clusion. In an alternative approach, we em-
ploy the T5ForSequenceClassification2 imple-
mentation, where the model is fine-tuned in the
identification of argument relations, without the
added complexity of conclusion generation given
a premise. Across the configurations, the premise
is provided as input to the encoder, while the con-
clusion serves as the input to the decoder. Our ex-
periment reveals that T5ForConditionalGeneration
configuration provides better result and all the ex-
perimental results on the SeqAln task is reported
based on this configuration.

A.4 Sequence Classification Task

For the ED architecture, we utilise the final
output of the HuggingFace implementation of

1https://huggingface.co/docs/
transformers/en/model_doc/t5#transformers.
T5ForConditionalGeneration

2https://huggingface.co/docs/
transformers/en/model_doc/t5#transformers.
T5ForSequenceClassification

RoBERTaForSequenceClassification3. Similarly,
DD architecture, we leverage the final output
of the HuggingFace implementation of DialoG-
PTForSequenceClassification 4. For the ED-
DD, we use the final output of the decoder
based on the HuggingFace implementation of
T5ForSequenceClassification5. Across the se-
quence classification task, the input to the respec-
tive models is the concatenation of the premise and
conclusion.

3https://huggingface.co/docs/transformers/
en/model_doc/RoBERTa#transformers.
RoBERTaForSequenceClassification

4https://huggingface.co/docs/transformers/en/
model_doc/dialogpt

5https://huggingface.co/docs/
transformers/en/model_doc/t5#transformers.
T5ForSequenceClassification
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Model Train Data AAEC ACSP ABstRACT US2016 QT30 CDCP MTC AMP

DialogPT AAEC - 0.402 0.473 0.462 0.410 0.454 0.465 0.573*
CDCP 0.365 0.390 0.432 0.425 0.390 - 0.312 0.564*
ACSP 0.413 - 0.425 0.413 0.434 0.336 0.467 0.562*
QT30 0.470 0.479 0.472 0.479 - 0.480 0.467 0.553*
ABstRACT 0.281 0.342 - 0.365 0.340 0.400 0.435 0.610*
MTC 0.363 0.291 0.434 0.356 0.316 0.381 - 0.631*
US2016 0.461 0.430 0.424 - 0.463 0.471 0.461 0.563*
AMP 0.532* 0.551* 0.523* 0.574* 0.621* 0.465* 0.346* -

RoBERTa AAEC - 0.390 0.459 0.399 0.446 0.454 0.535 0.561*
CDCP 0.322 0.312 0.411 0.403 0.373 - 0.379 0.562*
ACSP 0.479 - 0.489 0.520 0.560 0.379 0.504* 0.542*
QT30 0.388 0.370 0.491 0.501 - 0.405 0.479 0.523*
ABstRACT 0.332 0.358 - 0.345 0.362 0.475 0.491 0.586*
MTC 0.309 0.302 0.319 0.361 0.331 0.284 - 0.542*
US2016 0.399 0.426 0.512 - 0.456 0.420 0.420 0.571*
AMP 0.512* 0.551* 0.502* 0.566* 0.614* 0.479* 0.348* -

T5 AAEC - 0.306 0.342 0.395 0.339 0.355 0.390 0.491*
CDCP 0.356 0.362 0.363 0.355 0.368 - 0.261 0.501*
ACSP 0.304 - 0.378 0.336 0.339 0.305 0.444 0.456*
QT30 0.351 0.322 0.344 0.359 - 0.349 0.419 0.541*
ABstRACT 0.342 0.305 - 0.320 0.333 0.376 0.376 0.511*
MTC 0.319 0.312 0.346 0.351 0.359 0.315 - 0.529*
US2016 0.345 0.328 0.364 - 0.389 0.399 0.355 0.473*
AMP 0.486* 0.462* 0.396* 0.421* 0.441* 0.365* 0.245* -

Table 4: CD evaluation performance of each model architecture on the SeqCls task setup. We use * to denote that
the evaluation results reported on the AMP represent binary predictions.
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Model Train Data AAEC ACSP ABstRACT US2016 QT30 CDCP MTC

DialogPT AAEC - 0.312 0.40 0.441 0.467 461 0.479
CDCP 0.277 0.285 0.355 0.376 0.335 - 0.335
ACSP 0.368 - 0.418 0.427 0.414 0.319 0.366
QT30 0.346 0.358 0.268 0.500 - 0.479 0.267
ABstRACT 0.334 0.311 - 0.377 0.320 0.322 0.423
MTC 0.347 0.297 0.397 0.423 0.322 0.274 -
US2016 0.389 0.378 0.287 - 0.519 0.400 0.279

RoBERTa AAEC - 0.294 0.447 0.440 0.433 0.442 0.450
CDCP 0.267 0.265 0.334 0.341 0.307 - 0.323
ACSP 0.349 - 0.411 0.411 0.407 0.300 0.337
QT30 0.328 0.316 0.256 0.509 - 0.237 0.238
ABstRACT 0.290 0.297 - 0.354 0.319 0.291 0.404
MTC 0.335 0.264 0.380 0.417 0.336 0.286 -
US2016 0.311 0.307 0.230 - 0.359 0.246 0.246

T5 AAEC - 0.269 0.365 0.365 0.342 366 0.365
CDCP 267 0.279 0.352 0.361 0.307 - 0.342
ACSP 0.332 - 0.411 0.401 0.413 0.281 0.332
QT30 0.321 0.298 0.241 0.486 - 0.423 0.237
ABstRACT 0.265 0.282 - 0.361 0.324 0.318 0.413
MTC 0.323 0.264 0.380 0.421 0.336 0.286 -
US2016 0.333 0.317 0.251 - 0.522 0.398 0.266

Table 5: CD evaluation performance of each model architecture on the TokCls task setup.
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Abstract
A proliferation of fraudulent scientific research
in recent years has precipitated a greater in-
terest in more effective methods of detection.
There are many varieties of academic fraud, but
a particularly challenging type to detect is the
use of paper mills and the faking of peer-review.
To the best of our knowledge, there have so far
been no attempts to automate this process. The
complexity of this issue precludes the use of
heuristic methods, like pattern-matching tech-
niques, which are employed for other types
of fraud. Our proposed method in this paper
uses techniques from the Computational Argu-
mentation literature (i.e. argument mining and
argument quality evaluation). Our central hy-
pothesis stems from the assumption that articles
that have not been subject to the proper level
of scrutiny will contain poorly formed and rea-
soned arguments, relative to legitimately pub-
lished papers. We use a variety of corpora to
test this approach, including a collection of ab-
stracts taken from retracted papers. We show
significant improvement compared to a num-
ber of baselines, suggesting that this approach
merits further investigation.

1 Introduction

The growing problem of fraudulent academic re-
search poses a threat to scientific progress. Re-
search is an iterative process, where arguments
presented in previous papers are used as the basis
of subsequent work. Researchers do not necessar-
ily have the time or resources available to verify
that all the claims that have been made in previous
publications are well-formulated, or valid. Instead
they tend to rely on the scrutiny imposed during the
publication process to offer reasonable guarantees
about the legitimacy of the content.

However, these guarantees have been under-
mined by revelations about the extent of malprac-
tice taking place in many scientific publications
(Cookson, 2023; Economist, 2023). As an indica-
tion of the scale of the problem, there have been

estimates that over a fifth of new medical publi-
cations are implicated in some form of fraudulent
activity (Sabel et al., 2023). Prevalent types of
fraud include: plagiarism, data manipulation and
circumvention of a legitimate peer-review process.

Relatively simple methods can help detect some
of these forms of fraud, such as pattern matching
in the case of plagiarism (Butler, 2018). However,
where the peer-review process is compromised, or
the services of paper mills are employed, these tech-
niques are not effective. In these cases, researchers
have had some success detecting characteristic pat-
terns (van Noorden, 2021; Else and van Noorden,
2021) - but this is not a universal panacea as it
is simple for authors to make slight stylistic alter-
ations to avoid these methods of detection. The
consensus of the research community investigating
these matters is that there are a large number of
such articles that have not yet been retracted from
the journals they are published in, and this number
is on the rise (Sabel and Seifert, 2021).

The hypothesis underlying this research is that
papers published by illicit means (specifically those
that have been produced by paper mills, or have
not undergone peer-review) will be based on sub-
standard reasoning. This could take the form of fal-
lacious arguments. Alternatively, arguments may
be based on spurious premises, or lack any relevant
and novel insights. We believe this is a legitimate
supposition due to the nature of scientific inquiry:
the fundamental aim of scientific research is to con-
struct valid and interesting arguments from a sound
empirical or theoretical basis.

Anecdotal evidence supporting this hypothesis
is presented in Table 1. Both arguments address
the efficacy of social distancing as a method to
combat the spread of COVID-19. However, the
argument given in the retracted article is very weak.
The claim: ‘Social distancing measures ought to
be followed by everyone to minimize the spread of
COVID-19’, is perfectly reasonable. The premises
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Retracted Not retracted
Social distancing measures ought to be followed by
everyone to minimize the spread of COVID-19. Even-
tually, maintaining social distance will become a
habit in the future. Owing to that, our proposed
system gives an accurate output of 90% at detecting
people with a one-meter distance between them in
public areas, which also provides indications in green
and red bounding boxes around people.

After three COVID-19 waves, the growing number
of new infections still reminds us of the importance
of taking precautionary measures. SD and wearing
masks have been proven to be efficient nonpharma-
ceutical intervention measures (Özbek, Syed, & Ök-
süz, 2021). They are low-cost, convenient, and non-
invasive to slow the spread of COVID-19 and flatten
the curves of infection (Srivastava, Zhao, Manay, &
Chen, 2021).

Table 1: Comparable arguments for social distancing presented in a retracted article (Pooranam et al., 2021), and
non-retracted article (Himeur et al., 2022).

that follow, however, are very loosely connected
to the claim, and the argument in its entirety is
both unconvincing and hard to follow. On the other
hand, the argument in the non-retracted article is
much more effective. The premises are directly
addressing the points raised in the claim, and they
back up their assertions with verifiable evidence in
the form of citations.

In order to empirically test this hypothesis, we
adopt techniques from the Computational Argu-
mentation literature. Specifically, we build on
past research in the fields of argument mining
(Lawrence and Reed, 2020) and argument quality
evaluation (Toledo et al., 2019). Models trained
for these purposes are able to extract arguments
from a passage of text and evaluate the quality
of such arguments respectively. When done se-
quentially, this amounts to a way of assessing the
reasoning present in a piece of text.

We use a number of pre-existing corpora both to
train and test the various models we develop. These
include datasets that have been compiled especially
for scientific argument mining: SciARK (Fergadis
et al., 2021) for training and AbstRCT (Mayer et al.,
2020) for testing. Also, we use a dataset that con-
tains human evaluated arguments for training our
argument quality evaluation model: the Grammarly
Argument Quality Corpus (GAQCorpus) (Lauscher
et al., 2020).

In order to collect a sufficient sample of retracted
articles to evaluate the performance of the complete
system, we use the Retraction Watch database (Mar-
cus and Oransky, 2023). The metadata included
therein allows us to specify the subset of retracted
articles that we are interested in detecting.

Our initial results indicate that implementing
this strategy leads to a considerable improvement
in detecting fraudulent articles, compared with a
number of baselines. This suggests that the devel-
oped method has theoretical validity and merits

further investigation.

2 Related Work

2.1 Scientific Fraud Detection

As awareness grows about the existing and poten-
tial problems caused by academic fraud (Bolland
et al., 2022; Fanelli et al., 2022; Kim et al., 2019;
Garmendia et al., 2019), researchers have begun to
take steps to tackle the problem. There is generally
still an emphasis put on human-centered interven-
tions. Such proposals include introducing more
stringent criteria for publications to choose their
referees (Mavrogenis and Scarlat, 2023), improv-
ing the quality of oversight and guidance offered
by regulatory bodies (Candal-Pedreira et al., 2021),
and producing effective guidelines to help both aca-
demics and journals cooperate to avoid any fraudu-
lent activity (Wager et al., 2017).

Due to the scale of the problem, some re-
searchers have recognised that it is necessary to
at least partially automate the discovery process.
There have been varying degrees of automation
suggested. Zhao et al. (2021) propose a method to
improve the selection of referees. They compare a
vector embedding of the paper under review with
embedded representations of a number of poten-
tial referees’ previous papers to more accurately
determine who has the most relevant expertise.

Other approaches focus on using information
about the authors of the papers or the publica-
tion venue itself. Abalkina has proposed using
the archives (Abalkina, 2021a) and the metadata
(Abalkina, 2021b) of papers that have appeared
in compromised journals in order to detect other
publication venues that may have also been com-
promised. Similarly Chakraborty et al. (2021) fo-
cus on analysing irregular citation patterns to find
self-referencing networks of fraudulent papers.

Some authors have attempted to propose solu-
tions that rely more fully on computational meth-
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ods. Haunschild and Bornmann (2021) investigate
the possibility of using scepticism expressed on so-
cial media as a metric to determine possible fraud-
ulent activity. Furthermore, Kinney et al. (2021)
use measures of text overlap to detect plagiarism
and Horton et al. (2020) attempt to use statistical
methods to uncover patterns in manipulated data.
However, these latter two approaches are not appli-
cable to all types of academic fraud, and would not
necessarily work for faked peer-reviews or papers
produced by paper mills.

We aim to advance the current state of this re-
search by developing and implementing a system
that can make fully automated predictions about
whether a paper has bypassed a legitimate peer-
review, or equivalently has been produced by a
paper mill. We were not able to find any compa-
rable research in the literature, suggesting that our
work constitutes a novel research program.

2.2 Argument Mining

Argument mining (Lawrence and Reed, 2020) is an
important task in Computational Argumentation. It
is the automatic extraction of arguments contained
within text. Once these arguments have been iden-
tified, it is possible to create formal representations
which deliver a greater flexibility and ability to
reason (Peldszus and Stede, 2013).

The task is a very challenging aspect of natural
language processing, and has not yet been solved
with a high level of accuracy. The heterogeneity of
argument types and structure make reliable and con-
sistent representations hard to achieve. However,
since the advent of the transformer architecture
(Vaswani et al., 2017) and the consequent improve-
ment in language modelling capabilities (Devlin
et al., 2019; Brown et al., 2020), advances have
also been made in the field of argument mining.
The ability to fine-tune pre-trained large language
models (LLMs) on task-specific datasets has made
the integration of argument mining into practical
applications a possibility.

There are roughly three subtasks that make up
the argument mining task: the detection of indi-
vidual argumentative entities (e.g. premises and
claims), intra-argument relations (how premises
and claims in arguments relate) and inter-argument
relations (how different arguments relate).

There are a number of specifically curated
datasets for each of these tasks. Stab and Gurevych
(Stab and Gurevych, 2016) demonstrate the feasibil-
ity of developing guidelines that lead to a high inter-

annotator agreement, producing a corpus of over
four hundred annotated persuasive essays. There
are also a number of datasets with a particular focus
on the scientific domain. These include SciARG
(Accuosto et al., 2021), SCiARK (Fergadis et al.,
2021) and AbstRCT (Mayer et al., 2020).

Modelling the distribution of entities (claims and
premises), and modelling the relationships between
these entities are often separated into distinct tasks.
For example, Cocarascu et al. (2020) develop a set
of domain-agnostic models that can be applied to
the relation prediction task. Ruiz-Dolz et al. (2020)
attempt to solve a similar task, focusing on compar-
ing the performance of different transformer-based
architectures.

Similarly to our work, Fergadis et al. (2021)
develop a variety of models that specifically ad-
dress the entity identification subtask. Furthermore,
Mayer et al. (2020) and Accuosto et al. (2021) both
develop two types of model, one for the entity iden-
tification task and one for the relation prediction
task. Thorburn and Kruger (2022), on the other
hand, test different optimisation techniques with a
GPT-like model, to attempt to create a more adapt-
able and versatile approach to different argument
mining subtasks.

2.3 Argument Quality Evaluation

Evaluating the quality of arguments is a relatively
unexplored aspect of Computational Argumenta-
tion. Wachsmuth et al. (2017) set out a broad frame-
work that can be used to help define argument qual-
ity.

There have been a number of practical efforts
to compile such a dataset. Initial efforts used a
pairwise comparison between arguments (Haber-
nal and Gurevych, 2016; Simpson and Gurevych,
2018). This is the most straightforward approach
for annotators but is limited in its applicability to
multiple arguments in different domains.

As a part of the IBM Project Debater, this ap-
proach was refined (Toledo et al., 2019; Gretz et al.,
2019). In order to produce arguments with contin-
uous numerical quality representations, questions
with binary answers were asked about each argu-
ment. Numerous annotators were asked to consider
the same arguments. Various methods of taking a
weighted average are then explored, providing a
continuous quality for each argument between 0
and 1. Joshi et al. (2023) have recently compiled a
similar dataset, but they include ‘argument-analysis
pairs’, which provide additional rationale behind
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Figure 1: An overview of our proposed system architecture.

why the argument is effective.
Lauscher et al. (2020) take a more direct ap-

proach to producing continuous quality ratings.
They take the average of three annotators’ ratings,
on a scale of one to five, over three different mea-
sures of quality. This allows for a more descriptive
and fine-grained interpretation of different aspects
of argument quality. We leverage this innovation
by using state-of-the-art natural language process-
ing techniques to develop an effective model for
argument quality prediction.

3 Methodology

The goal of this research is to test the hypothesis
that evaluating the quality of a scientific article’s
reasoning can be an effective way of determining
whether it was produced fraudulently. In practice,
this amounts to extracting and then evaluating ar-
guments that are indicative of the overall level of
reasoning present in the article. We achieve this by
training two models separately.

An important feature of our framework is that we
only analyse the abstracts of papers. We have two
primary motivations for this decision. Firstly, it pro-
vides an effective way to minimise artefacts in our
data. Research papers are generally heterogeneous
in format, containing inconsistently structured sec-
tions. Abstracts, however, are fairly consistent in
form, and from an argumentative perspective, usu-
ally contain the principle argument motivating the
rest of the paper.

The second reason is that if we are able to demon-
strate that the abstract alone is sufficient, then this
offers practical advantages. Only considering a
minimal subset of the entire text reduces both the
theoretical and computational burden. This latter
consideration is especially pertinent when consid-
ering that deploying such a system would be most
advantageous in situations which require process-
ing high volumes of inputs.

We describe our proposed fraud prediction
framework with the following formalisation.

Let a = {s1, s2, ..., sn} represent a paper ab-
stract consisting of a list of n sentences. We define
a model m1 such that:

m1 : si 7→ cj (1)

where cj ∈ {none, evidence, claim} is the cate-
gory to which the sentence si is mapped.

The list of categorisations c = {c1, c2, ..., cn}
along with the original abstract a is then trans-
formed using a transformation function ϕ:

ϕ : (a, {c1, c2, ..., cn}) 7→ t (2)

where t is the transformed representation of the
abstract a, amounting to a single string.

The transformed abstract is then input to another
model m2:

m2 : t 7→ v (3)
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where v ∈ [1, 5] is a real-valued output.
The final status o of the abstract is determined

by comparing the output v to a threshold T = 3:

o =

{
legitimate, if v > T

fraudulent, if v ≤ T
(4)

Both models in our system architecture (see Fig-
ure 1), are realised based on fine-tuned foundation
models (Bommasani et al., 2021), using data from
a number of different sources. In Section 3.1 we
describe the data we use for fine-tuning and testing
our individual models, as well as testing our system
in its entirety. Sections 3.2 and 3.3 provide descrip-
tions of the Argument Mining (AM) model (m1)
and Argument Quality Evaluation (AQE) model
(m2) respectively. Finally in Section 3.4, we out-
line the entire system as presented in Figure 1.

3.1 Data

There is a relatively limited amount of annotated
data focused on the tasks comprising argument min-
ing, especially those that are relevant to scientific
domains. Likewise, there have been even fewer
datasets compiled for the purpose of training argu-
ment quality evaluation models. However, there
is a sufficient amount of data available to support
the training and testing of the models required to
realise our system.

The SciARK (Fergadis et al., 2021) dataset con-
sists of 1,000 annotated scientific abstracts (con-
taining 12,374 annotated sentences in total), across
a range of different domains (each domain corre-
sponding to a UN Sustainable Development Goal
(Biermann et al., 2017)). For each abstract, every
sentence has been annotated with one of three la-
bels: evidence (equivalent to premise), claim and
neither. This dataset is used to train the AM model.

We use the AbstRCT dataset (Mayer et al., 2020)
for evaluating the performance both of our AM
model, and our fraud prediction system in its en-
tirety. The dataset consists of 669 abstracts, and is
annotated in the same way as the SciARK dataset,
with each sentence being labelled either evidence,
claim or neither. The abstracts are taken from
publications in prestigious peer-reviewed medical
journals. The rigorous and scientific form of argu-
mentation contained in these samples makes them
well-suited for testing the capabilities of the AM
model we developed. Furthermore, the quality of
the journals chosen by the compilers provides us
with a sufficient level of confidence that none of

the samples contained within the dataset were pro-
duced using fraudulent means. Therefore, it is also
suitable to be used as the representative sample
of legitimate abstracts that we use to evaluate our
complete fraud prediction system.

For fine-tuning our AQE model we take 1,104
samples from GAQCorpus, compiled by (Lauscher
et al., 2020). This dataset makes use of arguments
taken from various internet forums. Annotators
were recruited to give each argument a score on
a scale between one and five, for each of three
metrics: cogency, effectiveness and reasonableness.
Despite the subjectivity inherent in human judge-
ments, taking the average of multiple annotators’
scores for each sample reduces the amount of noise
present in the data.

In order to compile a sufficient corpus of fraud-
ulent abstracts, for evaluating the performance of
our system, we collected 420 relevant papers from
the Retraction Watch database (Marcus and Oran-
sky, 2023). The database currently contains tens of
thousands of retracted articles from a wide variety
of different journals. However, there are numerous
reasons cited for each retraction, with the majority
having to do with fake data or plagiarism.

For the sake of this study we are only interested
in the subset of papers that have been published
either by means of a paper mill, or by faking the
peer-review. Furthermore, we restrict the papers we
collect to the medical domain, in order to match the
domain of those contained in the AbstRCT dataset,
which constitute our test set of legitimate abstracts.
We do this so our results are not influenced by
features that are irrelevant to the focus of our study
- namely the subject of the papers.

3.2 Argument Mining model

The AM model we developed is influenced by the
architecture in (Fergadis et al., 2021). The model
consists of three components: a Sentence Encoder,
Context Encoder and a Fully Connected Layer.

The Sentence Encoder is a SciBERT model
(Beltagy et al., 2019) - a BERT-like LLM, which
has been trained specifically to improve perfor-
mance on scientific texts. For each sentence in
the input text, a [CLS] token is outputted, repre-
senting a sentence vector s ∈ R728. These tokens
are used as input to the Context Encoder, providing
a representation of the entire abstract during the
production of the embedding for each sentence.

The Context Encoder provides a detailed rep-
resentation of the specific sentence being consid-
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ered. The best performing implementation from
(Fergadis et al., 2021) uses a BiLSTM (Graves and
Schmidhuber, 2005), taking as input both the sen-
tence vectors before and after the current sentence.
The dense layer simply takes the embedded rep-
resentation and returns an output of one of three
categories: evidence, claim or null.

We augment this model by replacing the BiL-
STM Context Encoder with a transformer, bet-
ter suited for handling long-range dependencies,
which is particularly useful in the context of a sci-
entific abstract where all concepts mentioned are
often relevant throughout the entire passage.

Due to the nature of the setting we forego inter-
argument and intra-argument relation prediction.
This is because all our samples are scientific ab-
stracts. These are relatively short passages, and
also, in theory, should only be presenting the one
principle argument being introduced in the paper.
This means that simply identifying the argumenta-
tive entities is sufficient, as we assume that each
sample contains at most one claim (possibly span-
ning multiple sentences), and potentially multiple
premises supporting that claim.

3.3 Argument Quality Evaluation model

Once the arguments have been extracted from the
raw text, the AQE model is used to evaluate the
quality of the arguments. The models that achieved
the best validation scores on the training data were
all fine-tuned versions of BERT. The best perform-
ing model was a RoBERTA model (Liu et al.,
2019), trained on roughly 1,100 samples contained
within the GAQCorpus (Lauscher et al., 2020).

Before using the data for fine-tuning, we prepro-
cess it to make the arguments more closely aligned
to the arguments found in scientific literature. The
original dataset spans three different domains: de-
bate forums, answer forums and review forums.
We exclude the data taken from the review forum
from our training data, as these samples are the
least argumentative and most subjective in terms
of content. There is also a binary feature included
in the data that determines whether the annotators
deemed the sample argumentative or not - we re-
move all samples where there is not a unanimous
agreement that the sample is argumentative.

Furthermore, we make slight modifications to
the remaining samples in our training set to in-
crease syntactical similarity with the scientific ar-
guments. Rhetorical questions are frequently used
in the forum data, which is not found in any scien-

tific content. There is also use of very short sen-
tences (five words or less), which is practically non-
existent in scientific writing. Therefore, we remove
any sentences that fit into either of these categories,
as well as converting any extraneous punctuation
(e.g. exclamation marks) into full stops. An ex-
ample of the preprocessing is presented in Table
5.

Instead of using an average of the three metrics
which are contained within the GAQCorpus, we
only make use of the cogency rating. This is due
to the relevance of cogency to scientific argumen-
tation, and the relative irrelevance of the other two
metrics (reasonableness and effectiveness) within
the context of scientific literature. To illustrate this,
the definition for cogency used by Lauscher et al.
(2020) to guide the annotators was: ‘[cogency] re-
lates to the logical aspects of [argument quality],
for instance, whether an argument’s premises are
acceptable (local acceptability) or whether they can
be seen as relevant for the conclusion (local rele-
vance)’.

3.4 Full Argumentation-Based System

The final system in its entirety takes the output
from the argument identification model and uses it
to perform a transformation of the input text data.
The transformation is a linearisation (Stede and
Sauermann, 2008) of the extracted argumentative
components, so that a string can be used as input to
the AQE model, reflecting the training data. This
string consists of the claim sentence(s) followed
by the premises. This is chosen as it most closely
resembles the format of the arguments in the non-
scientific training corpus (GAQCorpus).

In order to make the final classification into ‘le-
gitimate’ or ‘fraudulent’, it is necessary to establish
a threshold (T ) which the quality score can be com-
pared to. There are five quality classes in total. In
order to create a system that is less likely to return
false positives (classify fraudulent articles as legiti-
mate), we only consider an argument as legitimate
if it is in the highest two classes of quality. If it is
in the bottom three classes of quality we classify
the sample as fraudulent.

Our decision to choose a threshold weighted to-
wards the classification of samples as fraudulent
was done with the practical purpose of the finished
system in mind, as well empirical validation. Rela-
tive to false negatives (classifying fraudulent docu-
ments as legitimate), false positives (flagging legiti-
mate documents as fraudulent) are less detrimental
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to a system which is built to assist in the detection
of academic fraud.

4 Results and Discussion

In Section 4.1 we present a comparison of our novel
AM model with two existing alternatives. Then, we
outline the performance on the overall fraud predic-
tion task of three novel baselines (Section 4.2) and
the full argumentation-based model (Section 4.3).

4.1 Scientific Argument Mining

In order to evaluate our AM model, described in
Section 3.2, we use two of the best performing
models developed by Fergadis et al. (2021) as base-
lines. All three models are trained on the SciARK
dataset and tested on the AbstRCT dataset.

The results in Table 2 show that the overall
F1 score was best when using our novel scibert-
transformer. As previously mentioned, we infer
that the transformer’s capability to efficiently han-
dle long-range dependencies - compared to the BiL-
STM used in the second best model - is advanta-
geous for this task.

4.2 Baselines for Fraudulent Paper Detection

So that we could provide insightful benchmarks
and ablations for the fraudulent paper detection
task in its entirety, we compared our argumentative
approach with five baselines. This was necessary
due to the novelty of our research, and the conse-
quent absence of existing systems in the literature
that performed a comparable function. Three of
these benchmark utilise BERT-style modes, mir-
roring our main method. The other two use au-
toregresssive LLMs, Mistral (Mistral-7B-Instruct-
v0.2) (Jiang et al., 2023) and Mixtral (Mixtral-
8x7B-Instruct-v0.1) (Jiang et al., 2024).

Our first model, SciBERT direct inference, was
designed to infer legitimacy directly. Instead of
training the model to determine the quality of the
reasoning in a sample as an intermediary step, we
trained it with legitimate and fraudulent samples di-
rectly. For our fraudulent training samples, we col-
lected a separate training set of 556 fraudulent sam-
ples from the Retraction Watch database. These
samples were taken from a diverse range of do-
mains, in order to reflect the diversity of domains
present in the SciARK corpus which we used for
our training set of legitimate samples. Thus we
limited the possibility that the performance of the
model was influenced by subject matter, and in-

stead learnt the ‘legitimacy’ and ‘fraudulence’ fea-
tures present in the respective samples.

We tested various base LLMs and identified
that fine-tuning a SciBERT model resulted in the
best performance. However, its performance was
still lacking. We propose that a significant reason
for this was the limited number of negative sam-
ples contained in our dataset, which restricted the
model’s ability to capture a comprehensive repre-
sentation of the sample space.

The second baseline we investigated, full text
quality, simply skipped the argument identification
stage, and used the original, unmodified abstracts
as input to the AQE model. Similarly, for our third
baseline we first summarised the abstracts using a
LLM, Mixtral, as a form of feature extraction, and
once again used that as input to the AQE model.

The summarisation technique produced better
results than using the full text. However, it was
still relatively ineffective compared to the full
argumentation-based approach. Both the summary
and the argumentative content of a piece of text
are comparable features, but our belief is that the
argumentation-based approach provides a more
faithful representation of the quality of reasoning
in a passage of text.

For our fourth and fifth baselines we leveraged
the task-agnostic, general capabilities of state-of-
the-art LLMs. For both the Mistral and Mixtral
models, we use zero-shot chain-of-thought (COT)
(Wei et al., 2022; Zhang and Parkes, 2023) prompt-
ing. The full prompt can be seen in Appendix C.
All outputs were generated with greedy sampling
(equvalent to setting temperature to 0). As can be
observed in Table 3, the Mixtral model performed
the best out of all the baselines. This is especially
notable in light of the zero-shot setting in which
the experiments were conducted. This introduces
the prospect that the use of even larger LLMs could
present further gains in performance. This conjec-
ture also applies to the use of larger LLMs as the
components of our argumentative system.

4.3 Full Argumentation-Based Model for
Fraudulent Paper Detection

The proposed method demonstrates a considerable
improvement over the baselines, as illustrated by
Tables 3 and 4. By comparing these results to the
five distinct baselines we developed, we highlight
that both the AM and AQE components contributed
to the improved performance of the system.

The favourable comparison with the direct in-
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Model
Evidence Claim Average

P R F1 P R F1 F1

SciBERT-Only 0.778 0.728 0.752 0.808 0.359 0.497 0.625
SciBERT-Bilstm 0.815 0.688 0.747 0.874 0.458 0.601 0.674

SciBERT-Transformer 0.878 0.57 0.693 0.858 0.557 0.675 0.684

Table 2: Performance metrics for the Argument Mining models described in Section 3.2. We compare our novel
Scibert-Transformer model with the previous models introduced in Fergadis et al. (2021). All models are trained on
the SciARK corpus and evaluated on the AbstRCT corpus (Mayer et al., 2020).

Model Accuracy Precision Recall F1

SciBERT Direct Inference 0.543 1 0.109 0.197
Full Text Quality 0.461 1 0.012 0.024
Summary Quality 0.463 0.676 0.23 0.343

Mistral COT 0.622 0.021 1 0.041
Mixtral COT 0.637 0.429 0.537 0.476

Argumentation-Based Model 0.761 0.708 0.648 0.677

Table 3: Performance metrics for the baseline models described in Section 4.2 and our novel methodology
Argumentation-Based Model.

Predicted Fraudulent Predicted Legitimate
Actual Fraudulent 272 148
Actual Legitimate 112 557

Table 4: Argumentation-Based Model’s performance on 1,089 legitimate and fraudulent abstracts.

ference model validates that the development of a
more intricate approach is appropriate and worth-
while. Likewise, the comparisons with the full text
quality and summary quality models, give credence
to the hypothesis that the evaluation of arguments,
rather than full texts or summaries, is beneficial to
the system’s overall performance.

As well as performing better, relative to directly
training a model on legitimate and fraudulent sam-
ples, the methodology developed for evaluating
argument quality provides a more flexible and gen-
eralisable approach. This is due to the noise inher-
ently present in a training set that consists solely of
scientific abstracts. There is no clear way to disen-
tangle useful properties of the data - namely, legiti-
macy of the article - from noisy properties such as
subject matter and syntactical idiosyncrasies. This
would not present such a significant obstacle if the
available data for training were large and diverse
enough, but as this is far from being the case it
must be taken into consideration.

We also gain valuable insights by comparing the
results of the fully argumentative model with the
two baselines that provide different inputs to the
AQE model. We observe that using the arguments

contained within the abstracts as representative fea-
tures is more effective than using the full text, or
using summaries as a feature. There are a num-
ber of possible explanations for this finding. One
plausible suggestion is that mining the arguments
contained within a scientific abstract is a good way
of extracting a representation of the reasoning con-
tained therein, and, furthermore, the quality of this
reasoning is indicative of the article’s legitimacy.
This would confirm our initial hypothesis.

Another factor to consider is the architecture of
the AQE model we have developed. The training
data that we used from the GAQCorpus (Lauscher
et al., 2020) is composed of samples that have been
evaluated for their argumentative quality. The met-
ric we choose to consider (cogency), is something
that is relevant to argumentation, but not so much
for summaries.

4.4 Qualitative Error Analysis

In this section we provide examples and analysis
of mined arguments that were falsely classified
by the AQE model as legitimate and fraudulent
respectively.

Incorrectly classified as legitimate

22



Compared to GES-1 cells, the expres-
sions of miR-214, -catenin and sur-
vivin in MKN-28 cells were upregulated,
along with downregulation of GSK-3
expression. After the transfection of
miR-214 inhibitor and/or pSicoR-GSK-
3, GSK-3 expression was induced in
MKN-28 cells while -catenin and sur-
vivin expressions were inhibited, along
with the increase of cell apoptosis.

Incorrectly classified as fraudulent

At 6 months after the end of RT, global
HRQOL was higher in the TPF arm than
in the PF arm, but the low compliance
does not allow to draw definitive conclu-
sions. Swallowing and coughing prob-
lems decreased more in the TPF arm than
in the PF arm at the end of cycle 2, but
to a limited extent.

Both examples demonstrate the complexity of
the task. The first example, which is taken from
a fraudulent abstract, almost entirely consists of
technical terminology. While the data used to train
SciBERT consists of scientific text, medical liter-
ature contains a large amount of domain-specific
language, which is sometimes exclusively used by
the community working on the specific problem.
Besides this, the content of the argument also seems
to be sound. This is inevitable due to the scale of
papers produced fraudulently, so must be taken into
consideration in the context of our solution. It is
essential that any fully-fledged system takes into
account other factors that may indicate fraudulence,
such as the presence of irregular images or data. In
this case argument quality may be considered as
one out of many features.

For the second example, taken from a legitimate
abstract, one might note some unorthodox gram-
matical constructions as reasons for the fraudu-
lent classification. For example, ‘the low compli-
ance does not allow to draw definitive conclusions’
contains a slight grammatical error (‘allow one to
draw’ would be a more sound construction). While
this is entirely reasonable to expect in a legitimate
manuscript, it may lead to a fraudulent classifi-
cation as it is less commonly found in legitimate
papers compared to those produced by a paper mill.

It is important to note that the above are human
interpretations of the data, and may not be faithful
to the true underlying processes carried out by the
model. Future work could be undertaken to apply

established methods from the explainable AI lit-
erature. Furthermore, there are a diverse range of
incorrect classified samples, with the examples cho-
sen being representative of one type. The reasons
for these errors is likely to vary across inputs.

5 Conclusion and Future Work

The aim of this study was to determine whether
it is possible to automate the detection of fraudu-
lently produced scientific publications. To achieve
this, we introduced and implemented a novel frame-
work, building upon existing architectures from the
argument mining literature.

We developed state-of-the-art methods in the
fields of scientific argument mining and argument
quality evaluation. By using both models in con-
junction, we created a method for evaluating the
quality of reasoning in scientific articles.

We compared this approach to three baselines,
observing favourable comparisons in each case. By
using a variety of baselines we were able to demon-
strate that both the argument mining and quality
evaluation components positively contributed to
the overall performance of the system.

Although the initial results were promising, there
are a number of potential developments that would
merit further exploration. For instance, the qual-
ity evaluation component would benefit from be-
ing trained on arguments that have been taken di-
rectly from scientific papers. Furthermore, intro-
ducing methods to assess the quality of the individ-
ual premises and claims, in addition to the overall
argument, could benefit performance.

As mentioned previously, there are various ad-
vantages to restricting our inputs to abstracts. How-
ever, analysing entire articles also has benefits.
State-of-the-art LLMs have made this plausible.
An evident direction for future work would be the
utilisation of larger, more sophisticated language
models, while keeping in mind the trade-off be-
tween performance and computational cost.

Finally, widening the range of modalities that
are included in the analysis would lead to a more
comprehensive system. It is standard practice in sci-
entific articles to include arguments that consist of
more than just textual components. Images, graphs,
citations and tabular data are all commonly incor-
porated as sources of evidence. An ideal system
would be able to assess the quality and relevance
of all these forms of data with respect to the argu-
ments contained within an article.
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Limitations

The system has not yet been sufficiently scrutinised
to confidently assert that it could be effectively
deployed in a real-world setting. Due to the sen-
sitivity of the domain, it is important that the sys-
tem undergoes extensive testing and is validated
by individuals with expertise in fraudulent article
detection, before it can be effectively and safely
deployed.

Due to the inefficiency of the existing human-
centric process of detecting fraudulent articles,
there is a relatively small dataset of retracted ar-
ticles to use for evaluation. Therefore some caution
should be exercised in making assumptions about
the totality of articles that have been published us-
ing illegitimate means, as there may be bias present
in the subset of articles that have already been de-
tected.
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A Hardware Configuration

All models presented in this paper were trained
on a computing cluster containing the following
GPUs:

• Nvidia Tesla A30 with 24GB RAM

• Nvidia Tesla T4 with 16GB RAM

• Nvidia GeForce GTX Titan Xp with 12GB
RAM

B Code and Data

The following repository contains all relevant code
and data: https://github.com/GIFRN/Scientific-
Fraud-Detection/tree/main.

We also present a detailed breakdown, including
hyperparameters, of the AQE model that we use
for all experiments. This is because we include the
trained model already in the repository, where as
for the AM modle we include the training script
and training data. Hyperparameters were optimised
by means of extensive grid search.

B.1 Argument Quality Evaluation model
The same architecture is used for the results
reported in Tables 3 and 4, and for both of the
‘Quality’ models in Table 3.

Input dimensions
Max token length: 512

RoBERTa Model
Number of training epochs: 5
Number of folds: 5
Dropout rate: 0.2
Batch size: 8

AdamW Optimizer
Learning Rate: 1× 10−5

Weight Decay: 1× 10−2

C Prompt

The following is the prompt used for both the Mis-
tral and Mixtral baselines described in Section 4.2:

"Please return whether the following
scientific abstract is fraudulent or
legitimate. A fraudulent abstract
is one that has been produced
by a paper mill or has not
undergone a proper peer review process.
Please think through your answer

step by step before returning
your final answer.
Present your final answer as
'STATUS: Legitimate'
if the abstract is legitimate or
'STATUS: Fraudulent'
if the abstract
is fraudulent.\nAbstract: " + abstract

D Argument Quality Evaluation
Preprocessing

In Table 5 we show two examples of samples taken
from the GAQCorpus, used for training the AQE
model. We show the samples before and after pre-
processing, and include the rating.
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Original Text Preprocessed Text Cogency
Rating

Wow, that’s tough. Is your assignment
to argue that retribution is socially co-
hesive, or did you come up with this
yourself?
This is what I can think of:
Retributive justice is based on the idea
that criminals should be punished for
undermining social "harmony" or "bal-
ance." Therefore, we can’t dole out
retributive punishment before we first
have a definition of what is social har-
mony or balance. Social harmony and
balance can be defined through laws,
custom, or religion. The PROCESS of
defining social harmony and balance is
socailly cohesive because, to some ex-
tent, we must generally agree on what
the definition of social order is. In other
words, the PROCESS of accepting and
agreeing on laws/customs/religion is so-
cially cohesive.
The rehabilitation theory of punishment
is probably the most socially cohesive
because it is based on rehabiliting the
criminal so that he can successfully
reenter society.

This is what I can think of: Retribu-
tive justice is based on the idea that
criminals should be punished for under-
mining social "harmony" or "balance.
" Therefore, we can’t dole out retribu-
tive punishment before we first have a
definition of what is social harmony or
balance. Social harmony and balance
can be defined through laws, custom,
or religion. The PROCESS of defin-
ing social harmony and balance is so-
cailly cohesive because, to some extent,
we must generally agree on what the
definition of social order is. In other
words, the PROCESS of accepting and
agreeing on laws/customs/religion is so-
cially cohesive. The rehabilitation the-
ory of punishment is probably the most
socially cohesive because it is based on
rehabiliting the criminal so that he can
successfully reenter society.

4

Am I reading this right? A pot head is
waging war on a meth head?! I never
thought this sort of reasoning would
make it farther than the ’idea’ having
moment during a toking. You got more
tar in your head than you do brains. And
yes, Meth addicts DO need jail time.
Every one of them made a clear and
concious decision to pick up that hot
rail, needle or pipe to smoke crystal
when they started and the time it took
to become ’uncontrolably’ addicted, so
they accepted the risks. Besides, MOST
users sell, they keep cutting some out
every time it exchanges hands, so lock
’em up!! And I can’t belive someone
is trying to defend the ’poor’ addicts.
What and idiot you are Cripple play!!!

I never thought this sort of reasoning
would make it farther than the ’idea’
having moment during a toking. You
got more tar in your head than you do
brains. And yes, Meth addicts DO need
jail time. Every one of them made a
clear and concious decision to pick up
that hot rail, needle or pipe to smoke
crystal when they started and the time
it took to become ’uncontrolably’ ad-
dicted, so they accepted the risks. Be-
sides, MOST users sell, they keep cut-
ting some out every time it exchanges
hands, so lock ’em up. And I can’t
belive someone is trying to defend the
’poor’ addicts. What and idiot you are
Cripple play.

2

Table 5: Illustrative examples from the GAQCorpus, before and after preprocessing
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Abstract

The recent Touché lab’s argument retrieval task
focuses on controversial topics like ‘Should bot-
tled water be banned?’ and asks to retrieve rele-
vant pro/con arguments. Interestingly, the most
effective systems submitted to that task still are
based on lexical retrieval models like BM25.
In other domains, neural retrievers that capture
semantics are more effective than lexical base-
lines. To add more “semantics” to argument
retrieval, we propose to combine lexical mod-
els with DeepCT-based document term weights.
Our evaluation shows that our approach is more
effective than all the systems submitted to the
Touché lab while being on par with modern
neural re-rankers that themselves are computa-
tionally more expensive.

1 Introduction

Lexical retrieval models like BM25 (Robertson
et al., 1994) or DirichletLM (Zhai and Lafferty,
2001) are the basis of many of the early argument
retrieval approaches (Chernodub et al., 2019; Pot-
thast et al., 2019; Stab et al., 2018; Wachsmuth
et al., 2017) and also were the most common choice
of many participants of the Touché lab’s shared
task on argument retrieval for controversial ques-
tions (Bondarenko et al., 2020, 2021). A few neu-
ral rankers like K-NRM (Xiong et al., 2017) and
CEDR (MacAvaney et al., 2019) were used by the
task participants but showed to be less effective
than the task’s official DirichletLM-based base-
line. Interestingly, also newer neural retrieval mod-
els like ColBERTv2 (Santhanam et al., 2022) and
LaPraDoR (Xu et al., 2022) are less effective than
BM25 on the Touché subset of the BEIR bench-
mark for zero-shot retrieval (Thakur et al., 2021).

In this paper, we propose to improve the effec-
tiveness of lexical argument retrieval models by
adding a semantic document expansion step that
uses term weights calculated by DeepCT (Dai and

Callan, 2020b). For term weighting, DeepCT uti-
lizes contextualized word representations generated
by BERT (Devlin et al., 2019) and is then fine-
tuned to predict whether a document term is likely
to appear in “relevant” queries. At the inference
step, a fine-tuned model is applied to every docu-
ment in the retrieval collection independently from
the test queries. Hence, an advantage of DeepCT is
that the inference can be done offline before index-
ing the corpus. Another advantage is that DeepCT
does not necessarily require relevance judgments
either for training or for inference making DeepCT
beneficial for retrieval tasks in specialized domains
that have no or little training data.

For our experiments, we use the lexical retrieval
models BM25 and DirichletLM and their combina-
tion with the query expansion model RM3 (Abdul-
Jaleel et al., 2004). We test these models on the
Touché 2020 and 2021 test collections consisting
of 49 and 50 test queries on controversial topics re-
spectively, the args.me corpus (Ajjour et al., 2019)
as a document collection (about 400,000 docu-
ments, i.e., English arguments crawled from on-
line debate portals), and 6,000 graded relevance
judgments (not relevant, relevant, and highly rel-
evant) from Touché. Additionally, we expand the
documents in the retrieval corpus based on the
term weights predicted by fine-tuned DeepCT mod-
els. To fine-tune the DeepCT models (originally
trained on the MS MARCO dataset (Nguyen et al.,
2016)) specifically for the argument retrieval task,
we make use of the args.me structured documents,
consisting of the argument premises, the conclu-
sion, and the main debate topic. We use either the
conclusions or the debate topics combined with the
conclusions as ground truth terms in the reference
field of DeepCT. Afterwards, we apply the fine-
tuned DeepCT model to the whole args.me corpus
and expand the document’s premises by repeating
terms based on the learned DeepCT term weights.

We compare our approaches with the following
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baselines: (1) the most effective Touché systems
(that use BM25 and DirchletLM combined with
query and document processing) and (2) BM25
combined with neural re-rankers: (a) a contex-
tualized late interaction model ColBERT (Khat-
tab and Zaharia, 2020), (b) pointwise cross-
encoders monoBERT (Nogueira and Cho, 2019)
and monoT5 (Nogueira et al., 2020), and (c) a zero-
shot listwise re-ranker LiT5 (Tamber et al., 2023).

To evaluate the retrieval effectiveness, we use
nDCG@5 (Järvelin and Kekäläinen, 2002), the of-
ficial evaluation measure of the Touché task. To
account for missing relevance judgments (up to
60%; see Table 2), we measure nDCG@5 after re-
moving unjudged documents from ranked results
as proposed by Sakai (2007) and use the bpref mea-
sure (Buckley and Voorhees, 2004) which is robust
to missing relevance judgments.

The evaluation results show that our DeepCT-
enhanced lexical argument retrieval approach is
more effective than all the systems submitted to the
Touché task while being on par with modern neural
re-rankers that are more computationally expen-
sive. Our findings thus may indicate the potential
of combining lexical models with semantic docu-
ment expansion for specialized retrieval tasks like
argument retrieval, where little or no training data
(in terms of relevance judgments) is available.1

2 Related Work

Retrieving relevant arguments from the Web is es-
sential to support discussions on controversial top-
ics like ‘Should bottled water be banned?’ (Ajjour
et al., 2019). Until now, lexical retrieval models
like BM25 (Robertson et al., 1994) and Dirich-
letLM (Zhai and Lafferty, 2001) have been the
most effective retrievers for this task (Potthast
et al., 2019). For instance, argument search en-
gines args.me (Wachsmuth et al., 2017), Argu-
menText (Stab et al., 2018), and TARGER (Chern-
odub et al., 2019), all use BM25 for initial retrieval.
However, even though neural retrievers like Col-
BERTv2 (Santhanam et al., 2022), LaPraDoR (Xu
et al., 2022), or COCO-DR (Yu et al., 2022) have
led to effectiveness improvements in many domain-
specific retrieval tasks as evaluated in the BEIR
benchmark (Thakur et al., 2021), for argument re-
trieval (e.g., the Touché subset of BEIR), lexical
retrievers still outperform neural models.

1Code and data are at https://github.com/webis-de/
argmining24-deepct-lexical-argument-retrieval/

Studying argument retrieval approaches was also
carried out as part of the Touché lab’s shared
tasks on argument retrieval for controversial ques-
tions (Bondarenko et al., 2020, 2021). Most of the
participant’s approaches used lexical retrieval mod-
els (i.e., BM25 and DirichletLM) for initial doc-
ument retrieval combined with various query pro-
cessing and reformulation techniques. The initial
document candidates were further re-ranked based
on the estimated document argumentativeness (i.e.,
the presence of conclusions and premises) and ar-
gument quality. Several tested neural rankers, like
K-NRM (Xiong et al., 2017) and CEDR (MacA-
vaney et al., 2019) were less effective (measured
with nDCG@5) than the lexical models.

Lexical retrieval models (that rely on an exact
match between the query and document terms),
conversely, may suffer from “ignoring” the se-
mantic similarity between the query and docu-
ment terms. Hence, we propose to combine lex-
ical retrievers (that are effective for argument re-
trieval) with document expansion based on esti-
mated semantic term importance (term weights)
predicted by DeepCT (Dai and Callan, 2020b,a).
The DeepCT model exploits the BERT (Devlin
et al., 2019) fine-tuning paradigm by fine-tuning
a pre-trained BERT model to predict the impor-
tance of words in documents w.r.t. reference terms
(e.g., query terms). Fine-tuning aims to minimize
the mean square error between the predicted term
weights and the ground truth term weights. The
ground truth labels can be generated using docu-
ments only, relevance labels, or pseudo-relevance
feedback. In our work, we use the documents-
only approach which does not require manual rele-
vance labels for fine-tuning DeepCT (cf. Section 3
for more details). The fine-tuned DeepCT is then
applied to the documents and predicts the docu-
ment term importance scores. Finally, the docu-
ments are modified by repeating terms proportion-
ally to predicted weights (w ∗ 100, where term
weights w ∈ [0, 1]), thus boosting the term fre-
quency of the repeated terms in the inverted index.
Thus, lexical retrieval models that rely on the term
frequency as a relevance signal can benefit from
repeated “relevant” document terms. It has been
shown that combining DeepCT with lexical models
improves the effectiveness of ad hoc retrieval (Dai
and Callan, 2020b,a) on general-domain document
collections, e.g., MS MARCO (Nguyen et al.,
2016) or Wikipedia articles (Dietz et al., 2017).
Thus, we aim to test a combination of lexical re-
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trieval models with semantic document expansion
for the argument retrieval task.

For the evaluation of argument retrieval ap-
proaches, several datasets (Abbott et al., 2016;
Hidey et al., 2017; Ajjour et al., 2019) and the
Touché test collections (Bondarenko et al., 2020,
2021) emerged. By far the largest and hence one of
the most frequently used document collections, the
args.me corpus, contains about 400,000 arguments
crawled from online debates on controversial top-
ics (Ajjour et al., 2019). The Touché shared tasks
on argument retrieval for controversial questions
also used the args.me corpus. Additionally, the
task organizers created and published manual rele-
vance judgments and runs (ranked results) submit-
ted by the task participants. Our experiments use
the Touché data from the years 2020 and 2021.

3 Data and Approach

Data. In this work, we use the datasets from the
Touché 2020 and 2021 tasks on controversial argu-
ment retrieval (Bondarenko et al., 2020, 2021). The
task was to retrieve and rank relevant argumentative
documents for queries addressing socially impor-
tant (and often controversial) topics like ‘Should
bottled water be banned?’. The document collec-
tion was the args.me corpus (Ajjour et al., 2019)
containing about 400,000 arguments crawled from
different online debate portals. Each document is
structured and contains a debate topic field (e.g.,
‘Pollution’), an argument conclusion (e.g., ‘Plastic
bottles should be banned’), and a main content
containing several premises (i.e., reasons, opin-
ions, or evidence that support or attack the conclu-
sion). We access all the data inside the PyTerrier
framework (Macdonald and Tonellotto, 2020) via
ir_datasets (MacAvaney et al., 2021), includ-
ing queries, document collection, and available
document-level manual relevance judgments (the
participants’ systems are available at the Touché
task website https://touche.webis.de).

DeepCT-based term weighting. Our pilot ex-
periments using the original DeepCT model pre-
trained on the MS MARCO dataset showed that the
retrieval effectiveness of lexical models degrades
(cf. DirichletLM + DeepCT achieves nDCG@5
of 0.59 vs. 0.83 that DirichletLM achieves on the
unmodified args.me corpus). This is likely due to
the document domain change (general domain vs.
argument retrieval). We thus opt for fine-tuning
DeepCT for the argument retrieval task on the

Table 1: Example of a training sample to fine-tune
DeepCT created using the conclusion ‘Banning bottled
water would reduce waste and protect the environment’
as a reference field. The important terms identified by
DeepCT at the inference step are in bold; superscripts
indicate the number of times each term is repeated in the
document (term weights predicted by DeepCT (from 0
to 1) multiplied by 100).

Passage: Plastic water(48) bottles(23) were the third
most commonly collected waste(34) during the
Ocean Conservancy’s International Coastal
Cleanup behind cigarette butts and plastic
food wrappers. By 2050, estimates suggest
there will be more plastic waste(14) by weight
in the oceans than fish. [. . . ] A nation-
wide ban(27) on bottled(21) water(17) would
lead to an estimated 68 billion fewer plastic
water(14) bottles(19) being manufactured, pur-
chased, used, and discarded.

Reference: water: 1.0, bottles: 1.0, waste: 1.0, ban: 1.0,
bottled: 1.0.

args.me corpus. To create training samples for fine-
tuning, we use a content-based weak-supervision
strategy proposed by Dai and Callan (2020a) that
determines the target important terms by utilizing
the document’s structure (i.e., different fields like
debate topic, conclusion, and premises in our case).
Since the Touché queries are used for testing, as a
reference field for fine-tuning, we use either an ar-
gument’s conclusion field of the args.me document
or a concatenation of a debate topic and conclusion.

Following the original DeepCT fine-tuning strat-
egy (Dai and Callan, 2020b), we split the premises
of the args.me documents into passages of 500
tokens to comply with the DeepCT input limit
of 512 tokens. To identify the reference field’s
ground truth terms, we remove stop words using
NLTK (Bird, 2006) from passages, conclusions,
and debate topics. Afterwards, we apply stem-
ming using the NLTK’s Porter stemmer (Porter,
1980). The reference field’s ground truth terms are
selected as follows: If there is a stem of a word
from a passage and this stem also appears in the
stemmed conclusion (or debate topic + conclusion),
the original form of the word is added to the refer-
ence field. The target term weights are assigned 1.0
(see Table 1 for an example).

To fine-tune DeepCT, we use three variants of
the args.me corpus: (1) all documents in the corpus;
and to analyze the effect of possible train-test leak-
age: (2) judged documents from the Touché 2020
and 2021 tasks are removed, and (3) top-50 docu-
ments from all systems submitted to Touché 2020
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Table 2: Retrieval effectiveness of the best data transformation technique to fine-tune DeepCT (as per nDCG@5)
per retrieval model (BM25, DirichletLM (DLM), and their combinations with RM3; model parameters tuned, see
Column ‘PT’) on the Touché 2020 and 2021 datasets: (1) all args.me documents, (2) judged documents are removed,
and (3) top-50 documents are removed. Document fields used as the reference field for DeepCT: debate topic
and conclusion (TC), or conclusion only (C). Both retrieval models without DeepCT doc. term weighting, best
Touché systems, and neural baselines from TIREx are reported for comparison. The nDCG@5 scores are evaluated
after removing unjudged documents (cf. the ratio of retrieved documents with relevance judgments, ‘judged@5’).
The bpref score is robust to unjudged documents. Underlines denote the best system per metric; bold indicates
significant equivalence to the best system within ±0.1 (two one-sided t-tests, p < 0.05, Bonferroni correction).

Retrieval model PT Data transf. nDCG@5 bpref judged@5

To
uc

hé
20

20

DeepCT + DLM + RM3 ✓ (1), C 0.88 0.71 0.45
BM25 + monoT5 × n/a 0.87 0.81 0.41
DeepCT + BM25 + RM3 ✓ (2), TC 0.87 0.77 0.46
BM25 + RM3 ✓ n/a 0.87 0.71 0.43
BM25 + LiT5 × n/a 0.86 0.51 0.39
BM25 + monoBERT × n/a 0.85 0.79 0.41
DeepCT + BM25 ✓ (2), TC 0.84 0.71 0.47
BM25 + ColBERT × n/a 0.83 0.77 0.42
Best Touché × n/a 0.83 0.70 1.00
DeepCT + DLM ✓ (2), TC 0.82 0.68 0.47
DLM + RM3 ✓ n/a 0.82 0.58 0.51
BM25 ✓ n/a 0.80 0.64 0.44
DLM ✓ n/a 0.78 0.57 0.56

To
uc

hé
20

21

BM25 + monoT5 × n/a 0.77 0.80 0.70
DeepCT + BM25 ✓ (3), TC 0.74 0.74 0.78
DeepCT + BM25 + RM3 ✓ (2), TC 0.74 0.74 0.70
Best Touché × n/a 0.74 0.73 1.00
DeepCT + DLM ✓ (1), TC 0.74 0.72 0.79
BM25 + monoBERT × n/a 0.73 0.77 0.69
BM25 + LiT5 × n/a 0.73 0.59 0.79
DeepCT + DLM + RM3 ✓ (1), TC 0.70 0.73 0.72
BM25 + RM3 ✓ n/a 0.70 0.65 0.82
BM25 + ColBERT × n/a 0.69 0.75 0.63
BM25 ✓ n/a 0.67 0.62 0.95
DLM ✓ n/a 0.67 0.62 0.94
DLM + RM3 ✓ n/a 0.64 0.56 0.75

and 2021 are removed from args.me. After expand-
ing the passages using the fine-tuned DeepCT mod-
els, the passages are concatenated back into com-
plete documents. The original args.me corpus is
then modified with the three differently fine-tuned
DeepCT models, resulting in three corpus variants.

Retrieval models. For every variant of the modi-
fied corpus, we test the effectiveness of BM25 and
DirichletLM and their combination with the query
expansion model RM3. We select the model’s
parameters using grid search and two-fold cross-
validation (each fold is either the Touché 2020
or 2021 relevance judgments) implemented in
PyTerrier (Macdonald and Tonellotto, 2020).

4 Evaluation

We compare our approaches (lexical retrieval mod-
els with DeepCT-based corpus transformations)

with the most effective systems at Touché 2020
(49 queries, and 2,298 relevance judgments)
and 2021 (50 queries, and 3,711 judgments) as
well as with four strong neural retrieval baselines
implemented in TIREx (Fröbe et al., 2023).

Due to the high portion of missing judgments
for systems not in the Touché’s original pool
(cf. column ‘judged@5’ in Table 2), we measure
nDCG@5 (Järvelin and Kekäläinen, 2002), the of-
ficial evaluation measure of the Touché task, af-
ter removing unjudged documents as proposed
by Sakai (2007). In our evaluation, we also in-
clude the bpref measure (Buckley and Voorhees,
2004) that is invariant to missing judgments. While
removing unjudged documents and using bpref
have been accepted in IR evaluation, filling in
missing judgments by manual annotation can pro-
vide more robust evaluation results in future work.
We use the effectiveness measures implemented in
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ir_measures (MacAvaney et al., 2022).
At Touché 2020, the most effective system

(highest nDCG@5 and highest bpref; cf. Table 2)
was the official Touché task baseline that used
Lucene’s (Bialecki et al., 2012) DirichletLM im-
plementation without any query or document pro-
cessing (all the participants’ systems were less ef-
fective). In 2021, the most effective participants’
systems were the following: (1) Lucene’s BM25,
stop word removal, and boolean OR query (highest
nDCG@5), and (2) Lucene’s DirichletLM, stop
word removal, and stemming using the Krovetz
stemmer (Krovetz, 1993) (highest bpref).

We complement the best systems at Touché
(which are all based on lexical retrieval) with
four neural re-rankers: (1) ColBERT (Khattab
and Zaharia, 2020), a contextualized late interac-
tion model that uses BERT (Devlin et al., 2019),
(2–3) monoBERT (Nogueira and Cho, 2019) and
monoT5 (Nogueira et al., 2020), two pointwise
cross-encoder models based on BERT and T5 (Raf-
fel et al., 2020), and (4) LiT5 (Tamber et al., 2023),
a zero-shot listwise re-ranker using T5. All four
models were used in a re-ranking setting using
TIREx (Fröbe et al., 2023), to re-rank the top-1000
documents retrieved by BM25.

Results. With respect to both nDCG@5 and
bpref, our approach of using DeepCT for seman-
tic document term weighting improves over the
Touché best systems when using the BM25 retrieval
model. When using DirichletLM, the DeepCT term
weighting does not outperform the participants’ sys-
tems on the Touché 2021 data. We also find that
the best neural baseline, monoT5 as a re-ranker,
is also more effective than the best Touché sys-
tems of 2021, while the other neural re-rankers fall
back behind. Our most effective DeepCT-based
approach does not outperform monoT5; yet, it is
on par with monoT5 for Touché 2020 data (signifi-
cantly equivalent to the best system within a ±0.1
band, see Table 2) and not far off on the 2021 data.
The promising effectiveness indicates the potential
of combining lexical models with semantic docu-
ment term weighting for argument retrieval tasks.
In contrast to neural models, however, DeepCT is
applied at index time and does not require model
inference at query time. As we also showed, fine-
tuning DeepCT does not require manual relevance
judgments. Thus, our approach can have beneficial
properties for deployment in low-resource environ-
ments which is common for specialized tasks like

argument retrieval.
Furthermore, in at least half of the retrieval sce-

narios, fine-tuning DeepCT on the args.me docu-
ments after removing the judged ones, results in
the highest evaluation scores. Thus, we do not
observe strong evidence of the train-test leakage
influence on the retrieval results. Moreover, com-
bining an argument conclusion with a debate topic
for fine-tuning DeepCT often benefits the retrieval
effectiveness of lexical models.

5 Conclusion

In this paper, we proposed to combine lexical re-
trieval models with semantic document expansion
for argument retrieval. Specifically, to calculate
the term weights, we fine-tuned DeepCT on the
args.me corpus. The main advantages of DeepCT
are that the calculation of term weights can be done
in an offline fashion before document indexing and
that its training does not require manual relevance
judgments. This is especially important in the spe-
cialized domains (e.g., argument retrieval), where
no or little training data is available. Furthermore,
at query time only lexical retrieval models are used
on the expanded documents that require less com-
putational resources than neural models.

Our evaluation results showed that adding some
“semantics” to strong lexical argument retrieval ap-
proaches improves the overall effectiveness over
the lexical retrieval alone. Additionally, we showed
that our approach is on par with modern neural re-
rankers, which themselves can be more computa-
tionally expensive. However, we also indicated that
for a more robust conclusion, further experiments
should be conducted, where the missing relevance
judgments are filled.

Another potentially interesting future direction
can be to include the argument mining step in
the document expansion process, for instance, us-
ing only argumentative parts (conclusions and
premises) of documents for fine-tuning DeepCT.
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Abstract

Argumentative Relation Classification is the
task of determining the relationship between
two contributions in the context of an argumen-
tative dialogue. Existing models in the litera-
ture rely on a combination of lexical features
and pre-trained language models to tackle this
task; while this approach is somewhat effec-
tive, it fails to take into account the importance
of pragmatic features such as the illocution-
ary force of the argument or the structure of
previous utterances in the discussion; relying
solely on lexical features also produces mod-
els that over-fit their initial training set and do
not scale to unseen domains. In this work, we
introduce ArguNet, a new model for Argumen-
tative Relation Classification which relies on
a combination of Dialogue Acts and Dialogue
Context to improve the representation of argu-
ment structures in opinionated dialogues. We
show that our model achieves state-of-the-art
results on the Kialo benchmark test set, and
provide evidence of its robustness in an open-
domain scenario.

1 Introduction

Argumentative Dialogues are discussions between
two or more parties involving an opinionated topic,
i.e. any topic which may divide the interlocutors
into a number of conflicting opinions. These dis-
cussions are usually different from ordinary conver-
sations, in that the speakers’ goal is usually to con-
vince their interlocutors of their own point of view
by defending their own stance and attacking their
opponents’ arguments. Figure 1 shows an example
of a debate from the Kialo online debate platform.
A key aspect in the study of Argumentative Dia-
logues is identifying the relationship between an
argument step in the discussion and preceding argu-
ment steps introduced by other speakers; this task
is commonly referred to as Argumentative Relation
Classification (Stab and Gurevych, 2014), or some-
times Argument Polarity Prediction (Cayrol and

Lagasquie-Schiex, 2005) when it only involves a
binary classification between two possible relations.
In this work, we will use the term Argumentative
Relation Classification, to avoid any confusion
with similar tasks such as Sentiment Analysis or
Stance Classification.

Figure 1: An example of a debate from the Kialo online
debate platform. Green nodes agree with the original
thesis (in blue), while red nodes disagree with it. Nodes
are annotated with the argumentative move that they
perform on their parent node in the graph (i.e. Support
or Attack). Users annotate their own stance towards the
thesis, as well as their argumentative move towards the
node they are responding to.

Existing works in the literature that aim to
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solve this task usually rely on either hand-crafted
syntactic and lexical features (Stab and Gurevych,
2014; Lenz et al., 2020), pre-trained language
models (Agarwal et al., 2022; Ruiz-Dolz et al.,
2021) or both (Cocarascu et al., 2020). While
these models are becoming increasingly accurate,
there are some shortcomings in their approach.
First, they often ignore any non-lexical aspect
of the dialogue, which hinders their capability
to correctly understand the conversation. Sec-
ond, they have limited understanding of the
surrounding context of the argument contributions,
and struggle to take long-term dependencies
into account. Finally, they are often tested in a
domain-specific scenario in which the system
learns to predict relations between argument
contributions that belong in the same dataset it was
trained on; this makes it hard to correctly assess
their capability to adapt to unseen conversations,
which is crucial for practical applications such
as the development of Automated Dialogue Agents.

In this work, we explore the hypothesis that con-
textual information and pragmatic features (such
as Dialogue Act Tags) can be highly beneficial in
increasing the accuracy of Argumentative Relation
Classification models. We also aim at analysing
how much existing models can generalise to
entirely unseen topics of discussion, and how these
features can help a model become less dependent
on its training domain. There is evidence in the
literature that Dialogue Act Tags may be used as
a feature to improve a model’s understanding of
the argumentative structure of a debate (Petukhova
et al., 2016; Budzynska et al., 2014). There
is also evidence that contextual information is
highly beneficial for Argument Mining tasks and,
more specifically, to increase the accuracy of
Argumentative Relation Classification models
(Agarwal et al., 2022).

We build on this existing evidence and introduce
ArguNet, a novel approach to Argumentative Rela-
tion Classification that relies on on a combination
of Dialogue Acts and a specialised encoding of
the previous nodes in the debate. ArguNet uses
ISO 24617-2 Dialogue Acts (DAs) annotated with
the DASHNet architecture (Mezza et al., 2022)
to enrich the input utterances with additional
syntactic and pragmatic information. BERT
(Devlin et al., 2018) is used to encode the enriched
input utterances into dense sentence embeddings,

with the addition of Utterance Manipulation
Strategies from Whang et al. (2021) to further
increase the effectiveness of the contextual
embeddings from BERT. Our approach is trained
and tested on data from the Kialo online debate
platform, a high-quality, publicly-available source
of conversations annotated with argumentative
relations. We use the same Kialo scrape introduced
by Agarwal et al. (2022); however, instead of
shuffling the argument contributions and dividing
them in a training and test split, we split at the
debate level, so that contributions from the same
debate will not appear in different splits. This is
done to test the hypothesis that existing models
identify lexical information in the training debates
and are able to use this information when tested on
argument contributions from the same debates. We
also sampled an additional, smaller collection of
Kialo debates called KialoAbortion that involve
discussions on reproductive rights, which we use
to further test our hypothesis that Argumentative
Relation Classification is highly sensitive to the
topic of the classified debates.

In our experimental section, we provide evidence
that the ArguNet architecture achieves state-of-the-
art results on the Kialo dataset; we also provide
evidence that our model outperforms existing mod-
els in the literature when tested on debates from
the KialoAbortion test set, which shows how Ar-
guNet can generalise to unseen domains better than
existing architectures.

2 Related Work

The formal study of argumentative discussions is
known in the literature as Argumentation Theory
(van Eemeren et al., 1996). Walton (2009) divides
argumentative study into four separate tasks: identi-
fication, which involves identifying Argumentative
Dialogue Units (ADUs) in a dialogue and inserting
them into a pre-determined argumentation scheme;
analysis, which deals with identifying premises
and conclusion of each argument; evaluation,
which involves assessing an argument’s quality and
persuasive power; and invention, which involves
the creation of novel arguments for the debate. In
this work we will focus on the task of identification
of pre-constructed ADUs in an argumentation
scheme.

The identification of a logical structure for
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reasoning goes back to the seminal works by
Pollock (1987) and (Nute, 1988), which intro-
duced Defeasible Logic, a formalism in which
conclusions are supported by premises that may no
longer be justified when additional premises are
introduced. Dung (1995) introduced an abstract
theory of Acceptability of Arguments in which
arguments are seen as a set of logical statements,
and each argument can be accepted or defeated
depending on whether it clashes with other
arguments. Prakken (2010) elaborated on this
theory and presented a framework for structured
arguments in which arguments can be supported
with premises that justify their validity, and other
arguments can attack the speaker’s viewpoint by
either attacking the argument directly, or one of
its premises. Cabrio and Villata (2012) combine
textual entailment and argumentation graph into
a unified framework that aims at automatically
detecting accepted and defeated arguments based
on the entailment between them. Lenz et al.
(2020) adopted this scheme in their study on
Argumentative Relation Classification on the Kialo
corpus, and defined Default Inference and Default
Conflict relations between arguments that support
and attack each other respectively. The scheme was
adopted by Fabbri et al. (2021), who use Natural
Language Inference models to directly compute
Argumentative Relations. This approach, however,
does not distinguish between the semantic problem
of determining logical relations between argument
steps and the pragmatic problem of determining
dialogue moves in a sequence of contributions.

Rosenfeld and Kraus (2016) introduced a
graph-like scheme for argumentative moves in a
debate called the Bipolar Argumentation Graph
(BAG), in which claims are represented as nodes
in a weighted graph, and can be supported by
other claims or premises that can either Support
or Attack each other. As the Kialo dataset uses
a graph-like structure that resembles a BAG, we
will sometimes use their terminology in this work,
particularly when referring to the argumentative
moves between argument nodes.

Various models have been proposed in the
literature for the annotation of argumentation
schemes. One of the earliest examples of a
formal approach to Argumentative Relation
Classification is Cabrio and Villata (2012), which
proposes an approach based on Textual Entailment.

Naderi and Hirst (2016) uses a combination of
Skip-Thought Vectors and Cosine Similarity to
predict argumentative relations in parliamentary
debates; their work is one of the earliest that takes
advantage of pre-trained word embeddings for this
task. Cocarascu and Toni (2017) propose a neural
architecture based on LSTM cells to annotate a
multi-topic corpus which included debates on
movies, technology and politics; they formulate
the problem as a three-way classification problem
between the classes Attack, Support and Neither.
Cocarascu et al. (2020) proposed a set of strong
baselines for argumentative relation prediction in
a dataset-independent setting, which included an
attention-based model and an autoencoder. Their
emphasis on dataset-independent classification
is highly relevant to our work; however, they do
not analyse the difference between in-domain and
out-of-domain accuracy for their model and they
do not provide details on how they split their data
when separating training and test sets.

Recently, Agarwal et al. (2022) proposed
GraphNLI, a graph-based neural architecture that
uses graph walking techniques to obtain contextual
information, which is then encoded with RoBERTa
embeddings (Liu et al., 2019). Their model was a
source of inspiration for our work, as it shares our
reliance on context encoding for Argumentative
Relations Classification; however, their approach
does not use pragmatic features like Dialogue
Acts, and it also uses weighted averaging for
embeddings rather than relying on a structured
approach for context encoding, which we argue
is less effective when trying to capture contextual
information.

The idea of adopting Dialogue Acts (DAs) as
input features for Argument Mining systems has
been investigated before in the literature. Fouqueré
and Quatrini (2013) proposed a unified framework
for argumentative analysis and inference which
used DAs as part of the argumentation scheme,
and used it to annotate a discussion from Prakken
(2008). Budzynska et al. (2014) introduced Infer-
ence Anchoring Theory (IAT), a framework de-
signed to model arguments via a combination of
argumentative moves and the DAs associated with
them. Both works utilised DA schemes that are
difficult to adopt due to the scarcity of annotated
data. Petukhova et al. (2016) use ISO 24617-2 DAs
as part of a model designed to understand the ar-
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Dimension Communicative Function
Task PropQuestion, SetQuestion,

ChoiceQuestion, Inform, Agree,
Disagree, Answer, Directive,
Commissive

Social Greeting, Goodbye, Thanking,
AcceptThanking, Apology, Ac-
ceptApology

Feedback AlloFeedback

Table 1: The DASHNet tagging scheme. Tags, also
known as Communicative Functions, are grouped in
Semantic Dimensions which represent different aspects
of utterance functions

gumentative behaviour of participants in a debate
in order to predict its outcome. This is the official
standard taxonomy for DA tagging, and includes
domain-independent tags across various semantic
dimensions that cover different aspects of the con-
versation (e.g. Social Obligations, Feedbacks etc.)
While their study provides useful insights on how
DAs can be used to model argumentative discus-
sions, it is limited by the use of outdated ML meth-
ods for the task and was tested on a limited number
of debates. In our work, we adopt ISO 24617-2
DAs due to their flexible, multi-dimensional and
domain-independent taxonomy; we rely on our pre-
vious DASHNet model from Mezza et al. (2022)
which achieved state-of-the-art accuracy on vari-
ous benchmark test sets for DA tagging. Table 1
illustrates the DASHNet tagging scheme.

3 Methodology

3.1 Task Definition

A debate D comprises of a set of Argument Contri-
butions D = {A0, , ..., AN} arranged as nodes in a
tree structure, with contribution A0 being the root
of the tree and representing the Thesis (or Topic)
of the debate, and with each contribution Aj com-
prising one or more sentences connected to the the-
sis node A0 via a sequence of nodes Aj−1, ..., A0,
which we will refer to as the Context of the argu-
ment. Finally, each contribution Aj is connected to
its predecessor Aj−1 with an Argumentative Move
Mj ∈ {Support, Attack}. We define Argumen-
tative Relation Classification as the task of auto-
matically identifying the argumentative move Mj

characterising the relation between Aj and Aj−1.

3.2 Data

For this study, we chose to work with data from the
Kialo online debate platform 1. We have decided
to use Kialo because it is a highly-curated platform
with moderated debates and a vote system for posts,
which minimizes the amount of noise, ad hominem
attacks and other irrelevant information in the
debate. Moreover, as the dataset is moderated, it is
free of indentifiable information about individuals
or offensive content. Finally, there is extensive
research on many aspects of the Kialo corpus,
such as the argument specificity and stance of
the participants (Durmus et al., 2019) and the
argumentative relevance of its conversations (Guo
and Singh, 2023). Kialo debates are organised
in a weighted graph-like structure: nodes in the
graph represent individual, fully-formed arguments
from a single participant in the debate and are
called Contributions. Contributions are linked
together with weighted edges, with the weights
representing the Argumentative Relation between
the two contributions linked by the edge. Every
debate graph forms a tree-like structure, with
the thesis being debated as the root node of the
tree; dialogues have multiple participants, and the
participants construct the tree structure collectively.

We use a scrape of Kialo introduced in Agarwal
et al. (2022), which we refer to as KialoDataset,
which is a complete scrape of the website as of
January 2020. We also collected a newer scrape of
the website, which we refer to as KialoAbortion,
focusing on a specific topic; we choose Reproduc-
tive Rights as this is a very popular and polarising
debate topic at the time of writing. We made sure
that no debates from the KialoAbortion corpus ap-
pear in the KialoDataset corpus, so that the former
could be used in domain studies without the risk of
data leakage. The KialoDataset corpus contains a
total of 1,470 debates and 311,238 contributions,
of which 1,051 debates (231,945 contributions) are
used for training, 278 debates (53,699 contribu-
tions) for testing, and the remaining ones for vali-
dation. The KialoAbortion corpus is significantly
smaller, with a total of 40 debates (10,584 contri-
butions), of which 27 debates (8,970 contributions)
are used for training, and the remaining ones for
testing. Experiments in the literature sometimes
split the debates without preserving their integrity;
this Single Contribution splitting strategy produces

1https://www.kialo.com/
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Figure 2: The ArguNet architecture.

splits which may contain argument contributions
from the same debates. In contrast to that approach,
we adopt a Whole Debate splitting strategy and
split our data at the debate level, meaning that each
split contains whole debates and contributions from
the same debate do not appear in different splits.

3.3 Model

In this section we will outline the details of
the ArguNet model for Argumentative Relation
Classification. Figure 2 provides an overview of
the model’s architecture. ArguNet is a transformer-
based architecture with a few enhancements
designed to increase its accuracy when dealing
with argumentative data. It uses BERT (Devlin
et al., 2018) to produce dense embeddings of each
token in the input arguments. In order to increase
the model’s ability to correctly understand each
argument’s underlying meaning, we enhanced the
input of ArguNet with ISO 24617-2 Dialogue Act
(DA) Tags extracted with the DASHNet architec-
ture (Mezza et al., 2022). We chose the DASHNet
classifier because of its multidimensional and
open-domain nature, which suits our use case
very well; moreover, the model uses data from the
Internet Argument Corpus (Abbott et al., 2016;
Walker et al., 2012), which is similar in nature and
scope to the Kialo data.

ArguNet also uses Utterance Manipulation
Strategies (UMS) from Whang et al. (2021) to

obtain a better encoding of the context of the
arguments to classify: special "[INS]" and "[DEL]"
tokens are randomly inserted in the input and the
corresponding utterance is either removed (in the
case of "[DEL]") or erroneously inserted in the
wrong spot (in the case of "[INS]"). The network
has separate loss functions that control its learning
of the correct UMS tags; this is combined with the
classification loss from the final Softmax classifier,
and the losses are averaged together to produce
the final loss of the network. We added UMS to
this model due to the high relevance of the order
of debate turns in understanding argumentative
moves; previous work acknowledged this, but
leveraged context in ways that do not take into
account the exact order of the utterances, such
as weighted sum of embedded turns (Agarwal
et al., 2022). The order of previous contributions is
especially relevant to our architecture as it relies
on context-aware DAs (Mezza et al., 2022); as
we show in Section 4.4, UMS and DAs function
especially well when combined.

Our input is an argument contribution
AN = T1, ..., TM , where Ti is the i-th token
of the contribution, together with its context
CAN

= AN−1...AN−k, where k is the context
window size of our model. We keep the window
size at 5, following evidence in the literature
that this is the optimal amount of context for
an Argumentative Relation Classification model
(Agarwal et al., 2022). We also only utilise
argument contributions that directly preceded
the target contribution in the debate, as opposed
to alternative branches in the graph or future
arguments in the discussion; this is done to make
our model suitable for a real-life application in
which future arguments may not be available for
the analysis.

Our data is pre-annotated with the DASHNet ar-
chitecture to obtain a DA-enriched argument contri-
bution ÃN = T1, ..., TM , [SEP ], DA1, ..., DAH .
Each contribution in the context is also annotated
with its DA tags. Figure 3 shows an example of an
argument contribution annotated with DASHNet
Dialogue Acts; note that DASHNet tags provide
structural information about single utterances in
the contribution, which we argue are highly ben-
eficial to understand Argumentative Moves in a
debate. As DASHNet operates on individual utter-
ances, a contribution may have multiple DA tags
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Figure 3: An example of an argument snippet annotated
with Dialogue Acts. Note that DAs are annotated for
each individual utterance in the contribution, and DAs
might belong to different semantic dimensions (in this
example, DAs from the Task and Feedback dimensions
are shown)

associated with it. The input is then reshaped to
utilize Utterance Manipulation Strategies, similarly
to the UMS-ResSel model introduced in (Whang
et al., 2021). We only utilize Insertion and Deletion
strategies, as we found in our experiments that the
Search strategies did not impact the accuracy of
the resulting model when the other two strategies
were present. For the insertion strategies, a target
argument contribution in the context is randomly
removed from its original position and placed at the
end of the context window. Special [INS] tokens
are placed before each contribution in the context
to encode whether the target contribution should be
placed in that position. Target values for the [INS]
tokens are 1 for the position in which the target
argument contribution originally belonged, and 0
for all other tokens. For the deletion strategies, a
random outlier contribution from a different con-
text window is randomly placed in a random place
in the context. Special [DEL] tokens are placed
before each argument contribution in the context
to encode whether that contribution is the outlier
argument or not.

The input is concatenated with its UMS-
enhanced context and they are all passed to the
BERT model, which produces embeddings for each
token in the input (including the DA tags and the
UMS tokens). A binary cross-entropy loss function
is applied to the UMS tokens to determine whether
the network correctly guessed the positions of the
argument contributions in the context. The tokens
are then stacked together to produce a dense input
representation which is then fed to a Softmax Clas-
sifier similar to the one used in Sentence-BERT
(Reimers and Gurevych, 2019). The final loss of
the model is the sum of the classification loss and
the UMS losses.

4 Experiments and Results

In this section, we illustrate the results of our ex-
perimental study. We ran three sets of experiments
for this study: the first one was aimed at assess-
ing ArguNet’s accuracy when trying to determine
the Argumentative Relation between two argument
contributions, and compare it to existing methods
in the literature, the second one was aimed at mea-
suring the impact of each feature of the model via
an ablation study, while the third one aimed at mea-
suring how much our model and existing models
rely on domain-specific lexical information in or-
der to produce their prediction. We replicated the
following models from the literature:

• Majority Baseline: this is just the frequency
of the most prevalent argumentative move in
the dataset. Both of our datasets are reason-
ably balanced: KialoDataset is comprised of
56.2% Attack relations and 43.8% Support re-
lations, while KialoAbortion contains 54.8%
Attack relations and 45.2% Support relations.

• ReCAP: this is a model trained and tested
on the Kialo corpus, originally introduced in
(Lenz et al., 2020) as part of a larger study
on argument mining pipelines to transform
textual arguments into argument graphs. The
authors trained various machine learning mod-
els to predict the relation type between Kialo
posts. We report results for their XG Boosting
model, which is the most accurate based on
our replication study.

• BERT-Base: this is the result of fine-tuning
the BERT model on the Kialo dataset, using
a single argument contribution as the context
window (k = 1). A softmax classifier is ap-
plied to the output BERT embeddings. We
chose BERT as a baseline language model
since it is the foundational input embedding
architecture for both ArguNet and GraphNLI.

• GraphNLI: this is the GraphNLI model as
presented in (Agarwal et al., 2022). We used
the code released by the authors, with the
best-performing setting reported by the au-
thors (weighted sum average for aggregation
and Weighted root-seeking path with a context
length of 5). As described in Section 3.2, we
altered the training and test splits of the Kialo
dataset to keep debates intact, rather than shuf-
fling and splitting the argument contributions;
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while we were able to replicate the authors’
results with their settings, our results when
evaluating this model are different from the
ones they reported.

• ArguNet: our model (see Section 3.3).

For the ablation study, we implemented the follow-
ing variations of the ArguNet model:

• Without UMS: this is a variation of the Ar-
guNet model that removes the UMS from
Whang et al. (2021). The DASHNet anno-
tation is still maintained.

• Without DA: this is a variation of the Ar-
guNet model that removes the DASHNet DAs.
The UMS strategies are still maintained in the
network.

• Without DA and UMS: this version of the
model removes both the UMS strategies and
the DASHNet annotations, leaving just the
BERT embedding layer and the final Softmax
Classifier.

All of the variants implemented for the ablation
study maintain a context window of k = 5.

4.1 Implementation Details
We trained our models on Google Colab, using an
NVIDIA A100 GPU with the "High RAM" setting.
Training of our models took a total of roughly 400
GPU Hours, which includes all the re-trainings we
had to do for our various experiments. We trained
the UMS and ArguNet models for 20 epochs, but
implemented early stopping with a patience of 3
(most models finished training between epochs 8
and 12). We use a Dropout rate of 0.8 for the fi-
nal classification layer, a learning rate of 3e-05
and AdamW optimiser with epsilon value of 1e-
8. We used BERT with 12 hidden layers, and an
embedding dimension of 768, with a Dropout rate
for its attention layer of 0.1. We validated all of
these hyperparameters using the validation set of
the KialoDataset. We used the "BERT base un-
cased" version of the BERT model from Hugging
Face for any experiment involving BERT embed-
dings, and truncated contributions longer than 100
tokens to 100 tokens to fit the model’s maximum
input length of 512 (this was not generally an issue,
as the average length of Kialo contributions in our
data is 60 tokens. Since we had standardised train-
ing, test and validation splits for our experiments,
we did not use cross-validation in our evaluation.

4.2 Argumentative Relation Classification

We trained various models from the literature
on the combined train splits of the KialoDataset
and KialoAbortion datasets, and compared their
results to the ones obtained by the ArguNet model.
We used accuracy as a metric and tested on both
the KialoDataset and KialoAbortion test sets
separately. All the models were trained and tested
on the same data, and were trained with the Whole
Debate splitting strategy (i.e. contributions from
the same debate are kept in the same split) which
produced some differences between the results we
obtained and the ones reported by the authors of
the respective papers. Table 2 shows the results:

Model Accuracy
(KialoDataset)

Accuracy
(KialoAbortion)

Majority Baseline 54.7% 54.5%

ReCAP

(Lenz et al., 2020) 66.8 % 64.1%

BERT-Base

(Devlin et al., 2018) 79.2% 74.4%

GraphNLI

(Agarwal et al.,
2022)

79.9% 78.9%

ArguNet 82.1% 81.6%

Table 2: Argumentative Relation Classification results
for our novel models, ArguNet and GraphNLI-DA, com-
pared with other models in the literature. We replicated
all models for this work.

The results show that ArguNet achieves state-
of-the-art accuracy on the KialoDataset and
KialoAbortion test sets. We can see that models
based on BERT embeddings outperform the Re-
CAP model which is based on shallow machine
learning methods. The GraphNLI model shows
a significant decrease in accuracy on the Kialo-
Dataset with respect to the original result reported
by the authors (82.87%): this was expected, as that
result was obtained with the Single Contribution
splitting strategy, meaning that the model would
have seen other contributions from the test set dur-
ing training. The model still outperforms the BERT
baseline on both test sets. ArguNet shows a sig-
nificant boost in accuracy over GraphNLI, which
validates empirically the validity of its input encod-
ing and context understanding strategies.
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4.3 In-domain vs Out-of-domain accuracy

One of the main hypotheses that led to the design
of the ArguNet architecture is that existing models
in the literature largely rely on lexical information
from their training corpora, which makes them less
accurate when annotating debates on entirely un-
seen topics. In order to test this hypothesis, we
compared the results of our implemented models
when trained with and without the KialoAbortion
training data. We used accuracy on the KialoAbor-
tion benchmark test set as a metric. Table 3 shows
the results of this study.

Model OOD
training

In-
domain
training

difference
(%)

ReCAP

(Lenz et al., 2020) 62.3 % 64.1% 1.8%

BERT-Base

(Devlin et al., 2018) 72.3% 74.4% 2.1%

GraphNLI

(Agarwal et al.,
2022)

78.8% 79.9% 1.1%

ArguNet 80.9% 81.6% 0.7%

Table 3: Difference in accuracy between our imple-
mented models when trained with/without in-domain
data. All models were tested on KialoAbortion.

Results indicate that ArguNet outperforms ex-
isting approaches in the literature on both the in-
domain and out-of-domain data, while also show-
ing the lowest accuracy loss when trained without
in-domain data. In general, models that utilise con-
textual information and other non-lexical features
seem to be less prone to accuracy loss when trained
without in-domain data: ReCAP and BERT-Base
show significant accuracy losses (1.8% and 2.1%
respectively) when trained without in-domain data,
whereas GraphNLI and ArguNet exhibit much
lower accuracy losses when in-domain training data
is removed. This appears to validate our hypothe-
sis that models that rely mainly on lexical features
are more prone to committing annotation errors on
OOD data when compared to models that adopt a
more sophisticated encoding of the input.

4.4 Ablation Study

We trained various alterations of the original Ar-
guNet architecture by removing some of its fea-
tures, in order to measure their impact on the over-
all accuracy of the model. All variations were

tested on the same test sets used in the Argumen-
tative Relation Classification experiments. Table 4
shows the results of this study.

Model Accuracy
(KialoDataset)

Accuracy
(KialoAbortion)

Without DA and
UMS

79.7% 78.5%

Without DA 80.7% 80.0%

Without UMS 80.3% 79.6%

ArguNet 82.1% 81.6%

Table 4: Ablation study for the ArguNet model.

The results confirm our hypothesis that an un-
structured encoding of the context is less effective
than a specialised encoding, as the model trained
without UMS shows a decrease in accuracy on both
the KialoDataset and KialoAbortion corpora, with
a 1.8% and 1.0% difference respectively. The DA
feature also appears to be highly beneficial to the
classification, with the "Without DA" model being
significantly outperformed by the full ArguNet ar-
chitecture on both the KialoAbortion dataset (1.4%
increase) and the KialoDataset (1.6% increase).
This follows our hypothesis that Dialogue Act Tags
provide an input signal that correlates with Argu-
mentative Relation types. The DASHNet model
uses data from the Internet Argument Corpus V2
(IAC) (Abbott et al., 2016; Walker et al., 2012) ;
as this corpus contains argumentative discussions
that are similar in scope and style to those found in
Kialo, this may also have helped the classification.

5 Conclusions

In this work, we introduced ArguNet, a neural
model for the classification of Argumentative Re-
lations between argument contributions in online
debates. We showed how it achieves state-of-the-
art results when tested on the Kialo dataset of on-
line debates, and provided evidence that its defin-
ing features, namely the use of Dialogue Acts and
well-structured encoding of the context of the con-
versation, are highly beneficial for the task at hand.
Finally, we showed how its architecture is more
robust to out-of-domain classification when com-
pared to existing approaches in the literature, and
provided a comparison between in-domain and out-
of-domain performance for all of our baselines.
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Abstract

The successful analysis of argumentative tech-
niques in user-generated text is central to many
downstream tasks such as political and mar-
ket analysis. Recent argument mining tools
use state-of-the-art deep learning methods to
extract and annotate argumentative techniques
from various online text corpora, but each task
is treated as separate and different bespoke
models are fine-tuned for each dataset. We
show that different argument mining tasks share
common semantic and logical structure by im-
plementing a multi-task approach to argument
mining that meets or exceeds performance from
existing methods for the same problems. Our
model builds a shared representation of the in-
put and exploits similarities between tasks in or-
der to further boost performance via parameter-
sharing. Our results are important for argument
mining as they show that different tasks share
substantial similarities and suggest a holistic ap-
proach to the extraction of argumentative tech-
niques from text.

1 Introduction

Text content generated by online users is a funda-
mental source of information for understanding the
ideas, feelings, and behavior of large populations of
interest for social scientists. Within these texts, it is
important to be able to recognize ideas and world-
views expressed by individuals on a large scale.
To this end, argument mining (AM) has emerged
in recent years as a sub-field of natural language
processing (NLP) focusing on creating language
models capable of detecting and classifying argu-
mentative strategies in online texts.

Within AM, several different sub-tasks have
been proposed. For example, Misra and Walker
(2013) focus on identifying agreement and dis-
agreement in online texts, Oraby et al. (2017) pro-
pose a method to distinguish factual from emo-
tional argumentation techniques, Lawrence et al.

(2017) detect the presence of certain rhetorical fig-
ures in arguments, and Wachsmuth et al. (2017a,b)
produce measures of argument quality. These are
only some examples of the many distinct classifi-
cation tasks that have been identified in AM, not
to mention a wide range of work on span identi-
fication (e.g. Morio et al., 2022). In this paper,
we suggest that all these AM sub-tasks share sub-
stantial similarity and use this idea to formulate
a model that achieves high accuracy in several of
these problems.

More specifically, existing work in AM treats
many of the classification tasks within the field
as separate problems and focuses on fine-tuning
bespoke models for each task (e.g. Abbott et al.,
2011; Stab and Gurevych, 2014, 2017; Sheng et al.,
2020). While this approach has been demonstrated
to work in many settings, it fails to take advantage
of the substantial similarities between AM tasks.

In this paper we propose to take advantage of
the similarities across AM tasks by constructing
a multi-task model (Caruana, 1997; Zhang et al.,
2014; Zhao et al., 2018; Liu et al., 2015), that is
trained on all tasks at once and builds a shared
latent representation of the inputs for each task,
and uses this representation to make more accurate
predictions for each individual task. Our models
also provide evidence that AM sub-tasks do in-
deed share substantial conceptual overlap (Schulz
et al., 2018); the latent representations of differ-
ent tasks output by our model depicted in Figure 1
clearly depict clusters of individual tasks as well as
substantial overlap between these clusters in rep-
resentation space, indicating that the same latent
features are informative for multiple tasks.

The model we propose achieves performance
similar to or greater than existing models on all
tasks for which we had information on previous
metrics, and it also surpasses individual-task mod-
els fine-tuned on similar architectures for these
tasks. In addition, our models allow for substantial
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Figure 1: t-SNE projection of the BERT embedding
included as the first layer in our model. Points are color-
coded according to their task.

computational gains over individual-task models
as they permit training inference for many outputs
at once, instead of training and evaluating an indi-
vidual model for each desired task.

Overall, our results have the important implica-
tion for AM as a field that further research and
model-building should not only focus on taking
advantage of the structure of the specific task of
interest (e.g. Jin et al., 2022), but also on incor-
porating information from similar tasks into the
model for better performance.

2 Related Work

We build on an active research agenda in argument
mining (AM)—the automated extraction of argu-
mentative structure, reasoning, and features from
text (Habernal and Gurevych, 2017). Cabrio and
Villata (2018) identify two stages in AM: identify-
ing arguments within documents and classifying
those arguments on their characteristics, such as
supporting, attacking, or background information.
Our work is situated in the second stage, involv-
ing the identification of features or typologies of
arguments.

Much computational work in AM has investi-
gated argumentation in online interactions (Abbott
et al., 2011; Rosenthal and McKeown, 2015; Swan-
son et al., 2015), due in part to the vast amounts
of available data and the ease of collecting it. But
some scholars have used news articles to construct
corpora of propaganda and fact-checking (e.g.,
Da San Martino et al., 2019; Rashkin et al., 2017).
Still others have leveraged monologues like persua-
sive essays or legal decisions (Stab and Gurevych,
2014; Walker et al., 2019). We incorporate all three

types of data into our models to further show that
tasks with different data-generating processes and
textual characteristics nevertheless exhibit common
semantic structure.

There is evidence that many natural language
tasks share a common core (Radford et al., 2019),
and models trained on one task tend to also perform
well on others. Halder et al. (2020) demonstrate
that multi-task approaches benefit model perfor-
mance in several natural language tasks such as
topic detection and sentiment analysis. Multi-task
approaches have been more rare within AM, but
two existing works suggest the framework may
offer benefits to these unique tasks.

Schulz et al. (2018) apply multi-task learning to
token-level tagging for AM tasks. They consider
six datasets each with different token annotations
and train a recurrent model to learn all of them at
once, providing initial evidence that gains in model
performance can be attained via multi-task learn-
ing in AM. Similar results are echoed in Schiller
et al., who focus on stance detection instead. Morio
et al. (2022) present an end-to-end multi-task ar-
chitecture for identifying argument components
in unstructured text. Our task differs from theirs
in two ways: First, Morio et al.’s model is espe-
cially focused on span identification and relation
classification, wherein the model links, for exam-
ple, premise to claim. Our primary objective in
this paper would more accurately be described as
component classification. Second, the component
classification part of their model is focused on more
traditional AM tasks like classifying texts as claims
for or against. We focus instead on argument char-
acteristics that are more complex or subjective and,
in some cases, can be understood as being nested
within overarching concepts.

Cheng et al. (2020) propose a model trained si-
multaneously on two tasks: argument identification
within texts and argument-rebuttal pair matching
across texts. Again, our approach is focused on ar-
gument classification, not span identification, and
we aim to classify argument types. Moreover, our
use of multi-task learning differs slightly. Whereas
Cheng et al. train a model to perform two com-
plementary but quite distinct tasks, we show that a
single model can perform multiple argument clas-
sification tasks simultaneously. Accordingly, our
proposed architecture differs from both Morio et al.
and Cheng et al.

A prevalent model architecture for multi-task
learning within computer vision involves segre-
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gating the network into shared and task-specific
components. This conventional structure, termed
a “shared trunk” (Crawshaw, 2020), typically com-
prises a universal feature extractor, constructed of
convolutional layers that are employed by all tasks,
and a distinct output branch for each task (Zhang
et al., 2014; Dai et al., 2016; Zhao et al., 2018; Liu
et al., 2019). Further enhancements on this shared
trunk template have been made by (Zhao et al.,
2018) and (Liu et al., 2019), who incorporated task-
specific modules into the original framework.

This template is not confined to computer vision
but is also prevalent in multi-task learning models
in NLP. Traditional feed-forward architectures, us-
ing the shared trunk template in combination with
task-specific modules, have been utilized for multi-
task NLP by a variety of researchers (Collobert
and Weston, 2008; Collobert et al., 2011; Liu et al.,
2015, 2016). These architectures bear a structural
resemblance to their counterparts in computer vi-
sion, featuring a shared, global feature extractor
followed by task-specific output branches. How-
ever, in the context of NLP, the features in question
are text representations.

3 Data

We draw on three benchmark corpora to create a
dataset with a diverse number of argument char-
acteristics. We take eight tasks from the Internet
Argument Corpus (IAC), a collection of posts ex-
tracted from several online debate and discussion
fora (Abbott et al., 2016; Walker et al., 2012). Each
post is annotated on a variety of characteristics,
such as whether the post expresses disagreement
or uses an emotion- or fact-based argument, with
a value in [−5, 5] on each characteristic. Some
researchers have dichotomized these data by re-
moving observations around the midpoint Oraby
et al. (2015). This practice is not appropriate in
the multi-task setting, however, as it would remove
too much information that the model could use to
build shared representations across tasks. Instead,
we dichotomize the data by simply cutting on the
scale midpoint.

A wide array of studies have used the IAC to
construct unique tasks (Galitsky et al., 2018; Hart-
mann et al., 2019; Misra et al., 2016) and train
single-task models (Lukin et al., 2017; Misra and
Walker, 2013; Oraby et al., 2016). Three tasks have
received notable attention: the classification of dis-
agreement Abbott et al. (2011); Wang and Cardie

(2014), emotional or factual arguments Oraby et al.
(2015), and nasty or nice tone Lukin and Walker
(2013).

The second benchmark corpus we draw on is
IBM-Rank-30k, a corpus of crowd-sourced argu-
ments Gretz et al. (2020). Two quality scoring
functions then translated binary annotations into
a continuous value of argument quality in [0, 1].
We use scores produced by the authors’ weighted
average scoring function because it accounts for
coder reliability, leading to less noisy annotations.
As with the IAC labels, we dichotomize the data
by cutting on the scale midpoint.

The final corpus is introduced by Da San Martino
et al. (2019), who collect articles from both propa-
gandistic and non-propagandistic news sources and
annotate sentences within each article that contain
one or more of eighteen different propaganda tech-
niques, such as loaded language or causal oversim-
plification. We extract all sentences from each arti-
cle, including those that are annotated as containing
no propaganda techniques. Data from all three cor-
pora are combined to create our final dataset. We
use 80% of the data for training and set aside 10%
each for validation and test sets.

Finally, to help guard against overfitting, we con-
duct four types of data augmentation on the training
set (Shorten et al., 2021). In back-translation, we
translate the text into a different language, then
translate it back to the original language. We
choose German as the target language for its high
lexical similarity to English. In contextual word
embedding, we randomly choose thirty percent of
tokens, feed the surrounding words to BERT (De-
vlin et al., 2018), and substitute the predicted word
in for the original. In synonym augmentation, we
randomly choose thirty percent of tokens and sub-
stitute the most similar word from the WordNet
lexical database (Fellbaum, 1998). Finally, in ran-
dom cropping, we randomly delete thirty percent
of tokens. Table 1 shows the total number of ob-
servations in the training set as well as the class
balance for each task.

4 Methodology

Our methodology is based on a multi-task learning
approach which leverages the shared information
across tasks corresponding to different sources of
data, leading to improved performance on each
task. The model architecture and the loss function
are the two key components of our methodology.
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Task Training N Balance
Propaganda 61,909 63/37
Disagree/Agree 66,684 21/79
Emotion/Fact 76,403 41/59
Attacking/Respectful 65,998 66/34
Nasty/Nice 65,829 73/27
Personal/Audience 24,749 25/75
Defeater/Undercutter 24,357 38/62
Negotiate/Attack 26,604 44/56
Questioning/Asserting 29,791 66/34
Argument Quality 96,036 6/94

Table 1: Size and class balance of training data.

Additionally, we make use of several standard train-
ing and optimization techniques, described in this
section, in order to improve performance.

4.1 Model Architecture

Our model architecture shares a key similarity to
network templates comprising a shared trunk feed-
ing task-specific modules, common to multi-task
learning architectures proposed in previous works
(e.g. Zhao et al., 2018; Liu et al., 2015). Morio et al.
(2022) also use an architecture with corpus-specific
branches, but this portion of their architecture is
only used in pre-training; they then fine-tune the
model on each corpus individually. Our model
is fully multi-task, thus showing the benefit of a
multi-branch architecture that needs no fine-tuning.

This architecture aims to utilize shared informa-
tion across tasks through the shared trunk while
learning distinct task features through the task-
specific modules. Following the same principle,
we use a network with double-branching in layers
following the shared trunk, in order to make use
of commonalities across different types of tasks as
well as more fine-grained information about each
individual task.

We therefore use a feed-forward neural network
with four sequential sets of layers: a base text em-
bedding model shared across all tasks, followed
by a shared encoder, which is followed by a dou-
ble branching structure feeding two sets of task-
specific modules. The main results we report use
small BERT as the base embedding model (Devlin
et al., 2018), but any base model can be used, and
we report results across five such models below.

The base embedding model is followed by three
dense layers, each followed by dropout. These lay-
ers help in learning features that are shared across
tasks. The architecture then branches out to learn
task-type and task-specific features. In particular,
the architecture consists of four sets of layers, de-

scribed below, and visualized in Figure 2. Each
dense layer in the network uses a ReLU activa-
tion, with the exception of the final activation layer,
which is a sigmoid for binary classification.

• Shared embedding layers: We use a BERT
model (Devlin et al., 2018) to obtain an em-
bedding of the text input. In order to keep
the model size small and training practical,
we use small BERT (Turc et al., 2019), which
outputs a 128-dimensional embedding. The
embedding model, shared across all tasks, is
fine-tuned through our training.

• Shared encoding layers: In addition to the
base embedding model, all tasks share an en-
coder, consisting of two sequential dense lay-
ers each followed by a dropout layer. This
helps learn a shared representation, used by all
tasks, while allowing for sparsity and reducing
the problem to learning our target features.

• Task-type Layers: The first branching in the
network architecture follows the shared layers
aiming to learn coarse-grained task-specific
features which are expected to share logical
structures across tasks within each type. This
is particularly suitable for multi-task learning
on data consisting of a mixture of datasets,
where the number of labels exceeds the num-
ber of sources in the mixture. Given such
input data, in the first step towards learning
the shared representation, the task-type layers
learn dataset-specific features, while still uti-
lizing commonalities between individual tasks
sharing a dataset. For each task-type branch,
we use two sequential dense layers each fol-
lowed by dropout. Since we have three sets of
target labels each corresponding to their own
dataset, we use three main branches.

• Task-specific Layers: Each main branch fur-
ther branches out into individual task layers.
These layers aim to learn more fine-grained
features from the representations produced
through the main branches, and output a vec-
tor representation for each task. Each task-
specific branch contains two sequential dense
and dropout layers, which feed a sigmoid acti-
vation layer for predicting labels. The number
of these sub-branches equals the number of
individual features in the combined dataset.
In the branch corresponding to propaganda
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techniques, we additionally use a maximum
pooling layer to reduce the eighteen individ-
ual propaganda technique labels to a single
binary propaganda classification, predicting
whether a propaganda technique is used.

Figure 2: Model architecture.

The full architecture is illustrated in Figure 2.
Using this architecture, we obtain a vector repre-
sentation of the size of the fine-grained features
described in the dataset. Note that this need not be
the same as the size of the target output. It is not
in this case, as we apply max-pooling to eighteen
entries of the output corresponding to propaganda
techniques in order to obtain a binary label. The
network outputs a real-valued 10-dimensional vec-
tor which is then mapped to a binary vector of size
10 using individual thresholds for each label. For
the results produced in the main text of this paper,
we use a model with 32536 trainable parameters in
addition to the parameters in small BERT.1

4.2 Loss Function
The loss function plays a crucial role in our multi-
task learning approach, which relies on a mixed
corpora corresponding to different task types. The
custom loss function is designed to handle the data
size imbalance across task types, in addition to
class imbalance. This helps the model capture the
contribution of each prediction to the overall loss,
while task types are randomly shuffled in the input
data. Considering this, given predicted labels ŷ and
true labels y, the total loss L used in our gradient
descent optimization is:

L (ŷ|y) =
∑

k

νkL(ŷ|y,Dk),

1Including bias terms, there are 64 × 32 + 32 learnable
parameters in the shared layer, 32 × 32 + 32 between the
shared layer and each of the task-type branches, 32× 16+ 16
in each task-type branch, 16×16+16 between each task-type
branch and each task-specific branch, and 16× 8 + 8 in each
task-specific branch.

where Dk denotes the set of data point indices cor-
responding to task-type k, and νk ∼ 1/|Dk| are
the task-type weights. The loss for each task type
k, which accounts for the class imbalance across
output labels, is:

L(ŷ|y,Dk) ∼
1

|Tk|
∑

j∈Dk

∑

t∈Tk

∑

c∈Ct
wc
t l(ŷj |yj = c),

where l(.) is the loss function, Tk denotes the set of
tasks within task type k, and Ct is the correspond-
ing set of classes. The class weights wc

t , which
are proportional to the inverse of the enrichment
of class c in task t within dataset k, counter the
impact of class imbalance. We use the binary cross-
entropy loss for the loss function l throughout our
computations. In the implementation, the loss com-
putation is vectorized using masked matrices to
filter entries by task.

4.3 Model Training

For training the parameters in our model, we take
advantage of an array of optimization and train-
ing enhancement techniques. We use an AdamW
optimizer (Loshchilov and Hutter, 2017) for the
stochastic gradient descent with an initial learning
rate of 0.0003. To help avoid overfitting, we em-
ploy a weight decay rate of 0.01 and 40% dropout.
We use 5% of data for warmup, a batch size of
256, and stop training after two epochs without
a decrease in loss. We also incorporate threshold
tuning, maximizing true positive rate while min-
imizing false positive rate, for optimal mapping
of the sigmoid layer’s output to binary labels. All
training hyperparameters are tuned through a stan-
dard grid search over 72 sets of hyperparameters
and selected based on validation F1 score.

5 Empirical Results

We evaluate our multi-task model’s performance
in terms of prediction metrics, computational effi-
ciency, and comparison against existing metrics on
the target labels. We also offer evidence that the
tasks we combine do indeed share important simi-
larities by presenting text embeddings and interme-
diate layer representations, in Figure 1 and Figure
3. We show that our model performs favorably in
comparison to previously published models (Table
2), while being substantially more computationally
efficient than single-task counterparts (Figure 4).
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5.1 Commonalities Across Tasks

Our model was trained on three different corpora,
described in section 3, which we argue possess im-
portant semantic similarities. To provide evidence
of our ten tasks existing within a common represen-
tation space, we present t-SNE projections (Van der
Maaten and Hinton, 2008) of the input text embed-
dings corresponding to each label at three different
locations within the neural network. Figure 1, dis-
cussed in section 1, shows the t-SNE projection
from the output of the BERT model we use as our
base encoder. Points are color-coded according to
their task. If our text data carried mutually exclu-
sive information applicable only to the particular
task for which it was labeled, we would see distinct
clusters of representations in Figure 1.

There is some minor evidence of clustering, par-
ticularly with respect to the propaganda and argu-
ment quality tasks, but even those tasks have ob-
servations spanning the entire representation space,
and they clearly mix with other task representations.
This suggests the fine-tuned BERT model is learn-
ing representations that reflect similar semantic and
logical structures across tasks. We also highlight
that the clustering behavior within tasks observable
in the figure shows that our model’s embeddings
are not completely discarding task-specific struc-
ture. Rather, our model learns task-specific repre-
sentations, and those representations exist within
a common space with other task-specific represen-
tations, thus further lending evidence to the theory
behind our approach.

This pattern is preserved throughout the layers
of our model. Figure 3 presents similar t-SNE pro-
jections of two other intermediate layers: a shared
layer (before any model branching occurs) and the
final task-specific layer before the sigmoid activa-
tion (after the double-branching). Following the
BERT model, each successive layer in the neural
network gradually becomes more task-specific, and
encodes information that is more relevant to dis-
tinguishing among tasks and among labels within
tasks. It is notable, then, that we observe similar
levels of clustering in the t-SNE projections re-
gardless of model layer. Propaganda and argument
quality tasks appear to inhabit more discernible re-
gions of the representation space, but their clusters
are neither well-defined nor tightly constrained.

We take this consistent pattern as evidence that
AM tasks share a common semantic space. En-
abling a model to learn these fine-grained similari-

ties and differences between tasks and across task
types is therefore likely to improve performance
relative to models that rely solely on shared fea-
tures or no sharing at all. We test this conjecture in
the next section.

Figure 3: t-SNE projections of representations from the
shared layers (top) and the task-specific layers (bottom).

5.2 Performance Evaluation
We evaluate the performance of our model primar-
ily in terms of weighted F1 scores, which account
for the class imbalances noted in Table 1. Our
proposed method represents a significant departure
from common approaches to argument classifica-
tion, so we want to be sure our model is performing
favorably relative to other models.In comparison
with previous metrics (Table 2), our model shows
superior performance in predicting all of the tasks
for which we had previous information available.
This indicates that effectively leveraging shared fea-
tures improves performance across multiple tasks.

Table 3 shows a comparison of the predictive
performance (as measured by the class-weighted
F1-score) between baselines, single-task, and multi-
task versions of the same model. The baseline
metrics represent random guessing and the unigram
metrics are produced by a naive Bayes classifier.
As may be expected, baselines underperform all
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Absolute Relative
Task Citation Metric Previous New Gain Gain

Propaganda Da San Martino et al. (2019) F1 60.98 61.74 0.76 1.25
Disagree/Agree Wang and Cardie (2014) F1 63.57 71.38 7.81 12.29
Disagree/Agree Abbott et al. (2011) Acc. 68.20 70.73 2.53 3.71
Emotion/Fact Oraby et al. (2015) F1 46.20 63.93 17.73 38.38
Nasty/Nice Lukin and Walker (2013) F1 69.00 73.69 4.69 6.80

Table 2: Comparison to previously published metrics.

deep-network-based approaches.
Morio et al.’s (2022) multi-task model outper-

forms their single-task benchmarks about 80% of
the time, and we see similar results here. Our multi-
task model outperforms single-task models based
on the same encoder architecture in six of our nine
tasks. Ablating some layers brings that number up
to seven. Again, we take this as evidence that our
multi-task model is capable of exploiting the com-
mon structure between tasks in order to improve
predictions. In Table 6 in the Appendix, we show
that this performance gain is not merely due to
adding additional trainable parameters; multi-task
models of various sizes perform comparably.

We further investigated the impact of changing
the base encoding model from small BERT to small
ELECTRA (Clark et al., 2020) and base ALBERT
(Lan et al., 2019), as well as freezing all BERT
layers to prevent the pre-trained weights from be-
ing fine-tuned. In addition, we examined the effect
of removing the base encoder entirely and using
embeddings from two decoder-only architectures—
Llama 2 (Touvron et al., 2023) and GPT-3 (Brown
et al., 2020)—as input to the model. Table 4 shows
a comparison of performance across these differ-
ent variants of our multi-task model. All models
have the architecture described in Section 4, how-
ever, the base encoder differs each time. Generally,
multi-task models trained on different encoders or
embeddings seem to display similar performance,
indicating that the gain in performance due to the
adoption of our framework is not necessarily due
to the specific architecture of the encoder chosen.
This is further demonstrated by the comparison
of performance for each model variant across in-
dividual tasks, which is offered in Table 5 of the
Appendix.

5.3 Ablation Study
We executed an ablation study to dissect the contri-
butions of each component of our proposed multi-
task architecture to its performance. To this end, we
omit each of the shared, task-type, and task-specific

layers to obtain the ablated neural networks. The
results of this ablation analysis are detailed in Ta-
ble 3, which compares the performances of the full
multi-task model (‘Multi-Task’) against the coun-
terparts with the shared (‘Multi-Task-s’), task-type
(‘Multi-Task-p’), and task-specific (‘Multi-Task-t’)
layers removed.

Removing any part of the model leads to a de-
cline in task performance for a majority of tasks.
Ablating the task-specific layers (‘Multi-Task-t’)
causes the most extreme performance drops, with
decreases of up to 39.99 F1 points compared to the
full model. This points to the significance of the
task-specific branches for learning fine-grained rep-
resentations. No ablated model surpasses the com-
plete multi-task architecture on more than 2 tasks,
suggesting that each element of the model structure
enables gains in generalization. The results in Ta-
ble 3 further show that ablation of the task-type and
task-specific layers could lead to marginal improve-
ment on two tasks at the cost of significant decline
in performance on a few other tasks. This suggests
that while the ablated model could better fit a mi-
nority of the tasks, different components of the full
model facilitate simultaneous learning of all tasks
toward consistently strong performance. Moreover,
the model with shared layers ablated does not sur-
pass the full model on any task, reinforcing the
importance of the shared representations contained
in those layers. Overall, these findings affirm the hi-
erarchical design of our multi-task learning frame-
work, where each layer contributes uniquely to the
model’s overall success.

5.4 Computational Efficiency
A key consideration, particularly when adding
more trainable parameters as our model does, is
whether the performance gain comes at the cost
of more costly computation. We evaluate the peak
GPU RAM usage and time to train our multi-task
model and compare them to the same metrics from
training the full set of single-task models. We
conduct this evaluation by randomly sampling 5%,
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Task Baseline Unigrams Single-Task Multi-Task Multi-Task-s Multi-Task-p Multi-Task-t
Propaganda 55.47 38.46 63.07 61.74 23.21 47.35 21.75
Disagree/Agree 47.29 7.49 71.15 71.38 44.88 52.68 65.17
Emotion/Fact 45.80 21.91 68.11 63.93 59.78 62.10 64.00
Attacking/Respectful 56.47 51.16 67.46 68.07 55.42 56.20 53.37
Nasty/Nice 59.35 61.03 66.90 73.69 55.54 53.16 50.01
Personal/Audience 39.90 9.23 63.25 65.69 61.13 58.54 58.67
Defeater/Undercutter 53.4 45.21 45.97 55.65 50.23 56.13 41.68
Negotiate/Attack 36.93 55.31 64.76 64.81 62.13 61.33 61.68
Questioning/Asserting 50.57 57.47 59.61 63.23 55.36 62.71 60.75
Argument Quality 76.54 0.76 80.93 79.17 75.91 79.52 84.14

Table 3: Weighted F1 scores comparing baselines, single-task, and multi-task models, as well as multi-task model
with ablated layers. Baseline metrics are produced by random guessing and unigram metrics by a naive Bayes
classifier. The single-task and multi-task models fine-tune a small-BERT encoder as their embedding layer. “Multi-
Task-s/p/t" refer to the multi-task model without the shared/task-type/task-specific layers.

Model Prec. Rec. F1
Baselines

Baseline 62.26 52.43 52.17
Unigrams 33.65 44.55 34.80

Multi-Task Models
BERT 69.37 65.76 66.73
BERT (frozen) 57.54 45.98 43.64
ELECTRA 69.19 63.98 65.16
ALBERT 58.65 63.10 58.34
Llama 2 64.55 55.57 56.72
GPT 3 64.56 62.13 60.23

Table 4: Class-weighted metrics, averaged across tasks,
for various base encoders and embedding models.
10%, 20%, and 40% of the training data to assess
how computational load increases with data size.
All models for this analysis were trained on one
NVIDIA A100 GPU for one epoch. Figure 4 dis-
plays the results.

Figure 4: Computational efficiency of the multi-task model
(green) compared against the single-task model (blue) in terms
of elapsed training time (left) and peak GPU RAM usage
(right) as the data usage increases. Both models were run on
one NVIDIA A100 GPU for one epoch.

Our multi-task model achieves better perfor-
mance using substantially lower computational re-
sources overall, proving the branched task-specific
modules in our model architecture to be an ef-
fective, yet practical, strategy for learning fine-
grained features for label prediction. Comparing
our model’s performance with single-task classi-
fication on individual tasks (Table 3), we observe
that it achieves comparable performance while de-
creasing the computation time by at least 31%.

Put together, these observations indicate that this

multi-task learning approach simultaneously has
a performance and computational efficiency ad-
vantage over single-task models. Computational
efficiency plots for different multi-task model sizes
are included in the Appendix for comparison.

6 Conclusion

Natural language tasks share substantial semantic
and structural similarities, and deep learning mod-
els have been shown to be able to take advantage
of these similarities in order to achieve better per-
formance (Radford et al., 2019). In this paper, we
further extend this result to the field of argument
mining. We show that AM tasks do indeed share
a substantial amount of features, and that these
shared features can be used to boost model per-
formance across previously unrelated tasks. We
combine three data sources and propose models
that outperform existing models on several of these
tasks. Our models are also more computationally
efficient and have better overall predictive accu-
racy than single-task models with comparable ar-
chitectures. Aside from the practical usefulness
of our models, our results are important for argu-
ment mining as a field, as they suggest that further
research and model building should focus on ex-
ploiting commonalities between different tasks to
boost performance.

In future work, we propose to extend our analysis
to several other AM tasks that share commonalities
with those studied here (e.g. Jin et al., 2022), as
well as other language tasks such as topic modeling.
We also propose devising improved model archi-
tectures for our multi-task setting. In particular,
we propose to take advantage of frameworks such
as contrastive learning (e.g. Chen et al., 2020) to
encode known similarities between tasks within the
representations learned by the model.
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7 Limitations

As with all proposed models, ours carries important
limitations. Although we show in the Appendix
that the choice of base encoder does not have a
drastic effect on performance, we suspect that the
performance of our models is largely dependent
on the ability to fine-tune a base encoder. Indeed,
baseline models using unigram features performed
quite poorly. Fine-tuning large base encoders—not
to mention training one from scratch—can be com-
putationally expensive. However, transfer learning
may be able to help. Common semantic and logical
structures across tasks point to opportunities for
using transfer learning or pre-trained models from
warm start to re-train on new tasks.

Multi-task models also depend on data quality
and sufficient semantic overlap across tasks. This
is especially challenging in AM, as argument an-
notation is often highly subjective (e.g. Walker
et al., 2012), which can lead to noisy training
data. Combining one low-quality dataset with other
higher-quality ones may have a detrimental effect
on model performance, as the model is unable to
learn a shared representation space from noisy an-
notations, thus degrading performance on all tasks.
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A Additional Results

In this appendix, we compare the performance of
our multi-task model with alternative designs and
configurations for multi-task learning, in terms of
model architecture, network size, and the base en-
coder.

A.1 Model Architecture
Table 5 compares the performance of our multi-
task model—which incorporates branched task-
type and task-specific modules—with a standard
“shared-trunk” alternative, which consists of only
a small BERT encoder followed by a sigmoid ac-
tivation layer. This comparison shows the utility
of our model architecture. Our multi-task model
outperforms the shared-trunk model on all but two
tasks, where the F1 metric is within 1 percentage
point of that of the shared-trunk model. This per-
formance gain comes at a negligible memory cost
and a small increase in computation time (Figure
5).

Figure 5: Computational efficiency for the single-task model
as well as multi-task models with three different sizes of lay-
ers following the small BERT embedding. The small model
contains 17024, medium 272384, and large 438784 trainable
parameters in addition to the base encoder.

A.2 Network Size
We also compare the performance of the small
multi-task model we presented in the main text
with alternative networks that preserve the same
architectural design but increase the sizes of the lay-
ers, from 17024 to 272384 and 438784 trainable
parameters, following the base encoder. This com-
parison shows that the superiority in performance,
due to the task-type and task-specific modules, is
consistent across various network sizes and is not

simply due to adding more trainable parameters on
top of the shared trunk (Table 5). Moreover, Fig-
ure 5 further confirms that the layers following the
BERT encoder are responsible only for a negligible
increase in usage of computational resources, as
multiplying the combined size of those layers by 16
(Multi-Task, Medium) and 32 (Multi-Task, Large)
does not result in a substantial increase in elapsed
time for training or peak GPU memory usage.

A.3 Alternative Embedding Models
In addition to comparing our model with other
multi-task models, we also compare it to other base
encoders. In particular, we deploy base ALBERT
(Lan et al., 2019) and small ELECTRA (Clark et al.,
2020), replacing the small BERT encoder with
each of these other base encoders in our multi-task
model. Although small BERT achieves the best
average performance across different tasks, as the
results in Table 6 suggest, using ELECTRA yields
an average F1 score within 2 percentage points of
that of small BERT, while ALBERT shows more
variability across tasks with a lower average F1
score.
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Shared Trunk Multi-Task Multi-Task Multi-Task
Task (BERT) (17,024) (272,384) (438,784)
Propaganda 45.16 61.74 62.62 61.64
Disagree/Agree 37.96 71.38 62.07 66.74
Emotion/Fact 55.00 63.93 64.46 66.61
Attacking/Respectful 52.52 68.07 68.37 68.83
Nasty/Nice 55.62 73.69 73.04 73.38
Personal/Audience 66.51 65.69 70.17 65.24
Defeater/Undercutter 54.50 55.65 51.61 54.14
Negotiate/Attack 58.71 64.81 63.78 64.72
Questioning/Asserting 61.69 63.23 60.12 60.55
Argument Quality 79.34 79.17 68.36 81.28
Average 56.70 66.73 64.46 66.33

Table 5: Weighted F1 scores across shared layer sizes (with small BERT as base encoder). Number of trainable
parameters in parentheses, not including base encoder.

Task BERT BERT ELECTRA ALBERT Llama 2 GPT 3
(frozen)

Propaganda 61.74 49.32 62.8 53.3 50.5 51.7
Disagree/Agree 71.38 62.1 59.4 69.2 65.8 68.9
Emotion/Fact 63.93 64.54 65.4 21.9 63.7 66.6
Attacking/Respectful 68.07 53.58 67.4 58.6 57.9 63.7
Nasty/Nice 73.69 52.28 71.5 61.1 59.4 66.4
Personal/Audience 65.69 10.36 68.5 64.1 59.4 65.8
Defeater/Undercutter 55.65 38.13 53.1 49.8 31.9 44.3
Negotiate/Attack 64.81 62.77 63.8 56.7 59.0 66.0
Questioning/Asserting 63.23 42.52 58.5 58.7 57.1 57.5
Argument Quality 79.17 0.76 81.2 90.0 62.5 51.4
Average 66.73 43.64 65.16 58.34 56.72 60.23

Table 6: Weighted multi-task F1 scores across base encoders and embedding models.
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Abstract

Argument Mining (AM) is the task of auto-
matically analysing arguments, such that the
unstructured information contained in them is
converted into structured representations. Un-
dercut is a unique structure in arguments, as it
challenges the relationship between a premise
and a claim, unlike direct attacks which chal-
lenge the claim or the premise itself. Undercut
is also an important counterargument device
as it often reflects the value of arguers. How-
ever, undercuts have not received the attention
in the filed of AM they should have — there
is neither much corpus data about undercuts,
nor an existing AM model that can automati-
cally recognise them. In this paper, we present
a real-world dataset of arguments with explic-
itly annotated undercuts, and the first computa-
tional model that is able to recognise them. The
dataset consists of 400 arguments, containing
326 undercuts. On this dataset, our approach
beats a strong baseline in undercut recognition,
with F1 = 38.8%, which is comparable to
the performance on recognising direct attacks.
We also conduct experiments on a benchmark
dataset containing no undercuts, and prove that
our approach is as good as the state of the art
in terms of recognising the overall structure
of arguments. Our work pioneers the system-
atic analysis and computational modelling of
undercuts in real-world arguments, setting a
foundation for future research in the role of
undercuts in the dynamics of argumentation.

1 Introduction

Social media allows people to express divergent
opinions on the same subject and to reach many
more people than was possible in earlier times.
However, the ubiquity of the internet and social
media also has some negative consequences. One
of these is the growing polarisation between indi-
viduals holding different beliefs and opinions. It is
thus increasingly important to promote productive
communication and understanding among people

with opposing perspectives. This is where Argu-
ment Mining (AM) comes into play. AM aims to
automatically identify and extract arguments from
natural language texts (Peldszus and Stede, 2013;
Green et al., 2014). It can convert unstructured
textual information into structured argument data,
which not only identifies the argumentative text
segments in the text but also the relations between
them (Prakken and Vreeswijk, 2002; Lawrence and
Reed, 2020).

A critical aspect of AM is recognising and un-
derstanding various argumentative structures, in-
cluding undercuts. An undercut challenges the re-
lationship between a premise and a claim (Pollock,
1987), unlike direct attacks that challenge the claim
or the premise itself. Due to its complex structure,
it is difficult to annotate undercuts or to computa-
tionally model them. There exist some AM datasets
with annotation of undercuts (Peldszus and Stede,
2015a; Visser et al., 2020), but they are often lim-
ited in the size, the quality of source text, or the
annotation scheme. To our best knowledge, there
is no existing AM models that can automatically
recognise undercuts.

To addresses this gap, in this paper we present
a novel dataset of real-world arguments from
Quora1, a popular question-answering platform.
Our dataset consists of 400 arguments, including
326 explicitly annotated undercuts, making it the
largest AM dataset with such annotations to date.
We also develop the first computational approach
capable of recognising undercuts, proposing an in-
novative undercut-inclusive dependency represen-
tation and a GNN-based neural dependency parser.

Our work contributes to the field of AM in sev-
eral ways. Firstly, we provide a comprehensive
dataset with detailed annotations of undercuts, of-
fering a valuable resource for future research. Sec-
ondly, our undercut-inclusive representation allows

1https://www.quora.com
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existing neural dependency parsers to process un-
dercuts effectively, preserving their unique status
within argument structures. Lastly, our experimen-
tal results demonstrate that our GNN-based parser
outperforms existing biaffine parsers in recognis-
ing undercuts and maintains state-of-the-art perfor-
mance in the general AM task.

2 Related Work

Our work is closely related to existing approaches
to AM, and the studies on undercuts in the field of
AM.

2.1 AM Approaches

There are two kinds of approaches to AM in
general, pipelined and end-to-end. Pipelined ap-
proaches break down AM into several subtasks
and process them sequentially, such as in Pers-
ing and Ng (2016), Mayer et al. (2020), and Ruiz-
Dolz et al. (2021). End-to-end approaches to ar-
gument mining allow for the prediction of the full
argument structure with a single model, and have
been gaining popularity due to their advantages
over pipelined approaches, including avoiding er-
ror propagation and eliminating the need for de-
signing different models for different subtasks (Ye
and Teufel, 2021).

The tree or graph structure of arguments en-
ables some end-to-end approaches to formulate
argument mining as a dependency parsing prob-
lem. For example, Morio et al. (2020) use bidi-
rectional LSTMs (BiLSTMs) (He et al., 2016) to
encode argument components, and a biaffine depen-
dency parser (Dozat and Manning, 2018) to classify
components and their relations. Bao et al. (2021)
propose a neural transition-based model to predict
the dependency structure of arguments. These ap-
proaches all assume that the input text is already
segmented.

In contrast, Eger et al. (2017) and Ye and Teufel
(2021) take raw text as input in their end-to-end
approaches based on dependency parsing. Ye and
Teufel (2021) report better results than those by
Eger et al. (2017), crediting the improvement to
their token-level dependency representation of ar-
gument and the biaffine dependency parser they
use. Our approach is based on the work by Ye and
Teufel (2021), except that ours can computationally
model undercuts.

2.2 Studies on Undercuts

Undercuts play a critical role in challenging the
soundness or validity of an argument. They have
been well defined in various theoretical argumen-
tation models, such as Pollock’s argumentation
model (Pollock, 1987) and Besnard and Hunter’s
argumentation model (Besnard and Hunter, 2009).

In the field of AM, some datasets based on the
Argument Interchange Format (Chesnevar et al.,
2006) may include undercuts, for example, the
QT30 corpus by Hautli-Janisz et al. (2022). How-
ever, their inclusion of undercuts is incidental and
will form a small part of the overall dataset.

The Microtext dataset (Peldszus and Stede,
2015a) is one of the few AM datasets that con-
tain explicitly annotated undercuts. The source text
was produced in a highly controlled text generation
experiment. The size of this dataset is small (7,846
tokens in total), each document only containing
about five segments. Also, its creators do not cat-
egorise these undercuts or provide any automatic
method to recognise them in their follow-up exper-
iments. Mim et al. (2022) present some ideas that
touch upon the phenomenon of undercuts in their
dataset, although they do not explicitly mention
undercuts when doing so. But nobody has studied
which kinds of undercut strategies exist, nor is there
large corpus data about them available. In contrast,
to the best of our knowledge, the QuoraAM dataset
we present is the biggest AM dataset that contains
annotation of undercuts. We provide a taxonomy
of undercuts after manually examining the annota-
tion of our dataset, along with its distribution in our
dataset. Moreover, we propose the first approach
to computationally modelling undercuts.

3 The QuoraAM Dataset

We collected 400 arguments from Quora, and
named this dataset as the QuoraAM dataset.

Compared to user-generated content on other on-
line discussion platforms such as ChangeMyView,
Kialo, idebate.org, and Twitter, arguments on
Quora are more in line with our research inter-
est. On Quora, users can present detailed and
well-reasoned points of view in their answers to
a question. As a result, each answer on Quora can
be seen as containing a stand-alone cogently struc-
tured complete argument, often supplemented with
explanations and supporting evidence. Platforms
including ChangeMyView, Kialo and idebate.org
are specifically designed for interactive debates and
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Figure 1: An example argument graph using our an-
notation scheme. Nodes in different colours represent
components of different categories. Edges represent re-
lations: arrow-head = SUPPORT, circle-head = ATTACK.

discussions, with a focus on the process of chang-
ing one’s mind through constructive conversations.
Each post on such platforms may only contain an
incomplete argument, and intertextual referencing
is frequent among posts, making the analysis of
such posts more difficult. Twitter, unlike those
previous platforms, is a more open and informal
platform, where arguments can take on a more com-
bative tone. As a result, arguments there may not
always be rational and often lack the depth and nu-
ance seen on the other platforms. Additionally, due
to Twitter’s character limit, arguments in tweets
tend to be very short, with structures that may be
too simplistic to warrant a detailed analysis. There-
fore, we chose Quora over other online discussion
platforms.

We first manually pre-segmented the QuoraAM
dataset, and then trained two annotators to anno-
tate this dataset using our annotation scheme. This
dataset will be used for our experiments in this
paper. To the best of our knowledge, this is the
biggest argument mining dataset that contains ex-
plicit annotation of undercuts.

3.1 Annotation Scheme

Our scheme is illustrated in Figure 1. It includes
four argument component categories and two argu-
ment relation types.

The unit of annotation for components is a seg-
ment that can be part of a sentence, a sentence or
a sequence of sentences. We define four compo-
nent categories in our annotation scheme, including
PROPOSITION, STAKE, ANECDOTE, and ANAL-
OGY. These categories are decided based on our
manual observation of arguments on Quora and the
argumentation schemes by Walton et al. (2008).

Our scheme only has two relation categories,

namely SUPPORT (e.g. component 2 supporting
component 1) and ATTACK (e.g. component 7 at-
tacking component 3). In our scheme, the represen-
tation of undercuts does not rely on relation labels,
but on the target of an attacking relation: if the
target is a relation, an undercut occurs (e.g. com-
ponent 4 undercutting the relation between com-
ponent 5 and component 2); otherwise it is just a
typical direct SUPPORT.

Component 9 in Figure 1 is a STAKE, and is a
stand-alone component, In our scheme, STAKEs
are always stand-alone components, which do not
hold any relation to other components or relations.

3.2 Dataset Creation

In order to collect 400 answers from Quora, we first
selected the first 20 topics in the topic catalogue
on Kialo2 (e.g. “Politics”, “Society”, and “Tech-
nology”). Under each topic, we identified the top
five popular questions, resulting in 100 candidate
questions (5 questions per topic). These Kialo ques-
tions were then used to search for corresponding
questions on Quora.

In the second step, we aimed to select one rel-
evant question on Quora for each topic. We used
the full string of each Kialo question as a query on
Quora. Suitable questions were those relevant to
the Kialo query and with at least 50 answers. If no
suitable question was found, we refined our search
using key terms from the Kialo question. If we
still could not find a suitable Quora question, we
proceeded to the next Kialo question. This process
yielded 20 selected Quora questions.

In the third step, we chose 20 answers for each
selected Quora question. A qualified answers must:
1) directly address the topic; 2) contain at least 30%
argumentative material; and 3) be between 60 and
800 wordpieces after being tokenised by the BERT
WordPiece tokeniser (Wolf et al., 2020).

Using this data collection method, we selected
400 (20×20) answers that cover various topics such
as politics, environment, education, and equality.
Since arguments on Quora happen in a question-
answering context, each answer was appended to
its corresponding question, forming a “document”
for our dataset.

We manually segmented the raw text in the Quo-
raAM dataset and trained two annotators to apply
our annotation scheme. The two annotators first

2https://www.kialo.com. We turned to Kialo for topic se-
lection because Quora does not provide such a catalogue.
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annotated the same 60 documents for the annota-
tion study. The remaining 340 documents were
randomly split into two equal subsets. Each subset
was assigned to one annotator for annotation. The
annotation process took approximately 80 hours
per annotator. To compile the final collection of
400 annotated documents, we randomly selected
one of the doubly annotated documents from the
first step and combined it with the 340 documents
from the second step.

Inter-annotator agreement was measured using
Krippendorff’s alpha (Krippendorff, 2018) for com-
ponent classification and graph similarity measures
(Kirschner et al., 2015; Putra et al., 2022) for re-
lation identification. For component classification,
the score of Krippendorff’s alpha is α = 0.78
(N = 7, 883, n = 2, k = 5). According to the
interpretation scale in Krippendorff (2018), this
score is acceptable for “drawing tentative conclu-
sions” (α ≥ 0.67), and is close to the thresh-
old (α ≥ 0.80) for being considered “reliable”.
For relation identification, the graph similarity
scores are: Kirschnermean = 0.69, Kirschnerf =
0.67, MARlink = 0.64, MARpath = 0.54, and
MARdSet = 0.84.

3.3 Dataset Statistics

Table 1 shows the statistics of the QuoraAM dataset.
The dataset contains a total of 118,573 tokens,
which is much larger than the Microtext dataset
(7,846 tokens). There are over 7,800 segments in
the dataset, with approximately 56% being argu-
mentative. The QuoraAM dataset as distributed
is randomly divided into three subsets: 280 docu-
ments for training, 40 for development, and 80 for
testing.

Table 2 shows the distribution of components
and relations. The dataset includes over 4,000
PROPOSITIONS, around 200 ANALOGIES, 79
ANECDOTES, and 28 STAKES. Due to the small
number of STAKES, we merged them with ANEC-

All Per document

Token 118,573 296.4

Segment 7,883 19.7

Component 4,381 11.0

Sentence 6,398 16.0

Paragraph 2,826 7.1

Table 1: Statistics of the QuoraAM dataset.

All Per doc

Component

PROPOSITION 4,075 (51.7%) 10.2

STAKE 28 (0.4%) 0.1

ANECDOTE 79 (1.0%) 0.2

ANALOGY 199 (2.5%) 0.5

Total 4,381 11.0

Non-arg 3,502 (44.4%) 8.8

Relation

SUPPORT 2,752 (69.8%) 6.9

ATTACK 1,190 (30.2%) 3.0

Normal attack 864 (72.6%) 2.2

Undercut 326 (27.4%) 0.8

Total 3,942 9.9

Table 2: Component and relation distribution of the
QuoraAM dataset.

DOTES in our experiments in Section 5, though the
original categories are preserved in the dataset for
future research.

In terms of relations, the QuoraAM dataset in-
cludes 2,752 instances of SUPPORT and 1,190 in-
stances of ATTACK. There are 326 undercuts in the
dataset, which constitutes approximately 27% of
all ATTACKs. This result confirms the prevalence
of undercuts in Quora arguments.

3.4 Categories of Undercuts
We manually examined all undercuts in the Quo-
raAM dataset, classifying them into three cate-
gories:

• Rejection: Rejecting the relation by denying
the relevance between the source component
and the target component.

• Low importance: Questioning the impor-
tance of the relation, or providing more impor-
tant reasons.

• Alternative option: Stating that the current
solution is not the only option, or providing
alternative options. This kind of undercuts
often appears in arguments about policies.

Figure 2 shows the distribution of undercuts in
the QuoraAM dataset. “Low importance” (41%) is
the most frequent, followed by “Alternative option”
(36%), “Rejection” (15%), and others (8%). This
indicates that Quora authors prefer less direct meth-
ods of undercutting relations, often pointing out
weaknesses or suggesting alternatives rather than
outright rejection.
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Figure 2: Distribution of undercuts in the QuoraAM
dataset.

4 Computational Modelling of Undercuts

Through a redesign of an existing dependency rep-
resentation of arguments by Ye and Teufel (2021),
we are able to directly use existing neural depen-
dency parsers to computationally model undercuts.
We also apply a modified GNN-based dependency
parser for improved performance.

4.1 Undercut-inclusive Dependency
Representation

Following Ye and Teufel (2021), we also frame
AM as a dependency parsing task. They propose
a token-level dependency representation for argu-
ments in order to approach argument mining in an
end-to-end fashion. However, their dependency
representation cannot be used for arguments con-
taining undercuts, as undercuts involve relations
between a component and a relation, and a relation
cannot be a dependent or a head in typical depen-
dency representations. Therefore, we designed an
undercut-inclusive dependency representation for
arguments (shown in Figure 3) to allow existing
neural parsers to process undercuts directly. It is
a modification of the undercut-exclusive represen-
tation by Ye and Teufel (2021). This figure uses
the category labels in the Persuasive Essays dataset
(Stab and Gurevych, 2017) to be consistent with the
figure in Ye and Teufel (2021). New features of our
undercut-inclusive representation are as follows:

• A relation node (shown as dashed-line nodes
in Figure 3) for each token in the argument
is added. Each relation node is indexed with
the token number of its corresponding token,
followed by a prime. The relation nodes are
meant to represent relations. This is very dif-
ferent from the undercut-exclusive representa-
tion, where relations are represented by edges.

• The relation node (e.g. relation node 7
′
) of

the last token (token 7) in a component is al-
ways the head of that token, and represents
the relation from that component to its tar-
get, or the other way around. The edge la-
bel between the last token in a component
and its corresponding relation node is written
as (segment_label, REL), where REL means
“relation”. For example, the label of the edge
between token 7 and relation node 7

′
is (P,

REL).

• If the relation is a SUPPORT or a direct
ATTACK, the relation node’s outgoing edge
points to the last token in the source compo-
nent. Its incoming edge comes from the last
token of the target component. For example,
the fact that “it killed much marine life” (to-
kens 3-7) supports “tourism has threatened
nature” (tokens 9-12) is expressed by the in-
coming edge of relation node 7

′
from token 12,

and the outgoing edge of relation node 7
′

to
node 7.

• If the relation is an undercut, the relation
node’s outgoing edge points to the last token
in the undercutting component. The incom-
ing edge comes from another relation node,
rather than the last token in a component. For
example, the fact that tokens 14-15 undercuts
the relation between tokens 3-7 and tokens
9-12 is expressed by the incoming edge of re-
lation node 15

′
from relation node 7

′
, and the

outgoing edge of relation node 15
′

to node 15.

This design treats all relations as nodes, en-
abling undercuts to be modelled as relations be-
tween nodes while preserving their unique status.
In this way, existing neural dependency parsers are
able to process undercuts directly.

4.2 GNN-based Neural Dependency Parser

We modified the GNN-based dependency parser
proposed by Ji et al. (2019), which uses Graph At-
tention Networks (GANs) (Veličković et al., 2017)
to model higher-order dependencies. Compared to
the biaffine parser used by Ye and Teufel (2021),
we expect our GNN-based parser to capture global
argument structure and higher-order dependencies
more effectively.

The mathematical description of our GNN-based
parser is as follows:
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Figure 3: The structure of an example argument with a pseudo undercutting component (written as “An undercut”),
and its undercut-inclusive dependency representation. C = CLAIM, P = PREMISE, Sup = SUPPORT, N = non-
argumentative, App = append, Rel = relation.

rS = BERT(s1s2...sn) (1)

rROOT = FFNROOT(mean(rS), axis=0) (2)

R = [rS ; rROOT ], axis=0 (3)

He_h, H l_h, He_d, H l_d = FFN(R) (4)

He_h
r , H l_h

r , He_d
r , H l_d

r =
{
FFNrel_node(R) if undercut_inclusive
∅ if undercut_exclusive

(5)

He_h
G , H l_h

G , He_d
G , H l_d

G = GNNlayer=2(

([He_h;H l_h], axis=1), ([He_d;H l_d], axis=1),

([He_h
r ;H l_h

r ], axis=1), ([He_d
r ;H l_d

r ], axis=1)

)

(6)

Biaff(x, y) = x⊤Uy +W(x⊕ y) + b (7)

scedge = Biaffedge(He_h
G , He_d

G ) (8)

sclabel = Biaff label(H l_h
G , H l_d

G ) (9)

y
′edge
i,j = {scedgei,j ≥ 0} (10)

y
′label
i,j = argmax sclabeli,j (11)

We calculate four representations for all
tokens (He_h, H l_h, He_d, H l_d) in Equa-
tions 1-4. Relation nodes’ representations
(He_h

r , H l_h
r , He_d

r , H l_d
r ) are produced in Equa-

tion 5 when necessary.
In Equation 6, the eight representations above

are fed into a two-layer GNN encoder, forming a

fully connected graph. The head representation
and the dependant representation of each node are
concatenated to form a general representation. The
general representation of each node is then aggre-
gated and updated through the GNN layers. A de-
tailed explanation can be found in Ji et al. (2019).

The GNN-encoded representations are then used
for edge and label prediction, as described in Equa-
tions 7-11.

The final loss is calculated in the same way as
that in Ji et al. (2019).

5 Experiments

We conducted two experiments in order to test:

• Experiment 1 – the effectiveness of our
undercut-inclusive representation and GNN-
based parser on undercut recognition;

• Experiment 2 – the impact of our undercut-
inclusive representation on arguments without
undercuts.

Results from these experiments can also be used
to test the effectiveness of our GNN-based parser
on AM in general.

5.1 Datasets

In Experiment 1, we used our QuoraAM dataset,
processing each document as a data point to cap-
ture argument relations spanning paragraphs. This
is because relations in the QuoraAM dataset are
more likely to span across paragraphs, rather than
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operating within individual paragraphs, as para-
graph breaks are often not used consistently in this
dataset. We merged all instances of STAKE and
ANECDOTE in the QuoraAM dataset to form a new
category called STAKE+ANECDOTE, as discussed
in Section 3.3.

In Experiment 2, we used the Persuasive Essays
dataset, which is a benchmark constructed by Stab
and Gurevych (2017). This dataset is also used in
Ye and Teufel (2021). It comprises 402 persuasive
essays randomly selected from an online forum,
with 322 essays used for training and 80 essays
for testing. Considering that most relations hold
within paragraphs in this dataset, each paragraph
was processed as a separate argument, aligning
with Ye and Teufel (2021).

In both experiments, we performed the same
post-processing steps as Ye and Teufel (2021).

5.2 Systems

In Experiment 1, since no existing approaches
model undercuts computationally, we built a new
baseline model Biaff_exc_r, using the biaffine
parser in Ye and Teufel (2021) with their undercut-
exclusive representation. We simulate Peldszus and
Stede (2015b)’s approach by transforming all un-
dercuts into direct ATTACKs during training. Dur-
ing inference, we randomly convert all predicted
direct ATTACKs to undercuts in proportion to the ra-
tio of undercuts to overall ATTACKs in the original
QuoraAM dataset.

In Experiment 2, we selected two baseline
models: Biaff_exc (the BiPAM model in Ye and
Teufel (2021)), the biaffine parser in Ye and Teufel
(2021) with their undercut-exclusive representa-
tion; and GNN_exc, our GNN-based parser with
the undercut-exclusive representation in Ye and
Teufel (2021).

We implemented two models in the two exper-
iments to compare with the baselines: Biaff_inc,
the biaffine parser with our undercut-inclusive rep-
resentation; and GNN_inc, our GNN-based parser
with our undercut-inclusive representation.

6 Results and Discussion

Table 3 shows the F1 scores for component and
relation identification in Experiment 1. Table 4
shows the results for Experiment 2. We used per-
mutation tests from Ye and Teufel (2021) to test
the significance of our results.

In Experiment 1, for undercut recognition, both

Biaff_exc_r Biaff_inc GNN_inc

Component 62.4 62.4 66.2

Relation 35.2 41.7 45.8

SUPPORT 45.2 45.1 48.0

ATTACK 11.7 33.8 39.9

Direct ATTACK 14.0 38.4 40.3

Undercut 5.8 21.6 38.8

Table 3: F1 scores for models on the QuoraAM dataset
in Experiment 1.

Model Component Relation

Biaff_exc 72.9 45.9
Biaff_inc 72.8 45.9
GNN_exc 73.8 49.4
GNN_inc 73.8 49.4

Table 4: F1 scores for models on the Persuasive Essays
dataset in Experiment 2.

models significantly outperform the baseline (i.e.
Biaff_exc_r) by a large margin. Biaff_inc out-
performs the baseline by 15.8% (Biaff_inc =
21.6%, baseline = 5.8%, p < 0.01), which
suggests that our undercut-inclusive representa-
tion can significantly improve undercut recogni-
tion compared to the undercut-inclusive represen-
tation by Ye and Teufel (2021). The increase
is 33.0% for GNN_inc (GNN_inc = 38.8%,
baseline = 5.8%, p < 0.01). The performance on
undercut recognition of GNN_inc is comparable to
that on recognising direct ATTACKs (Undercut =
38.8%, DirectAttack = 40.3%). This suggests
that undercuts, despite their intricate nature, are
structures that can be effectively recognised using
our approach. It also shows that the GNN-based
parser is better than the biaffine parser at recog-
nising undercuts: GNN_inc significantly outper-
forms Biaff_inc by 17.2% (GNN_inc = 38.8%,
Biaff_inc = 21.6%, p < 0.01).

The results from two experiments suggest that
the GNN-based parser is more efficient than
the biaffine parser. In Experiment 1, GNN_inc
significantly outperforms Biaff_inc by 3.8% for
component identification (GNN_inc = 66.2%,
Biaff_inc = 62.4%, p < 0.01) and 4.1%
for relation identification (GNN_inc = 45.8%,
Biaff_inc = 41.7%, p < 0.01); in Experiment 2,
GNN_inc significantly outperforms Biaff_inc by
1.0% for component identification (GNN_inc =
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73.8%, Biaff_inc = 72.8%, p < 0.01) and 3.5%
for relation identification (GNN_inc = 49.4%,
Biaff_inc = 45.9%, p < 0.01).

Regarding the comparison between the undercut-
exclusive and the undercut-inclusive representa-
tions in Experiment 2, the results reveals no sig-
nificant difference in performance. Both repre-
sentations yield similar F1 scores for component
and relation identification, which implies that our
undercut-inclusive representation can also be used
for arguments containing no undercuts, without
performance compromise. This result suggests the
flexibility of our undercut-inclusive representation.

6.1 Recognising undercuts: biaffine parser vs.
GNN-based parser

To understand the disparity between the biaffine
parser and the GNN-based parser in recognising
undercuts, we compared the errors made by both
parsers, so that we can discern which parts of an
undercut are most error-prone for the GNN-based
parser.

Figure 4 shows the structure of an undercut with
its dependency representation. Nodes 1-3 are com-
ponents, with nodes 1’ and 2’ as their correspond-
ing relation nodes. An undercut has three elements:
an undercutting component (e.g. node 1 in Fig-
ure 4), its target relation (“node 2 ⇐ node 2’ ⇐
node 3”), and the link between them (“node 1’ ⇐
node 2”’). Errors can occur in recognising any
single element or a combination of them. We fo-
cused on three error types illustrated in Figure 4:
type I (errors in recognising the undercutting com-
ponent); type II (errors in recognising the target
relation); and type III (errors only in recognising
the link between them). Please note that type III
only include the cases where the link is incorrectly
predicted but the undercutting component and the
target relation are correctly predicted.

We performed an error analysis by counting the

Figure 4: The dependency representation of an undercut,
and three types of error in undercut recognition.
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Figure 5: Distribution of three types of error in undercut
recognition.

errors made by our models. Figure 5 shows the
error distribution among all undercuts (N=58) in
the test set. Due to the small sample size, we refrain
from testing the statistical significance of the results
in this figure, and instead interpret the numbers
only qualitatively. According to Figure 5, Biaff_inc
produces relatively 20% more type I errors and
26% more type II errors than GNN_inc. For type III
errors, the difference becomes much bigger, which
is 300%. This pattern suggests that the GNN-based
parser recognises all three elements of an undercut
more effectively, especially the link between the
undercutting component and the target relation.

Regarding the disparity in link recognition be-
tween the GNN-based parser and the biaffine parser,
we hypothesise that the GNN-parser’s advantage
in identifying higher-order dependencies is cru-
cial. Figure 6 illustrates the number of hops re-
quired for different relation representations: (a)
in the undercut-exclusive representation, a direct
ATTACK requires one hop; (b) in the undercut-
inclusive representation, a direct ATTACK requires
two hops; (c) in the undercut-inclusive representa-
tion, an undercut requires three hops.

A direct ATTACK is a 1-hop relation in the
undercut-exclusive representation, but becomes a
2-hop relation in the undercut-inclusive representa-
tion. Despite this, performance on the Persuasive
Essays dataset shows no significant loss, imply-

Figure 6: Illustration of the number of hops required for
different relation representations.
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ing neither parser suffers from the transition from
1-hop to 2-hop relations.

However, when comparing direct ATTACKs and
undercuts in the undercut-inclusive representation
(2-hop vs. 3-hop relations), both models show
weaker performance for undercuts. According to
Table 3, the F1 score of Biaff_inc for undercuts lags
by 16.8% compared to direct ATTACKs, while for
GNN_inc the difference is only 1.5%. This suggests
the GNN-based parser handles the increase from
two to three hops better than the biaffine parser, sup-
porting our earlier prediction that the GNN-based
parser excels at capturing higher-order dependen-
cies.

7 Conclusion

In this study, we addressed a critical gap in AM by
focusing on the computational recognition of under-
cuts, a complex yet essential structure in arguments.
Existing AM research has largely overlooked under-
cuts, primarily due to the lack of annotated datasets
and effective computational models.

To tackle this, we introduced a novel dataset
sourced from Quora. This dataset, is the largest
that contains undercuts, providing a valuable re-
source for future AM research. We also developed
the first computational approach capable of recog-
nising undercuts, featuring an undercut-inclusive
dependency representation and a GNN-based neu-
ral dependency parser.

Our experiments indicated that our undercut-
inclusive representation can be effectively used for
undercut recognition, and it does not compromise
performance on datasets without undercuts, show-
casing its flexibility and robustness. The results
also demonstrated that the GNN-based parser is ef-
fective in general AM as well as in recognising un-
dercuts. The GNN-based parser’s ability to capture
higher-order dependencies was evident, showing
a notable advantage in accurately identifying the
intricate structures of undercuts.
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Abstract

Multimodal Argument Mining (MAM) is a re-
cent area of research aiming to extend argument
analysis and improve discourse understanding
by incorporating multiple modalities. Initial
results confirm the importance of paralinguis-
tic cues in this field. However, the research
community still lacks a comprehensive plat-
form where results can be easily reproduced,
and methods and models can be stored, com-
pared, and tested against a variety of bench-
marks. To address these challenges, we propose
MAMKit, an open, publicly available, PyTorch
toolkit that consolidates datasets and models,
providing a standardized platform for experi-
mentation. MAMKit also includes some new
baselines, designed to stimulate research on
text and audio encoding and fusion for MAM
tasks. Our initial results with MAMKit indicate
that advancements in MAM require novel an-
notation processes to encompass auditory cues
effectively.

1 Introduction

Recent studies in argumentation analysis highlight
the importance of including paralinguistic features
in argumentative discourse analysis across various
domains, including advertisements, news coverage,
and legal analytics (Kišiček, 2014; Groarke and
Kišiček, 2018). Similar considerations have been
made for fake news detection (Ivanov et al., 2023).
For these reasons, Multimodal Argument Mining
(MAM) recently emerged as an extension of Argu-
ment Mining, aiming to validate these propositions
empirically and gain a more comprehensive under-
standing of argumentative discourse by integrating
multiple modalities. MAM is a growing research
field. The tasks addressed so far include argument
detection, argument component classification, rela-
tion classification, and fallacy classification (Lippi
and Torroni, 2016a; Mestre et al., 2021a; Mancini
et al., 2022; Mestre et al., 2023; Mancini et al.,

Figure 1: Overall architecture of MAMKit.

2024). However, despite these encouraging results,
and similarly to what happens in other domains (Li
et al., 2023; Helwe et al., 2022), the lack of stan-
dardized tools is hampering progress since MAM
researchers struggle to access and evaluate models
and datasets. For one thing, MAM resources are
often hosted across various sites and repositories,
each employing its own distinct methods for load-
ing and reconstructing datasets and models. As
a consequence, a fair model comparison may be
problematic, which in turn limits the experimental
evaluation of new models.

We then introduce a PyTorch toolkit tailored for
MAM. Our toolkit, MAMKit, currently includes 4
datasets and 6 models, providing researchers with
a standardized platform for experimentation and
evaluation. MAMKit offers a simple interface to
load, reconstruct and process existing datasets, and
contribute new resources. Moreover, all models
within MAMKit are implemented uniformly, facili-
tating seamless integration and comparison across
tasks and datasets. To ensure the reproducibility
and reliability of our models, all the resources and
models in MAMKit have been validated against the
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original research papers, offering a shared interface
for benchmarking and model comparison. Besides
literature models, MAMKit explores and integrates
advanced audio encoding and fusion methods. In-
deed, previous research in MAM has largely over-
looked advanced audio encoding and fusion strate-
gies (Mancini et al., 2024), thus MAMKit intends
to present an opportunity to shed light on the sig-
nificance of audio and the synergistic interaction
between both modalities in argument mining tasks.

2 Related Work

We overview the MAM literature and the landscape
of toolkits built to address relevant AI tasks in dif-
ferent application domains.

2.1 Multimodal Argument Mining

Work in MAM started relatively recently, inspired
by studies on the connections between arguments
and emotions (Benlamine et al., 2015), with the
development of a classifier for claim detection
from speech in the domain of political debates,
and a small dataset built for the occasion (Lippi
and Torroni, 2016a). The interest in political de-
bates motivated further research and resource de-
velopment (Lawrence and Reed, 2019; Mancini
et al., 2022; Mestre et al., 2023; Mancini et al.,
2024). Notably, Mancini et al. (2022) and Mestre
et al. (2023) introduced two distinct expansions of
USED (Haddadan et al., 2019), the US presidential
election corpus. Recently, Mancini et al. (2024)
proposed an extension of USED-fallacy, releasing
the first corpus for multimodal fallacy classifica-
tion. These resources constitute the most extensive
multimodal corpora for AM to date. Another do-
main of interest is fake news detection. There,
Ivanov et al. (2023) observed enhanced classifica-
tion performance across various tasks, such as the
identification of check-worthy claims, through the
adoption of a multimodal formulation.

The MAM systems adopted in literature so far
uncovered the importance of tackling argumenta-
tive tasks from a multimodal standpoint, but they
did not introduce significant architectural innova-
tions. On the contrary, they mostly followed the
standard practice of merging unimodal models us-
ing fusion techniques (Toto et al., 2021): see for
instance (Mancini et al., 2022; Mestre et al., 2023;
Mancini et al., 2024). However, recent advance-
ments in Multimodal Deep Learning (MMDL) of-
fer an opportunity for exploring new architectural

solutions. Some of the new models introduced in
MAMKit extend previous work (Mancini et al.,
2022) with new MAM models based on state-of-
the-art models for audio encoding and multimodal
fusion techniques (Boulahia et al., 2021). These
include Wav2Vec 2.0 (Baevski et al., 2020), Hu-
BERT (Hsu et al., 2021) and WavLM (Chen et al.,
2022) for audio encoding, as well as early, cross-
modal (Tsai et al., 2019) and late fusion.

2.2 Toolkits

In recent years, there has been a growing emphasis
on streamlining training, evaluation, and bench-
marking processes across diverse domains of artifi-
cial intelligence (AI). Accordingly, new resources
became available to address specific tasks and ap-
plications. Regarding benchmarking, LAVIS (Li
et al., 2023), MMF (Singh et al., 2020), X-modaler
(Li et al., 2021) and UniLM (uni, 2020) provide
user-friendly interfaces for accessing datasets and
for training/evaluating language-vision models.

Furthermore, several tools have been proposed
for multimodalities. Notable examples are Torch-
Multimodal (tor, 2022) for accessing several state-
of-the-art multimodal models, ViLMedic (Del-
brouck et al., 2022) for vision and language in
medical AI, pyannote.metrics (Bredin, 2017) and
pyannote.audio (Bredin, 2023) for speaker diariza-
tion, and Muskits (Shi et al., 2022) for end-to-end
music processing.

Moreover, several specialized NLP libraries and
tools focus on specific tasks. They include Logi-
Torch (Helwe et al., 2022) for logical reasoning in
natural language, TextBox 2.0 (Tang et al., 2022)
for text generation using pre-trained language mod-
els, mahaNLP (Magdum et al., 2023) for Marathi
NLP, DeepPavlov (Burtsev et al., 2018) for dia-
logue systems, TextAttack (Morris et al., 2020) and
OpenAttack (Zeng et al., 2021) for adversarial at-
tacks in NLP, LambdaKG (Xie et al., 2023) for
knowledge graph embeddings, nerblackbox (Stol-
lenwerk, 2023) for named entity recognition, News-
RecLib (Iana et al., 2023) for news recommenda-
tion, and NeuralQA (Dibia, 2020) for question an-
swering cater to specific NLP tasks.

To the best of our knowledge, there are no such
resources to support argument mining/MAM re-
search, so MAMKit is the first toolkit in this area.
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3 MAMKit

MAMKit is an open-source, publicly available1

PyTorch toolkit designed to access and develop
datasets, models, and benchmarks for MAM. It
provides a flexible interface for accessing and inte-
grating datasets, models, and preprocessing strate-
gies through composition or custom definition.
MAMKit is designed to be extendible, ensure repli-
cability, and provide a shared interface as a com-
mon foundation for experimentation in the field.
At the time of writing, MAMKit offers 4 datasets
and 6 distinct model architectures, along with au-
dio and text processing capabilities, organized in 5
main components (see Figure 1).

3.1 Description of toolkit components
Datasets The mamkit.data package covers
dataset creation (data.datasets) and preprocess-
ing (data.preprocessing and data.collators).
The data.datasets module provides the Loader
interface, a general-purpose wrapper for datasets,
covering data downloading, task-specific data pars-
ing, and data interfacing. Regarding the latter func-
tionality, the module includes ad-hoc implementa-
tions for unimodal (UnimodalDataset) and multi-
modal (MultimodalDataset) data based on the Py-
Torch Dataset interface. The data.processing
module provides the Processor interface for
defining custom data processing and implements
unimodal (UnimodalProcessor) and multimodal
(MultimodalProcessor) processing steps. For in-
stance, the AudioTransformer class implements
transformer-based audio processing. Similarly to
data.processing, the data.collators module
is designed to address input processing at batch-
level, in compliance with PyTorch DataLoader
APIs. The module includes implementations for
unimodal (UnimodalCollator) and multimodal
(MultimodalCollator) input batches.

Models The mamkit.models package holds
definitions for the supported models. It
provides models.audio, models.text and
models.text_audio modules. Each model
implements the torch.nn.Module interface that
can be extended to define the models for each input
configuration.

Modules The mamkit.modules package handles
the definition of the shared model layers such as
transformer_modules.

1https://github.com/lt-nlp-lab-unibo/mamkit

Utility The mamkit.utility package contains
classes and methods used by other modules. For ex-
ample, the utility.data module contains meth-
ods for downloading data from web storages or
GitHub repositories, while utility.model man-
ages the overall training and evaluation lifecycles.
Currently, the MAMKitLightningModel class and
the to_lightning_model() method are used to
wrap models as PyTorch Lightning (Falcon and The
PyTorch Lightning team, 2019) models to lever-
age its functionalities for training and evaluation.
Incorporating PyTorch Lightning in our toolkit
streamlines training and evaluation with a simpli-
fied loop, standardized interface, reproducibility,
performance optimizations, accelerator integration,
logging capabilities, and extensive community sup-
port.

Configs The mamkit.configs package serves as
a streamlined interface for accessing model config-
urations across three modalities: audio, text, and
text-audio. At its core, the config.base module
establishes two fundamental classes: ConfigKey,
defining configuration keys, and BaseConfig, pro-
viding a base configuration structure. This architec-
ture simplifies benchmarking efforts by enabling
users to instantiate models via designated configu-
ration keys. Consequently, leveraging models with
exact parameter setups for benchmarking or further
experimentation becomes straightforward, enhanc-
ing research reproducibility and efficiency within
the toolkit.

3.2 Example Usage

MAMKit’s design facilitates access to existing
datasets and models and supports future develop-
ment. In this section, we present several examples
to illustrate common use cases.

3.2.1 Data Loading
An important feature of MAMKit is its unified
and straightforward interface for data access. Sev-
eral MAM datasets are included in MAMKit.
Adding a new dataset to MAMKit requires defin-
ing a new subclass of Loader, extending it with
the specific information needed to access and re-
construct the dataset. In the example that fol-
lows, a dataset is loaded using the MMUSED class
from mamkit.data.datasets, which extends the
Loader interface and implements specific func-
tionalities for data loading and retrieval. Users
can specify task and input mode (text-only,
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audio-only, or text-audio) when loading the
data, with options to use default splits or load splits
from previous works. The example uses splits
from Mancini et al. (2022).

from mamkit.data.datasets import UKDebates,
InputMode↪→

loader = UKDebates(
task_name='asd',
input_mode=InputMode.TEXT_ONLY,
base_data_path=base_data_path)

split_info =
loader.get_splits('mancini-et-al-2022')↪→

The get_splits method of the loader
returns data splits in the form of a
data.datasets.SplitInfo. The latter wraps
split-specific data, each implementing Pytorch’s
Dataset interface and compliant to the specified
input modality (i.e., text-only).

The Loader interface also allows users to inte-
grate methods defining custom splits as follows:

from mamkit.data.datasets import SplitInfo

def custom_splits(self) -> List[SplitInfo]:
train_df = self.data.iloc[:50]
val_df = self.data.iloc[50:100]
test_df = self.data.iloc[100:]
fold_info =

self.build_info_from_splits(train_df=...)↪→
return [fold_info]

loader.add_splits(method=custom_splits,
key='custom')

split_info = loader.get_splits('custom')

3.2.2 Modelling
MAMKit offers a simple method for defining cus-
tom models and leveraging models from the lit-
erature. Utilizing the same interface for both
tasks aims to simplify access to existing mod-
els and establish new ones with a coherent struc-
ture. This will hopefully facilitate the spread
of established models and encourage the devel-
opment of new ones by maintaining consistency
throughout the process. The example below il-
lustrates that defining a custom model is straight-
forward. It entails creating the model within
the models package, specifically by extending
either the AudioOnlyModel, TextOnlyModel, or
TextAudioModel classes in the models.audio,
models.text, or models.text_audio modules,
respectively, depending on the input modality han-
dled by the model.

from mamkit.models.text import Transformer

model = Transformer(
model_card='bert-base-uncased',
dropout_rate=0.1, ...)

The following example demonstrates how to in-
stantiate a model with a configuration found in the
literature. This configuration is identified by a key,
ConfigKey, containing all the defining information.
The key is used to fetch the precise configuration
of the model from the configs package. Subse-
quently, the model is retrieved from the models
package and configured with the specific parame-
ters outlined in the configuration.

from mamkit.configs.base import ConfigKey
from mamkit.configs.text import TransformerConfig
from mamkit.data.datasets import InputMode

config_key = ConfigKey(
dataset='mmused',
task_name='asd',
input_mode=InputMode.TEXT_ONLY,
tags={'mancini-et-al-2022'})

config = TransformerConfig.from_config(
key=config_key)

model = Transformer(
model_card=config.model_card,
dropout_rate=config.dropout_rate
...)

In both the described use cases, the model is then
encapsulated into a Pytorch Lightning model, and
training and evaluation are conducted by leveraging
the methods provided by this wrapper.

from mamkit.utility.model import
to_lighting_model↪→

import lightning

model = to_lighting_model(model=model,
num_classes=config.num_classes,
loss_function=...,
optimizer_class=...)

trainer = lightning.Trainer(max_epochs=100,
accelerator='gpu',
...)

trainer.fit(model,
train_dataloaders=train_dataloader,
val_dataloaders=val_dataloader)

3.2.3 Benchmarking
The mamkit.configs package simplifies reproduc-
ing literature results in a structured manner. Upon
loading the dataset, experiment-specific configu-
rations can be easily retrieved via a configuration
key. Specifically, unlike the examples reported
in Section 3.2.2, where configurations refer just
to a model implementation, in the below example,
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they encompass both data processing and model
parameterization based on previous literature work.

This enables instantiating a processor using the
same features processor employed in the experi-
ment. In the example below, we adopt a configu-
ration akin to (Mancini et al., 2022), employing a
BiLSTM model with audio encoded with MFCCs
features. Hence, we define a MFCCExtractor pro-
cessor using configuration parameters. Data splits
are loaded using the experiment reference key, mir-
roring what was shown in Section 3.2.1.

from mamkit.configs.audio import
BiLSTMMFCCsConfig↪→

from mamkit.configs.base import ConfigKey
from mamkit.data.datasets import UKDebates,

InputMode↪→
from mamkit.data.processing import MFCCExtractor,

UnimodalProcessor↪→
from mamkit.models.audio import BiLSTM

loader = UKDebates(task_name='asd',
input_mode=InputMode.AUDIO_ONLY)

config = BiLSTMMFCCsConfig.from_config(
key=ConfigKey(dataset='ukdebates',
input_mode=InputMode.AUDIO_ONLY,
task_name='asd',
tags='mancini-et-al-2022'))

for split_info in loader.get_splits(
key='mancini-et-al-2022'):

processor =
UnimodalProcessor(

features_processor=MFCCExtractor(
mfccs=config.mfccs, ...))

split_info.train =
processor(split_info.train)↪→

...
model = BiLSTM(embedding_dim=

config.embedding_dim, ...)

3.3 Models
MAMKit comes with 3 models from the MAM lit-
erature and 3 original models we contribute based
on state-of-the-art unimodal audio encoders and
fusion strategies. All models comply with the fol-
lowing architecture: text and audio modules for
encoding individual modalities, a fusion layer to
merge them, and a final classification head tailored
to the downstream task of interest. Table 1 provides
a summary. Illustrations of our original architec-
tures are shown in Appendix A. We refer to the
fusion strategies as follows:

• Concatenation: combines features (early fu-
sion) or embeddings from single modality ar-
chitectures (late fusion) from all modalities
into a single vector by concatenating them;

• Average: merges features (early fusion) or
embeddings from single modality architec-
tures (late fusion) by simply averaging infor-
mation from each modality;

• Crossmodal Attention: attends to interac-
tions between multimodal sequences across
distinct time steps and facilitates the transfer
of streams from one modality to another.

BiLSTM (Mancini et al., 2022) The text module
comprises a pre-trained GloVe (Pennington et al.,
2014) embedding layer and a stack of BiLSTM
layers. Similarly, the audio module is a stack of
BiLSTM layers. The fusion strategy is vector con-
catenation. The classification head is a Multi-Layer
Perceptron (MLP).

MM-BERT, MM-RoBERTa (Mancini et al.,
2024) The text module comprises a trainable text
embedding model and a dropout layer on top. The
audio module comprises a pre-trained audio em-
bedding model, a BiLSTM layer, and a dropout
layer. The output of the text and audio modules is
concatenated and fed to the classification module,
defined as a stack of dense layers.

CSA (Ours) A multimodal transformer inspired
by Yu et al. (2023), whereby text and audio embed-
dings are concatenated along the time dimension,
and a self-attention layer is employed to obtain a
cross-modal text and audio embedding. This em-
bedding is averaged over time and fed to a classi-
fication head. The main issue of this architecture
is the significant difference between the lengths of
the audio and text sequences. Even with downscal-
ing, the audio embeddings tend to be significantly
longer (often by a factor of ∼10). Consequently,
audio features dominate the early stages of train-
ing, leading to underwhelming performance. To
address this issue, we develop a novel transformer
variant in which we reweight the attention scores
of text and audio sequences for each layer. Let
m be the length of the text sequence and n the
length of the audio sequence, we rescale the atten-
tion scores of the text sequence by m+n

2m and of
the audio sequence by m+n

2n . This reweighting en-
sures that text and audio sequences have the same
total weight. Figure 2 in Appendix A summarizes
our Concatenation-based early fusion with Self-
Attention (CSA) transformer model.

Ensemble (Ours) This architecture consists of
two independent unimodal models for text and
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Model Text Encoding Audio Encoding Fusion

BiLSTM (Mancini et al., 2022) GloVe + BiLSTM (Wav2Vec2 ∨ MFCCs) + BiLSTM Concat-Late
MM-BERT (Mancini et al., 2024) BERT (Wav2Vec2 ∨ HuBERT ∨ WavLM) + BiLSTM Concat-Late
MM-RoBERTa (Mancini et al., 2024) RoBERTa (Wav2Vec2 ∨ HuBERT ∨ WavLM) + BiLSTM Concat-Late
CSA (Ours) BERT (Wav2Vec2 ∨ HuBERT ∨ WavLM) + Transformer Concat-Early
Ensemble (Ours) BERT (Wav2Vec2 ∨ HuBERT ∨ WavLM) + Transformer Avg-Late
Mul-TA (Ours) BERT (Wav2Vec2 ∨ HuBERT ∨ WavLM) + Transformer Cross

Table 1: Multimodal models available in MAMKit. For each model, we summarize its text and audio encoding
modules and its fusion strategy. Concat: Concatenation; Avg: Average; Cross: Crossmodal Attention.

audio, respectively. A weighted average of the
probability vectors of the unimodal classification
heads constitutes the final prediction. The text-only
model involves averaging BERT embeddings along
the time dimension and feeding them to a two-layer
classification head. The audio-only model follows
the same architecture as the text-only model, al-
though with a custom transformer which is trained
along with the head. The main challenge is deter-
mining how to merge the outputs of the two uni-
modal classification heads. We compute a weighted
average with weight we defined as follows:

we = l + (u− l) · tanhw + 1

2
(1)

where w is a learnable parameter in the [l, u]
range. Bounding ensures that the ensemble is
forced to exploit the output of both classification
heads, preventing a dead neuron situation where
the ensemble focuses on a single modality only.
We set l = 0.3 and u = 0.7 for learning stability.
Figure 3 in Appendix A summarizes Ensemble.

Mul-TA (Ours) We propose a variant of the
MulT architecture (Tsai et al., 2019): a trans-
former model for carrying out multimodal tasks
without the need for modality alignment. The core
module of MulT is the directional pairwise cross-
modal attention layer, which captures interdepen-
dencies between multimodal sequences and seam-
lessly adjusts information flow between modalities.
In practice, the cross-modal attention layer uses
one modality A as the query vector and another
modality B as key and value vectors. The layer
is applied for each pair of input modalities. Pairs
with the same B modality are combined into a uni-
fied sequence using a self-attention layer. Lastly,
each unified sequence is averaged over the time
dimension and concatenated. The resulting embed-
ding vector is fed to a classification head. While
MulT was developed for three modalities, totaling
six (A,B) pairs, our variant uses only two, total-
ing two (A,B) pairs. Additionally, we replace

the self-attention unification step with an average.
Figure 4 in Appendix A summarizes Mul-TA, our
MulT architecture variant, tailored to text and audio
modality.

3.4 Data

We now provide an overview of MAM datasets
currently available in MAMKit.

UKDebates (Lippi and Torroni, 2016a) The
first MAM dataset. It contains transcriptions and
audio sequences of three candidates for UK Prime
Ministerial elections of 2015 in a two-hour debate
aired by Sky News. The candidates are David
Cameron, Nick Clegg, and Ed Miliband. The
dataset contains 386 sentences and corresponding
audio samples. Two domain experts annotated sen-
tences as containing or not containing a claim. The
inter-annotator agreement measured via Cohen’s
kappa (Carletta, 1996) is 0.53 (fair to good).

M-Arg (Mestre et al., 2021b) A multimodal
dataset built around the 2020 US Presidential elec-
tions. The dataset contains transcriptions and audio
sequences of four candidates and a debate mod-
erator concerning 18 topics. The authors design
a controlled crowdsourcing data annotation pro-
cess whereby each crowd worker labels sentence
pairs as describing support, attack, or no relation.
In total, the dataset contains 4,104 sentence pairs
with corresponding aligned audio samples. A high-
quality subset of the M-Arg, M-Argγ , containing
2,443 sentence pairs with high agreement confi-
dence γ ≥ 85% is commonly considered for model
evaluation.

MM-USED (Mancini et al., 2022) A multi-
modal extension of the dataset introduced in Had-
dadan et al. (2019). It contains presidential candi-
dates’ debate transcripts and corresponding audio
recordings aired from 1960 to 2016. In Haddadan
et al. (2019), annotators labeled text sentences as
containing a claim, a premise, or neither of them.
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Later Mancini et al. (2022) enriched the dataset
with the audio modality and aligned text sentences
to audio recording snippets. This dataset consists
of 26,781 labeled sentences and corresponding au-
dio samples covering 39 debates and 26 different
speakers, making it the largest MAM resource to
date.

MM-USED-fallacy (Mancini et al., 2024) A
multimodal extension of the dataset introduced
by Goffredo et al. (2022) about argumentative falla-
cies. In Goffredo et al. (2022), the authors consider
the dataset curated by Haddadan et al. (2019), carry
out an annotation process for labeling text spans
as argumentative fallacies, and introduce a taxon-
omy for categorizing them. Mancini et al. (2024)
enrich the existing dataset with the audio modality
by first converting annotations to the sentence level
and then aligning them to audio recording snip-
pets. The dataset contains 1,891 sentences labeled
as argumentative fallacies belonging to six distinct
categories.

3.5 Tasks
The tasks currently supported by MAMKit are de-
rived from literature (Lippi and Torroni, 2016b;
Lawrence and Reed, 2019)

Argumentative Sentence Detection Given an in-
put sentence x, the task of argumentative sentence
detection (ASD) consists of determining whether
x contains an argument (arg) or not (not-arg). We
extend this definition to include component detec-
tion. For instance, the task of claim detection (Levy
et al., 2014; Lippi and Torroni, 2015) consists of
classifying x as containing a claim (claim) or not
(not-claim).

Argumentative Component Classification
Given an argumentative sentence x, the task of
argumentative component classification (ACC)
consists of classifying x as containing one or
more argumentative components according to
a reference argument model. Following the
claim-premise argument model (Walton, 2009),
ACC involves identifying claims (claim) and
premises (premise) in x.

Argumentative Relation Classification Given a
pair of argumentative sentences xi and xj , the task
of argumentative relation classification (ARC) con-
sists of classifying the pair (xi, xj) as yielding an
argumentative relation xi → xj of support, attack,
or neither if no argumentative relation exists.

Argumentative Fallacy Classification Given an
argumentative sentence x identified as a fallacy, the
task of argumentative fallacy classification (AFC)
consists of categorizing x against a given taxonomy
of fallacies.

4 Experiments

We employ MAMKit to provide a robust and re-
producible overview of a significant share of the
work published on MAM so far. In particular, we
evaluate MAMKit supported models on all avail-
able tasks and datasets. We build our evaluation as
follows. Regarding model evaluation, we compute
macro F1-score except on UKDebates for which we
report binary F1-score (Lippi and Torroni, 2016a).
We carry out a repeated five-fold cross-validation
routine for UKDebates and M-Argγ using the same
folds defined in Mancini et al. (2022). Similarly,
we perform a repeated train and test routine for
MM-USED on official data splits (Haddadan et al.,
2019). We set the number of repetitions to three in
both cases. Lastly, we perform a leave-one-out rou-
tine for MM-USED-fallacy Mancini et al. (2024).
See Appendix B for additional details.

5 Results

Table 2 reports the best classification performance
for each model (See Appendix C for all results).

UKDebates We observe no notable benefits in in-
tegrating the audio modality in all models, compa-
rable to the results reported in Mancini et al. (2022).
Specifically, multimodal models show equal or
lesser classification performance than their text-
only modules.

M-Argγ Our results significantly differ from
those reported in Mancini et al. (2022). In par-
ticular, Ensemble and Mul-TA, are noticeably un-
derperforming compared to their text-only coun-
terparts. The only exceptions are MM-BERT and
CSA with slightly higher performance. Addition-
ally, audio-only models fail to learn the task.

MM-USED We observe a small performance gap
between audio-only and text-only models, suggest-
ing that the audio modality may be a valuable indi-
cator in both ASD and ACC tasks. However, multi-
modal models achieve comparable performance to
their text-only counterparts, with minor improve-
ments only for MM-BERT (+1.7), CSA (+0.9), En-
semble (+0.2) and Mul-TA (+1.3) in ASD, CSA
(+1.4), and Mul-TA (+1.8) in ACC.
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Model UKDebates
(ASD)

M-Argγ

(ARC)
MM-USED

(ASD)
MM-USED

(ACC)
MM-USED-fallacy

(AFC)

Text Only

BiLSTM (T1) .552±.047 .120±.006 .811±.004 .663±.002 .525±.113

BERT (T2) .654±.003 .132±.004 .824±.009 .679±.004 .594±.122

RoBERTa (T3) .692±.005 .172±.015 .839±.010 .680±.001 .615±.097

Audio Only

BiLSTM (A1) .393±.040 .024±.012 .774±.008 .596±.005 .657±.000

Transformer (A2) .455±.004 .000±.000 .771±.019 .526±.004 .629±.162

Text Audio

BiLSTM (T1 +A1) .533±.009 .084±.016 .815±.006 .667±.000 .572±.099

MM-BERT (T2 +A1) .662±.004 .160±.015 .841±.005 .680±.004 .599±.128

MM-RoBERTa (T3 +A1) .687±.010 .178±.012 .837±.009 .678±.003 .624±.074

CSA (T2 +A2) .663±.014 .160±.015 .833±.011 .693±.001 .582±.114

Ensemble (T2 +A2) .586±.015 .011±.011 .826±.011 .681±.002 .612±.134

Mul-TA (T2 +A2) .616±.019 .098±.031 .837±.006 .697±.003 .605±.110

Table 2: Test classification performance on MAM datasets. For each multimodal model, we report their constituting
text module (Ti) and audio module (Aj).

MM-USED-fallacy In contrast to other tasks and
datasets, in MM-USED-fallacy, audio-only models
are the best-performing ones. The performance of
text-audio models is slightly better than that of the
corresponding text-only models but below that of
audio-only models. Alternative fusion strategies
yielded only a moderate, non-systematic improve-
ment.

6 Conclusion

MAM is a new, exciting and largely unexplored
research domain with interesting applications. We
believe that, at present, an open and collabora-
tive standardized platform for experimentation and
benchmarking has the potential to build a stronger
community around it, that will be able to focus on
the innovations needed to push the envelope. To
this end, we developed an open-source PyTorch
toolkit named MAMKit. MAMKit offers several
datasets, state-of-the-art models, and processing
strategies. This paper introduces the platform and
discusses some initial empirical results we obtained
with it.

Remarkably, the advanced audio encoding and
fusion techniques we introduced do not yield the
performance improvement we hoped for. This re-
sult might be ascribed to weaknesses in the archi-
tectures, and motivate further research on novel
encoding and fusion methods. However, the nega-
tive result might also be attributed to the fact that, in
the available datasets, annotations were first made
on the transcripts, and only later extended to the
audio modality. As noted by Mancini et al. (2024),

such a procedure does not exploit acoustic insights,
hence it should be expected that the potential of
MAM architectures may not be fully leveraged, un-
til datasets become available, that natively include
auditory cues in the annotation process. This issue
affects all MAM datasets in MAMKit, therefore
a revision of the existing annotations would be re-
quired to effectively include auditory cues.

In conclusion, further research is needed to un-
derstand audio characteristics better and devise
methods to integrate them with textual annotations.
That will necessitate collaboration across fields like
argumentation and signal processing. MAMKit
could be a valuable resource for fostering such a
collaboration. In a broader perspective, MAMKit
holds potential for further development and appli-
cation, including its extension to additional modal-
ities like images and video (Birdsell and Groarke,
1996). For instance, we plan to incorporate the Im-
ageArg dataset (Liu et al., 2022), which has been
developed to address argument stance classifica-
tion and image persuasiveness classification tasks.
The ImageArg dataset was notably extended during
ImageArg-2023 (Liu et al., 2023), the first shared
task in MAM, providing additional annotated sam-
ples. This dataset has been leveraged in various
studies (Sharma et al., 2023; Zong et al., 2023)
proposing diverse strategies for vision-language
MAM, thereby presenting an opportunity for inte-
grating new models within MAMKit. Additionally,
we plan to include in MAMKit the MMClaims
dataset (Cheema et al., 2022), designed for multi-
modal claim detection in social media.
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Furthermore, we aim to improve our understand-
ing of multimodal discourse analysis and its prac-
tical implications through further experimentation
with new datasets and by exploring transfer learn-
ing techniques to enhance model generalization
across diverse domains.

7 Limitations

PyTorch Dependency. Currently, the toolkit
only supports PyTorch. While PyTorch is a widely
used deep learning framework, this limitation may
pose challenges for researchers who prefer or re-
quire other frameworks, such as TensorFlow, as
well as the integration of previous work built on
these frameworks.

Incomplete Dataset and Model Integration.
Not all existing datasets and models for MAM re-
search are included. For instance, the VivesDebate-
Speech dataset (Ruiz-Dolz and Iranzo-Sánchez,
2023), the ImageArg dataset (Liu et al., 2022), the
MMClaims dataset (Cheema et al., 2022) and mod-
els like M-ArgNet (Mestre et al., 2021b) are cur-
rently not implemented. We plan to integrate these
and other resources in the future, and we encourage
MAM researchers to include their resources on our
platform.

Scope Limitation. At present, the toolkit focuses
solely on text and audio modalities. We recognize
the importance of expanding to other modalities,
such as visual AM. Resources for these additional
modalities will be integrated in future work.
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Appendix

A Model Architectures

We provide a comprehensive visual representation
of the novel model architectures presented in this
work. Figures 2, 3, and 4 show the CSA, Ensemble,
and Mul-TA models, respectively.

Figure 2: The CSA model architecture.

Figure 3: The Ensemble model architecture.

B Experimental Setup Details

Model Hyper-parameters Table 3 reports the
main hyper-parameters used in our experiments.
All model configurations can be inspected in the
mamkit.configs package.

Training Models are trained with cross-entropy
loss as standard practice for classification tasks. We
additionally apply class weighting to address class
imbalance in all datasets except for MM-USED
ACC, where weighting is not needed. We monitor

Figure 4: The Mul-TA model architecture.

General

optimizer AdamW
batch_size 4
gradient accumulation steps 3
effective batch_size 12
max_epochs 20
early_stopping patience 5
early_stopping monitor val_loss
cross-validation seeds 42, 2024, 666
leave-one-out seeds 42
train and test seeds 42, 2024, 666

Table 3: General model hyper-parameters in our experi-
ments.

validation loss during training and load the best
model checkpoint based on this metric for evalua-
tion on validation and test splits.

Hardware We employ an NVIDIA 2080Ti GPU
with 12 GB VRAM and an NVIDIA 3060Ti GPU
with 8 GB VRAM to run our experiments. All ex-
periments regarding a dataset are run on the same
device for reproducibility and fair comparison. Fur-
thermore, individual experiments were run on a
single device.

C Additional Results

Table 4 reports results for all model combinations
evaluated.
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Model UKDebates
(ASD)

M-Argγ

(ARC)
MM-USED

(ASD)
MM-USED

(ACC)
MMUSED-fallacy

(AFC)

Text Only

BiLSTM .552±.047 .120±.006 .811±.004 .663±.002 .525±.113

BERT .654±.003 .132±.004 .824±.009 .679±.004 .594±.122

RoBERTa .692±.005 .172±.015 .839±.010 .680±.001 .615±.097

Audio Only

BiLSTM w/ MFCCs .302±.047 .003±.005 .722±.027 .527±.004 .657±.000

BiLSTM w/ Wav2Vec2 .376±.023 .000±.000 .774±.008 .596±.005 .655±.117

BiLSTM w/ HuBERT .364±.012 .024±.012 .745±.009 .566±.007 .638±.000

BiLSTM w/ WavLM .393±.040 .010±.010 .772±.015 .583±.002 .652±.000

Transformer w/ Wav2Vec2 .440±.030 .000±.000 .771±.019 .514±.000 .567±.225

Transformer w/ HuBERT .425±.033 .000±.000 .765±.016 .524±.004 .629±.162

Transformer w/ WavLM .455±.004 .000±.000 .768±.005 .526±.004 .594±.217

Text Audio

BiLSTM w/ MFCCs .528±.039 .065±.014 .807±.010 .662±.006 .572±.099

BiLSTM w/ Wav2Vec2 .533±.009 .079±.014 .808±.012 .665±.004 .505±.168

BiLSTM w/ HuBERT .409±.017 .055±.020 .807±.013 .653±.003 .456±.131

BiLSTM w/ WavLM .501±.022 .084±.016 .815±.006 .667±.000 .526±.174

MM-BERT w/ Wav2Vec2 662±.004 .153±.017 841±.005 .677±.003 .561±.114

MM-BERT w/ HuBERT .626±.003 .160±.015 .840±.006 .677±.004 .599±.128

MM-BERT w/ WavLM .654±.019 .152±.008 .836±.005 .680±.004 .580±.103

MM-RoBERTa w/ Wav2Vec2 .674±.009 .178±.012 .833±.006 .678±.003 .608±.126

MM-RoBERTa w/ HuBERT .624±.015 .147±.004 .837±.003 .677±.008 .576±.097

MM-RoBERTa w/ WavLM .687±.010 .165±.018 .837±.009 678±.003 .624±.074

CSA w/ Wav2Vec2 .663±.014 .137±.027 .822±.002 .693±.001 .555±.118

CSA w/ HuBERT .632±.018 .160±.015 .813±.004 .693±.001 .582±.114

CSA w/ WavLM .655±.029 .155±.030 .833±.011 .697±.001 .535±.102

Ensemble w/ Wav2Vec2 .586±.015 .011±.011 .825±.004 .681±.002 .612±.134

Ensemble w/ HuBERT .531±.039 .010±.004 .822±.007 .681±.003 .611±.107

Ensemble w/ WavLM .576±.006 .002±.003 .826±.011 .680±.003 .605±.136

Mul-TA w/ Wav2Vec2 .592±.034 .098±.031 .826±.011 .695±.001 .605±.110

Mul-TA w/ HuBERT .616±.019 .079±.053 .829±.011 .697±.003 .594±.091

Mul-TA w/ WavLM .602±.017 .063±.015 .837±.006 .690±.003 .605±.082

Table 4: Test classification performance on MAM datasets. In bold, the best-performing model for each configura-
tion.
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Abstract

Argumentation is the process by which humans
rationally elaborate their thoughts and opinions
in written (e.g., essays) or spoken (e.g., de-
bates) contexts. Argument Mining research,
however, has been focused on either written
argumentation or spoken argumentation but
without considering any additional information,
e.g., speech acts and intentions. In this paper,
we present an overview of DialAM-2024, the
first shared task in dialogical argument min-
ing, where argumentative relations and speech
illocutions are modelled together in a unified
framework. The task was divided into two dif-
ferent sub-tasks: the identification of propo-
sitional relations and the identification of il-
locutionary relations. Six different teams ex-
plored different methodologies to leverage both
sources of information to reconstruct argument
maps containing the locutions uttered in the
speeches and the argumentative propositions
implicit in them. The best performing team
achieved an F1-score of 67.05% in the overall
evaluation of the reconstruction of complete
argument maps, considering both sub-tasks in-
cluded in the DialAM-2024 shared task.

1 Introduction

Argument Mining (Lawrence and Reed, 2020) in-
vestigates the automatic extraction of argument
structures from natural language inputs. The nature
of argumentation, however, can be very variable
depending on its context, presenting significant
differences between written and spoken argumenta-
tion (Hitchcock, 2009), and between monological
and dialogical argumentation (O’Keefe, 1977). Re-
search in argument mining has mainly focused on
the extraction of arguments only considering argu-
ment annotations such as premises and claims (Stab
et al., 2018; Reimers et al., 2019) or attacks and
supports between propositions (Hou and Jochim,
2017; Ruiz-Dolz et al., 2021; Saadat-Yazdi et al.,
2023), without bringing into consideration addi-

tional relevant information that could be extracted
from the speeches uttered in the dialogues. This
is mostly due to the lack of presence of a frame-
work annotating dialogue information in addition
to argument structures in argument mining work.

Inference Anchoring Theory (IAT) was proposed
as an annotation framework for dialogue argumen-
tation where not only the structure of arguments
is captured, but also the speech acts and speaker
intent is also annotated to support and contextualise
argumentation in dialogues (Budzynska and Reed,
2011; Janier et al., 2014). Therefore, when ap-
proaching argument mining in dialogues, IAT rep-
resents an ideal framework to expand the standard
annotations typically used in argument mining re-
search (i.e., attacks and supports between premises
and claims) integrating dialogical information to
the argument mining process. Although several
corpora and resources annotated with IAT such as
US2016 (Visser et al., 2019), QT30 (Hautli-Janisz
et al., 2022), RIP (Schad et al., 2024), or FORE-
CAST (Górska et al., 2024) have been released
in the last years1, there is a lack of systematic re-
search in dialogical argument mining integrating
these speech features into argument mining sys-
tems.

DialAM-2024 represents the first shared task
in dialogical argument mining bringing together
argument and speech annotations in an attempt
to systematically explore the potential benefits of
combining both when developing argument mining
systems to be used in transcribed argumentative
dialogues. The DialAM-2024 shared task received
submissions from six different teams exploring a
broad set of approaches to integrate and combine
argument and dialogue features for argument min-
ing. In this paper, we describe the DialAM-2024
shared task, summarise the most important aspects

1All publicly available at the AIFdb: http://www.aifdb.
org/search
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of the submitted systems, and provide an in-depth
analysis of the final results of the shared task. Fur-
thermore, we perform a qualitative analysis of the
output of the best performing system, pointing out
the open challenges that will need to be addressed
in future work.

2 DialAM-2024

2.1 Task
The DialAM-20242 shared task explores, for the
first time, argument mining in dialogues where in-
formation from both arguments and dialogues is
modelled together. For this purpose, we use IAT,
a domain independent annotation framework de-
signed for capturing argument structures anchored
to locutions via illocutions. DialAM-2024, there-
fore, consists of two sub-tasks: the identification
of propositional (argumentative) relations, and the
identification of illocutionary (speech act) relations.
The data used to develop and evaluate the systems
submitted to the DialAM-2024 task includes an-
notations for both sub-tasks together, providing a
direct connection between the dialogue speeches
and the annotated argumentative structures. With
this shared task, it is our goal to motivate the re-
search on the relations between dialogical infor-
mation and argumentative structures jointly. This
way, it is our goal to take a step forward from pre-
vious sequence modelling-based approaches, only
considering pairs of sentences or argumentative
discourse units (ADUs) to automatically identify
argument structures, where much of the relevant
information to argumentation remains implicit be-
hind the natural language.

This way, the two DialAM-2024 sub-tasks are
defined as follows:

A. Identification of Propositional Relations. In
the first task, the goal is to detect argumenta-
tive relations existing between the argumenta-
tive propositions directly extracted from the
locutions uttered in the argumentative dia-
logues. Such relations are: Inference, Conflict,
and Rephrase.

B. Identification of Illocutionary Relations. In
the second task, the goal is to detect illocu-
tonary relations existing between locutions
uttered in the dialogue and the argumenta-
tive propositions associated with them includ-

2The website for this shared task can be found at the fol-
lowing link: dialam.arg.tech

ing: Asserting, Agreeing, Arguing, Disagree-
ing, Challenging, Restating, Pure Questioning,
Rethorical Questioning, and Assertive Ques-
tioning.

The final goal of the DialAM-2024 shared task is,
therefore, to reconstruct graph-structured argument
maps, containing locutions and argument propo-
sitions previously identified and segmented from
argumentative dialogues.

2.2 Evaluation

We measured the macro-averaged Precision, Recall
and F1-score to evaluate the performance of the
submitted systems. The evaluation of the DialAM-
2024 shared task was performed at two different
levels: focused and general. In the focused evalua-
tion setup, we only considered the related proposi-
tions/locutions in the gold standard files, ignoring
all the possible combinations of non related propo-
sitions/locutions. To complement it, we also con-
sidered a general evluation setup, where the whole
argument map was included in the evaluation. This
way, a high performance in the general setup but
low in the focused setup represents a pessimistic
approach that leaves more nodes without any rela-
tion than it should be. For an extreme case of this
first situation, see the majority baseline described
below. Conversely, a high performance in the fo-
cused setup but low in the general setup represents
an optimistic approach establishing more relations
between propositions/locutions than actually exist.

Furthermore, the evaluation was conducted in-
dependently for the two sub-tasks included in
DialAM-2024, and globally combining the scores
of the two independent evaluations. We named
as ARI (from argument relation identification) the
evaluation of the performance on Task A: Identifi-
cation of Propositional Relations, and as ILO (from
illocutionary relation identification) the evaluation
of the performance of the submitted systems on
Task B: Identification of Illocutionary Relations.
Finally, we refer to the final results combining both
sub-tasks and considering the complete argument
maps as the Global evaluation.

2.3 Baselines

We included two different baselines as a reference
for the submitted systems to the DialAM-2024
shared task: a majority baseline that always assigns
the majority class (no relation) to all the possible
pairs of sequences, and a pre-trained RoBERTa-

84

dialam.arg.tech


large model for sequence pair classification based
on (Ruiz-Dolz et al., 2021).

• MAJORITY-BL: Given that most of the pos-
sible combinations of propositions/locutions
are not related at all, no relations are assigned
between nodes in the argument maps for all
ARI, ILO, and Global evaluations.

• ROBERTA-BL: The system consists of two
RoBERTa-large (Liu et al., 2019) model ar-
chitectures fine-tuned independently for both
Tasks A and B, approaching the problem as a
sequence pair classification problem. No in-
teraction between argumentative and dialogue
information is considered in this baseline.

3 Data

3.1 The QT30 Corpus

QT30 (Hautli-Janisz et al., 2022) is the largest indi-
vidual corpus of analysed dialogical argumentation
at 280,000 words, made up of thirty episodes of one
of the most viewed political talk show in the UK,
“Question Time”; it features topical debates where
the audience members ask questions or request jus-
tifications from the panel members: people who are
political or societal figures 3. The audience mem-
bers will typically be from the area in which they
host that week’s show, thereby also determining the
kind of questions that are asked. For instance, if
the show was hosted in Scotland, then there may be
questions about Independence or relations between
England and Scotland. These thirty episodes were
broadcast in 2020 and 2021, covering national scan-
dals and controversial debates such as Brexit, how
the government handled COVID19, the subject of
vaccination, as well as topics such as PartyGate
(politicians in power partying during lockdowns).
Question Time (QT) is moderated by a neutral third
party who takes questions from the audience and
prompts panel members.

The purpose of QT30 was to identify the argu-
mentative structure within these politically relevant
debates by annotating the dialogical and propo-
sitional structure, as well as identifying the rela-
tions used (support, rephrase, or attack) and the
illocutionary force of contributions. The authors re-
port inter-annotator agreement (IAA) of 0.56, using
CASS (Duthie et al., 2016).

3QT30 as a corpus is publicly accessible at http://
corpora.aifdb.org/qt30

The analysis within the QT30 paper reveals in-
teresting facets of argumentation within broadcast
debate, e.g., how the use of conflicts and supports
differ between roles. We use this dataset for two
reasons: its size and the depth of annotation cap-
tured. The size provides us with more data with
which to train models; as for depth of annotation,
IAT was specifically developed to capture argu-
mentative dialogues and, in a task where we ask
participants to identify argumentative relations and
illocutionary forces while incorporating additional
dialogical information, is ideally suited to provide
us the necessary annotation.

3.2 Annotation

IAT provides a theoretical scaffold to handle dia-
logue and argument structures, and the relations
between them. It is used in order to represent, and
to gain insight into, the arguments people make in
complex dialogues. For IAT diagramming we use
OVA+, an online tool developed for the analysis of
arguments (Janier et al., 2014). The IAT framework
and its OVA tool have been used for more than 2.5
million words of analysed argumentation.4

The smallest units of the IAT analysis are ar-
gumentative discourse units (ADUs), typically di-
rectly analysed as locutions. Locutions are in the
text boxes on the right of the graph structure and
are known as L-nodes. ‘Edges’ (incoming and out-
going) is the term used to describe the relations,
illocutionary forces, and Default Transitions (TAs)
anchored in the nodes. Propositions are on the left-
hand side and are reconstructed locutions, where
linguistic features like anaphora, pronouns, and
deixis are resolved. IAT has three types of rela-
tions: (i) relations between locutions in a dialogue,
called transitions; (ii) relations between content
(propositional content of locutions); and (iii) illo-
cutionary connections that link locutions with their
content. Locutions have speakers and typically also
have timestamps. The text of locutions is not recon-
structed or changed in any way from the source data
in contrast to the propositional content of those lo-
cutions. Locutions and propositions are connected
via illocutionary connections. The guidelines used
for annotation are available publicly5.

As an example of IAT annotation, Figure 1
shows the typical structure of a QT episode: the

4The OVA tool is made available at the following address:
ova.arg.tech

5Annotation guidelines: https://www.arg.tech/index.
php/annotation-guidelines/
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Figure 1: Example of data annotated using IAT: rectangular blue boxes indicating propositions and locutions, yellow
ovals for illocutionary connections, purple ovals for discourse transitions, the green oval for inference relation, the
orange oval either showing a rephrase relation or signalling the answer to a question, as is the case here.

moderator puts forward a question and a panel
member replies. The Default Rephrase node is
used to denote a rephrase relation, unless anchored
by a “Pure Questioning” illocutionary force, as is
the case here. Robert Buckland’s intention of cre-
ating an argument is captured through the Default
Inference. As each proposition should be under-
standable by itself, the second and third proposition
have been reconstructed; the second with what “the
lady” was right about and the third with who “I”
and “that” refers to.

3.3 Training Phase

For the training phase, the participants were given
the QT30 data in JSON format. We provided ad-
ditional information sheets to participants on the
DialAM website67 about the style of annotation, as
well as how to read the JSON-based format. The
QT30 corpus contains 10,818 propositional rela-
tions and 32,303 illocutionary relations in 1,478
JSON files.

3.4 Evaluation Phase

For the evaluation phase, we chose eleven JSON
files containing argument maps that included some
challenging argument structures. This was for the
purpose of evaluating how participants systems
dealt with these complex cases. An example of
the complex argumentation available in the data
and used for evaluation would be linked, conver-
gent, and divergent arguments.

6Data format details: http://dialam.arg.tech/res/
files/data-format.pdf

7Annotation details: http://dialam.arg.tech/res/
files/annotation-details.pdf

4 Submissions

Fifteen different teams registered for the DialAM-
2024 shared task, of which six submitted their sys-
tem outputs during the evaluation phase. All the
submissions addressed the two sub-tasks of the
shared task: (A) identification of propositional re-
lations, and (B) identification of illocutionary re-
lations. The submitted systems include a broad
set of different language modelling approaches and
model architectures. A summary of the submitted
systems together with the references to their sys-
tem description papers where the approaches are
described in-depth is provided below.

4.1 System Descritpions

dfki-mlst (Binder et al., 2024) approaches the
shared task as an n-ary classification problem.
Their proposed method relies on three main steps:
normalise the nodeset, encode the relations for both
propositions and illocutions, and train a classifi-
cation model. The authors submitted a fine-tuned
DeBERTa-v3 model (He et al., 2021) as their classi-
fication model for the evaluation phase. In addition
to DeBERTa-v3, the authors carried out an exten-
sive comparison of different model architectures
for the base classifier after the end of the evaluation
phase, pointing out that DeBERTa-v1 performed
better on test (although DeBERTa-v3 got better re-
sults during validation), and that combining the text
data included in L and I nodes helps to improve
the performance of the submitted system in both
focused and general evaluation setups.

KnowComp (Wu et al., 2024) proposes a three-
stage sequential inference pipeline to approach
the shared task based on prompt-based fine-tuning.
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The first stage is aimed at identifying direct illo-
cutionary relations between L and I nodes. The
second stage identifies argument relations between
I nodes. Finally, the third stage detects indirect illo-
cutionary relations between TA nodes and I nodes.
In all the three stages, the text information included
in L and I nodes is combined with a specifically cu-
rated prompt as the input to the developed models.
Team KnowComp ran their experiments consid-
ering DeBERTa-base, DeBERTa-large, RoBERTa,
and ALBERT (Lan et al., 2019). The best results
were observed with the DeBERTa-based model ar-
chitecture, which was the one selected for the final
submission.

Pokemon (Zheng et al., 2024) proposes a two-
stage pipeline to identify both argument relations
with a two-step model filtering relations and clas-
sifying them into one of the three classes, and il-
locutionary relations with an eleven-class classifi-
cation model covering all the possible YA nodes.
The authors experiment with three different model
architectures to implement the proposed pipeline,
DeBERTa, RoBERTa, and LLaMa (Touvron et al.,
2023). Based on the reported experimentation, their
final submission consists of a DeBERTa-base com-
bined with a RoBERTa-MNLI for the first stage
(two-step) model, and a DeBERTa-large for the sec-
ond stage model, meaning that RoBERTa-MNLI
worked better for argument relation classification
and DeBERTa-large for illocutionary relation iden-
tification.

Pungene (Chaixanien et al., 2024) approach the
shared task with a pipeline system consisting of
three main parts: the first part focuses on identi-
fying illocutionary forces between locutions and
propositions, the second part detects argumenta-
tive relations between propositions, and the third
part identifies YA nodes between transitions and
S nodes. This way, the proposed system gradually
reconstructs the argument map by adding relation
nodes. For the first part, the proposed system cal-
culates BERTscore between pairs of locutions and
propositions to establish the pairs, and then classi-
fies the pair into one of the illocutionary relation
classes using a fine-tuned BERT-base model. The
second part of the proposed system connects ar-
gument propositions and detects the relation type
between them by fine-tuning a BERT model for
multi-class classification. Finally, the third part
establishes the connection between transitions and
S nodes by considering the natural language con-
text of the nodes involved in the transition and the

argumentative relation.
Turiya (Saha and Srihari, 2024) investigates two

methods for argumentative dialogue analysis. First,
by training a classification model using RoBERTa
embeddings and two biaffine classifiers (Dozat and
Manning, 2016). The first biaffine classifier is in
charge of determining the relationship between ar-
gument propositions, between locutions and propo-
sitions, and between transitions and propositions.
The second biaffine classifier is then trained to iden-
tify the remaining set of relations, the ones existing
between transitions and propositions. The second
explored method consists on leveraging the capabil-
ities of generative LLMs to identify all the relations
by prompting the language model with all the in-
formation extracted from the argument maps to
generate an output pointing out all the potential
relations between the nodes included in the map.
From the reported results, it is possible to observe
how in the general evaluation the LLMs perform
better, but for the focused evluation combining both
methods provides better results.

The sixth team, misaka, did not submit a system
description paper.

5 Results

In order to provide an insightful analysis of the per-
formance of the submitted systems to the DialAM-
2024 shared task, we have divided the evaluation
into three parts. First, the evaluation of the sub-
mitted systems when identifying propositional re-
lations. Second, the evaluation of the submitted
systems when identifying illocutionary relations.
Finally, a global evaluation of the submitted sys-
tems when reconstructing argument maps looking
at both, argument and discourse structures together.
Furthermore, each evaluation is also done consider-
ing two different setups: by considering exclusively
the related pairs of nodes in the evaluation maps
(i.e., focused), and by considering the complete
map including non-related nodes (i.e., general).

5.1 Propositional Relation Evaluation

The final results of the propositional relation evalu-
ation, also known in the argument mining commu-
nity as argument relation identification (ARI), have
been described in Table 1.

Regarding the performance of the submitted sys-
tems on the specific aspect of identifying proposi-
tional relations, we observed that, in the focused
setup POKEMON team was the best, while in the
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Model Rank Precision Recall F1-score

POKEMON 1st 46.26 32.43 35.89
DFKI-MLST 2nd 43.87 24.82 30.40
ROBERTA-BL 3rd 37.10 18.42 22.80
PUNGENE 4th 30.18 17.59 20.51
KNOWCOMP 5th 23.47 5.85 9.06
MISAKA 5th 23.47 5.85 9.06
TURIYA 7th 18.95 4.21 6.65
MAJORITY-BL 8th 0 0 0

DFKI-MLST 1st 61.96 53.30 55.33
PUNGENE 2nd 49.21 46.32 46.22
KNOWCOMP 3rd 32.43 33.79 32.75
MISAKA 3rd 32.43 33.79 32.75
TURIYA 5th 30.81 31.52 30.75
POKEMON 6th 32.00 46.56 30.64
MAJORITY-BL 7th 28.79 30.28 29.52
ROBERTA-BL 8th 28.59 34.69 26.46

Table 1: Results of the ARI evaluation. First half reports
the focused evaluation setup and second half the general
setup.

general setup DFKI-MLST outperformed the others.
From the ARI results, it is also possible to observe
that systems performed much better in the general
setup than in the focused setup, meaning that most
of them estimated that more argument propositions
are not related than related, which was not the case.
Furthermore, this part of the shared task was also
the most challenging one, achieving significantly
lower performance scores than in the illocutionary
relation identification task.

5.2 Illocutionary Relation Evaluation

The final results of the illocutionary relation evalu-
ation (ILO) are summarised in Table 2.

It is interesting to observe how, in the focused
setup, the RoBERTa-large baseline performed the
best, but in the general setup was one of the worst
systems. This is mostly due to the fact that this
baseline does not correctly model the non-related
pairs of sequences. Due to this, and the high class
imbalance where assertions represent the major-
ity of illocutionary relations, the model obtains
good results when only looking at the set of related
nodes but performs poorly when considering the
complete argument maps, being not the best option
for illocutionary relation identification. The best
submission in this sub-task was PUNGENE, provid-
ing consistent strong results in both focused and
general evaluation setups, followed by DFKI-MLST.
KNOWCOMP and MISAKA performed well in the
general setup, but their performance significantly
dropped in the focused evaluation, contrary to the

Model Rank Precision Recall F1-score

ROBERTA-BL 1st 73.10 72.55 72.09
PUNGENE 2nd 71.18 69.23 69.95
DFKI-MLST 3rd 69.12 66.25 66.10
POKEMON 4th 54.15 49.87 51.39
KNOWCOMP 5th 48.44 41.27 44.33
MISAKA 5th 48.44 41.27 44.33
TURIYA 7th 43.81 26.09 30.41
MAJORITY-BL 8th 0 0 0

PUNGENE 1st 81.99 80.79 81.17
KNOWCOMP 2nd 82.35 76.26 78.90
MISAKA 2nd 82.35 76.26 78.90
DFKI-MLST 4th 81.08 79.25 78.78
POKEMON 5th 56.41 64.57 59.36
TURIYA 6th 51.37 57.05 53.31
ROBERTA-BL 7th 39.11 62.07 45.75
MAJORITY-BL 8th 34.71 35.90 35.29

Table 2: Results of the ILO evaluation. First half reports
the focused evaluation setup and second half the general
setup.

baseline. This means that these systems modelled
better the non-related locution-proposition pairs,
but missed a lot of the existing illocutionary rela-
tions.

5.3 Global Results

Model Rank Precision Recall F1-score

DFKI-MLST 1st 56.50 45.53 48.25
ROBERTA-BL 2nd 55.1 45.49 47.45
PUNGENE 3rd 50.68 43.41 45.23
POKEMON 4th 50.20 41.15 43.64
KNOWCOMP 5th 35.95 23.56 26.70
MISAKA 5th 35.95 23.56 26.70
TURIYA 7th 31.38 15.15 18.53
MAJORITY-BL 8th 0 0 0

DFKI-MLST 1st 71.52 66.28 67.05
PUNGENE 2nd 65.60 63.55 63.70
KNOWCOMP 3rd 57.39 55.03 55.82
MISAKA 3rd 57.39 55.03 55.82
POKEMON 5th 44.20 55.57 45.00
TURIYA 6th 41.09 44.29 42.03
ROBERTA-BL 7th 33.85 48.38 36.10
MAJORITY-BL 8th 31.75 33.09 32.40

Table 3: Results of the Global evaluation. First half
reports the focused evaluation setup and second half the
general setup.

The global results of the DialAM-2024 shared
task were calculated by aggregating the perfor-
mance of the systems in tasks A and B. The final
results can be observed in Table 3.

The best overall system was the one submitted by
team DFKI-MLST, with 48.25 and 67.05 F1-scores
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Figure 2: The gold map number 6 that correctly shows a divergent argument, with “we have let people into the UK
to fill the empty jobs” as the premise to two conclusions.

in the focused and general setups respectively. This
represents an improvement of 0.8% against the
RoBERTa-large baseline and 3.02% against the
best competitor in the focused evaluation, and an
improvement of 3.35% against the best competitor,
PUNGENE, in the general evaluation setup. Again,
the RoBERTa baseline performed overall well in
the focused setup, but was one of the worst sys-
tems in the general evaluation, only better than the
majority baseline. This means that the systems sub-
mitted by the other teams, although they did not
beat the RoBERTa-large baseline in the focused
setup, will be better options for argument mining
in dialogues reconstructing argument maps due to
their significantly better results in the general eval-
uation.

6 Qualitative Analysis

To expand the findings observed in the analysis
of the results based on the performance scores
achieved by the participants, we carried out a quali-
tative analysis looking at the content of the submit-
ted argument maps leading us to interesting obser-
vations. For that purpose, we compared the maps
generated by the submitted systems with the eleven
gold standard maps included in our test set focusing
on specific aspects that influenced the performance
of the systems including conflict relations or more
complex argument structures such as convergent

(i.e., Figure 3), divergent (i.e., Figure 2), and linked
arguments (i.e., Figure 3).

In general, we observed that the submitted ar-
gument mining systems had problems recognising
conflict relations, failing to identify most of them,
and assigning conflicts between non-conflicting
propositions. We also observed, in line with the
previously reported results that, teams DFKI-MLST

and PUNGENE were the ones that produced the
most similar outputs compared to the gold stan-
dard maps. It was also interesting to observe how,
the maps produced by team POKEMON’s system
contained a significantly larger amount of relations
compared to the rest. This is the reason of their
higher scores in the focused evaluation with a sig-
nificant drop of performance in the general setup.

Although both systems had some problems de-
tecting more complex argument structures, we ob-
served that DFKI-MLST did a better job than PUN-
GENE on these ones, identifying more convergent,
divergent, and linked arguments. In the case of
convergent and divergent arguments, the direction-
ality of the relations is fundamental, making the
identification of inference relations more challeng-
ing. For example, in the test map number 3, DFKI-
MLST identified correctly the inference relations,
but failed to correctly place the one making the
argument divergent. On the other hand, PUNGENE

had a rephrase instead of an inference, and the
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Figure 3: The gold map number 5 that correctly shows a convergent argument, with “the rest of the public sector
should get a pay rise too” as the conclusion to two premises, where one of the supporting premises a linked argument
consisting of two more premises.

assigned directionality made the argument conver-
gent instead of divergent, a similar error was ob-
served in the test map number 4. In the test map
number 5, DFKI-MLST captures correctly the struc-
ture of the convergent argument, but fails to iden-
tify the two linked arguments. When looking at test
map number 6, we observed again that both DFKI-
MLST and PUNGENE had problems modelling the
correct direction of the inference relations, identify-
ing a convergent argument instead of the divergent
one existing in the map, as seen within Figures 2
and 4.

With respect to linked arguments, team DFKI-
MLST identified them in the test maps 7, 8, and
10, but represented them as convergent arguments
instead of linked. A linked argument is represented
by a unique inference relation including multiple
premises rather than multiple inference relations
between the premises and the claim, which would
make it a convergent argument. We found, prob-
ably due to the implementation of the submitted
systems, that this specific case was never consid-
ered as an output. In the test map number 10, we
included a long linked argument, which consisted
of six premises linked together in a unique infer-
ence relation towards the claim of the argument.
Although the linked relation was not correctly rep-
resented (it was modelled as a convergent argument
instead), it is interesting that DFKI-MLST correctly
identified the six premises supporting the claim in
this very particular case.

Finally, we also observed that in the evaluation

set, none of the submitted systems was able to
capture reported speech connecting locution nodes
with illocutionary relations.

7 Conclusion

This paper presents DialAM-2024: the first shared
task in dialogical argument mining. From the fi-
nal results, we have been able to observe how the
submitted systems that performed better in the
DialAM-2024 shared task either addressed both
tasks at the same time (modelling argumentative
and dialogical features altogether), or first focused
on task B and then task A, showing that consid-
ering speech acts and dialogical structures helped
to improve the performance in the overall recon-
struction of argument maps. Furthermore, from
our qualitative analysis of the best submissions, we
observed that there is still room for improvement
in this area, specifically regarding the complex ar-
gument structures of convergent, divergent, and
linked arguments, where not only the type of rela-
tion (i.e., inference) but also its directionality is of
utmost important. It was also interesting to observe
how, although the illocutionary relations were mod-
elled with a reasonable success, specific cases such
as reported speech represented a challenge for the
systems submitted to the task.

Therefore, with the DialAM-2024 shared task, it
is possible to observe the complexity of argument
mining from a new dimension, pointing future work
towards a more complete modelling of argumen-
tation, including illocutionary forces and complex
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Figure 4: Pungene’s model incorrectly identifying a convergent argument with “we have let people into the UK to
fill the empty jobs” as the conclusion.

argument structures.
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Abstract

This paper presents the dfki-mlst submission
for the DialAM shared task (Ruiz-Dolz et al.,
2024) on identification of argumentative and
illocutionary relations in dialogue. Our model
achieves the best results in the global setting:
48.25 F1 at the focused level when looking only
at the related arguments/locutions and 67.05 F1
at the general level when evaluating the com-
plete argument maps. We describe our imple-
mentation of the data pre-processing pipeline,
relation encoding and classification, evaluating
11 different base models and performing exper-
iments with, e.g., node text combination and
data augmentation. Our source code is publicly
available.1

1 Introduction

DialAM 2024 (Ruiz-Dolz et al., 2024) is the first
shared task in dialogue argument mining. It uses
the Inference Anchoring Theory (IAT) framework
(Budzynska et al., 2014) as data schema. IAT de-
scribes argument structure as graphs of proposi-
tions that are derived from the argumentative dis-
course units (ADUs; the basic units of argumen-
tative analysis). The shared task focuses on the
detection and classification of the relations that (1)
argumentatively link these propositions with each
other (ARI) and that (2) anchor them in the corre-
sponding ADUs (ILO).

The DialAM dataset is based on the QT30 cor-
pus (Hautli-Janisz et al., 2022), which is a collec-
tion of 30 episodes of the show Question Time by
the BBC. The dataset includes transcriptions of
dialogues between a moderator and several pan-
elists and audience members annotated according
to the IAT. Figure 1 visualizes the structure of the
data. In simplified terms, IAT models argumenta-
tion information as a bipartite graph.2 One side

*Equal contribution.
1github.com/ArneBinder/dialam-2024-shared-task
2There are several exclusions to this, e.g., reported speech.

I node: There are many 
children waiting over a year for 
their mental health support now.

S node: Rephrase

I node: There are 15000 
children missing out on mental 
health support or waiting over a 
year.

YA node: Restating

YA node: Rhetorical
      Questioning

TA node: Transition

YA node: Asserting

L node: Anas Sarwar: How 
many children are waiting 
over a year for their mental 
health support now.

L node: Anas Sarwar: 15000 
children missing out on mental 
health support or waiting over 
a year.

argumentative relation

illocutionary relation

illocutionary relation

illocutionary meta-relation 
between TA and S relations

L nodes are locutionsI nodes are propositions

Figure 1: Extract of an example DialAM data point.
Argumentative structure (left side; I and S nodes) is
anchored in the dialogue structure (right side; L and TA)
by illocutionary relations (middle; YA nodes) that are
based on speech acts. The DialAM 2024 shared task
requires identification as well as classification of (1) S
node relations (ARI) and (2) YA node relations (ILO).

consists of the ADUs as they occur in the original
text, called locution (L) nodes, and transition (TA)
nodes that link them in the direction of the dialog
flow. The other side consists of information (I)
nodes which encode the propositions derived from
the locutions and the argumentative relation (S)
nodes (e.g., Inference, Conflict, or Rephrase)
that connect them in the direction of argumenta-
tive reference. Finally, I and S nodes are anchored
by illocutionary relation (YA) nodes in L and TA
nodes, respectively, i.e. they encode from which L
and TA nodes they are derived. The relation nodes
connect to their arguments via two distinct roles:
incoming (edges point towards the relation node)
and outgoing (edges point away from it). The
shared task data are organized in nodesets where
each nodeset is a collection of annotated nodes and
edges in Argument Interchange Format (Rahwan
and Reed, 2009) extracted from an episode.

DialAM poses some unique challenges because
it requires three different types of relations to be
extracted (see Figure 1): argumentative relations
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between propositions (S nodes; subtask 1), illocu-
tionary relations modeling speech acts (YA:L-to-I
nodes; subtask 2.1) and, relations between argu-
mentative relations and dialogue turn transitions
(YA:TA-to-S nodes; subtask 2.2). Note that all
relations have at least one incoming and outgoing
edge, but argumentative relations (S nodes) such
as Inference may have more than one incoming
edge. Thus, subtask 1 is an instance of n-ary re-
lation extraction. Furthermore, YA:TA-to-S rela-
tions link TA and S nodes which are both relation
nodes, so this is a meta-relation. Both aspects cir-
cumvent usual relation extraction approaches that
assume binary relations connecting spans over text.
There are 25 relation labels in total with a very
imbalanced distribution (see Appendix A and E.2).

Previous approaches to dialogue argument min-
ing, such as Ruiz-Dolz et al. (2021), have shown
that Transformer-based models work well on the ar-
gument relation identification task, with RoBERTa
(Liu et al., 2019) significantly outperforming BERT
(Devlin et al., 2019), XLNet (Yang et al., 2019),
DistilBERT (Sanh et al., 2019) and ALBERT (Lan
et al., 2020). They have found that in many cases
misclassified relations were due to the lack of con-
text or multiple valid interpretations of a relation.
However, Ruiz-Dolz et al. (2021) address a simpler
task compared to the DialAM setup because they
classify only propositional relations while DialAM
involves n-ary relations between different types of
nodes (propositions, locutions and meta-relations).

Our contributions are as follows: (1) we intro-
duce a unified approach towards dialogue argument
mining based on n-ary relation classification and
train a single model that can handle all three types
of relations to get the most out of the data, (2) our
dfki-mlst submission achieves the best scores in
the global setting of the shared task, and (3) we con-
duct a comparative analysis of different types of
base models, explore data augmentation, weighted
loss and node text combination.

2 System Architecture

We handle all three subtasks by framing them as
n-ary relation classification. Let rA = {(l, a)|l ∈
L, a ∈ A} be a n-ary relation with L the set of
possible argument roles and A the set of possible
relation arguments such as the set St = {(i, j, l)}
of labeled spans over a text t with i and j start and
end indices with respect to t and l the label. We de-
fine n-ary relation classification as assigning a class

remove isolated nodes, 
self-loops

& invalid relations

remove S and YA nodes
with edges

add dummy S and YA nodes
based on L-to-I node 

alignments

normalize gold 
Inference-node direction

(all S nodes point upwards)

match dummy relation nodes
with gold data nodes

update dummy relation 
nodes (text & type) with 

matching gold data

if gold data is available normalized 
nodeset

Figure 2: Nodeset normalization. Dashed boxes indicate
steps that are only relevant for model training.

c ∈ C to r where C is the set of possible classes.
In the following we explain how we construct re-
lations rSt , i.e. sets of argument-role – text-span
pairs over a single text, and the relation classes c
from the individual relation nodes. In detail, we
describe how we normalize the data (2.1), encode
each task data as n-ary relations (2.2), and, finally,
how we implement the relation classification (2.3).

2.1 Nodeset Normalization

To encode the data as relations, we use some heuris-
tics to construct a full nodeset from the provided
nodes (L, I, and TA). This will include already all
edges, but we assign a dummy NONE label to all
relation nodes that we add. We achieve this by
exploiting the following observations.

First, each I node is usually anchored by exactly
one L node. Since the I node text is derived from
the corresponding L node, their text contents are
very similar. We use this to find an alignment of L
and I nodes by computing their textual similarity
using longest common substring and calculate a
pairwaise assignment. This alignment allows us to
construct the YA:L-to-I nodes.

Second, the incoming and outgoing edges of the
S nodes usually mirror their counterparts at the
anchoring TA node, but in reversed direction (i.e.
outgoing edges of the TA nodes mirror incoming
edges of the S nodes and the other way around).
This allows us to construct S nodes by reversing
the TA arguments and mirroring them to I nodes
by following the L-I-alignment. However, there
is one prominent edge case. The S nodes with la-
bel Inference may point in the opposite direction.
We can normalize that by swapping the incoming
and outgoing edges of all such Inference nodes
in the gold data and assigning a special node label
Inference-rev(ersed) to maintain the original se-
mantics. We can determine if an Inference node
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needs to be swapped by looking at the direction of
the anchoring TA node.3

Finally, we assign gold labels to all constructed
relation nodes for which we find matching gold
nodes by considering only the arguments and their
roles.

We found several issues with the data (e.g. iso-
lated nodes, self-loops, relations with invalid com-
binations of arguments) that we fix before applying
the normalization steps. Also, there are valid cases
that contradict the above assumptions (I nodes of
reported speech may have no directly anchoring L
node; I and S nodes with multiple anchors; etc.),
but since they are very rare we discard such nodes.
Figure 2 visualizes the full normalization pipeline.

2.2 Encoding as Relations

To encode all task relevant relation nodes as rela-
tions rSt , we first convert them to n-ary relations
over locutions (L nodes) rL and then construct a
common base text t from all locutions.

We encode the YA:L-to-I nodes (subtask 2.1)
as unary relation classification where we use the
anchoring L node as single argument with its role
(outgoing). For YA:TA-to-S nodes (subtask 2.2),
we use the arguments of the related TA relation
with their respective roles. We encode the S nodes
(subtask 1) by using the L nodes that anchor their
arguments, but with the S node roles. In all three
cases, we use the relation node label as label, but
prefix it as well as the argument roles (incoming
and outgoing) with the respective task identifier
(S, YA:L-to-I, or YA:TA-to-S).

To get a contiguous base text t, we concatenate
all locutions in the direction of the dialogue flow.4

Note that the L nodes do not form a sequence, but
a directed graph. Since there are no reliable time
stamps, we linearize this graph in such a way that
the ordering of the nodes is preserved.5 We use
the start and end offsets of the L node texts in t to
construct rSt from rL.

Using distinct roles and a common base text
allows us to use a single model to solve all subtasks.

3We can use the L-I-alignment to get all anchoring L nodes
for the arguments of the S node at hand. Then, we can check
if there is a TA node with these anchor nodes as arguments or
with the swapped arguments.

4This means, that we completely ignore I node text.
5i.e. for all node pairs (x, y) where there is a path from x

to y, x must occur before y in the linearized nodes.

2.3 Classification Model

We use a deep learning based text classification
model consisting of a contextual text encoder and
a one layer classification head implemented within
the PyTorch-IE framework (Binder et al., 2024).
First, role specific begin- and end-marker tokens
are inserted into the base text for all arguments of
the relation to classify. Then, the modified text is
classified by the model.

We use the cross entropy loss and the Adam
optimizer to train it. The source code is publicly
available.1

3 Experiments and Results

With the relation classification approach described
in Section 2 we train our model on the DialAM data.
We split the original training set into training (1259
nodesets) and validation (140 nodesets) partitions
and repeat the training procedure three times with
different seeds. The best model is selected based
on the validation set performance. Our dfki-mlst
submission uses DeBERTa-v36 (He et al., 2021)
as text encoder trained with a learning rate 1e-4
and a window size of 512 tokens7 for 20 epochs
on a single GPU NVIDIA H100 80GB HBM3. We
evaluate our model with the official script that out-
puts precision, recall and F1 scores for the ARI and
ILO tasks, and the GLOBAL metrics represent the
combined scores. All scores are calculated at two
levels: focused (only related arguments/locutions)
and general (complete argument maps).

Table 1 shows the comparison of F1 scores on
the gold test data between the official RoBERTa
baseline, our dfki-mlst submission and the best-
performing competitor model in each setting.
Our approach shows overall strong performance
in the GLOBAL setting when complete argu-
ment maps are taken into account (+0.8% F1
in GLOBAL-Focused and +3.35% in GLOBAL-
General). dfki-mlst also outperforms other mod-
els on the ARI-General task for propositional rela-
tions (+9.11% F1).

3.1 Error Analysis

Since the nodeset normalization plays a major role
in our setup, we evaluate its impact based on our
validation set with 140 nodesets. To make the nor-
malized nodesets comparable with the original data,

6huggingface.co/microsoft/deberta-v3-large
7For each relation classification pass, the window is cen-

tered at the minimal span covering all its relation arguments.
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Model
ARI ILO GLOBAL

Focused General Focused General Focused General

baseline 22.80 26.46 72.09 45.75 47.45 36.10
best-competitor 35.89 46.22 69.95 81.17 45.23 63.70
dfki-mlst (ours) 30.40 55.33 66.10 78.78 48.25 67.05

Table 1: F1 scores of the official baseline, best competitor model, and dfki-mlst (ours) per task.

we reverse all Inference-rev relations back as
well as remove the NONE nodes. We observe a lower
performance, i.e. higher impact, on ARI (78.61 fo-
cused F1, 93.04 general F1) when compared to ILO
(83.05 focused F1, 95.61 general F1). See Table 2
in Appendix C.1 for the complete results.

We also evaluate dfki-mlst performance per
label based on our validation set (see Figure 5 in
Appendix C for statistics). Unsurprisingly, the most
common YA node relation Asserting achieves the
highest F1 score (99%) since this label is also well-
represented in the training set (see Appendix A
for label distribution). We also observe that NONE
relation between different types of nodes can be
classified reliably in most cases. We found that
some classes are distinctive and easy to classify.
E.g., Pure Questioning between I and L nodes
with the support of 120, and 1.86% representation
in the training data, has 81% F1. Other categories
are more challenging and result in worse scores
even when they have more training samples, e.g.,
Default Inference constitutes 3.85% of the train-
ing set with the support of 246 but the classifier
achieves only 43% F1.

3.2 Base Model Comparison

We explore different LLMs as text encoders in
our classification model and evaluate them on
the released gold test data. The results show
that although DeBERTa-v3 is the best-performing
model on the validation set (+0.85% on GLOBAL-
General and +0.5% on GLOBAL-Focused com-
pared to the second best model DeBERTa-v1), it
shows slightly worse performance than DeBERTa-
v1 on the test data. Interestingly, BART (Lewis
et al., 2019) demonstrates the best F1 scores in both
ILO-Focused (72.28 F1) and ILO-General (83.68
F1) settings. However, its performance on the ar-
gument relation identification task is considerably
worse (-7.98% F1 in Focused and -9.84 % F1 in
General). Also, models such as Mistral (Jiang et al.,
2023) and Llama (Touvron et al., 2023) do not
achieve very good results when fine-tuned on the
relation classification task (see Appendix B for the
training details). We compare Mistral and Llama

fine-tuning to the setting where we freeze the base
model and fine-tune only the adapter weights with
LoRA (Hu et al., 2022). In both cases LoRA
outperforms the fine-tuned models but still under-
performs DeBERTa. The results of the full analysis
are shown in Tables 3 and 4 in Appendix D.

3.3 Experiments with Input Data
Modification and Weighted Loss

Although our dfki-mlst submission uses only L
node texts we experimented with combining both L
and I node texts when encoding relations and this
setup achieves the best scores in the GLOBAL set-
ting and also improves our performance on the ILO
task compared to the original submission. Further
details can be found in Section E.3 in Appendix.

After nodeset cleaning and normalization we
were left with only 1259 documents (compared
to the original 1478). Hence, we decided to ex-
periment with data augmentation to increase the
amount of available data and train a more robust
model. We modify L node texts using two different
approaches: paraphrase-based data augmentation
and token-level perturbations based on Easy Data
Augmentation (EDA) (Wei and Zou, 2019). Com-
bining EDA-augmented and original data improves
F1 scores for ARI-Focused and ARI-General tasks
but results in worse performance on the ILO task.
More details can be found in Section E.1.

Given that the dataset has imbalanced distribu-
tion, we also experimented with weighted loss (see
Section E.2) and found that with this approach we
get some improvements on the ARI task but overall
worse performance compared to vanilla DeBERTa.

4 Conclusion

This paper introduces the dfki-mlst submission
that achieves the best scores in the global evalua-
tion setting of the DialAM shared task. We describe
our nodeset pre-processing pipeline and the system
architecture. We also present the comparison of dif-
ferent base models (DeBERTa, BART, Mistral etc.)
as well as our experiments with data augmentation,
class distribution and node text combination. We
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observe that some models (e.g., DeBERTa) demon-
strate better performance on the argument relation
task while other models (e.g., BART) are better at
detecting illocutionary relations.
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A Relation Label Distribution

Figure 3 and 4 show the overall and per relation
node type label distribution in the train data.

B Training Details for Large Models

Since LLMs such as Mistral and LLama have a
large number of parameters and fine-tuning all of
them would require a lot of GPU memory, we
freeze the first 30 layers and fine-tune only the
last two layers together with the classification head
(see Mistral-30 and Llama-30 in Tables 3 and 4).

C Error Analysis

C.1 Impact of Preprocessing

Experimental results regrading the impact of the
nodeset normalization measured on the validation
data can be found in Table 2.

C.2 Performance per Label

Figure 5 compares the amount of support with the
per label performance.

D Model Comparison

Figure 3 and 4 show the focused as well as the
general metric scores for all analysed models on
the test data.

E Additional Experiments

E.1 Data Augmentation Experiments

Our experiments with data augmentation do not
modify the original relations and nodeset structure,
we change only the L node text by either paraphras-
ing it with a T5-based model trained on Chat-GPT
paraphrases8 or using an Easy Data Augmentation
(EDA) (Wei and Zou, 2019) approach based on
textaugment (Marivate and Sefara, 2019). In case
of EDA we randomly choose whether to replace
a token with a synonym from WordNet (Miller,
1995), delete it, add a new token, or swap one to-
ken with another. Ideally, such changes introduce
surface perturbations without changing the original
meaning, therefore annotations remain the same.
E.g., for the original L node text “Claire Fox: that
will show how virtuous I am” we have the fol-
lowing paraphrase-based augmentation: “Claire
Fox: My goodness will be demonstrated to others
through this.” and the EDA-based augmentation:

8huggingface.co/humarin/chatgpt_paraphraser_on_T5_base

“Claire Fox: appearance that will show how virtuous
I am”.

Tables 3 and 4 in Appendix D show the results
for the augmented models in the lower section of
each table. In case of DeBERTa-v1+paraphr_data
we fine-tune DeBERTa-v1 model on the
paraphrased data and then continue fine-
tuning on the original DialAM training set.
DeBERTa-v3+EDA_sequential follows the same
strategy but instead of using paraphrased text it
applies token-level perturbations (EDA). Note that
we changed our base model from DeBERTa-v1 to
DeBERTa-v3 in the latest experiments since it gave
us the best scores on the validation set. Finally,
DeBERTa-v3+EDA_combined simply extends the
dataset by combining both original and augmented
documents. The results show that among these
three strategies combining the data brings some
improvement compared to vanilla DeBERTa-v3 on
ARI-Focused (+3.76% F1), GLOBAL-Focused
(+1.23% F1), ARI-General (+1.53% F1) and
GLOBAL-General (+0.36% F1) tasks but leads
to worse scores on ILO-Focused (-1.3% F1) and
ILO-General (-0.83% F1).

E.2 Experiments with Class Distribution

As shown in Appendix A (Figures 3, 4a, 4b, 4c), Di-
alAM training data has an imbalanced class distri-
bution with 12 labels representing less than 1% of
all the data. Especially YA relations connecting lo-
cutions with propositions (see Figure 4c) have very
imbalanced distribution. E.g., Asserting appears
in more than 90% of S node annotations, while
labels such as Restating, Arguing and Agreeing
all together make up less than 1%, which poses
a challenge for the classifier. Therefore, we test
whether using a weighted loss adjusted with re-
gards to label distribution or restricting classifica-
tion only to more frequent classes (with at least
10 samples per label) can help mitigate this issue.
In the experiments with weighted loss we (1) col-
lect statistics from the training set on label distri-
bution and (2) compute each class weight as fol-
lows: wc =

|D|
|Dc|·|C| with D the set of all samples

(relation-class-pairs), Dc = {(r, c) ∈ D} and C
the set of all labels, and then (3) restrict the range
of weight values by using 1 as the lower and 20 as
the upper bound to avoid over-penalizing classifier
on the truly rare classes.

The evaluation results in Tables 3 and 4 demon-
strate that training with weighted loss improves the
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Figure 3: Overall label distribution in the DialAM training set.

(a) S relations between I nodes. (b) YA relations between TA and S nodes. (c) YA relations between L and I nodes.

Figure 4: Label distribution for different types of relations: S nodes for argumentative relations and YA nodes for
illocutionary ones.

Model
ARI ILO GLOBAL

Prec Rec F1 Prec Rec F1 Prec Rec F1

preprocessing only 82.85 76.60 78.61 84.17 82.27 83.05 83.51 79.44 80.83
Focused full pipeline 49.02 31.74 36.33 71.75 69.82 70.35 60.39 50.78 53.34

full pipeline, normalized 59.17 41.44 46.22 85.24 84.87 84.71 72.31 63.93 65.99
preprocessing only 97.12 91.18 93.04 96.71 94.86 95.61 96.92 93.02 94.33

General full pipeline 66.43 58.91 60.06 86.23 84.71 85.11 76.33 71.81 72.59
full pipeline, normalized 68.40 64.61 64.55 89.16 89.30 89.02 78.76 77.20 76.95

Table 2: Impact of nodeset normalization on the performance, evaluated on the validation data. The values for full
pipeline are the scores of our model (dfki-mlst). preprocessing only values are computed by first normalizing
the data as described in section 2.1, then reverting Inference-rev relations back as well as removing NONE relation
nodes to make the normalized nodesets comparable with the original data and, finally, calculating the metrics with
the official evaluation script. Values for full pipeline, normalized are the ones of full pipeline divided by
preprocessing only.
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Model
ARI-Focused ILO-Focused GLOBAL-Focused

Prec Rec F1 Prec Rec F1 Prec Rec F1

baselineRoBERTa 37.10 18.42 22.80 73.10 72.55 72.09 55.10 45.49 47.45
best-competitor 46.26 32.43 35.89 71.18 69.23 69.95 50.68 43.41 45.23
dfki-mlstDeBERTa-v3 43.87 24.82 30.40 69.12 66.25 66.10 56.50 45.53 48.25
DeBERTa-v1 50.98 27.98 33.82 66.04 64.32 64.63 58.51 46.15 49.22
RoBERTa 48.11 20.45 26.62 63.64 60.66 61.24 55.88 40.55 43.93
RemBERT 41.02 18.35 24.20 62.33 59.49 60.20 51.67 38.92 42.20
ELECTRA 37.46 14.65 20.25 68.76 67.54 67.37 53.11 41.10 43.81
BART 34.09 18.14 22.41 73.50 72.12 72.28 53.80 45.13 47.34
XLNet 36.75 19.90 24.04 60.63 58.89 58.22 48.69 39.39 41.13
Mistral-30 33.40 16.50 19.66 67.91 69.08 68.02 50.66 42.79 43.84
Llama-30 21.75 13.25 14.28 60.68 60.10 59.61 41.22 36.67 36.95
Mistral-LoRA 33.62 18.90 23.08 68.36 64.89 65.55 50.99 41.89 44.31
Llama-LoRA 39.07 16.56 22.08 64.68 62.40 63.16 51.88 39.48 42.62
DeBERTa-v1+l_and_i_node_text 44.32 23.39 29.24 75.17 73.51 74.10 59.75 48.45 51.67
DeBERTa-v1+freq_classes 48.04 24.44 30.37 68.09 64.24 64.81 58.06 44.34 47.59
DeBERTa-v1+weighted_loss 47.35 28.98 34.22 59.48 59.75 58.85 53.41 44.37 46.53
DeBERTa-v1+paraphr_data 43.99 22.03 27.69 68.35 66.01 66.31 56.17 44.02 47.00
DeBERTa-v3+EDA_sequential 48.08 25.26 30.66 65.72 62.21 62.71 56.90 43.73 46.69
DeBERTa-v3+EDA_combined 47.73 29.11 34.16 65.92 64.53 64.80 56.83 46.82 49.48

Table 3: Focused scores represent the performance on the existing relations in the gold standard maps (excluding
non related propositions). The scores were computed with the official evaluation script using the gold test data.

Model
ARI-General ILO-General GLOBAL-General

Prec Rec F1 Prec Rec F1 Prec Rec F1

baselineRoBERTa 28.59 34.69 26.46 39.11 62.07 45.75 33.85 48.38 36.10
best-competitor 49.21 46.32 46.22 81.99 80.79 81.17 65.60 63.55 63.70
dfki-mlstDeBERTa-v3 61.96 53.30 55.33 81.08 79.25 78.78 71.52 66.28 67.05
DeBERTa-v1 64.05 57.14 57.93 79.04 78.19 78.12 71.55 67.66 68.03
RoBERTa 64.86 49.55 52.73 76.83 75.05 75.17 70.84 62.30 63.95
RemBERT 54.79 46.00 47.56 75.92 74.28 74.49 65.36 60.14 61.02
ELECTRA 46.18 39.37 41.41 81.23 81.07 80.53 63.70 60.22 60.97
BART 49.78 44.3 45.49 84.22 83.97 83.68 67.00 64.13 64.59
XLNet 55.51 48.28 48.80 73.88 72.93 72.05 64.69 60.61 60.42
Mistral-30 47.20 43.14 42.33 82.15 83.91 82.62 64.68 63.52 62.48
Llama-30 39.59 38.38 37.10 74.93 75.01 74.22 57.26 56.70 55.66
Mistral-LoRA 54.41 47.06 49.03 82.07 79.78 79.99 68.24 63.42 64.51
Llama-LoRA 51.72 42.95 44.89 77.03 75.55 75.99 64.38 59.25 60.44
DeBERTa-v1+l_and_i_node_text 57.52 50.39 52.33 86.57 85.17 85.65 72.05 67.78 68.99
DeBERTa-v1+freq_classes 65.05 52.71 55.66 80.38 77.62 77.80 72.72 65.17 66.73
DeBERTa-v1+weighted_loss 63.81 55.97 58.20 73.81 74.73 73.65 68.81 65.35 65.93
DeBERTa-v1+paraphr_data 58.42 49.66 51.36 80.44 79.30 79.16 69.43 64.48 65.26
DeBERTa-v3+EDA_sequential 62.53 52.97 54.88 78.31 75.79 75.92 70.42 64.38 65.40
DeBERTa-v3+EDA_combined 60.21 56.75 56.86 78.50 78.12 77.95 69.36 67.44 67.41

Table 4: General scores consider complete argument maps including non related nodes. The scores were computed
with the official evaluation script using the gold test data.
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Figure 5: Performance of dfki-mlst with DeBERTa-v3 on the fixed validation set (140 documents). Blue bars
indicate F1 scores while red bars correspond to the support set (how many items per class are available).

scores on the ARI task (for both Focused and Gen-
eral), however, this approach leads to a drop in per-
formance for illocutionary relation identification.
Furthermore, using only samples from more fre-
quent classes results in overall worse performance
which shows that having even few examples of rare
labels is beneficial for the classifier.

E.3 Experiments with Combined Node Text
Since I and L nodes represent arguments and di-
alogue turns, they have slightly different texts. I
node text often includes more details “summariz-
ing” the content as an argument, while L node text
represents an unedited dialogue turn. dfki-mlst
uses only the L node texts to encode the relations
because this type of text is more similar to the data
used for pre-training of the base model (DeBERTa)
but we also test the setting that combines both texts
of the aligned L and I nodes separated by the “Ar-
gument:" token that indicates the transition. As
shown in Tables 3 and 4, this approach results in
the best performance on illocution identification
and achieves overall best scores in GLOBAL, out-
performing the version that uses only L node texts
by 3.4% F1 in Focused and 1.9% F1 in General
for DeBERTa-v3 and showing a similar trend for
DeBERTa-v1. However, it under-performs on the
argument relation identification task compared to
the dfki-mlst submission.
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Abstract

In this paper, we present our framework for
DialAM-2024 Task A: Identification of Propo-
sitional Relations and Task B: Identification
of Illocutionary Relations. The goal of Task
A is to detect argumentative relations between
propositions in an argumentative dialogue (In-
ference, Conflict, Rephrase), while Task B
while Task B aims to detect illocutionary re-
lations between locutions and argumentative
propositions in a dialogue, e.g.„ Asserting,
Agreeing, Arguing, Disagreeing. Noticing the
definition of the relations are strict and profes-
sional under the context of IAT framework, we
meticulously curate prompts which not only
incorporate formal definition of the relations,
but also exhibit the subtle differences between
them. The PTLMs are then fine-tuned on
the human-designed prompts to enhance its
discrimination capability in classifying differ-
ent theoretical relations by learning from the
human instruction and the ground truth sam-
ples. After extensive experiments, a fine-tuned
DeBERTa-v3-base model exhibits the best per-
formance among all PTLMs with an F1 score
of 78.90% on Task B. It is worth noticing that
our framework ranks #2 in the ILO - General
official leaderboard.

1 Introduction

Dialogical argument mining is an emerging field
that aims to bridge the gap between the analysis
of argumentation and dialogue (Budzynska et al.,
2014b; Ruiz-Dolz et al., 2024; Kawarada et al.,
2024). Traditional argument mining approaches
have often focused on opinion mining within mono-
logical texts (Lawrence and Reed, 2019; Aru-
mugam, 2022) or document form contents (Ru-
osch et al., 2022; Sazid and Mercer, 2022; Khon-
doker and Yousuf, 2022). However, real-world
argumentation frequently occurs in dialogical con-
texts, where multiple participants engage in a dy-

*Equal Contributions

A: 
Isn’t that a cause of 

discrimination?

Default 
Transition

B: 
Apparently not the 

case.

A: 
xxx is a cause of 
discrimination.

B: 
xxx is not the case.

CA

Rhetorical 
Questioning

Disagreeing

Asserting

Propositions
I-nodes

Locutions
L-nodes

YA nodes
S-nodes

(RA / MA / CA)
TA nodes

(Default Transition)

Figure 1: Inference Anchoring dialogical map example.

namic exchange of viewpoints (Feger and Dietze,
2024; Lai et al., 2024; Alsinet et al., 2022). This
complexity necessitates a more holistic approach
that considers both the argumentative structures
and the dialogical interactions.

Apart from the dialogical information extraction
paradigms explored by previous works (Dutta et al.,
2022; Mestre et al., 2021), A generic modelling
formalism for extracting dialogical information is
the Inference Anchoring Theory (IAT) introduced
by Budzynska and Reed (2011). It offers a sys-
tematic approach to decomposing text speech into
distinct units (ADUs), while also anchoring and cat-
egorising logical inferences between propositions
and locutions. As such, IAT provides a compre-
hensive methodology for analyzing the maneuvers
of dialogues within a given theoretical framework,
thus building an explicit scaffolding for language
models to handle semantics analysis tasks (Budzyn-
ska et al., 2014a).

Based on this theory, DialAM-2024 workshop
(Ruiz-Dolz et al., 2024) introduces the first shared
task in dialogical argument mining, aimed at mod-
eling argumentation and dialogue information to-
gether within a domain-independent framework.
The proposed tasks of DialAM-2024 involves clas-
sification of the three-way argumentative relations
between locutions and corresponding propositions,
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detection of relevant dialogical components and
completion of the inference anchoring map.

Due to the in-context learning ability of LLMs
on unconventional tasks with demonstrated exam-
ples (Sun et al., 2023), our initial attempt was to
use Large Language Models (LLMs) as the classi-
fier for illocutionary relations (Chan et al., 2024;
Wang et al., 2023b,a, 2024a,b; Wang and Song,
2024). A combination of zero-shot and few-shot
(Brown et al., 2020) prompts integrated with Chain-
of-thought (Wei et al., 2022) were tested. However,
we observed that popular LLMs, such as gpt3.5-
turbo (OpenAI, 2023), fail to show significant un-
derstanding of the task and yield relatively low
performance after exhaustive experiment.

Notably, recent developments in Pre-Trained
Language Models (PTLMs) on text classification
tasks (Howard and Ruder, 2018) have empowered
us to build our system the other way round. After
the compilation of paired ADUs of propositions
and locutions nodes embedded in a meticulously
designed textual prompt, we fine-tuned our PTLMs
on the reconstituted dataset as that of a traditional
text classification task (Wang et al., 2023c; Peng
et al., 2024; Yan et al., 2024). Using this method,
we were able to achieve relatively high accuracy
in the identification of illocutionary relations. The
classification results of Task B were then used as
textual information to assist the identification of
propositional relations.

An extensive ablation study was also conducted
to test the effectiveness and generalizability of our
proposed system. A maximal F1 score of 78.90%
and precision of 82.35% on Task B was achieved us-
ing a fine-tuned DeBERTa-v3-base model (Howard
and Ruder, 2018). It is also noted that DeBERTa-
v3-large underperforms its base version, with a
precision difference of -0.2%. The proposed expla-
nation is that the model already converges on the
given dataset, provided the base version parameters.
Several other PTLMs, including RoBERTa (Liu
et al., 2019) and ALBERT (Lan et al., 2020) are
also trialed using identical prompt design, which
yield results inferior to DeBERTa-v3.

However, fine-tuned PTLMs converges inconsis-
tently for Task A, with a recall of only 33.79%. We
suspect that besides text from adjacent propositions
and locutions, the system will need more in-context
information (e.g., a dialogue 2-3 nodes away) to as-
sist the process of relation identification according
to recent works on reasoning under contexts (Dong
et al., 2024; Zhang et al., 2024; Li et al., 2024).

As such, our proposed system provides valu-
able insight for dialogical argument mining us-
ing PTLMs on a IAT layout, and future works
should be more focused on the revamp of method-
ology in in-context training information extraction.
Our code and results are publicaly available at
Arwenwutietie/DialAM-2024

2 Problem Definition

In this section, we would introduce the dataset for-
mat and elaborate on the formal definition of the
shared task in DialAM-2024.

2.1 Dataset Description

In the DialAM-2024 dataset, all input texts are cate-
gorized into two primary types: locutions (L-nodes)
and propositions (I-nodes). Locutions represent the
original sentence segments within a complete dia-
logue, typically featuring speakers and timestamps.
Conversely, propositions are reconstructed locu-
tions, where linguistic elements such as anaphora,
pronouns, and deixis have been resolved. These
two text types are then structured into a navigable
graph based on IAT, with corresponding L-nodes
and I-nodes connected by three distinct relation
types: (i) relations between locutions in a dialogue,
known as transitions (TA-nodes); (ii) relations be-
tween propositions and locutions (YA-nodes); and
(iii) illocutionary connections that link locutions
with their semantic content (S-nodes).

We use QT30 corpus (Hautli-Janisz et al., 2022)
as our dataset. QT30 is a collection of 30 episodes
of Question Time aired between June 2020 and
November 2021, with a total of more than 29 hours
of transcribed broadcast material and comprising
19,842 locutions by more than 400 participants.
The QT30 dataset contains 10,818 propositional
relations that include Default Inferences, Default
Conflicts, and Default Rephrases, and 32,303 illo-
cutionary relations divided into Asserting, Agree-
ing, Arguing, Disagreeing, Restating, Questioning,
and Default Illocuting.

2.2 Task Definition

The DialAM-2024 challenge comprises two dis-
tinct sub-tasks. Task A aims to detect the argumen-
tative relations that exist between the propositions
identified and segmented within the argumentative
dialogue. More specifically, the objective is to use
two connected I-nodes to predict the S-nodes be-
tween them. Task B, on the other hand, seeks to
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Figure 2: PTLM pipeline for DialAM-2024 dialogical argument mining tasks. Three PTLMs are fine-tuned in
sequence to cope with Task B.1, Task A and Task B.2 respectively. The IAT map structure is optimally utilized for
propositional & illocutionary relation classification.

identify the illocutionary relations that exist be-
tween the locutions uttered in the dialogue and the
argumentative propositions associated with them.
In other words, given a set of locutions (L-nodes)
and propositions (I-nodes), the goal is to uncover
the Illocutionary connections (YA-nodes) that link
them.

To allow us to establish a clear and formal frame-
work for analyzing the relationships. Formally, let
us denote two coherent locutions as L1 and L2,
their corresponding propositions as I1 and I2, the
intermediate TA-nodes between L1 and L2 as T ,
the YA-nodes connecting L1 and I1 as YLI1 , the
YA-nodes connecting L2 and I2 as YLI2 , the in-
termediary S-nodes between I1 and I2 as S, and
the YA-nodes connecting T and S as YTS . We de-
note LLMs as F and the curated prompt as P1, P2

respectively for Task A and Task B. By these nota-
tions, the Task A and Task B could be reformatted
formally as:

Task A: S = max
i

F (Si|I1, I2, P1);

Task B: YLI1 = max
i

F (YLIi |I1, L1, P2),

where Si and YLI1 denote the output of PTLMs.

3 System Overview

In this section, we will introduce our proposed
system. Our method conducts sequential inferences
where we predict YLI1 , YLI2 and S in the first stage,
then infer YTS with the predicted S in the previous
stage.

3.1 Prompt Design

With the rapid advancement exhibited in prompt
engineering technique (Chang et al., 2024; Qiao
et al., 2023; Xu et al., 2024) it has been pointed out
that prompting makes better use of the pre-trained
data of PTLMs, allowing the model to perform
better on fewer training examples, which can be
helpful when classifying classes with smaller exam-
ples in this task. Being aware of this, since this text
classification task is highly specified and targeted,
we meticulously curated descriptive prompting for
both sub-tasks. The prompt is then aggregated
with given texts as the inputs for large model. Pre-
defined special tokens like [SEP], [CLS] and [EOS]
are also added to the final input texts to assist the
model to understand the relationship between the
different parts of the input. Totally, three differ-
ent prompts have been used for Task A and B: P1

(prompt used to predict YLI1 and YLI2), P2 (prompt
used to predict S) and P3 (prompt used to predict
YTS).

3.2 Sequential inference and model training

Recently, decomposing complex problems into sev-
eral simple one has become a fashion in LLM rea-
soning field (Bueno et al., 2024; Besta et al., 2024).
Following this trend, in this project, the training of
PTLMs is divided into three sequential stages, as
shown in figure 2.

3.2.1 Stage 1: Direct Illocutionary Relation
Detection (Task B.1)

In Stage 1, we instruct the model to predict YLI1
and YLI2 separately, since the illocutionary rela-
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Model/Epoch
1-epoch 2-epoch

YLI1+YLI2 YTS S YLI1+YLI2 YTS S

DeBERTabase 0.9423 0.6137 0.5198 0.9450 0.6486 0.5676

DeBERTalarge 0.9428 0.6056 0.513 0.9359 0.6322 0.5681
RoBERTa 0.901 0.5481 0.4388 0.9234 0.5745 0.4503
ALBERT 0.8906 0.5364 0.4637 0.8906 0.5891 0.498

ChatGPT 0.72 - - 0.72 - -

Table 1: The experiment result for three stage inference. The result is evaluated on the validation set manually
seperated by the author to demonstrate the model performance comparison.

tions between L-nodes (L1 and L2) and I-nodes
(I1 and I2) is more intuitive and requires less infor-
mation to classify. The raw textual prompt used is
(′[CLS]′+P1+

′ [SEP ]′+L1+
′ [SEP ]′+I1) and

(′[CLS]′ + P1 +
′ [SEP ]′ + L2 +

′ [SEP ]′ + I2).

3.2.2 Stage 2: Propositional Relation
Detection (Task A)

Then, in Stage 2 we subsequently classify S-nodes
with textual prompt (′[CLS]′ + P2 +

′ [SEP ]′ +
I1 +

′ [SEP ]′ + I2).

3.2.3 Stage 3: Indirect Illocutionary Relation
Detection (Task B.2)

Finally, motivated by our observation that S and
YTS are highly related, we incorporate the informa-
tion yield through the previous two stages. Specifi-
cally, we leverage L1, L2 and the already predicted
S for the prediction of YTS . The prompt we used is
(′[CLS]′ +P3 +

′ [SEP ]′ +L1 +
′ [SEP ]′ + S +′

[SEP ]′ + L2 +
′ [SEP ]′).

3.2.4 Training Objective
All models are trained with cross-entropy loss. De-
note each input as xi, its token length as |xi|. Our
models are denoted by p, and thus p(xi) represents
the prediction made by the corresponding node,
with q(xi) as its true label.

L(xi, q) = −
|x|∑

i=1

p(xi) log(q(xi)) (1)

4 Experimental Setup

We followed a standard approach to partition our
input data into training and validation sets. Please
refer to Appendix C for more details.

5 Results and Analysis

In this section, we demonstrate our experiment
results and conduct analysis on the issue we en-
countered through the experiments.

Our overall result is shown in Table 1. From
the data we can observe that both DeBERTa-base
and DeBERTa-large can achieve a relatively high
accuracy on the prediction of YLI1+YLI2 , YTS and
S. However, ChatGPT’s results were clearly not sat-
isfactory, and it achieved the lowest accuracy rate
on all 3 tasks. The reason could be that this text
classification task is highly specialized and targeted
where related resources rarely occur in ChatGPT’s
training data. Consequently, ChatGPT would fall
short in relevant reasoning tasks. In the classifi-
cation of YLI1+YLI2 , we realize that the most nu-
merous type in YLI1+YLI2 , Asserting, accounts for
90% of the total number of YLI1+YLI2 . We sus-
pect that this may affect the final performance of
the model, making it more inclined to split a new
YLI1orYLI2node into the Asserting class. Based on
this, we tried to reduce the number of Asserting
classes in the training set to train a more compre-
hensive model. However, the final results demon-
strated that this actually led to a decrease in the
overall accuracy. This implies that the model is
scarcely affected by the imbalance of the dataset.

Further experiments indicate that the accuracy
of S-node classification is greatly affected by the
size of the training set. According to our observa-
tion, when 60% of the data is sampled for training,
the accuracy on the test set reaches the highest
(65.73%), and when all data is used for training,
the accuracy decreases to 56.76%. We suspect that
this may be due to model’s overfitting to the train-
ing data.

6 Conclusion

In this paper, we present our system for the
DialAM-2024 dialogical argument mining task, fo-
cusing on the identification of propositional and
illocutionary relations within dialogues. By lever-
aging the IAT framework, we developed a method-
ology that integrates human-defined prompts to
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stimulate PTLMs’ reasoning. Our approach fea-
tures commendable results in the identification of
illocutionary relations with concise preprocessing
procedures, as evidenced by our high F1 score and
precision in Task B. Despite the notable success in
Task B, our system encountered challenges in Task
A, particularly in achieving consistent recall rates.
This indicates that additional context beyond adja-
cent propositions and locutions may be necessary
for enhancing the identification of argumentative
relations. Our findings contribute valuable insights
into the application of PTLMs in dialogical argu-
ment mining. The results underscore the impor-
tance of designing effective prompts and highlight
the need for ongoing methodological advancements
to fully harness the capabilities of PTLMs in com-
plex argumentation analysis tasks.

Ethics Consideration

The authors believe that this paper does not yield
additional ethics concerns. All models and datasets
accessed are freely accessible for research pur-
poses.
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A Inference Anchoring Theory Glossary

Refer to A Quick Start Guide to Inference Anchor-
ing Theory (IAT) and Inference Anchoring Theory
for details.

B Prompt design

P1="Illocutionary relations include 0:Asserting,
1:Pure Questioning, 2:Challenging, 3:Assertive
Questioning, 4:Rhetorical Questioning, 5:Agree-
ing, 6:Default Illocuting, 7:Arguing, 8:Restating,
9:Disagreeing.The illocutionary relation between
the two sentences is [mask].".

P2="Illocutionary relations include 0:Default
Inference, 1:Default Rephrase, 2:Default Con-
flict.The illocutionary relation between the two sen-
tences is [mask].".

P3="Illocutionary relations include 0:Asserting,
1:Pure Questioning, 2:Challenging, 3:Assertive
Questioning, 4:Rhetorical Questioning", 5:"Agree-
ing", 6:"Default Illocuting", 7:"Arguing", 8:"Re-
stating", 9:"Disagreeing".The illocutionary relation
between the two sentences is [mask].".

C Experiment Setup

We allocated 80% of the data to the training set,
while the remaining 20% was assigned to the val-
idation set. Prior to training, the datasets were
tokenized and then fed into language models for
fine-tuning. The learning rate was set to 2e-5, and
the model underwent training for 2 epochs. To
update the model’s parameters, we employed the
AdamW optimizer.

During the evaluation phase, we assessed the
model’s performance on the validation using accu-
racy as the metric. This metric takes the model’s
predictions and the ground-truth label as input and
returns the portion of the correct predications. Ev-
ery epoch, we printed out the achieved accuracy. To
ensure optimal model performance, we conducted
experiments with various input sizes and epochs,
aiming to strike a balance between underfitting and
overfitting.

To support our computations, we leveraged a
single NVIDIA RTX A6000 card as our computa-
tional infrastructure. The best checkpoint, deter-
mined by our experiments, was utilized to generate
the submitted maps.

109

https://doi.org/10.18653/V1/2023.ACL-LONG.733
https://doi.org/10.18653/V1/2023.ACL-LONG.733
https://doi.org/10.18653/V1/2023.SEMEVAL-1.1
https://doi.org/10.18653/V1/2023.SEMEVAL-1.1
https://doi.org/10.18653/V1/2023.SEMEVAL-1.1
https://doi.org/10.48550/arxiv.2201.11903
https://doi.org/10.48550/arxiv.2201.11903
http://arxiv.org/abs/2406.10701
http://arxiv.org/abs/2406.10701
http://arxiv.org/abs/2406.10701
https://doi.org/10.1109/TETCI.2023.3301774
https://doi.org/10.1109/TETCI.2023.3301774
https://doi.org/10.1109/TETCI.2023.3301774
https://doi.org/10.1109/TETCI.2023.3301774
https://doi.org/10.48550/ARXIV.2401.06469
https://doi.org/10.48550/ARXIV.2401.06469
http://arg.tech/~chris/acl2019tut/IAT-guidelines.pdf
http://arg.tech/~chris/acl2019tut/IAT-guidelines.pdf
https://dialam.arg.tech/res/files/annotation-details.pdf


Proceedings of the 11th Workshop on Argument Mining, pages 110–118
August 15, 2024 ©2024 Association for Computational Linguistics

KNOWCOMP POKEMON Team at DialAM-2024: A Two-Stage Pipeline for
Detecting Relations in Dialogical Argument Mining

Zihao Zheng1, Zhaowei Wang2, Qing Zong2, Yangqiu Song2,
1Harbin Institute of Technology(Shenzhen), Guangdong, China

2Department of Computer Science and Engineering, HKUST, Hong Kong SAR, China
{melfeszheng, zongqing0068}@gmail.com, {zwanggy, yqsong}@cse.ust.hk

Abstract

Dialogical Argument Mining (DialAM) is an
important branch of Argument Mining (AM).
DialAM-2024 is a shared task focusing on di-
alogical argument mining, which requires us
to identify argumentative relations and illocu-
tionary relations among proposition nodes and
locution nodes. To accomplish this, we pro-
pose a two-stage pipeline1, which includes the
Two-Step S-Node Prediction Model in Stage
1 and the YA-Node Prediction Model in Stage
2. We also augment the training data in both
stages and introduce context in Stage 2. We
successfully completed the task and achieved
good results. Our team KNOWCOMP POKE-
MON ranked 1st in the ARI Focused score and
4th in the Global Focused score.

1 Introduction

Dialogues contain a wealth of information about
arguments and their relationships, but the struc-
ture and content of dialogues are casual, which
poses challenges for extracting argument structures.
To handle it, Budzynska et al. (2014) provides a
method for analyzing dialogue and argument struc-
tures, as well as the relations between them, us-
ing Inference Anchoring Theory (IAT) (Budzynska
and Reed, 2011). In dialogues, the content of the
discussions serves as locution nodes, while their
propositional content serves as proposition nodes.
Among these nodes, three types of relation nodes
are used for connection: argumentative relations be-
tween propositions, illocutionary relations between
locutions and propositions, and transitional rela-
tions between locutions. This method helps extract
argument structures from dialogues, enabling fur-
ther argument mining and analysis. By employing
this approach, Hautli-Janisz et al. (2022) has in-
troduced QT30, an English corpus of meticulously
analyzed dialogical argumentation. This corpus

1Codes are avilable at https://github.com/HKUST-
KnowComp/KnowComp-DialAM2024-ACL2024

encompasses the argumentative structure derived
from 30 debates from the BBC television program
Question Time.

The DialAM task in ACL2024 (Ruiz-Dolz et al.,
2024) is the first shared task focused on dialogical
argument mining. It consists of two tasks. The
first task is to identify Propositional Relations, aim-
ing to detect argumentative relations between the
identified and segmented propositions in the argu-
mentative dialogue. The second task is the Identi-
fication of Illocutionary Relations, which aims to
detect the illocutionary relations between the locu-
tions uttered in the dialogue and the argumentative
propositions associated with them.

To address the two tasks proposed by DialAM-
2024, we introduce a two-stage pipeline. Based
on initial locutions and propositional contents, we
utilize data augmentation by adding data that does
not fit any relation in the relation set to increase
the gap between data within and outside the rela-
tion set. Thus, we can predict the relationships
between propositional contents using our proposed
two-step S-node prediction model to address the
first task. Building upon this, we further tackle the
task of identifying illocutionary relations by bring-
ing context to prediction and employing a multi-
classification YA-node prediction model. Adopting
this method, our team Pokemon ranked 1st in the
ARI Focused score and 4th in the Global Focused
score.

Our paper is structured as follows: Section 2
presents related work on argument mining. Section
3 describes the details of our proposed method, a
two-stage pipeline. Section 4 outlines the exper-
iments we conducted, including the models and
methods used in each stage, as well as the overall
pipeline experiments. Section 5 makes a conclu-
sion and provides further discussion.
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Figure 1: The 2-stage Pipeline.

2 Related Work

Argument Mining: Argument Mining involves
the automatic extraction and analysis of arguments
from various sources, such as texts, debates, and so-
cial media discussions (Stab and Gurevych, 2014;
Habernal and Gurevych, 2017; Carlile et al., 2018;
Lawrence and Reed, 2019). Some recent works
study the stance and persuasiveness of the argu-
ments in multi-modal data like tweets on Twit-
ter (Liu et al., 2022; Zong et al., 2023b). Other
works focus on dialogical argumentation, explor-
ing how arguments are put forward, supported, and
attacked through dialogue (Haddadan et al., 2019;
Visser et al., 2020). QT30 corpus (Hautli-Janisz
et al., 2022), which is built on Inference Anchor-
ing Theory (IAT) (Budzynska and Reed, 2011), a
prominent framework in manual argument analysis,
is the largest dialogical argumentation corpus in
English.

3 Method

We have developed a pipeline (Fig. 1) to address
the challenge of dialogical argument mining. This
pipeline consists of two stages designed to address
the task of identifying propositional relations and
illocutionary relations, respectively.

3.1 Two-Step S-node Prediction Model
Our primary objective in the first stage is to de-
tect argumentative relations between propositions
(I-node). According to QT30 (Hautli-Janisz et al.,
2022), This kind of relation (S-node) consists of
Inference (RA-node), Rephrase (MA-node), and
Conflict (CA-node). However, it is worth noting
that not all I-node pairs have relations. Conse-
quently, an initial determination should be made
regarding the presence of a relation between two
given I-nodes, followed by a secondary prediction
of the specific scheme of the relation. This binary
step-wise approach forms the foundation of our
two-step prediction model.

Inspired by the approach proposed by Parikh
et al. (2016), we adopt a similar representation
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using pairs to denote our problems. Specifically,
for any two distinct I-nodes denoted as h and t,
wherein h represents the head node and t the tail
node, the task is to predict the relation r between
h and t given the tuple (h, t) and subsequently
deriving the final triple (h, r, t).

The first step of determining relation existence
is framed as a binary classification task, given the
pair (h, t), with the relation set R = {true, false}.
The principle of cross-entropy loss shapes the loss
function of the model.

Similarly, the second step of ascertaining the
specific relation between the I-nodes is structured
as a ternary classification task, with the relation set
R = {RA,CA,MA}.

3.2 YA-node Prediction Model
The illocutionary relations (YA-node) include (11
distinct types in total): 1) Asserting, Challenging,
Pure Questioning, Assertive Questioning, Rhetori-
cal Questioning between I-nodes and L-nodes, 2)
Arguing, Disagreeing, Default Illocuting, Restating
between TA-nodes and S-nodes, and 3) Agreeing,
Challenging, Disagreeing between TA-nodes and
I-nodes (Hautli-Janisz et al., 2022). The relation-
ship between L-node and I-node is relatively direct,
indicating an illocutionary relation between locu-
tions and their propositional content. However,
for the occasion where YA-nodes are connected to
TA-nodes or S-nodes, since TA-nodes and S-nodes
themselves do not have much meaning when con-
sidered alone, we take the context into account,
that is, considering two L-nodes connected by TA-
nodes and two or more I-nodes connected by S-
nodes.

Our task still remains to predict the relation r
between the given head node h and tail node t. Ad-
ditionally, the head and tail nodes may be followed
by their respective contexts h′ and t′.

This is also a multi-classification task to predict
the illocutionary relation r given (h, h′, t, t′). The
relation set R = {r0, r1, r2, ..., r11}, where r0 in-
dicates there’s no illocutionary relation between
the node pairs. The model’s loss function is cross-
entropy loss.

3.3 Data Augmentation
While we have discussed the pipeline of our frame-
work in the above two sections (i.e., Section 3.1 and
Section 3.2), we also introduced data augmentation
techniques to further improve the performance of
fine-tuned models in our framework.

Within the training dataset of the first step of
the first stage, I-node pairs already connected by
S-nodes are categorized as r = true. It becomes
imperative to introduce r = false data manually.
To this end, a set number of I-node pairs with-
out S-node connections are randomly selected to
represent the training data for r = false. Specif-
ically, in each nodeset within our training set, we
randomly select some node pairs from all possi-
ble I-node pairs. These selected I-node pairs must
satisfy the condition that there is no S-node con-
necting them. We think that there are no significant
argumentative relations between these selected I-
node pairs. Meanwhile, the training dataset for
the second step is solely comprised of I-node pairs
with established S-node connections, but the con-
nections are further categorized into RA, MA, and
CA.

In the training set of the YA-node prediction
model of the second stage, in addition to the tu-
ples (h, h′, r1−11, t, t

′) that already have YA-node
connections as training data, a certain number of tu-
ples (h, h′, r0, t, t′) need to be extracted from node
pairs that do not have YA node connections, arti-
ficially created as training data with r = r0, i.e.,
r = None.

4 Experiments

4.1 Setup

The baseline models we employed include
DeBERTa-base (He et al., 2021), DeBERTa-large,
DeBERTa-MNLI, RoBERTa-MNLI (Liu et al.,
2019). We also tried LLaMa-3-8B (AI@Meta,
2024) with LoRa (Hu et al., 2022).

The learning rate during training is 1e-5, the
weight decay is 0.01, and fp16 is enabled during
the training process. When utilizing Lora, the pa-
rameter r is set to 64, and alpha is set to 16. Due to
time constraints, the testing of other LoRa parame-
ters was not completed.

Our dataset comprises a total of 1,478 nodesets.
We randomly selected 78 nodesets as the evaluation
set, leaving the remaining 1,400 nodesets for the
training set. A more detailed data description is in
appendix D.

4.2 Experimental Results of S-node Prediction

First, we artificially generated a certain amount
of r = false data in this step and evaluated the
impact of this additional data volume. Therefore,
we performed experiments by controlling the ratio
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Model General Metrics Focused Metrics
precision recall f1 precision recall f1

RoBERTa-MNLI 0.114 0.369 0.046 0.494 0.533 0.488
DeBERTa-large 0.099 0.376 0.050 0.511 0.548 0.503

LLaMa-3-8B-LoRa 0.100 0.289 0.018 0.261 0.432 0.315
DeBERTa-large 0.351 0.443 0.322 0.351 0.266 0.282

RoBERTa-MNLI 0.317 0.470 0.306 0.449 0.334 0.355

Table 1: Experiments on different methods of the first stage of S-node prediction. The two models in the lower part
of the table are the 2nd-step models, while the four models in the upper part are four-label classification models.

Model General Metrics Focused Metrics
precision recall f1 precision recall f1

DeBERTa-large 0.746 0.862 0.784 0.757 0.760 0.753
RoBERTa-MNLI 0.650 0.772 0.691 0.834 0.842 0.834
DeBERTa-MNLI 0.627 0.744 0.667 0.823 0.830 0.823

Table 2: Experiments on the second stage of YA-node prediction.

Type General Metrics Focused Metrics
precision recall f1 precision recall f1

ARI 0.463 0.324 0.359 0.320 0.466 0.306
ILO 0.542 0.499 0.514 0.564 0.646 0.594

Table 3: The result of our submitted system

of the amount of r = false data to the amount of
r = true data to observe the results.

Moreover, we experimented with a four-label
direct classification model and compared the results
with those of the two-step model we ultimately
employed.

The results of the first experiment are shown
in the appendix A. Based on the experimental re-
sults, the 1:1 data ratio produced the best outcome.
We believe that the 1st-step model only needs to
determine whether a relationship exists without
considering factors such as the distribution of var-
ious relationships that the 2nd-step model should
concern. Therefore, the 1:1 data ratio makes it
easier for the model to distinguish the differences
between r = true and r = false data.

The results of the second experiment are shown
in Table 1. Our two-step model framework uses
the DeBERTa-base-1 model, which had the best
performance in the first experiment, as the 1st-step
model. It can be observed that the models trained
directly for four-class classification achieve higher
focused scores but have very low general scores.
On the other hand, our two-step model achieves a
significant improvement in general scores at the ex-
pense of sacrificing some focused scores. Overall,

the two-step method yields better results.

4.3 Experimental Results of Y-node
Prediction

We tested the performance of different models in
Stage 2. In the experiments of this stage, we trained
12-label classification models. In addition to the
training data for the 11 labels extracted from the
nodesets, inspired by the experiments in the pre-
vious stage, we also included an equal amount of
r = None data in training.

The experimental results are shown in Table 2.
Most of the models had higher Focused scores
than General scores. Among them, DeBERTa-
large received the highest General score, whereas
RoBERTa-MNLI achieved the highest Focused
score.

4.4 Experimental Results of the Pipelines

The composition of the pipeline submitted by us
in DialAM-2024 is as follows: DeBERTa-base
+ RoBERTa-MNLI as the first stage model, and
DeBERTa-large as the second stage model. The re-
sult is shown in Table 3. Our pipeline achieved first
place in the ARI Focused score and fourth place in
the Global Focused score.
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We also modified the models in stage 1 and stage
2 and tested these different pipelines on the test
dataset, which was finally released by DialAM-
2024. The results are presented in appendix C,
and we found that we have achieved a much higher
score, with the ILO-focused scores surpassing 0.87.

5 Conclusion

We propose a two-stage pipeline that predicts ar-
gumentative relations and illocutionary relations
based on the initial locutions and propositions.
This method utilizes data augmentation to opti-
mize the training data and employs a two-step
model to predict the relations, incorporating con-
textual information during prediction. Ultimately,
our method achieves good performance in the Di-
alAM24 shared task.

However, due to time constraints and limited
computational resources, there are still many as-
pects of our method that have not been fully opti-
mized. For example, we could appropriately incor-
porate additional information in locutions to assist
the prediction process. It is also worth exploring
the possibility of first determining the correspon-
dence between locutions and propositions before
predicting the remaining relations. These areas can
be further explored and researched.

Limitations

In this paper, we design a pipeline that utilizes
knowledge of language models, like T5 and De-
BERTa, to solve this argument mining problem.
For LLMs, we only tested Llama3 (8B) (AI@Meta,
2024) by fine-tuning a small fraction of parame-
ters. For future works, we can try more LLMs, like
Llama2 (Touvron et al., 2023) and Mistral (Jiang
et al., 2023) with more sizes (e.g., 13B, 70B).
Meanwhile, we can augment our argument-mining
pipeline with various external knowledge, includ-
ing commonsense knowledge (Sap et al., 2019; Do
et al., 2024; Deng et al., 2023; Wang et al., 2024a;
Wu et al., 2023) event-centric knowledge (Wang
et al., 2022, 2023; Fang et al., 2024; Wang et al.,
2024c,b; Fan et al., 2023) and factual knowl-
edge (Choi et al., 2023). More importantly, we
can also add more modalities like images for rela-
tion detection in dialogical argument mining (Zong
et al., 2023a; Shen et al., 2024).
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A Experiments on different data ratios

We conducted experiments using DeBERTa mod-
els, with the numbers following the model name
indicating the data ratio, i.e., the ratio between the
amounts of r = false and r = true data. The
results are showin in Table 4.

B Full Experiments of Y-node Prediction

The results are showin in Table 5. Except for
the LLaMa-3-8B model trained with LoRa, which
performed significantly worse, the other models
achieved high scores. We speculate that LLaMa-
3-8B model may not be well-suited for this multi-
classification task compared to these smaller mod-
els specifically designed for this. Most of the mod-
els had higher Focused scores than General scores.
Among them, DeBERTa-large received the highest
General score, whereas RoBERTa-MNLI achieved
the highest Focused score.

C Experiments of the pipelines

We modified the model in the second step of stage
1, as well as the model in stage 2, and tested the per-
formance of these different pipelines. The results
are shown in the Table 6.

To our surprise, the second pipeline, DeBERTa-
base + RoBERTa-MNLI + RoBERTa-MNLI, which
performed slightly worse on the evaluation set, ob-
tained the highest score in the test set. Its ILO
score was significantly higher than the score of the
pipeline we submitted.

We speculate that this might be because our eval-
uation set consisted of only 78 randomly selected
nodesets from the training dataset, which could
have significant differences in data distribution and
relationship distribution compared to the final test
set. As a result, the pipeline that performed best on
the validation set may have had poorer performance
on the test set, while some pipelines that performed
slightly worse on the validation set happened to
achieve better scores on the test set.

D Additional Data Description

Our dataset comprises a total of 1,478 nodesets.
We randomly selected 78 nodesets as the evaluation
set, leaving the remaining 1,400 nodesets for the
training set.

The training set contains 5,365 RA data samples,
1,181 CA data samples, 5,596 MA data samples,
and 32,626 YA data samples. In the evaluation

set, there are 268 RA data samples, 59 CA data
samples, 279 MA data samples, and 1,631 YA data
samples.

The selected 78 nodesets are: ’nodeset18321’,
’nodeset21402’, ’nodeset21463’, ’nodeset23939’,
’nodeset18455’, ’nodeset19912’, ’nodeset23828’,
’nodeset21575’, ’nodeset17918’, ’nodeset23771’,
’nodeset21041’, ’nodeset18846’, ’nodeset18850’,
’nodeset23887’, ’nodeset18775’, ’nodeset21044’,
’nodeset18877’, ’nodeset23794’, ’nodeset23512’,
’nodeset25524’, ’nodeset21390’, ’nodeset23605’,
’nodeset23769’, ’nodeset23526’, ’nodeset17938’,
’nodeset19911’, ’nodeset20342’, ’nodeset21438’,
’nodeset18311’, ’nodeset19159’, ’nodeset19742’,
’nodeset23547’, ’nodeset18764’, ’nodeset21384’,
’nodeset21294’, ’nodeset19153’, ’nodeset20755’,
’nodeset23869’, ’nodeset17923’, ’nodeset20303’,
’nodeset23894’, ’nodeset23715’, ’nodeset23484’,
’nodeset20332’, ’nodeset23505’, ’nodeset21577’,
’nodeset21595’, ’nodeset19341’, ’nodeset21023’,
’nodeset23746’, ’nodeset20871’, ’nodeset25400’,
’nodeset18271’, ’nodeset20343’, ’nodeset21473’,
’nodeset21571’, ’nodeset25691’, ’nodeset21452’,
’nodeset18848’, ’nodeset23721’, ’nodeset18794’,
’nodeset25522’, ’nodeset25499’, ’nodeset21393’,
’nodeset17940’, ’nodeset23876’, ’nodeset23927’,
’nodeset23498’, ’nodeset23900’, ’nodeset19095’,
’nodeset20981’, ’nodeset21603’, ’nodeset21451’,
’nodeset18266’, ’nodeset25754’, ’nodeset19091’,
’nodeset23859’, ’nodeset23834’
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Model General Metrics Focused Metrics
precision recall f1 precision recall f1

DeBERTa-base-2 0.548 0.674 0.530 0.539 0.324 0.389
DeBERTa-base-1.5 0.550 0.672 0.536 0.506 0.290 0.358
DeBERTa-base-1 0.541 0.671 0.507 0.526 0.332 0.397

Table 4: Experiments on three different data ratios.

Model General Metrics Focused Metrics
precision recall f1 precision recall f1

DeBERTa-large 0.746 0.862 0.784 0.757 0.760 0.753
LLaMa-3-8B-LoRa 0.252 0.213 0.105 0.491 0.517 0.502

XLM-RoBERTa-large 0.557 0.855 0.622 0.799 0.808 0.799
DeBERTa-base 0.549 0.795 0.607 0.791 0.802 0.792

RoBERTa-MNLI 0.650 0.772 0.691 0.834 0.842 0.834
DeBERTa-MNLI 0.627 0.744 0.667 0.823 0.830 0.823

Table 5: Full Experiments on the second stage of YA-node prediction.

Model Type General Metrics Focused Metrics
precision recall f1 precision recall f1

DeBERTa-base + RoBERTa-MNLI ARI 0.463 0.324 0.359 0.320 0.466 0.306
+ DeBERTa-large (submitted) ILO 0.542 0.499 0.514 0.564 0.646 0.594

DeBERTa-base + RoBERTa-MNLI ARI 0.463 0.324 0.359 0.320 0.466 0.306
+ RoBERTa-MNLI ILO 0.660 0.796 0.705 0.873 0.902 0.883

DeBERTa-base + DeBERTa-large ARI 0.366 0.469 0.331 0.393 0.261 0.285
+ DeBERTa-large ILO 0.676 0.763 0.703 0.662 0.648 0.652

Table 6: Experiments of different pipelines.
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Abstract

In this paper we tackle the shared task DialAM-
2024 aiming to annotate dialogue based on the
inference anchoring theory (IAT). The task can
be split into two parts, identification of propo-
sitional relations and identification of illocu-
tionary relations. We propose a pipelined sys-
tem made up of three parts: (1) locutionary–
propositions relation detection, (2) proposi-
tional relations detection, and (3) illocutionary
relations identification. We fine-tune models
independently for each step, and combine at the
end for the final system. Our proposed system
ranks second overall compared to other partic-
ipants in the shared task, scoring an average
f1-score on both sub-parts of 63.7.

1 Introduction

This paper is a system design paper for the DialAM-
2024 task. This task involves the creation of dia-
logue annotations from dialogue text. Specifically,
annotations in the format of a graph under the In-
ference Anchoring Theory (IAT) Framework. The
IAT (Ruiz-Dolz et al., 2024) framework allows for
dialogue argumentation annotations in a way that
retains relevant information and structural data ir-
respective of domain.

For this task, we are provided with a dataset that
contains numerous .json files where each document
represents a graph under the IAT framework. The
data used is the QT30 corpus (Hautli-Janisz et al.,
2022), where dialogue is taken from 30 episodes
of the show Question Time.

Our system is a pipeline that splits the tasks into
three steps. At the first step we utilize BERTScore
to produce similarity scores to find connections.
Then, for each step, we fine-tune a BERT model
to perform multiclass classification using informa-
tion gained from previous steps as input. We fine-
tune each model separately and combine it into
a pipeline at the end where we create a finished
graph. With regards to scoring, we were second in

Figure 1: Example final output. The blue nodes on the
left are I-nodes (propositions), the blue nodes on the
right are L-nodes (locutions), the orange nodes are S-
nodes (relations), the yellow nodes are YA-nodes, and
the purple nodes are TA-nodes (which depict a transition
from one utterance to the next). The ordering of the
pipeline mentioned later is also depicted starting with
green to yellow then to red as the final step.

the General case, beating third place by 8 points.
We also scored third in the Focused setting.

2 Related Works and Background

2.1 Task Background

The main goal of this task is to construct a dialogue
graph under the IAT format. The input of this
task is an unfinished graph that contains L-nodes
(Locutions), I-nodes (Propositions), and TA-nodes
(Direct Transition). The L-nodes are all connected
in the order they were uttered in, with a TA-node
between each L-node. On the other hand, the I-
nodes are unconnected with anything else.

The expected output is a fully populated graph
(see Figure 1) that contains other node types. These
include S-nodes which go between I-nodes, YA-
nodes which go between an I- and an L-node, or
between a TA- and an S-node. Unlike the given
input nodes, these also have a type assigned to
them.

This task is split into two subtasks. Subtask
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A: Identification of Propositional Relations which
involves the detecting argumentative relations be-
tween I-nodes and Subtask B: Identification of Illo-
cutionary Relations which involves detecting illo-
cutonary relations between I-nodes and L-nodes.

S-nodes can have the type of Default Inference
(RA-node), Default Rephrase (MA-node), or De-
fault Conflict (CA-node). YA-nodes can have the
type of Asserting, Agreeing, Arguing, Challenging,
Disagreeing, Default Illocuting, Pure Questioning,
Assertive Questioning, Rhetorical Questioning, Re-
stating, and Analysing.

2.2 Related Works

This is the first year for this shared task thus there
are no prior works on it. However, many exist-
ing systems can help in finding a solution. One
core system that was used in our approach is BERT
(Bidirectional Encoder Representations from Trans-
formers) (Devlin et al., 2019). This Large Lan-
guage Model meets many of our requirements.
Firstly, BERT is very adaptable, being able to per-
form well on a wide variety of tasks with some
fine-tuning. Furthermore, it has been pre-trained
on a large corpus allowing our approach to be able
to handle information from any domain. One such
byproduct of this system is BERTScore (Zhang*
et al., 2020) which is also used in our approach.
It is a text-generation evaluation metric that uti-
lizes BERT’s pre-trained contextual embeddings
to calculate similarity scores. A similar method is
ROUGE (Lin, 2004) which compares the words di-
rectly, causing it to be more easily fooled by similar
surface forms as compared to BERTScore.

3 Method

To tackle the problem of populating this graph, we
decided to isolate each part to create a pipeline.
Rather than following the subtasks laid out, we
split it into three different steps instead. The first
step is to connect the I- and L-nodes and label
the YA-nodes that lie between them. Secondly, as
we now know the ordering of the I-nodes, we can
then label the S-nodes that go between each I-node.
Thirdly, we would connect the TA-nodes to the
created S-nodes and label the YA-nodes that go
between them. This ordering is labeled in Figure 1
as well.

Figure 2: Each combination of locution and proposi-
tion is assigned a similarity score. The matching that
maximizes the total similarity score with no overlap is
chosen as the ideal matching.

3.1 Step 1: I- and L-node Connection and
Classification

This step can be further split into 2 subtasks.
Namely, the identification of a connection between
a locution and a proposition, and the classification
of the node type that connects the two.

To tackle the first subtask of identifying the con-
nection to create a pairing, we decided to use dif-
ferent evaluation metrics in order to get a similarity
score between propositions and locutions. For each
locution, we would compare it to every proposi-
tion and select the proposition with the highest
similarity score to that locution to be a pair. We cal-
culated accuracy by taking the number of correct
pairs over all the pairs in the dataset. We tried 3 dif-
ferent evaluation metrics: ROUGE-1, ROUGE-2,
and BERTScore. Here, we found that BERTScore
had the highest accuracy (97%) in identifying con-
nections followed by ROUGE-2 (96%) and then
ROUGE-1 (94%).

For a more complex approach, we also tried fine-
tuning a BERT model to perform inference as to
whether a locution and a proposition were con-
nected. The data we used for this was created by
going through each document in the dataset ex-
tracting each locution and proposition. We traverse
through the graph to find every instance of a con-
nection of L-node to YA-node to I-node. For each
instance of this, we say that that L-node and that
I-node are connected. Next, we generate every pos-
sible pair of L-node and I-node. These pairs have
a label of 1 if they are connected and 0 otherwise.
By doing so, we are able to create a larger dataset
through negative sampling.

The results of the fine-tuned BERT not only took
more time to infer but also did not perform as well
as simply using BERTScore. We believe that this
is because a lot of the time the proposition is just
a rephrasing of the locution therefore allowing a
simple technique to work fine.
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As a result, we decided to use BERTScore in
our final system (see Figure 2). However, rather
than simply sorting by the highest similarity score
and picking one by one, we used an algorithm that
maximized the total similarity score by checking
the total score of every possible pairing.

For the second subtask, we also decided to use a
BERT model as they also perform well on classifi-
cation tasks. We first decided to fine-tune a Distil-
BERT model (Sanh et al., 2019) to perform multi-
class classification to select what type of YA-node
would go between the locution and proposition
pair. Due to low performance, we tried BERT-base
which performed much better.

The data used for this step was just taking each
example of a YA-node in between an I- and an L-
node. The downside of this straightforward method
is that the amount of data was quite small due to
the small dataset already being a limiting factor.
Furthermore, out of all the labels, "Asserting" was
the most common one at 14765 samples while the
rest had less than a thousand samples. Because
of this class imbalance, we duplicated every other
class 10 times.

To finish this step we update the graph with new
nodes and edges and pass the updated graph along
to the next step.

3.2 Step 2: I-node Connection and
Classification

The purpose of this step is connect the I-nodes that
follow one another and label the S-node that goes
between them. Since all the I-nodes are connected
to an L-node, this means that an ordering has al-
ready been established. Thus, the only thing we
need to do is to decide whether or not two I-nodes
have a connecting S-node and what the label of the
S-node is. Figure 3 shows what a possible result of
step 2 looks like.

This part is quite similar to step 1 where we
need to decide whether there is a connection or not
and then label what type of connection it is. How-
ever, unlike the first step, we already know what
the pairing is (namely I-node n and I-node n+1).
Therefore, instead of splitting it into two parts like
the first step, we decided to do it in one go. We
decide to follow a similar method of fine-tuning a
BERT model to perform multiclass classification.
The model would take in the two I-nodes and have
the option of no connection or any one of the pos-
sible labels. The four options are: RA (Default
Inference), MA (Default Rephrase), CA (Default

Figure 3: Possible result of the second step. Some I-
nodes have an S-node between them and some don’t.
This image also contains the results from the first step
namely the YA-nodes between the connected I- and
L-nodes.

Conflict), or no connection.
The input of this model is the pair of I-nodes.

We considered using other nearby nodes to provide
more information, however, our results show that
adding more information does not improve perfor-
mance. Using only the two I-nodes gives us an
F1 score of 52.5 while adding the nearby L- and
YA-nodes results in a lowered F1 score of 51.6.

To fine-tune the model, the data we used was
all the real connections as well as pairing up non-
adjacent I-nodes. These non-adjacent sampels
would be used as samples for the option of no con-
nection. From this, RA had 5,566 samples, MA
had 4,508 samples, CA had 882 samples, and no
connection had 8,186 samples. Due to CA having
such a low number up samples, we decided to up-
sample it by adding copies of the samples into the
dataset. We multiplied it by 4 to give CA a total of
3,528 samples.

To finish this step, we update the graph with the
new S-nodes and edges and pass the updated graph
to the next step along the pipeline.

3.3 Step 3: YA-node between TA- and S-nodes
Classification

The main purpose of this step is to label the YA-
node that lies between every S- and TA-node in the
same rank (For example S-node 1 and TA-node 2 in
Figure 3). To do this, we used the same method of
fine-tuning a BERT model. We took every instance
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of YA-nodes between S- and TA-nodes as our data.
We also faced a similar problem of class imbal-
ance which we decided to solve by upsampling the
classes with fewer samples.

The input into our model was all the surrounding
nodes, many of which were created in the previous
steps. For example, in Figure 3, figure out the
label of the YA-node between S-node 1 and TA-
node 2, our inputs would be L-nodes 2 and 3, I-
nodes 2 and 3, YA-nodes 2 and 3 and S-node 1.
The input would be one long chunk of text that
concatenated the texts of the I- and L-nodes and
the labels of the YA- and S-nodes represented as
an integer. The information from each node would
be separated by a [SEP] token. Example input:
there’s obviously some schools are going
to go back on 1st June [SEP] Fiona Bruce :
There’s obviously some schools are going
to go back on 1st June [SEP] 0 [SEP] some
schools are not going to go back on the
1st June [SEP] Fiona Bruce : Some are not
[SEP] 0 [SEP] 2.

4 Experiment Details

4.1 Step 1
For the connection part, we used the Hugging Face
implementation of BERTScore and our own algo-
rithm for trying every matching. For the classifica-
tion model, we used bert-base-cased. We finetuned
on a GPU with a batch size of 32 and a learning
rate of 5e-5 for 5 epochs.

4.2 Step 2 and 3
For the two classification models for steps 2 and
3, we used the same parameters. They both used
bert-large-uncased and were fine-tuned on a CPU
with a batch size of 8 and a learning rate of 2e-5
for 3 epochs.

5 Results and Analysis

The main method used to measure the success of
our system is by calculating precision, recall, and
macro-F1. A score will be calculated for Subtask A
(ARI) and Subtask B (ILO) each as well as a global
score which is the aggregate of the two. Further-
more, they will be split into two different versions:
Focused and General. Focused evaluates the per-
formance looking at only the related classes in the
evaluation files only while General also includes
the non-related class. This means that a high per-
formance in the General version but low perfor-

Metric F1
ARI - Focused 20.51
ARI - General 46.22
ILO - Focused 69.95
ILO - General 81.17
GLOBAL - Focused 45.23
GLOBAL - General 63.70

Table 1: F1 Score for each evaluation metric. Both
Focused and General ILO are quite high. The Focused
ARI has a low score while General ARI has a better
score. Overall GLOBAL score, which is the aggregate
of the two, is good with the General case performing
better.

mance in the Focused versions shows a pessimistic
approach (overly relies on the non-related class)
while the inverse shows an optimistic approach that
relates too many propositions and locutions.

Another thing to note is that a big downside
of our pipelined system is that it is very prone to
cascading errors. This is also an additional reason
as to why in step 2 we opted to use as few inputs as
possible in order to prevent the cascading of errors.
The only part which used a lot of the information
from the previous steps was step 3. However, the
added information allowed the model to get an F1
score of 96.2 which is very strong.

From Table 1 we can see that the main part that
performs well is Subtask B (ILO). Both focused
and general cases perform quite well indicating a
good balance of predictions in every class.

6 Conclusion and Future Work

Overall our system performed quite well, especially
on Subtask B which was the identification of illocu-
tionary relations. The recurring technique that we
used was fine-tuning a BERT model which proved
to be quite effective. A strong point of our system
is its ability to get quite similar scores among both
General and Focused cases. This is likely due to
our upsampling which helped with the largely im-
balanced dataset. The one downside in our system
seems to be the issue of cascading errors. This is
reflected in the scores as we do part of Subtask B
first before moving on to Subtask A and the ILO
scores are much higher than our ARI scores. Mov-
ing forward we will need some way to eliminate
the impact of these errors.
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Abstract

Representing discourse as argument graphs fa-
cilitates robust analysis. Although computa-
tional frameworks for constructing graphs from
monologues exist, there is a lack of frameworks
for parsing dialogue. Inference Anchoring The-
ory (IAT) is a theoretical framework for extract-
ing graphical argument structures and relation-
ships from dialogues. Here, we introduce com-
putational models for implementing the IAT
framework for parsing dialogues. We experi-
ment with a classification-based biaffine parser
and Large Language Model (LLM)-based gen-
erative methods and compare them. Our results
demonstrate the utility of finetuning LLMs for
constructing IAT-based argument graphs from
dialogues, which is a nuanced task.

1 Introduction

Argumentation is prevalent in our daily verbal com-
munication and represents chains of thought pat-
terns and reasoning, making it an integral mode
of persuasion (Saha et al., 2022a). Although argu-
ment mining (AM) (Stab and Gurevych, 2014a,b;
Persing and Ng, 2016; Stab and Gurevych, 2017;
Nguyen and Litman, 2018; Eger et al., 2017; Mirko
et al., 2020; Morio et al., 2020; Lawrence and Reed,
2020; Ye and Teufel, 2021; Bao et al., 2021; Saha
et al., 2022a) from monologues is well studied, for-
mal models for parsing dialogues are lacking (Saha
et al., 2022b). DialAM-2024 (Ruiz-Dolz et al.,
2024) introduced the first shared task in dialogue ar-
gument mining, where argumentation and dialogue
information are modeled jointly in the domain-
independent IAT framework (Budzynska et al.,
2014, 2016; Janier et al., 2014). The framework
represents dialogues as a graph where the nodes
comprise (i) Locutions (L-nodes)-the Argumenta-
tive Discourse Units (ADUs) from each speaker
turn. (ii) Propositions (I-nodes)-reconstructed
L-nodes with resolved anaphora, pronouns, and
deixis, making them independently coherent. The

edges comprise (i) Default Transitions (TAs) be-
tween L-nodes. (ii) S-nodes that connect propo-
sitions (I-nodes) and can be of types RA (default
inference), MA (default rephrase), or CA (default
conflict). (iii) YA-nodes that connect L-nodes with
I-nodes, TAs with S-nodes, or TAs with I-nodes.

Here, we compare generative approaches against
classification-based approaches for implementing
the IAT framework. Since LLMs (Chang et al.,
2023; Min et al., 2023; Hadi et al., 2023) attain su-
perior results on several tasks, we test their utility
in dialogical argument mining and compare them
against a biaffine-parsing-based implementation
(Dozat and Manning, 2016, 2018). We ask the
following research questions: (i) Can LLMs be
used for parsing dialogues in the IAT frame-
work? We experiment with Mistral-7B-Instruct-
v0.2 (Jiang et al., 2023) and present dialAM as a
generative task where the L-nodes, I-nodes, and
TA-nodes are the context of the LLM, and the task
comprises determining the propositional (Task A)
and illocutionary (Task B) relations. (ii) How do
LLMs compare against simpler classification-
based dialogue parsers? We compare the LLM
parser against a biaffine-parsing-based parser that
predicts the relationship and type between nodes.

2 Proposed Method

2.1 Classification-Based Model

As illustrated in Figure 1, the classifier is Roberta-
based (Liu et al., 2019) and contains two biaffine
layers, each comprising two biaffine heads, which
predict the relationships and their types. Biaffine
classifiers (Dozat and Manning, 2016, 2018) are
generalizations of linear classifiers, which include
multiplicative interactions between two vectors.
The first biaffine layer determines the S-nodes and
labels the relationships between L - I-nodes and TA
- I-nodes. The second layer determines and labels
relationships between the TA and S-nodes.
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Figure 1: Architecture of the Roberta-based biaffine classifier.

The model inputs the L, I-node input ids, and
the TA-node position mappings- A set of pairs of L-
node indexes that form a TA-node. First, the parser
independently encodes all L and I-nodes and then
performs multi-headed attention between the em-
beddings (sum-pooled representation of the trans-
former last layer). The TA-node position mappings
are sum-pooled to yield the TA-node embeddings.
Then, the L, I, and TA-node embeddings are passed
through a single-layer feed-forward neural network
(FF) to generate the source representation of the bi-
affine heads of the first biaffine layer. The FF layer
reduces the input representation from 768 dimen-
sions to 600. Another single-layered FF computes
a 600-dimensional representation of the I-node em-
beddings, and are the targets of the biaffine heads.

Since S-node prediction is a pre-requisite for
determining relationships between the TA and S-
nodes, two subsequent biaffine heads determine
and label their relationship. We generate pairs of
all possible I-nodes, sum-pool their embeddings,
and weigh them by the predicted logits from the
S-node relationship biaffine head. A single-layered
FF computes the final 600-dimensional representa-
tion, which is the target of the biaffine heads. The
source of the biaffine heads is the prior computed
600-dimensional representation of the TA-nodes.
During inference, we only consider relationship
labels with a predicted probability > 0.1 and persist
the highest scored relationships such that a node is
referenced only once.

2.2 Generative Model

To determine the utility of using LLMs for ar-
gument mining, we experiment with Mistral-7B-
Instruct-v0.2 (Jiang et al., 2023) using two types of

instructions. We pose the problem as a generation
task where the model is presented with a descrip-
tion of the IAT annotation framework, the L, I, and
TA-nodes and tasked to identify the S and YA-nodes
sequentially. The ordering of the L and I-nodes
are randomized to prevent the model from learning
spurious ordering-based associations. Figures 2
and 3 illustrate Type 1 and 2 instructions with the
model-generated responses. Compared to Type 1,
the Type 2 instructions explicitly include all the
relation labels in the response text.

2.3 Training Details

The dataset comprised 1,477 IAT annotated conver-
sations from the QT30 corpus (Hautli-Janisz et al.,
2022). We preprocess the corpus and preserve re-
lations that strictly adhere to the IAT relationship
definitions and discard others. Although training on
the reduced examples might hamper performance,
it eases answering the research questions- our pri-
mary objective. We randomly split the dataset into
1,327 training and 150 testing examples for our
experiments. The classification-based model used
Roberta-base as the base model and was trained
for 15 epochs, processing 32 batches at a time,
using a 5e-5 learning rate, and accumulating gradi-
ents for 16 steps. The LLM-based models were
trained for two epochs using LoRA (Hu et al.,
2021), a parameter-efficient fine-tuning method
(Mangrulkar et al., 2022). The LoRA r and alpha
were set to 16 and 32 and trained the q, v, k, o, gate,
up, and down projection modules of the attention
heads and the LM head using a 2.5e-5 learning rate.
We use greedy decoding during inference and limit
the number of new tokens to 1,000.

While evaluating the results of Type 1 and 2 in-
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Figure 2: Mistral Type 1 instruction with generated response.

structions, we observed that the model often leads
to incomplete annotations. For example, for the
Type 1 instructions, the model stops generating
past the S-nodes. Similarly, for the Type 2 instruc-
tions, the model frequently does not generate all the
distinct types of YA-nodes. Hence, we implement
an iterative decoding approach by re-prompting the
model with partially generated annotations until
it predicts all relationship types. For the Type 1
instructions, we first pass the IAT definitions and
task details (left side of Figure 2) as prompt and
generate the S-nodes (II-nodes in Figure 2). We it-
eratively append the generated output (highlighted
in purple) to the prompt and re-prompt the model
to generate the YA-nodes (LI-edges in Figure 2).
We follow this approach until the model identifies
all types of relationships (LLII and LLI-edges in
Figure 2). We follow a similar approach for Type 2
instructions by re-prompting the model incremen-
tally with the highlighted sections in Figure 3.

2.4 Results and Observations
Although our iterative decoding approach for the
generative models facilitates better annotations,
they are computationally expensive. Compared to
regular decoding, they are approximately 4x more
expensive for the Type 1 instructions and approx-
imately 4-15x costlier for the Type 2 instructions.
Hence, we internally compare the three model vari-

ants on a random sample of 10 examples from the
test set and share the results in Table 1. We use
the original task evaluation script, which computes
Precision, Recall, and F1 scores at Focused and
General levels. Focused evaluates the performance
of the systems by looking at the related proposi-
tions/locutions in the evaluation files only, exclud-
ing all the non-related cases. General looks at the
whole map, including the non-related class. High
performance in General but low in Focused repre-
sents over-reliability on the non-related nodes, and
vice-versa for Focused.

General Focused
Id Model Pr Re F1 Pr Re F1
1 Biaff 68.7 68.6 68.6 60.0 36.1 41.0
2 LLM (Type-1) 82.4 85.5 83.8 59.0 55.8 57.3
3 LLM (Type-2) 81.7 73.4 75.5 49.5 37.0 40.4

4
Biaff + LLM
(Type-1)

75.2 89.3 80.1 68.9 67.1 67.9

5
Biaff + LLM
(Type-2)

69.4 80.1 73.1 61.2 54.7 56.1

6
LLM
(Type-1 + Type-2)

77.6 80.4 78.7 60.5 56.6 58.1

7
Biaff + LLM
(Type-1 + Type-2)

68.8 83.2 73.6 67.1 65.0 65.4

Table 1: Model performance on internal test set.

We also ensemble the three model variants and
report results in Table 1 (lower half). We observe
the following: (i) For all model variants, the F1
scores at General level are higher than Focused,
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Figure 3: Mistral Type 2 instruction with generated response.

denoting that the models does not relate all proposi-
tions/locutions. This is expected as the models are
trained on reduced relations (discussed in Section
2.3). (ii) Comparing the F1 score, the LLMs outper-
forms the biaffine classifier at both levels. Further-
more, the LLM trained on the Type 1 instruction
outperforms the Type 2 instruction-trained model
at both levels of evaluation. (iii) Ensembling the bi-
affine and Type 1 instruction-based LLM yields the
best Precision, Recall, and F1 scores when evalu-
ated at the Focused level. An ensemble comprising
all three models performs the second best.

General Focused
Task Model Pr Re F1 Pr Re F1

Task A
Majority-BL 28.8 30.3 29.5 0.0 0.0 0.0
RoBERTa-BL 28.6 34.7 26.5 37.1 18.4 22.8
Ours 30.8 31.5 30.8 19.0 4.2 6.7

Task B
Majority-BL 34.7 35.9 35.3 0.0 0.0 0.0
RoBERTa-BL 39.1 62.1 45.8 73.1 72.6 72.1
Ours 51.4 57.1 53.3 43.8 26.1 30.4

Global
Majority-BL 31.8 33.1 32.4 0.0 0.0 0.0
RoBERTa-BL 33.9 48.4 36.1 55.1 45.5 47.5
Ours 41.1 44.3 42.0 31.4 15.2 18.5

Table 2: Model performance on official test set.

Following our internal results, we use the ensem-
bled biaffine and Type 1 instruction-based LLM-
Biaff + LLM (Type 1) to parse the official test set
samples and share our official test set results in
Table 2. The table compares our implementation

against majority-based and Roberta-based base-
lines for tasks A and B. It also shares global-level
evaluations by looking at the complete argument
maps. We observe the following: (i) Across all
tasks, our implementation attains the best F1 score
at the General level, whereas the Roberta baseline
attains the best score at the Focused level. This
observation is warranted as the Focused evaluates
only the types of relationships prevalent in the di-
alogue and ignores all other classes. Our iterative
decoding approach explicitly prompts the LLM
to generate annotations for all relationship types,
which can lead to spurious predictions by promot-
ing recall. (ii) Similar to the baseline, our model
performs Task B better than Task A.

3 Conclusion

Here, we computationally implement the theoreti-
cal IAT framework using classification and LLM-
based models. We question the viability of leverag-
ing LLMs, which are generative models, for such
a nuanced task and compare them against simpler
classifiers (non-generative) such as biaffine parsers.
Our results indicate that posing the graph construc-
tion problem as a generative task and finetuning
LLMs outperforms biaffine classifiers. Further-
more, ensembling the generative and classification-
based approaches yields the best results.
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Abstract

Argument retrieval is the task of finding rele-
vant arguments for a given query. While ex-
isting approaches rely solely on the semantic
alignment of queries and arguments, this first
shared task on perspective argument retrieval
incorporates perspectives during retrieval, ac-
counting for latent influences in argumenta-
tion. We present a novel multilingual dataset
covering demographic and socio-cultural (so-
cio) variables, such as age, gender, and politi-
cal attitude, representing minority and major-
ity groups in society. We distinguish between
three scenarios to explore how retrieval systems
consider explicitly (in both query and corpus)
and implicitly (only in query) formulated per-
spectives. This paper provides an overview of
this shared task and summarizes the results of
the six submitted systems. We find substantial
challenges in incorporating perspectivism, es-
pecially when aiming for personalization based
solely on the text of arguments without explic-
itly providing socio profiles. Moreover, re-
trieval systems tend to be biased towards the
majority group but partially mitigate bias for
the female gender. While we bootstrap per-
spective argument retrieval, further research is
essential to optimize retrieval systems to facili-
tate personalization and reduce polarization.1

1 Introduction

In argument retrieval, the objective is to extract
arguments that match a given query, such as a ques-
tion or topic. Existing research defines the rele-
vance and ordering of candidate arguments differ-
ently. In the simplest case, arguments are extracted
based on the semantic relevance of the query. More
sophisticated methods consider the quality of the
arguments, suitable counterarguments (Wachsmuth
et al., 2018), or arguments that answer comparative

** Equal contribution.
1Please find evaluation code and further information on

https://github.com/Blubberli/argmin2024-perspective.

Figure 1: This example entry shows which information
we consider for this shared task. First, we incorporate
the semantic information as the text of queries and ar-
guments. Secondly, we use the demographic and socio-
cultural properties (perspective) of argument authors or
users, including age, gender, or political attitude.

questions (Bondarenko et al., 2022). However, in-
corporating individual perspectives (Cabitza et al.,
2023) is crucially understudied.

Addressing this research gap, we introduce the
Shared Task on Perspective Argument Retrieval
(§ 2). Incorporating the perspective of authors and
readers (Figure 1), we aim to foster personaliza-
tion by retrieving arguments that match individual
perspectives beyond their semantic alignment and
reduce polarization by enabling individuals to
compare and contrast arguments from their own
and other perspectives. Therefore, we present a
novel multi-lingual dataset (§ 3) providing demo-
graphic and socio-cultural (socio) profiles of argu-
ment authors or readers for German, French, and
Italian. In this context, relevant arguments are se-
mantically aligned with a given query and match
the specific socio variables provided in the query.
We use three scenarios (Figure 2) to disentangle
the effect of perspectivism:

• No Perspectivism: The vanilla argument re-
trieval scenario as a reference.
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• Explicit Perspectivism: Verifying whether
retrieval systems can achieve personalization
regarding socio variables when mentioned in
the query and argument corpus.

• Implicit Perspectivism: Assessing the solely
text-based personalization abilities of retrieval
systems as socio variables are only given
in the query and we expect systems to ex-
ploit fine-grained socio-linguistic variations
between authors with different profiles.

With this shared task, we aim to examine how
retrieval systems can exploit the latent influence
of demographic and socio-cultural profiles, such
as age or political attitude, and how they are bi-
ased regarding over- or underrepresented groups
(like different age groups). Current approaches
in computational argumentation tend to prioritize
majority groups and marginalize minority groups
(Spliethöver and Wachsmuth, 2020; Holtermann
et al., 2022). To fulfill these objectives, we adopt a
fine-grained and comprehensive evaluation proto-
col and assess the performance of submitted argu-
ment retrieval systems in two tracks: relevance and
diversity (§ 4). The retrieval system should pro-
vide top-k arguments that are highly relevant to the
query and simultaneously diversify varying demo-
graphic and socio-cultural profiles. Therefore, we
rely on prior work enforcing diversification across
stances in retrieved arguments (Cherumanal et al.,
2021). With this shared task and results from the
six participating teams, we address the following
research questions:

RQ1: Can argument retrieval systems encode
socio-cultural variables? Results (§ 6) reveal
substantial challenges in encoding perspectives and
successfully achieving personalization. Systems
struggle to capture fine-grained socio-linguistic fea-
tures without explicit profile mentions. Moreover,
there is a lack of suitable metrics for evaluating
relevance, diversity, and fairness.

RQ2: Are argument retrieval systems bi-
ased regarding specific socio-cultural variables?
While retrieval systems primarily follow the cor-
pus bias, in-depth analysis (§ 7) shows that they
balance gender bias but increase age group bias.

RQ3: How do argument retrieval systems gener-
alize when switching the perceiving perspective
from authors to readers? Perceiving perspec-
tive causes substantial performance drops (§ 6),

Figure 2: Examples of query and a relevant argu-
ment for the three scenarios: (1) no perspectivism
without socio variables; (3) explicit perspectivism with
socio variable in query and argument; (3) implicit per-
spectivism with socio variable only in the query.

as readers select arguments according to their po-
litical standing (attitude and important issue) but
not regarding their demographic ones, like age or
denomination, catholic or protestant (§ 3).

Contributions With this shared task, we estab-
lish the task of perspective argument retrieval and
present a novel dataset covering explicitly and im-
plicitly expressed perspectives from argument au-
thors and readers. A comprehensive evaluation of
the submitted systems underscores the challenge of
this task as the system struggles to incorporate the
fine-grained linguistic influence of demographic
and socio-cultural variables. Further, while these
systems mostly replicate the dataset bias, they par-
tially overcome gender bias. These insights call for
further research to incorporate perspectivism suc-
cessfully and fairly, aiming for systems providing
personalization.

2 Perspective Argument Retrieval

Argument retrieval is the task of finding top-k rel-
evant arguments y within a corpus C for a given
query q (Bondarenko et al., 2020). We formulate
perspective argument retrieval as an expansion of
argument retrieval to perspectivism (Cabitza et al.,
2023) when finding best-matching arguments. By
considering demographic and socio-cultural (socio)
variables, we account for latent aspects of argumen-
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tation beyond semantic features, such as age, occu-
pation, or political attitude. Concretely, this shared
task proposes three scenarios (Figure 2) to evaluate
how argument retrieval systems can account for
perspectivism.

2.1 Scenario 1: No Perspectivsm

First, we test a system’s ability to retrieve relevant
arguments y solely using semantic features of ar-
guments in the corpus C and the query q without
any socio variables. This scenario represents the
classical retrieval setup as reference performance.

2.2 Scenario 2: Explicit Perspectivsm

Second, we add socio variables to both corpus and
query to test whether a retrieval system can con-
sider socio variables when explicitly given, like left
political attitude. This scenario simulates adopting
the retrieval stage to specific perspectives while
retaining the argument retrieval performance. For
this shared task, we only consider one socio vari-
able at a time to test the effect of considering them
in isolation. Consequently, this scenario is com-
putationally heavy as systems must encode the ar-
gument corpus for every considered socio variable
in the queries. For example, when querying for a
specific socio properties, like the age group 18-34,
the corpus must be encoded with the correspond-
ing socio property of the arguments, such as the
specific age group.

2.3 Scenario 3: Implicit Perspectivsm

This third scenario is similar to the second one
(explicit perspectivism), but we only add socio vari-
ables to the query, like liberal political attitude.
It is better aligned with real use cases as socio
variables of arguments are often not given and rep-
resent true personalization. As a result, we aim for
a retrieval system with which we can account for la-
tent encoding of socio variables within arguments.
Furthermore, this scenario is computationally more
efficient than the explicit one because arguments
do not need to be encoded more than once.

3 Data

In the following, we outline the data used for
this shared task, involving the data source (§ 3.1),
the used demographic and socio-cultural variables
(§ 3.2), the composition of the argument corpus
and the queries (§ 3.3).

3.1 Source

We conduct this shared task with data provided by
the voting recommendation platform SmartVote2

from the Swiss national elections of 2019 and
2023.3 This platform provides voting suggestions
based on a questionnaire that politicians and voters
fill out.4 In it, politicians can argue why they are in
favor or against specific political issues. Concretely,
we use these arguments formulated by politicians,
the political issue addressed by one of these ar-
guments, the stance of an argument regarding the
political issue, and the socio variables of the politi-
cians (authors) who formulated these arguments.
We pre-process the data following (Vamvas and
Sennrich, 2020) and remove arguments with less
than 50 characters, including URLs, or are not for-
mulated in German, Italian, or French. After this
filtering, we compose around 41k arguments writ-
ten by 3.8k unique politicians regarding 266 dis-
tinct political issues in German, Italian, and French
and an average of 15.7 arguments per person. We
use these arguments to form the retrieval corpus
C and use the political issues as queries q, either
with (explicit & implicit perspectivism) or without
(no perspectivism) corresponding socio variables
of the authors. Given a query q, we define rele-
vant arguments as those written by politicians to
address the specific political issue of q. Note that
this is a binary assignment without any fine-grained
relevance measure.

3.2 Demographic and Socio-Cultural
Variables

We use socio variables of the politicians (authors)
who formulated the arguments. Figure 3 provides
an overview of them, including the following per-
sonal information: gender, age (binned), residence
(either city or countryside), civil status, and denom-
ination. Further, SmartVote provides a SmartMap
ranking of the politicians on a left/middle/right and
conservative/liberal dimension based on answers
to the full questionnaire.5 We combine (binning)
these two dimensions into a single variable polit-
ical attitude. Finally, SmartVote indicates, with
a SmartSpider, the important political issues of

2https://www.smartvote.ch/
3Data of the 2019 elections were used in previous works,

like (Vamvas and Sennrich, 2020) for multi-lingual stance
detection.

4More information about the questionnaire and scientific
methodology available online.

5More information about the SmartMap available online.
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a person based on the answered questionnaire.6

One person can have more than one out of eight
important political issues: open foreign policy, lib-
eral economic, restrictive financial policy, law and
order, restrictive immigration policy, extended envi-
ronmental protection, expanded welfare state, and
liberal society. The insights of Figure 3 show the
demographic bias of politicians, such as living on
the countryside, identifying as male, or being mar-
ried.

3.3 Dataset Composition

We compose three versions of the dataset with dis-
tinct test sets to run three different evaluation cy-
cles (Figure 4) covering (1) data from the 2019
election, (2) data from the 2023 election, and
(3) surprise data. For every cycle, a dataset con-
sists of distinct train, dev, and test queries (qtrain,
qdev, and qtest) along with a corpus of arguments,
C = {Ctrain, Cdev, Ctest}. We include all relevant
arguments for at least one query within the cor-
responding part of the corpus. While train qtrain
and dev queries qdev remain the same, we use dis-
tinct test queries (q(2019)test , q(2023)test , and q

(surp.)
test ) for

every cycle. Subsequently, the arguments (Ctrain,
Cdev) remain the same, but the test part of the cor-
pus (Ctest−2019, Ctest−2023, and Ctest−surp.) is up-
dated with the specific arguments which are rele-
vant for the corresponding test queries. Note that
for a given qi we expect to retrieve arguments from
the full corpus C. Since every query has a German,
French, and Italian version, we include a separate
one for each language. However, we consider argu-
ments for any language as relevant. For example,
the German and French versions of qi share their
relevant arguments y.

Train and Dev We use 35 and 10 distinct politi-
cal issues from the 2019 election as train and dev
queries (qtrain, qdev) and include 21k arguments
and 2k ones for dev in the corpus (Ctrain, Cdev).

Test Cycle-2019 During the first evaluation cy-
cle, we use an additional 15 distinct political issues
from the 2019 election as test queries (q(2019)test ). The
corresponding corpus (C(2019)

test ) consists of 6k ar-
guments. With this test set, we evaluate the re-
trieval performance given the topic shift between
train, dev, and test queries/arguments as they cover
distinct political issues.

6More information about the SmartSpider available on-
line.

Test Cycle-2023 For the second evaluation cycle,
we select 62 distinct political issues from the 2023
election for testing (q(2023)test ) along with 13k argu-
ments (C(2023)

test ). This second cycle saturates the
topic shift between train, dev, and test sets as new
topics gained political relevance between 2019 and
2023, like Corona or the war in Ukraine.

Test Cycle-Surprise Finally, we conduct an an-
notation study to assess whether retrieval systems
generalize when we change the perceiving perspec-
tive from authors to readers (RQ3). Concretely,
this study covers 27 political issues and 20 argu-
ments from the 2023 election answering these is-
sues. We conducted this annotation study with 22
crowd workers recruited from prolific. More details
about their selection, background, and payment are
in Appendix § A.1. During annotation, we present
the annotators with 20 arguments for every political
issue and ask them to select those they intuitively
perceive as relevant for answering the presented is-
sue. Along with this selection, we collect the socio
profile of the annotators as done by SmartVote for
the authors. Based on these annotations, the test
portion of the argument corpus (D(sure.)

test ) for this
cycle consists of 540 arguments (20 arguments for
every 27 political issues). Further, we use the 27
political issues and the socio profiles of the annota-
tors to form the test queries (q(sure.)test ). Noteworthy,
we find that annotators perceive arguments as rel-
evant when they share the political spectrum and
important political issues with the authors of the
arguments (see Figure 12 in Appendix § A.1).

4 Evaluation

We employ a two-folded evaluation to comprehen-
sively measure the retrieval quality for all three
scenarios. Concretely, we distinguish between rel-
evance and diversity.

Relevance With relevance, we focus on the abil-
ity of a retrieval system to select relevant candi-
dates given the query, for example, all arguments
addressing the queried issue for the baseline sce-
nario or arguments that additionally match specific
socio-cultural properties for explicit or implicit
perspectivism. Following previous work (Bon-
darenko et al., 2020, 2022; Thakur et al., 2021), we
use the Normalized Discounted Cumulative Gain
(nDCG@) and precision@ metric. Compared to
precision, nDCG has the advantage of taking the
position of the ranked items into account. There-
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Figure 3: Distribution of the politicians’ different demographic and socio-cultural variables: important political
issues, political attitude, residence, gender, age (binned), civil status, and denomination. Note, that one person can
have more than one important political issue.

Figure 4: Overview of train, dev, and test argument
corpora (C) and queries q for the three evaluation cycles
dataset (2019, 2023, surprise)

fore, the metric places greater emphasis on higher-
ranked arguments.

Diversity Using diversity, we account for the in-
fluence of perspectivism in the evaluation by mea-
suring whether a retrieval system proposes bal-
anced arguments regarding the stance distribution
and the authors’ diverse socio-cultural properties
(such as gender or political attitude). Following
previous studies regarding fairness in argument
retrieval systems (Cherumanal et al., 2021), we
calculate alpha-nDCG@ for each available prop-
erty separately and average them afterwards. This
metric accounts for relevance and diversity by as-
sessing whether an item is relevant and introduces
a new perspective compared to the previous one.
Consider the following example: a system retrieved
a list of arguments relevant to a given issue, and
we aim to evaluate diversity for political attitude.
The metric would prefer the arguments to be sorted
like this [’liberal’, ’conservative’, ’left’, ’conserva-
tive’] over [’conservative’, ’conservative’, ’liberal’,
’left’]. An optimal ranking ensures that all rele-
vant perspectives for a corresponding socio-cultural

variable are represented among the top-ranked ar-
guments. Note that these conditioned properties
are withheld when evaluating diversity since we
condition specific socio-demographic properties
in the query for explicit or implicit perspectivism
(scenarios 2 and 3).

As a second metric, we look at the Normalized
discounted KL-divergence, introduced as a met-
ric of unfairness (Cherumanal et al., 2021). This
metric evaluates the fairness of the ranking by com-
paring the distribution of a protected group (e.g.
what is the proportion of arguments by female au-
thors when looking at the property ’gender’) in the
top-k ranked items against a gold standard propor-
tion (what is the proportion of arguments by female
authors in the whole corpus?). The divergence is
calculated at specified cut-off points and then aver-
aged, with each point discounted by the logarithm
of its rank, to assess how well the ranking reflects
the representation of the protected group. In this
case, the relevance of an argument is not consid-
ered; instead, the metric can reveal biases against
specific groups. For example, it can show whether
systems disproportionately favor dominant groups
in the top arguments.

Final Ranking We evaluate the performance at
four different values of k [4, 8, 16, 20] and calcu-
late the average performance across these k values.
This evaluation is conducted for the three scenarios
across three different test sets, resulting in 9 scores
for relevance and 9 for diversity. The final rank is
determined by averaging these nine scores.
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5 Submissions

In the following, we summarize the baseline (§ 5.1)
and the submitted systems (§ 5.2). Further, we
elaborate on the unique ideas incorporated by the
participants.

5.1 Baseline Systems

We provide two baseline systems (BM-25 and
SBERT) to evaluate how simple retrieval systems
perform without being optimized for any perspec-
tivism.

Baseline BM-25: the BM-25 ranking algorithm
ranks arguments based on lexical overlap. It is com-
puted using tf-IDF but also accounts for document
length (Robertson and Zaragoza, 2009).

Baseline SBERT: we use SBERT (Reimers
and Gurevych, 2019) and the model
paraphrase-multilingual-mpnet-base-v2
to encode the query and the arguments from the
corpus, ranking them based on cosine similarity.
We encode the socio-cultural variables within the
query for the perspectivist approaches. In Scenario
2, we concatenate the entire socio-cultural profile
with each argument in the corpus.

5.2 Submitted Systems

This shared task received submitted systems
from six teams: twente-bms-nlp (Zhang and
Braun, 2024), sövereign (Günzler et al., 2024),
GESIS-DSM (Maurer et al., 2024), turiya (Saha
and Srihari, 2024), xfact (Kang et al., 2024), and
boulderNLP (no system paper submitted). Some
systems did not submit results for all three sce-
narios but instead focused on one or two (e.g., no
perspectivism and explicit). We summarize and
elaborate on the specific techniques of these sys-
tems, including embedding strategies, candidate
filtering & re-ranking, using LLMs, or using auxil-
iary classification tasks.

Embedding queries and arguments All sys-
tems used SBERT (Reimers and Gurevych, 2019)
to encode queries and arguments and retrieve an
initial set of relevant arguments by calculating the
cosine similarity between query and corpus embed-
dings. Additionally, twente-bms-nlp uses cross-
encoding LMs to re-rank the top 50 arguments, and
turiya fuses rankings obtained with mono- and
multi-lingual embeddings, once using KNN and
once cosine similiarty for ranking. Only xfact

further fine-tunes SBERT to align the semantic rep-
resentations of relevant arguments and correspond-
ing queries. They use other arguments as negative
examples and optimize the representations with
multiple negative ranking losses.

Filtering out irrelevant arguments Most teams
filter relevant candidates before (re)ranking: for
scenario 2, they hard-filter arguments that explic-
itly match the socio-demographic variable in the
query. twente-bms-nlp filters arguments that ap-
pear relevant in the training set to reduce the candi-
date pool arguments that likely match the political
issue in test queries, as there is no overlap between
train and test queries. xfact filter arguments that
had no overlap between keywords of the query and
keywords of the arguments.

Re-ranking top k arguments Some teams re-
trieve a larger list of relevant candidates and then
adopt complex strategies to re-rank the top-k argu-
ments due to their high weight in the evaluation.
These strategies often include training a specific
classifier, e.g., turiya trained two classifiers, one
binary to assign a relevance label (0 or 1) given
query and argument, and one to select the more
relevant argument out of two. sövereign prompt
an LLM to generate relevance scores given query
and a list of the top 50 retrieved arguments. For
perspectivism, they include instructions to deter-
mine whether the given socio-demographic prop-
erty matches the arguments.

Additional use of LLMs Four out of five teams
use LLMs at some point in their pipeline. Two
teams (xfact and GESIS-DSM) explore the idea of
’prototypes’ or ’anchors’ and automatically gener-
ated arguments given a specific query. GESIS-DSM
uses the generated arguments as a reference an-
chor to re-rank the relevant candidates with SBERT.
For perspectivism, this generated argument should
represent specific demographic properties. xfact
utilizes LLM to generate prototypical and diverse
arguments in response to a query. These generated
arguments serve as centroids in a clustering process
designed to identify relevant arguments within the
corpus. The approach ensures that the retrieved
arguments are relevant and exhibit greater diversity
by creating a variety of arguments.

Additional classification tasks to identify rele-
vant arguments Several teams train additional
classifiers to enhance system performance, whether
to improve the identification of relevant arguments
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or retrieve arguments matching specific socio-
cultural variables. xfact uses stance detection as
an auxiliary task to improve the system’s ability
to detect whether an argument matches a query.
In the final stage, the classifier’s confidence level
is used as a cutoff radius to selectively refine the
set of relevant arguments when comparing their
distance to the centroids generated by the LLM.
sövereign uses a logistic classifier to learn a more
informed relevance score for re-ranking: the clas-
sifier incorporates cosine similarity, a demography
matching score, and a topic frequency score as
features. twente-bms-nlp and GESIS-DSM inves-
tigate whether classifiers can learn to predict the
values for certain socio-cultural variables from the
arguments. Both compared the performance of
classifiers using semantic content against linguis-
tic (style) features. twente-bms-nlp find that the
classification of the different values is challenging
but can improve the final results of the system us-
ing a classifier that predicts whether an issue is
important for an author based on a semantic rep-
resentation of the argument. GESIS-DSM finds that
semantics were less predictive of differences be-
tween groups of different socio-cultural variables
and instead can retrieve a better re-ranking when
using several linguistic style features as predictors.

6 Results

In the following section, we discuss the results
of the submitted systems focusing on RQ1. Ad-
ditional detailed discussions regarding single sce-
nario, evaluation cycle, and top-k are in Appendix
§ A.2 and § A.3.

Relevance and diversity agree but not with fair-
ness. Table 1 shows each track’s final leader-
boards. Both tracks (relevance and diversity) share
the same team rankings. All teams outperform the
SBERT baseline when they submitted for all scenar-
ios (xfact and boulderNLP have only submitted 6
/ 3 prediction files, leading to lower scores.)

Next, we compare the metrics representing rel-
evance (NDCG@k), diversity (αNDCG@k), and
fairness (klDiv@k). Relevance and diversity are
highly correlated, but diversity scores are lower
than relevance, showing that no system perfectly
diversifies its top-k arguments. Compared with fair-
ness (klDiv@k), relevance and diversity are weakly
correlated ρ = 0.13. Ideally, we expect a correla-
tion of ρ = −1 as klDiv@k = 0 would represent
a perfectly fair system and NDCG@k = 1 and

Relevance Diversity Fairness

ndcg@k precision@k αNDCG@k klDiv@k

twente-bms-nlp 70.7 63.4 67.2 16.7
sövereign 63.2 56.1 60.1 15.9
GESIS-DSM 60.7 54.3 57.9 15.0
turiya 51.8 - 49.5 -
sbert 44.5 42.7 41.9 0.136
xfact 41.7 40.0 39.4 0.136
boulderNLP 29.2 - 27.1 -
bm25 19.5 - 18.5 -

Table 1: Final result of the shared task regarding rele-
vance (NDCG and precision), diversity (αNDCG), and
fairness (klDiv).

αNDCG@k = 1 indicates perfect relevance and
diversity. Figure 5 confirms these patterns in more
detail with results across every k, evaluation cycle,
scenario, and team. Furthermorea , these insights
are consistent with Cherumanal et al. (2021), which
states that these metrics are not equivalent and mea-
sure different dimensions.

Considering Perspectivism is difficult. We ana-
lyze the performance differences between the three
scenarios. Figure 5 and Figure 6 reveal that consid-
ering no socio variable (scenario one) performs
the best across all test sets of the three evalua-
tion cycles. Comparing scenarios one with two
and three (considering perspectivism explicit or im-
plicit) highlights the challenges of incorporating
socio variables in the retrieval stage. This becomes
even more apparent when comparing scenarios two
and three. While considering socio variables in the
query and corpus (scenario two) results in higher
performance, it crucially requires more computing.
In contrast, the more efficient approach of consider-
ing socio variable only in the query (scenario three)
causes significant performance degradation. Thus,
existing retrieval systems show crucial limitations
in taking into account perspectivism, either explicit
or implicit. Particularly, they need the signal of the
socio variable within the query and corpus. Further
analysis of the participating teams reveals that the
implicit difference between arguments of distinct
socio variables is more stylistic than semantic. As a
result, we see the need to build retrieval systems
accounting for such fine-grained socio-linguistic
variations to consider perspectivism accurate
and efficient.

Temporal shift reduces retrieval performance.
We analyze the temporal effect when comparing
results from the test sets covering the 2019 (blue)
and 2023 (red) elections. Figure 6 shows that this
temporal shift has a crucial effect on the retrieval
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Figure 5: Performance overview regarding the four mea-
sured metrics and their relation. The color indicates the
specific scenario.

performance for all three scenarios. We see this
shift mainly as semantic as we consider political
issues regarding freshly raised topics like Corona
or the war in Ukraine.

The importance of the perceiving perspective.
With the third evaluation cycle, we focus on RQ3
and analyze how the retrieval system handles
queries when the receiving perspective of the argu-
ments changes. We see systems struggling when
comparing the authors’ (2019 and 2023) with the
voters’ perspective (surprise). Particularly for the
first and second scenarios. While these results pro-
vide first insights, more extensive studies are re-
quired to cover the same demographic variance as
in the 2019 and 2023 test sets. Further, this smaller
corpus is also reflected in the better performance
of the third test set on the third scenario (implicit
perspectivism).

7 Analysis

In the following, we focus on RQ2 and examine
whether retrieved argument candidates are biased
regarding socio-cultural groups and if submitted
systems compensate for such biases. We focus
on age and gender, known for which recent work
found substantial bias in argumentation. Specifi-
cally, Spliethöver and Wachsmuth (2020) show that
common argumentation sources (e.g. debating cor-
pora) exhibit substantial bias regarding young ages

Figure 6: Performance comparison of the three evalua-
tion cycles (color) regarding the three scenarios (x-axis)
for diversity (y-axis, αNDCG@k).

and European-American males. Further, Holter-
mann et al. (2022) shows that fine-tuning LMs
on argumentative data increases stereotypical bias,
even if LMs exhibited a counter-stereotypical bias
before tuning. As shown in Figure 3, our dataset is
biased towards specific groups, such as male and/or
young authors. We establish a random baseline by
randomly sampling 20 topic-relevant arguments for
every query of the implicit scenario across 10 dif-
ferent seeds and average the number of arguments
retrieved for each group. Similarly, we average the
performance metric.

Figure 7: Extent of system deviation from random sam-
pling representing each gender among the 20 most rele-
vant arguments.

Systems are biased regarding majority groups.
We examine the 20 most relevant arguments, count
how many represent the distinct group, and com-
pute the standard deviation for each system towards
the random baseline. A negative deviation indicates
that the system further reduces the representation
of that group, meaning the group is less represented
in the top arguments compared to its underlying
distribution in the corpus. Conversely, a positive
deviation indicates increased representation. In the
case of a majority group, the system amplifies the
bias.

Figure 7 shows the shift in representation for
gender, comparing the 2019 and 2023 test sets.
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We observe most systems (including the SBERT
baseline) reducing the male bias. However, the
top retrieved arguments still overrepresent male
authors by a large margin, as the deviation is not
more than one argument. Interestingly, one team
reinforced the male bias in the 2019 dataset with
a slight positive deviation. However, that system
slightly outperformed the other teams in increas-
ing the representation of other gender categories
in the 2023 dataset (positive value for no gender
specified).

Figure 8: Extent of system deviation from random sam-
pling representing each age group among the 20 most
relevant arguments.

Figure 8 focuses on different age groups and
shows that all systems reinforce a bias regard-
ing young ages. This is particularly true for the
2023 dataset, where systems systematically retrieve
fewer arguments written by older age groups than
randomly sample arguments. This supports general
findings in NLP that older age groups are under-
represented in data and models. Comparing the
two middle-aged groups reveals that 35-49 is bet-
ter represented than 50-64 for 2019. Since both
age groups occur approximately equally frequently
in the corpus, this indicates a stronger age bias,
with the older group being significantly less well-
represented. While these findings suggest that sys-
tems are biased toward representing the majority
group, they mitigate this bias more effectively for
the female gender category.

Systems partly mitigate gender but not age
bias. We compute each group’s deviation from the
system performance to the random baseline perfor-
mance. If there is no bias, the deviation for a sys-
tem should be the same for each group. For gender,
Figure 9 shows all systems reduce the bias regard-
ing the majority group (male gender category). For

Figure 9: Extent of system deviation from random sam-
pling in performance from the nDCG score for different
gender categories.

nonbinary and unspecified gender, the performance
pattern is similar to representation: one system
shows slight bias improvement, while the others
are slightly more biased than the baseline. The fe-
male group’s performance improved for the 2019
dataset compared to the random baseline but not
for the 2023 dataset. We assume that the SBERT
model has potentially seen more topics from the
2019 election and detected sub-issue-specific dif-
ferences within known topics. For example, the
model could have identified specific frames used
more frequently by males than females. For age,
systems seem to agree more with the dataset dis-
tribution: younger age groups have fewer declines
or even improvements (in 2023) compared to older
age groups (Figure 17 in Appendix). Again, sys-
tems perform the worst on the 50-64 age group.

8 Conclusion

With the Shared Task on Perspective Argument Re-
trieval, we explore for the first time how argument
retrieval systems align socio-cultural properties be-
yond topic relevance. Analyzing the submissions
shows that semantic content alone does not distin-
guish between different socio-cultural groups ade-
quately. Instead, incorporating additional classifica-
tion tasks or features is crucial for accurately match-
ing arguments to socio-cultural characteristics. The
subsequent analysis shows that systems overrepre-
sent arguments from majority groups. However,
they partially mitigate these biases, such as gender
bias. By publishing data reflecting authors’ and
readers’ perspectives, this shared task represents an
initial step towards advancing argument retrieval
regarding perspectivism. This facilitates the in-
vestigation of personalization and polarization and
addresses social bias and fairness in computational
argumentation.
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Limitations

Geographical Limitation The underlying
dataset of this shared task is solely originating
from Switzerland. While it includes distinct values
of Swiss society (multilingual and through political
discourse), it is limited to political issues discussed
in Switzerland. Furthermore, the distribution of
demographic and socio-cultural variables is biased
regarding the Swiss population. For example, one
expects a person in Switzerland and the United
States to have a different mindset while being
labeled as liberal and left.

Societal Bias As with any usage of the language
model, this work is affected by fundamental stereo-
typical bias injected by pre-training on past data.
Even with a special focus during the analysis, this
fact is one limitation that should be considered in
any application.

Appropriate Evaluation In a perspective-aware
retrieval system, multiple metrics are essential to
evaluate the system from various aspects. The di-
versity metric, for instance, measures whether the
top arguments cover the different values of a par-
ticular socio (including an argument from each age
group). However, it does not consider the order in
which these arguments are presented, meaning the
majority group will likely always be shown as the
top argument. It also does not evaluate the distri-
bution of the remaining arguments (after all values
are covered).

The fairness metric and the results for the rep-
resentation analysis assess whether each group is
represented in the top arguments according to its
overall proportion. Nonetheless, there is a debate
on whether this is fair because the majority group
will be more frequently represented. An alternative
approach would aim for an equal distribution of
each group among the top arguments, ensuring that
minority groups are as prominently represented as
possible.

Data License All the data provided for this
shared task is licensed under CC BY-NC 4.0,
and the copyright of the argument remains with
SmartVote (www.smartvote.ch).

Ethical Considerations

Intend of Use LMs have the potential to support
the formation of opinions and foster a thorough and
fine-grained discourse by navigating the diversity
and large size of available political statements and
standpoints. While the data we use in this shared
task are crucial for a comprehensive evaluation of
LM’s abilities regarding such supportive use cases,
they have the potential for building manipulative
systems. To ensure the data’s supportive intent in
this shared task, we will make it available solely
upon request for research purposes and require con-
crete information about the specific usage.

Data Privacy For this shared task, we conducted
an annotation study and collected personal infor-
mation (demographic and socio-cultural variables)
about the annotators. As part of the obtained eth-
ical clearance, we collected the explicit consent
of the annotators during participation and relied
on anonymized identifiers throughout the study.
Therefore, we do not have any information about
the specific person beyond the collected data. Fur-
thermore, we categorize more sensible information,
like age, into different bins.

Concerning the data provided by SmartVote (in-
cluding the text of the arguments and the corre-
sponding socio profile of the politicians), we follow
their privacy statement7. Specifically, the politi-
cians agreed that all available public data on the
platform could be shared anonymized.

Personalization Personalized recommendations
of arguments based on one socio are oversimplified
and reduce diversity. The presented shared task
started with a simplified scenario where only one
socio was presented at a time since it was the first
shared task. Given the rich and diverse profiles of
authors and readers available, we advocate for more
research on intersectionality and a broader, more
nuanced representation of users in personalization
research.

As we have observed, there is a significant
dataset bias with specific groups being underrepre-
sented. Despite our efforts to incorporate diversity
in the presented arguments for this shared task,

7Available online.
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this bias heavily influences systems. We advocate
for further research and development of methods
to diversify recommendations effectively. We see
potential in combining personalization with diver-
sification. For instance, while users tend to prefer
arguments that align with their political attitudes,
a system could optimize for this preference while
presenting a range of perspectives, including ar-
guments from different genders, age groups, and
educational backgrounds. This approach would en-
sure a more pluralistic presentation of viewpoints
while still showing arguments the user perceives as
convincing or relevant.
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Figure 10: Screenshot of the annotation UI. It presents the annotator with the specific political question (1), 20
arguments addressing this question and allows to select the intuitively relevant ones (2), and list the already selected
arguments (3).

A Appendix

A.1 Details of the Annotation Study

Within the conducted annotation study, 22 annotators were asked to select intuitively relevant arguments
for 27 political questions. Specifically, we conduct a two-staged study. First, collect the socio variables
from the annotators themselves using a survey to collect gender, age, civil status, and denomination. Note,
we remove residence as a minority of the people were willing to share where they live. Additionally, we
collect their political attitude and important political issues using the same SmartVote questionnaire as
filled out by the politicians. Secondly, we present 20 arguments for every 27 political questions and let the
annotators choose those that intuitively address the given question from their perspective.

Annotation Interface We show an overview of the annotation UI in Figure 10. This interface presents
the annotators one political question at a time, along with 20 arguments addressing this question from
different perspectives. Afterward, we ask the annotators to select which of the present arguments is
intuitively relevant to them. Selected arguments will be listed on the right and can also be deleted later on.

Ethical Considerations As we collected demographic and socio-cultural data of the annotators, we
collected the explicit consent of the annotators during the study. We inform them that we only collect
categorized data, like the binned age, and that they can ask to delete it. This procedure has been approved
by the ethical board of TU Darmstadt. However, during preliminary discussion, it was decided that full
ethical approval is unnecessary.

Payment We recruit the annotators on prolific and pay them an hourly rate of 25 Swiss francs. While
there is no minimum wage in Switzerland, this salary is above the minimum.

Socio Variable of the Annotators We show in Figure 11 the demographic and socio-cultural variables
of the 22 annotators. However, the distribution is similar to the politicians’ distribution (§ 3) but on a
much smaller scale. As a result, distinct values of a single variable are not covered. For example, we
cover only four out of nine distinct political spectra. Further, we analyze in Figure 12 the agreement
(personalization) of the annotator’s perspectives with those of the authors whose arguments the annotator
selects. We found that annotators highly match with the authors’ perspective regarding political spectrum
and important political issue, and moderately age and gender.
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Figure 11: Distribution of the annotators’ different demographic and socio-cultural variables: important political
issues, political attitude, gender, age (binned), civil status, and denomination. Note, that one person can have more
than one important political issue.

2019 2023 user study

team rel div team rel div team rel div
sövereign 99.9 9.22 twente-bms-nlp 93.6 87.0 twente-bms-nlp 94.4 88.0
GESIS-DSM 98.7 91.6 sougata 92.0 85.5 sougata 76.1 71.2
sbert_baseline 98.6 91.6 sövereign 89.5 82.7 boulderNLP 75.7 70.3
boulderNLP 98.6 91.3 boulderNLP 88.5 82.2 sövereign 63.7 59.5
twente-bms-nlp 97.9 91.0 sbert_baseline 85.5 79.3 sbert_baseline 63.7 59.3
sougata 97.9 90.5 GESIS-DSM 85.5 79.3 GESIS-DSM 62.8 59.2
team031 90.4 84.4 team031 80.6 75.3 team031 59.2 55.0
bm25_baseline 65.1 62.9 bm25_baseline 73.7 69.0 bm25_baseline 36.8 34.2

Table 2: Scenario 1: No Perspectivsm

A.2 Detailed Results of Shared Tasks
Table 2, Table 3, and Table 4 show the detailed leaderboards for scenarios one, two, and three. When
looking at the detailed results (per dataset and per scenario), we find that no solution fits all: sometimes
a team achieves a better score on one dataset (e.g., team sövereign outperforms the other teams on the
dataset of the 2019 election, but not on the 2023 / user study dataset). This can be attributed to the fact that
the LLM re-ranking is less effective at ranking arguments it has not seen before, whereas the 2019 data
may have been included in its training data in some form. The perspectivism scenarios are significantly
more challenging than retrieving relevant arguments per topic (no perspectivism), particularly when the
perspective is only implicitly encoded in the argument. This gap in performance highlights the need for
further research on this issue, as perspectivist argument retrieval appears to be a particularly difficult
problem. However, it is encouraging that most teams can outperform the baseline on these scenarios by a
substantial margin. Their approaches to handling perspectivism are moving in the right direction.

A.3 Results regarding different top-k
We analyze how the number of retrieved candidate arguments affects the performance. From Figure 13,
the performance decreases with a higher k for the first scenario (no perspectivism) for the baseline and the
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Figure 12: Amount of personalization per demographic and socio-cultural variable in the user study: percentage
indicates the difference in matched arguments for a specific property when a user selects relevant arguments versus
a random sample of relevant arguments.

2019 2023 user study

team rel div team rel div team rel div
twente-bms-nlp 89.5 85.2 sövereign 82.3 79.4 twente-bms-nlp 79.8 79.3
sövereign 87.8 84.4 twente-bms-nlp 79.8 77.1 sövereign 67.3 67.5
GESIS-DSM 83.5 80.7 GESIS-DSM 72.2 70.1 sougata 648 65.9
sougata 68.4 66.5 sougata 67.4 66.3 GESIS-DSM 61.6 62.9
sbert_baseline 22.2 20.8 sbert_baseline 14.8 14.2 team031 41.3 40.1
team031 18.1 17.2 team031 13.2 12.5 sbert_baseline 40.6 40.0

Table 3: Scenario 2: Explicit Perspectivsm

2019 2023 user study

team rel div team rel div team rel div
sövereign 21.3 19.9 twente-bms-nlp 14.9 14.3 twente-bms-nlp 65.5 63.6
twente-bms-nlp 20.3 19.0 sövereign 13.9 13.2 GESIS-DSM 471 45.4
sbert_baseline 20.2 18.9 GESIS-DSM 13.9 13.2 sövereign 43.6 42.5
GESIS-DSM 20.2 18.9 sbert_baseline 13.6 13.1 team031 41.3 40.1
team031 18.1 17.2 team031 13.2 12.5 sbert_baseline 40.9 39.7

Table 4: Scenario 3: Implicit Perspectivsm
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Figure 13: Overview of the per team performance regarding diversity (y-axis, αNDCG@k) regarding top4, top8,
top16, and top20 retrieved candidates for the three scenarios.

submissions. Interestingly, this effect is less pronounced for the second scenario (explicit perspectivism)
and reversed for the third one (implicit perspectivism). Specifically, three teams (twente-bms-nlp,
sövereign, and team031) show more improvements with higher k than the other teams. These patterns
indicate that their filtering or argument re-ranking methods work better on higher k.

A.4 Analysis of bias in representation and performance
Figure 14 shows the representation bias of the different systems in representing different political
orientations. We can observe a shift from 2019 to 2023 in representing the center/conservative group
(over- then underrepresented), which can be accounted for the shift in topics. In both years we can observe
that the data bias for left and conservative is reinforced, for left and conservative-liberal its reduced in
2019 but reinforced in 2023.

Figure 18 shows that some systems reduce and some reinforce the bias for left-(conservative/liberal)
political orientation as the performance increases or decreases for those groups compared to the baseline.

Figure 15 shows a lot of diversity in teams when looking at the representation of important political
issues compared to the other socio-cultural properties which can be accounted to the strong semantic
influence they have on the text, i.e. it is likely that an important political issue is expressed in the framing
of the argument. This is especially the case for the election of 2019, since this data was used for training
the systems, and some classifiers were used to predict which issues were important for an author of a
certain argument. Some teams retrieve more arguments for law and order, liberal society, or open foreign
policy, while others retrieve significantly fewer than the baseline for those issues. This only partially
impacts the results (Figure 19), e.g., for law and order, all systems underperform, and over-representing
open foreign policy does not increase the performance of all systems on that issue.

For residence we find significant differences between the elections: systems are split between reinforc-
ing or reducing the bias of arguments by authors from countryside in 2019, in 2023 all systems reduce
that bias (Figure 16). This weakly impacts performance, slightly mitigating the countryside bias for a few
systems in 2019 and gaining small improvements for arguments from authors from the city in 2023.
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Figure 14: Extent of system deviation from random sampling representing each political spectrum among the 20
most relevant arguments.
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Figure 15: Extent of system deviation from random sampling representing each important political issue among the
20 most relevant arguments.

Figure 16: Extent of system deviation from random sampling representing each important residence group among
the 20 most relevant arguments.
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Figure 17: Extent of system deviation from random sampling in performance from the nDCG score for different age
groups.

Figure 18: Extent of system deviation from random sampling in performance from the nDCG score for different
groups of political spectrum.
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Figure 19: Extent of system deviation from random sampling in performance from the nDCG score for different
groups of political spectrum.

Figure 20: Extent of system deviation from random sampling in performance from the nDCG score for residence.
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Abstract

This paper presents the Sövereign submission
for the shared task on perspective argument
retrieval for the Argument Mining Workshop
2024 (Falk et al., 2024). To address the chal-
lenge, we apply open-access Large Language
Models (Mistral-8x7b) in a zero-shot fashion
for re-ranking and explicit similarity scoring.
Additionally, we combine different features in
an ensemble setup using logistic regression.
Our system ranks second in the competition
for all test set rounds on average for the logis-
tic regression approach using LLM similarity
scores as a feature. We also make the code
publicly available1.

1 Introduction

Although the World Wide Web is full of content,
search engines nowadays still lack support for ex-
tracting information regarding argument retrieval
(Bondarenko et al., 2022). Argument retrieval ad-
dresses the issue of retrieving relevant arguments
from a corpus based on a specific query (Falk
et al., 2024). Further issues arise for particular
perspectives, i.e., an argument might only be rele-
vant in a special situation with certain restrictions.
The shared task on “Perspective Argument Re-
trieval” (Falk et al., 2024), investigates these chal-
lenges by including sociocultural properties/factors
(e.g. political interests, occupation, age, and gen-
der) in a multilingual setup (see Figure 1 for illus-
tration). The data includes documents in German,
French, and Italian.

Motivated by the abilities of large language mod-
els (LLMs; cf. Zhao et al., 2023), we investigate
methods to leverage them for this task. We con-
sider two approaches: implicitly re-ranking the ar-
gument candidates, and explicitly computing rele-

*Equal contribution.
1https://github.com/uhh-lt/

sovereign-perspectiveArg24
2https://translate.google.com

La Confederazione dovrebbe sostenere maggiormente gli stranieri e le straniere
nell'integrazione?

property: denomination - Evangelischreformiert/protestantisch
EnT: Should the confederation support foreign men and women more in their integration?

Query:

Arguments:
Est-ce à la confédération ou à l'étranger lui même qu'incombe le devoir de s'intégrer?
property: gender - Männlich, age - 18-34, ..., denomination - Evangelischreformiert/protestantisch, ...
topic: Immigration stance: AGAINST
EnT: Is it the confederation or the foreigner itself that has the duty to integrate?

Nein, aber die Kantone und Gemeinden in deren Bestreben, die Ausländer bei der
Integration zu unterstützen.

property: gender - Männlich, age - 65+, ..., denomination - Nicht bekannt, ...
topic: Immigration stance: AGAINST
EnT: No, but the cantons and municipalities in their efforts to support foreigners in their integration.

Ausländer sollen sich aktiv um ihre Integration mitbemühen
property: gender - Männlich, age - 50-64, ..., denomination - Evangelischreformiert/protestantisch, ...        
topic: Immigration stance: FAVOR
EnT: Foreigners should actively strive for their integration

Ausländer müssen aber selber auch mehr für ihre Integration tun.
property: gender - Männlich, age - 18-34, ..., denomination - Nicht bekannt, ...                                          

topic: Immigration stance: FAVOR
EnT: But foreigners themselves also have to do more to integrate themselves.

Politische Mitsprache fördert die Integration von Ausländern.
property: gender - Weiblich, age - 50-64, ..., denomination - Evangelischreformiert/protestantisch, ...       

topic: Immigration stance: FAVOR
EnT: Political participation promotes the integration of foreigners.

Figure 1: Cross-lingual perspective argument mining:
relevant arguments are marked in green, and irrelevant
arguments are marked in red or orange. In the orange
one, demographic properties match, yet the texts are
not relevant. The English translations (using Google
Translate2) for the query and the arguments are denoted
as EnT .

vance scores for candidate arguments. First, we use
the cosine similarity of Sentence BERT (Reimers
and Gurevych (2019) between the encoded argu-
ments and the query to retrieve the nearest neigh-
bors (arguments) as candidates similar to the base-
line approach by Falk et al. (2024). Note that
the given arguments also contain topic labels and
socio-cultural factors (e.g. in Scenario 2, Section
3), which we also benefit from. We then supply
the query and the retrieved candidates to an LLM
and ask it to re-rank the arguments. In our second
method, the LLM is asked to produce a score for
a given query-argument pair. We further train a
logistic regression classifier using several initial
similarity scores as features and use the computed
feature weights in an ensemble fashion to compute
a final relevance score.
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Our LLM scoring based method shows improved
performance for Scenario 1 and 2, while the LLM
re-ranking performs competitively in Scenario 3,
on the development set. Therefore, we submit the
results obtained with the logistic regression using
the LLM scoring as the final solution to the compe-
tition. The name of our team in the leaderboard of
the organizers is “Sövereign”.

The contributions of this paper are as follows:

• We investigate the ability of LLMs in argu-
ment mining with socio-cultural factors, ex-
perimenting with two approaches in a zero-
shot setup: ranking by LLM directly and pre-
dicting relevance scores using LLM.

• We present a runner-up model, ranked as the
second-best system, in the shared task in 2024.

2 Related Work

In this section, we briefly describe the existing stud-
ies that we take into consideration while developing
our proposed approach.

Argument Retrieval
Apart from the current Perspective Argument Min-
ing shared task (Falk et al., 2024), there exists a se-
ries of scientific events and shared tasks on compu-
tational argumentation and causality which named
Touché (Bondarenko et al., 2022, 2023). Tradition-
ally, the shared task is related to the specific top-
ics, e.g., Retrieval for Comparatives / Controversy
(Bondarenko et al., 2022, 2023), Image Retrieval
(Bondarenko et al., 2022, 2023), etc. For a detailed
overview of the Argument Mining field, we refer
the reader to the papers by Lawrence and Reed
(2019) and Bondarenko et al. (2023).

LLMs for Ranking
According to Qin et al. (2023), LLMs in zero-shot
ranking tasks can be categorized into pointwise,
listwise, pairwise, and setwise. Our approach ap-
plies the listwise method by Sun et al. (2023). The
authors propose RankGPT, a generative LLM (here
ChatGPT and GPT-4) for passage relevance rank-
ing in information retrieval (IR) settings. Despite
the fear of data contamination, they eventually con-
cluded, that properly instructed LLMs can deliver
competitive performance compared to supervised
IR methods and can rank unknown knowledge.

3 Task Description

In this shared task, the goal is to retrieve multi-
lingual arguments gathered from the voting rec-
ommendation platform3. For a description of the
dataset, we refer to Falk et al. (2024). The key
challenge here is to consider socio-cultural factors
during retrieval. For the shared task 2024 we sub-
mit systems for all the three competition scenarios:

• Scenario 1: Default retrieval ranks argument
candidates from a given corpus for a specific
query ignoring any social-cultural attributes.

• Scenario 2: Explicit perspectivism adds
socio-cultural information to the query and the
arguments, which limits relevant arguments
that match the corresponding socio-cultural
factors.

• Scenario 3: Implicit perspectivism adds
socio-cultural information only to the query,
while it is not provided for the arguments.

For each evaluation round, the data consists of
a set of queries and a set of candidates/arguments.
The set of queries includes the query text, and for
Scenarios 2 and 3 it also contains an explicitly
given socio-cultural/demographic attribute. The set
of candidates contains the argument text, a “stance”
parameter (“favor” or “against”), and a “topic” pa-
rameter. The retrieval performance is measured us-
ing: a) relevance: NDCG@k and Pr@k (precision
@ k), and b) diversity: αNDCG@k and klDiv@k
(Kullback-Leibler Divergence @ k), where k is the
rank of retrieved arguments.

4 Methodology

In this section, we present two approaches for the
argument mining task. The first method applies the
LLM directly to rank the arguments, the second
integrates LLM scores as a feature for a logistic
regression model. In the next subsection, we intro-
duce scores utilized in both approaches.

4.1 Feature Scores

In both approaches, the LLM re-ranking and the
logistic regression re-ranking, we employ three dif-
ferent scores. We describe each score in details
below. In the LLM re-ranking approach presented
in Section 4.2 below, scores are summed up and

3https://www.smartvote.ch/
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La Confederazione dovrebbe sostenere maggiormente gli stranieri e le straniere
nell'integrazione?

    property: denomination - Evangelischreformiert/protestantisch
    EnT: Should the confederation support foreign men and women more in their integration?

Est-ce à la confédération ou à l'étranger lui même qu'incombe le devoir de
s'intégrer?

    property: gender - Männlich, age - 18-34, ..., denomination - Evangelischreformiert/protestantisch, ...
    topic: Immigration stance: AGAINST
    EnT: Is it the confederation or the foreigner itself that has the duty to integrate?

Query: Argument:

Input Vector for Logistic Regression

0.789

SBERT 
similarity score

1.0

Demography 
matching score

1.0

Topic frequency
score

0.2

LLM
score

Figure 2: Inputs to the logistic regression for an example query-argument pair with scores of SBERT similarity,
demography matching (1.0 in this example as they are matching), topic frequency (1.0, since for this example all 50
arguments have the same topic), and the score predicted by LLM.

the arguments are re-ranked accordingly before be-
ing sent to the LLM for re-ranking. We use each
score as a feature to train a logistic regression clas-
sifier which then produces the final relevance score
(Section 4.3). We demonstrate an example input
for logistic regression in Figure 2 for better under-
standing of each score.

SBERT Cosine Similarity Score We encode
queries and arguments using SBERT and utilize
the cosine similarity of their embeddings to rank
arguments given a query. This strategy replicates
the baseline approach by the organizers.

Demography Matching Score For Scenario 2,
the explicitly given socio-cultural attributes allow
hard filtering of the arguments that do not match
the socio-cultural attributes of the query. We assign
a score of 1 to all arguments that match the given
socio-cultural attribute parameter and a score of 0
to all other arguments.

Topic Frequency Score We predict the rele-
vance of each topic to a query as the frequency
of that topic among the 50 highest-ranked argu-
ments based on SBERT cosine similarity. For each
query-argument pair we use only the relevance of
the given topic to the query.

4.2 LLM Ranking

As the first approach, we prompt the LLM with the
current query and a list of the 50 highest-ranked
arguments based on our SBERT scores. For Sce-
narios 1 and 3, these scores are the sum of the
similarities and the topic scores, and for Scenario
2 they include the scores based on socio-cultural
attributes, as well. We then ask the model to return
an ordered list of the arguments based on their rel-
evance to the query. The template prompt that we
use is presented in Appendix A in Example 1.

Despite producing the machine-readable lists,
the LLM output barely includes all 50 argument

IDs submitted as input. We interpret all missing
IDs as irrelevant to the query and rank them lower
at the end of the list.

For Scenario 3, the model re-ranks the arguments
according to the socio-cultural attribute from the
query and the implicit socio-cultural backgrounds
for each argument in Appendix A in Example 2.

4.3 LLM as Score Predictor
For the second approach, we provide the LLM with
a list of the 50 highest-ranked arguments (based
on the summed feature scores of SBERT, cf. Sec-
tion 4.1) and prompting it to assign a relevance
score between 0 and 1 for each candidate. The
prompt for Scenarios 1 and 2 is presented in Ap-
pendix A in Example 3.

The expected result is supposed to render a
Python dictionary, where keys are sentence IDs,
and values are the assigned relevance scores. This
approach is also limited by omitting argument IDs
in the LLM output. In such cases, we score the
missed argument IDs as 0.

For Scenario 3, we all ask the model to pre-
dict the relevance score between the given socio-
cultural attribute from the query and the implicit
socio-cultural backgrounds for each argument with
the prompt present in Appendix A in Example 4.

4.4 Ensemble Learning
The previously computed scores are aggregated as
features for a logistic regression classifier. More
specifically, the feature set is comprised of the LLM
relevance score, SBERT cosine similarity between
query and argument, the topic frequency score, and
the demography matching score based on socio-
cultural attributes, as shown in Figure 2. We train a
logistic regression classifier for each scenario sepa-
rately; the goal is to predict whether an argument
is relevant to a query or not (label 0 or 1). To train
the model, we use the top-100 (Scenario 2) or top-
500 (Scenarios 1 and 3) highest-ranked candidate
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Rank Team
Relevance Diversity

Mean Rank Mean NDCG Mean Rank Mean αNDCG@k

1 twente-bms-nlp (top-1) 1.33 0.707 1.67 0.672
2 Sövereign (top-2) 2.22 0.632 2.22 0.601
5 sbert_baseline 5.0 0.445 5.0 0.419
8 bm25_baseline 7.67 0.195 8.00 0.185

Table 1: Average results on all test sets and scenarios. We present the results for the baseline and the model that
presented better performance for comparison.

arguments for each query from the training set.
The resulting weights from the logistic regres-

sion are presented in Table 2 in Appendix A. We
interpret those scores as importance weights to re-
balance the individual features of the candidate
arguments. We additionally normalize them to sum
up to 1. The weighted sum of the features is then
used for re-ranking previously retrieved arguments.

5 Experimental Setup

We use the Mixtral-8x7B-Instruct-v0.14 LLM
model by mistralai5 with the default parame-
ters using HuggingChat6. This model comes with
a lenient license and offers a good balance be-
tween performance and model size7. By using the
HuggingChat framework, we explicitly make the
model exchangeable, and we expect increased per-
formance by using larger models. We refrain from
the model fine-tuning and apply it as a zero-shot.

Regarding SBERT, we use the pre-trained
model paraphrase-multilingual-mpnet-base-
v28, likewise the baseline from the organizers (Falk
et al., 2024). We trained the logistic regression
classifier using the scikit-learn9 framework on
the training dataset with the default parameters.

To choose the solution for the final evaluation
round, we test our approaches on the development
set and submit the test set ranking using the best-
performing algorithm.

Scenario 1: Default Argument Retrieval Here,
SBERT is already a very strong baseline. Logistic
regression achieves better scores for NDCG, Pr,

4https://huggingface.co/mistralai/
Mixtral-8x7B-Instruct-v0.1

5https://mistral.ai/
6We use HuggingChat version v0.8.4: https://

huggingface.co/chat/
7Measured by personal experience.
8https://huggingface.co/sentence-transformers/

paraphrase-multilingual-mpnet-base-v2
9https://scikit-learn.org

and αNDCG and k > 4 (cf. Table 4, in Appendix).
Thus, for Scenario 1 we submit the results achieved
with logistic regression.

Scenario 2: Explicit Perspectivism Results are
shown in Appendix Table 3. LLM re-ranking per-
forms well as compared to the SBERT baseline,
however, the logistic regression ensemble achieves
the best scores. For this scenario, we also submit
the results achieved with logistic regression.

Scenario 3: Implicit Perspectivism In this sce-
nario, both approaches perform almost on par; the
LLM re-ranking methods perform better than other
approaches, as shown in Table 5 in the Appendix.
However, we still decided to submit the logistic re-
gression approach, as we consider learned weights
to be more fair for the unseen data.

6 Results on the Test Sets

In this section, we present the test results of our
approach from logistic regression. These results
are evaluated and shared by task organizers. Ta-
ble 1 presents the average results for all scenar-
ios and test rounds. Additionally, we show the
average results of our approaches across differ-
ent test rounds and scenarios in Tables 6, 7 and
8 in Appendix A. We achieve competitive results
for all scenarios on test set 1 and test set 2, how-
ever, our predictions for test set 3 fall short of
first place quite significantly. In Scenario 1 test 3
“Sövereign” underperforms even the SBERT base-
line. We believe this happens because of the topic
scores, included in the final logistic regression. If
the SBERT baseline predicts relevant arguments
that match the expected topic, this will improve
the results by increasing the final scores for those
arguments, that match the expected topic. Other-
wise, this will impair the results by increasing the
final scores for the arguments that do not match
the topic. For test set 1 (Precision@20 = 0.978)
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and test set 2 (Precision@20 = 0.824) the topic
scores are predominantly valuable, hence our re-
sults are significantly higher than the baseline. On
test set 3 (Precision@20 = 0.565) the topic scores
are deceptive for a significant amount of queries:
the usage of this feature puts the irrelevant argu-
ments higher. The reason for the difference across
different test sets needs to be further investigated.

7 Conclusion

We present Sövereign, an LLM re-ranking ap-
proach for perspective argument retrieval. We show
an investigation of two LLM utilizations, a) im-
plicit re-ranking, and b) explicit relevance scoring.
The explicit relevance scoring methods achieve
better scores for explicit perspectivism when used
in an ensemble with other similarity features, i.e.,
SBERT, topic, and socio-cultural (if applicable).
In Scenario 3, implicit perspectivism, LLM re-
ranking performs better than the LLM scoring. We
believe this might be due to the formulations of the
prompts in Scenario 3: ranking prompt emphasizes
socio-cultural property, directly. In future work,
we would like to explore more utilization methods
of LLMs in this task, e.g., trying different prompts.
The data additionally contains “stance” attributes,
which we omitted to use for our submission, but
might be an important feature. We also plan to try
other LLM models and improve the results for test
set 3 by classifying the topic from the query and
matching it with the topics from the arguments.

Limitations

Nowadays, dozens of large pre-trained genera-
tive models exist and we report results only on
mistralai/Mixtral-8x7B-Instruct-v0.1. It
might be that some other foundation models could
further push the results, however, our main goal
was to investigate the ability of LLMs to re-rank
arguments given socio-cultural factors.

As we use HuggingChat API10, it could pro-
duce every time different responses, which might
slightly affect the results if reproducing the ap-
proach from scratch. However, we have saved the
model output used for the final score submission,
therefore, they can be used to reproduce the results.

10https://huggingface.co/chat/
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A Appendix

Here is the template prompt for the Scenario 1 or 2
performed with the LLM re-ranking:

(1) <<SYS>>Answer with a python list
containing all ranked argument
ids<</SYS>>
[INST]The following are passages
related to question <query text>
[/INST]

[0] <1st argument text>
...
[49] <50th argument text>

[INST]Rank these passages
based on their relevance to
the question.[/INST]

Here is the template prompt for the Scenario 3
performed with the LLM re-ranking:

(2) <<SYS>>Answer with a python list
containing all ranked argument
ids<</SYS>>
[INST]The task is to rank
arguments, if they fit the
sociocultural property: <query
demographic property>.[/INST]

[0] <1st argument text>
...
[49] <50th argument text>

[INST]Rank these passages
based on their relevance to the
sociocultural property.[/INST]

Here is the template prompt for Scenario 1 or 2
performed with similarity scores as a feature for
Logistic Regression:

(3) <<SYS>>Answer with a python
dictionary containing a score
between 0 and 1 for each argument
id<</SYS>>
[INST]Given the question <query
text> and a list of arguments
with IDs. The task is to rank
the arguments according to the
question. The higher the score
the more relevant it is to the
question[/INST]

[0] <1st argument text>
...
[49] <50th argument text>

[INST]Return a python dict
with every single argument id and
the scores only! No text!!! e.g.
1: 0.9, 2: 0.3[/INST]

Here is the template prompt for Scenario 3 per-
formed with similarity scores as a feature for Lo-
gistic Regression:

(4) <<SYS>>Answer with a python
dictionary containing a score
between 0 and 1 for each argument
id<</SYS>>
[INST]The task is to rank
arguments, if they fit the
sociocultural property: <query
demographic property>[/INST]

[0] <1st argument text>
...
[49] <50th argument text>

[INST]Return a python dict
with all argument IDs between 0
and 49 and a score between 0 if
the argument does not fit the
demographic and 1 if it fits very
well.[/INST]
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Scenario
SBERT

similarity
Topic

Frequency
Demographic

Matching
LLM

relevance

1 0.771 0.037 - 0.191
2 0.407 0.064 0.479 0.049
3 0.467 0.287 - 0.246

Table 2: Normalized Logistic Regression weights for the features calculated on the train set.

Relevance Diversity
k Method

NDCG@k Pr@k αNDCG@k klDiv@k
SBERT baseline 0.180 0.182 0.167 0.151
LLM reranking 0.772 0.732 0.724 0.2054
LogReg 0.866 0.796 0.812 0.206
SBERT baseline 0.181 0.181 0.169 0.136
LLM reranking 0.752 0.666 0.719 0.1928
LogReg 0.853 0.723 0.813 0.193
SBERT baseline 0.180 0.178 0.172 0.107
LLM reranking 0.740 0.590 0.718 0.16516
LogReg 0.844 0.641 0.817 0.167
SBERT baseline 0.180 0.176 0.172 0.099
LLM reranking 0.735 0.563 0.716 0.15720
LogReg 0.840 0.612 0.817 0.160

Table 3: Results for Scenario 2 on the development set.

Relevance Diversity
k Method

NDCG@k Pr@k αNDCG@k klDiv@k
SBERT baseline 0.968 0.975 0.878 0.151
LLM reranking 0.962 0.967 0.865 0.1644
LogReg 0.967 0.975 0.873 0.162
SBERT baseline 0.965 0.967 0.880 0.137
LLM reranking 0.973 0.979 0.881 0.1518
LogReg 0.976 0.983 0.885 0.149
SBERT baseline 0.957 0.954 0.892 0.107
LLM reranking 0.966 0.967 0.896 0.12416
LogReg 0.968 0.969 0.899 0.121
SBERT baseline 0.954 0.950 0.897 0.100
LLM reranking 0.963 0.962 0.901 0.11620
LogReg 0.966 0.965 0.905 0.114

Table 4: Results for Scenario 1 on the development set.
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Relevance Diversity
k Method

NDCG@k Pr@k αNDCG@k klDiv@k
SBERT baseline 0.187 0.188 0.172 0.151
LLM reranking 0.198 0.198 0.181 0.1574
LogReg 0.193 0.194 0.177 0.156
SBERT baseline 0.191 0.193 0.177 0.136
LLM reranking 0.201 0.202 0.186 0.1448
LogReg 0.198 0.200 0.184 0.142
SBERT baseline 0.198 0.199 0.186 0.107
LLM reranking 0.209 0.211 0.196 0.11816
LogReg 0.204 0.206 0.192 0.114
SBERT baseline 0.200 0.201 0.189 0.099
LLM reranking 0.212 0.213 0.199 0.11120
LogReg 0.207 0.207 0.195 0.106

Table 5: Results for Scenario 3 on the development set.

team
Relevance Diversity

Rank NDCG Precision Rank αNDCG klDiv
Test set 1

sövereign 1 0.999 0.999 1 0.922 0.143
twente-bms-nlp 2 0.987 0.989 5 0.910 0.142
GESIS-DSM 3 0.986 0.983 2 0.916 0.124
sbert_baseline 3 0.986 0.983 3 0.916 0.125
bm25_baseline 7 0.651 0.613 8 0.629 0.121

Test set 2
twente-bms-nlp 1 0.936 0.930 1 0.870 0.115

sövereign 3 0.895 0.888 3 0.827 0.135
sbert_baseline 5 0.855 0.848 5 0.793 0.118
bm25_baseline 7 0.737 0.722 8 0.690 0.122

Test set 3
twente-bms-nlp 1 0.944 0.938 1 0.880 0.213
sbert_baseline 4 0.637 0.635 5 0.593 0.153

sövereign 5 0.628 0.614 4 0.595 0.161
bm25_baseline 7 0.368 0.372 8 0.342 0.152

Table 6: Average results for Scenario 1 on all test sets.
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team
Relevance Diversity

Rank NDCG Precision Rank αNDCG klDiv
Test set 1

twente-bms-nlp 1 0.895 0.717 1 0.852 0.181
sövereign 2 0.878 0.707 2 0.844 0.181

sbert_baseline 5 0.222 0.218 5 0.208 0.139
Test set 2

sövereign 1 0.823 0.623 1 0.794 0.166
twente-bms-nlp 2 0.798 0.610 2 0.771 0.165
sbert_baseline 5 0.148 0.140 5 0.142 0.124

Test set 3
twente-bms-nlp 1 0.798 0.613 1 0.793 0.256

sövereign 2 0.673 0.504 2 0.675 0.221
sbert_baseline 6 0.406 0.339 6 0.400 0.163

Table 7: Average results for Scenario 2 on all test sets.

team
Relevance Diversity

Rank NDCG Precision Rank αNDCG klDiv
Test set 1

sövereign 1 0.213 0.211 1 0.199 0.135
twente-bms-nlp 2 0.203 0.202 2 0.190 0.124
sbert_baseline 3 0.202 0.201 4 0.189 0.125

Test set 2
twente-bms-nlp 1 0.149 0.144 1 0.143 0.121

sövereign 2 0.139 0.136 3 0.132 0.125
sbert_baseline 4 0.136 0.129 4 0.131 0122

Test set 3
twente-bms-nlp 1 0.655 0.560 1 0.636 0.189

sövereign 3 0.436 0.365 3 0.425 0.160
sbert_baseline 5 0.409 0.349 5 0.397 0.158

Table 8: Average results for Scenario 3 on all test sets.
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Abstract

While general argument retrieval systems have
significantly matured, multilingual argument
retrieval in a socio-cultural setting is an over-
looked problem. Advancements in such sys-
tems are imperative to enhance the inclusiv-
ity of society. The Perspective Argument Re-
trieval (PAR) task addresses these aspects and
acknowledges their potential latent influence
on argumentation. Here, we present a multi-
lingual retrieval system for PAR that accounts
for societal diversity during retrieval. Our ap-
proach couples a retriever and a re-ranker and
spans multiple languages, thus factoring in di-
verse socio-cultural settings. The performance
of our end-to-end system on three distinct test
sets testify to its robustness.

1 Introduction

Given a query, argument retrieval (Manning, 2008;
Bondarenko et al., 2020, 2022) generally involves
retrieving a set of k-relevant arguments from a cor-
pus. Perspective argument retrieval (PAR) (Falk
et al., 2024) is an expansion and concerns factoring
in the socio-cultural factors during retrieval. Apart
from the semantic features, it considers aspects
such as persona, attitude, demographics, etc, during
retrieval. Such systems are imperative to expanding
the reach of argumentation technologies (Besnard
and Hunter, 2008; Van Eemeren et al., 2015) among
diverse socio-cultural groups. We tackle the fol-
lowing two scenarios of the PAR shared task: (i)
Baseline: Given a query, retrieving the relevant
arguments from a corpus. This scenario evaluates
the general abilities of a system to retrieve rele-
vant arguments. (ii) Explicit: This extends the
baseline task by explicitly adding socio-cultural in-
formation to the query and the corpus and limiting
the relevant candidates to arguments from authors
matching the corresponding socio-cultural back-
ground. This scenario tests if a retrieval system can

consider socio-cultural properties when explicitly
mentioned in the query and the candidates.

The argument corpus comprises 26,335 argu-
ments covering the 2019 Swiss Federal elections
in German, French, and Italian. Each argument is
enriched with eight socio-cultural properties and
spans 45 political aspects. The queries are political
issues and based on the x-stance dataset (Vamvas
and Sennrich, 2020). The training queries span
35 political aspects, whereas the development set
queries span the other 10 aspects. The final evalua-
tion set comprises three secret test sets.

2 Proposed Method

Our implemented architecture comprises a retriever
and a re-ranker. Figure 1 illustrates our architecture,
which we explain in detail below.

2.1 Corpus Processing

We use Mistral-7B-Instruct-v0.2 (Jiang et al., 2023)
(henceforth referred to as Mistral) in a zero-shot set-
ting to first translate all arguments in the corpus to
English. The zero-shot prompt is “Translate the fol-
lowing text to English.”. Next, we use the multi-qa-
mpnet-base-dot-v1 (Reimers and Gurevych, 2019)
model to generate the English embeddings and
the paraphrase-multilingual-mpnet-base-v2 model
for multilingual embeddings for each argument.
We populate a graph-based vector index (Hsnwlib1

(Malkov and Yashunin, 2018)) with the English em-
beddings for performing an approximate K-nearest
neighbor search during retrieval. The Hsnwlib in-
dex and the multilingual embeddings comprise our
retrieval argument collection.

2.2 Retriever

We represent a query using two embeddings: (i)
We translate the multilingual query to English
using Mistral and generate its English-translated

1https://github.com/nmslib/hnswlib
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Figure 1: End-to-end architecture of the retrieval system.

embedding using the multi-qa-mpnet-base-dot-v1
model. (ii) We generate the multilingual embed-
ding from the original non-translated query using
the paraphrase-multilingual-mpnet-base-v2 model.
Cosine similarity is computed between the query
and corpus multilingual embeddings to retrieve the
top 1000 most similar arguments. K-nearest neigh-
bor (KNN) search is performed on the Hsnwlib
index to retrieve the top 1000 similar arguments
to the English-translated embedding. We average
the two rankings and order them to yield the fi-
nal top 1000 documents. The choice of averaging
the multilingual embedding-based cosine similarity
ranking with the translated KNN-based ranking is
determined empirically. Listed in Table 1, we ex-
perimented with different combinations and chose
the combination that yielded the best NDCG (Wang
et al., 2013) (Normalized discounted cumulative
gain) score on the development set.

2.3 Re-ranker

The re-ranker is an ensemble of a Large Language
Model (LLM (Chang et al., 2023; Min et al., 2023;
Hadi et al., 2023))-based and a Multi-Layered Per-
ceptron (MLP)-based relevance model. Given a
list of the 1000 retrieved documents to a query, we
re-order the top 30 by persisting the ones deemed
relevant to the query by both models. Below, we
detail each model and our internally constructed
dataset to train them.

2.3.1 Dataset Construction
We run the retriever on the training set and bucket
the retrieved documents by their ranking as fol-

Id Combination 4 8 16 20
1 cos_multi 0.97 0.96 0.96 0.95
2 cos_en 0.98 0.96 0.95 0.95
3 knn_multi 0.94 0.93 0.91 0.90
4 knn_en 0.97 0.97 0.97 0.96
5 cos_en + cos_multi 0.97 0.98 0.98 0.98
6 knn_en + knn_multi 1.00 0.99 0.97 0.97
7 cos_multi + knn_multi 0.96 0.96 0.96 0.95
8 cos_en + knn_en 0.98 0.97 0.96 0.95
9 cos_multi + knn_en 1.00 0.99 0.99 0.99

10 cos_en + knn_multi 0.96 0.97 0.96 0.96

11
cos_en + cos_multi
+ knn_en

0.99 0.98 0.98 0.98

12
cos_en + cos_multi
+ knn_multi

0.96 0.97 0.97 0.96

13
cos_en + knn_en
+ knn_multi

0.99 0.99 0.97 0.97

14
cos_multi + knn_en
+ knn_multi

0.99 0.99 0.98 0.98

15
cos_en + cos_multi
+ knn_en + knn_multi

0.98 0.98 0.98 0.98

Table 1: Dev set NDCG results of different scoring
combinations for the baseline scenario. Best scores
highlighted in bold. cos: cosine similarity, knn: K-
nearest neighbours, multi: multilingual, en: English.

lows: 1-20, 21-100, 101-300, 301-700, 700-1000.
For each bucket, we check if the retrieved docu-
ments are relevant and construct a balanced dataset
(named rel) of 6,150 examples (4,815 train, 1,335
dev) comprising query and document pairs with
a binary label denoting whether the document is
relevant to the query. We consider the English-
translated text of the query and document. Further-
more, we construct 8,795 examples (6,895 train,
1,900 dev, and named mcq) where, given a query
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and two retrieved documents, the task requires com-
paring the documents to determine the more rel-
evant one. From each bucket, we randomly pair
relevant and non-relevant retrieved documents. Ad-
ditionally, we include two cases where random
pairs of documents from the same bucket within a
window of 3 are marked relevant or non-relevant
to the same degree. Constructing the rel and mcq
datasets using the bucketed approach helps adjust
the dataset’s difficulty, where examples from the
lower buckets are more challenging than the higher
ones.

2.3.2 MLP Re-ranker
The MLP-based relevance model is a 2-layered
neural network. It inputs 768-dimensional query
and document embeddings and independently en-
codes them to a 128-dimensional representation
using a single-layered neural network, followed by
a non-linear ReLU activation. The encoded repre-
sentations are concatenated (now 256-dimensional)
and passed through a 2-layered neural network,
where the hidden layer contains 128 nodes with
ReLU activation, and the final layer is a single
node that denotes the relevance score (logit). We
use multi-qa-mpnet-base-dot-v1 to compute the
768-dimensional input query and document em-
beddings. The model is trained on the rel dataset in
mini-batches of 32 with AdamW (Loshchilov and
Hutter, 2017) optimizer, using a 1e-5 learning rate
and early stopping for five epochs. It attains an F1
score of 73% on the rel dataset dev split.

2.3.3 LLM Re-ranker
We fine-tune Mistral-7B-Instruct-v0.2 on instruc-
tions from the rel and mcq datasets. Table 2 il-
lustrates samples from each dataset. The model
was trained for two epochs using LoRA (Hu et al.,
2021), a parameter-efficient fine-tuning (Man-
grulkar et al., 2022) method. The LoRA r and
alpha were set to 16 and 32 and trained the q, v,
k, o, gate, up, and down projection modules of the
attention heads and the LM head using a 2.5e-5
learning rate. Fine-tuning LLMs on multiple tasks
has shown to be fruitful. Since the rel dataset in-
structions only entail comparing query-document
pairs, we include the mcq dataset to increase the
task variety as it additionally entails comparing doc-
uments. Fine-tuning on multiple tasks (multi-task
learning (Caruana, 1997; Zhang and Yang, 2021))
has proven to improve performance on the individ-
ual tasks. The fine-tuned model attains an F1 score

of 79% on the rel dataset and an accuracy score of
51% on the mcq dataset dev splits.

During inference we ensemble the MLP and
LLM-based re-rankers, where given a list of the
1000 retrieved documents to a query, we re-order
the top 30 by persisting the ones deemed relevant
to the query by both models.

Sample from the rel dataset
[INST] Identify using true/false if a document is relevant to a query.
Query: Should the Confederation support foreigners in integration?
Document: "Integration is good and important. However, it is now
necessary at the cantonaland community levels."
[/INST]
Answer: true

Sample from the mcq dataset
[INST] Given a query and two retrieved documents, identify which of
the following options is correct.
Query: Should the Confederation support foreigners in integration?
Document A: Political co-determination promotes foreigner integration.
Document B: It is desirable to integrate foreigners on a political level.

i. Document A is more relevant than Document B.
ii. Document B is more relevant than Document A.
iii. Both the documents are equally relevant to the query.
iv. None of the documents are relevant to the query.
[/INST]
Answer: iv

Table 2: Samples of Mistral training instructions.

3 Results

We run our pipeline on the three official test sets
and share the results for the baseline scenario in
Table 3 and the explicit scenario in Table 4. We
compare our results against BM-25-based and em-
bedding cosine similarity-based (Sbert) baselines.
For the baseline scenario (Table 3), our implemen-
tation significantly outperforms both baselines in
test sets 2 and 3. Although we significantly outper-
form the BM-25 baseline for test set 1, the Sbert
baseline attains a comparable score to our imple-
mentation. For the explicit scenario, we only per-
sist the baseline ranked documents where the query
socio-cultural features match with the document.
As evident from Table 4, our implementation sig-
nificantly outperforms the Sbert baseline for all test
sets.

4 Conclusion

Here, we present an end-to-end retrieval and rank-
ing system capable of retrieving multilingual argu-
ments to user queries while factoring in the socio-
cultural features. Our implementation uses the orig-
inal and English-translated text and implements an
ensembled retriever and re-ranker to retrieve rel-
evant documents. Our retriever combines the se-
mantic relatedness of embedding a similarity-based
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Ndcg Precision
Set Model 4 8 16 20 4 8 16 20

1
BM25 0.72 0.67 0.62 0.60 0.68 0.64 0.58 0.55
Sbert 0.99 0.99 0.98 0.98 0.99 0.99 0.98 0.98
Ours 0.99 0.98 0.98 0.97 0.98 0.97 0.97 0.97

2
BM25 0.78 0.76 0.72 0.69 0.78 0.76 0.69 0.66
Sbert 0.88 0.86 0.84 0.84 0.89 0.86 0.82 0.82
Ours 0.94 0.93 0.91 0.90 0.94 0.93 0.90 0.89

3
BM25 0.36 0.37 0.38 0.37 0.36 0.37 0.39 0.37
Sbert 0.67 0.68 0.61 0.59 0.69 0.69 0.59 0.56
Ours 0.80 0.80 0.73 0.70 0.82 0.81 0.70 0.67

Table 3: Model performance on diverse test sets for the
Baseline scenario.

Ndcg Precision
Set Model 4 8 16 20 4 8 16 20

1
Sbert 0.22 0.22 0.23 0.23 0.22 0.22 0.22 0.22
Ours 0.71 0.69 0.67 0.66 0.66 0.60 0.54 0.52

2
Sbert 0.15 0.15 0.15 0.15 0.15 0.14 0.13 0.13
Ours 0.72 0.69 0.65 0.64 0.67 0.60 0.53 0.50

3
Sbert 0.38 0.39 0.42 0.44 0.38 0.36 0.32 0.31
Ours 0.70 0.65 0.62 0.61 0.67 0.58 0.49 0.47

Table 4: Model performance on diverse test sets for the
Explicit scenario.

approach with a KNN-based approach to yield an
initial retrieved ordering of documents. Our ensem-
ble of LLM and MLP-based re-rankers re-orders
the documents by their relevance to generate the
final list of ordered documents for a query. Eval-
uations against two baselines across three distinct
test sets testify to the robustness of our approach.
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Abstract

The paper describes our system for the Per-
spective Argument Retrieval Shared Task. The
shared task consists of three scenarios in which
relevant political arguments have to be retrieved
based on queries (Scenario 1). In Scenario 2
explicit socio-cultural properties are provided
and in Scenario 3 implicit socio-cultural prop-
erties within the arguments have to be used. We
combined a Bi-Encoder and a Cross-Encoder to
retrieve relevant arguments for each query. For
the third scenario, we extracted linguistic fea-
tures to predict socio-demographic labels as a
separate task. However, the socio-demographic
match task proved challenging due to the con-
straints of argument lengths and genres. The
described system won both tracks (relevance
and diversity) of the shared task.

1 Introduction

The perspective argument retrieval shared task
(Falk et al., 2024) addresses the challenge of in-
corporating socio-cultural factors into argument
retrieval. It is based on the x-stance dataset (Vam-
vas and Sennrich, 2020) and includes three sce-
narios: baseline, explicit, and implicit. Queries in
the baseline scenario are provided without socio-
demographic requirements on extracted arguments.
In the explicit and implicit scenarios, one socio-
demographic feature is provided along with the
query as an additional requirement to retrieve argu-
ments that match the label, (e.g.{gender: male}).
An extracted argument is considered a true can-
didate only if it is relevant to the query text and
matches the socio-demographic label provided with
the query in explicit and implicit scenarios.

The difference between the explicit and implicit
scenarios is that in the explicit scenario, the socio-
demographic information of argument authors is
available in the corpus, whereas in the implicit
scenario it is not. This means that in the implicit
scenario, systems must predict or match the socio-

demographic features in addition to determining
relevance to the query.

In our system, we combine bi-encoder and cross-
encoder models to retrieve relevant arguments. Ad-
ditionally, we predict socio-demographic features
from argument texts in the implicit scenario, using
sentence embeddings, n-gram of part-of-speech
(POS) tags and stop words, and token length dis-
tributions as input features. The system performed
best in both tracks of the shared task, relevance and
diversity.

2 Related Work

Previous studies have employed several strategies
to model query and argument sentences before
they can be matched subsequently: Simple statis-
tical features like token n-grams or part-of-speech
(POS) n-grams (Clement and Sharp, 2003), TF-IDF
(Ramos et al., 2003), or word2vec (Sardianos et al.,
2015; Jang and Kwon, 2023). Word embeddings
with mean pooling or other techniques to generate
sentence embeddings of fixed lengths (Devlin et al.,
2018; Liu et al., 2019), sentence embedding models
such as Sentence-BERT (Reimers and Gurevych,
2019) or LaBSE (Feng et al., 2020), and ensem-
ble approaches combining models from the afore-
mentioned categories (Zhang and Çöltekin, 2024;
Reimers et al., 2019).

Sentence embedding models typically use a bi-
encoder architecture, such as a Siamese Neural
Network. The relevance of two sentences is often
measured with the cosine similarity of their embed-
dings. Bi-encoders are more suitable for symmetric
searches where two sentences are interchangeable
(Muennighoff, 2022). Asymmetric scenarios like
answering a specific question often benefit more
from cross-encoder models. Thakur et al. (2020)
pointed out the challenge in training bi-encoders
to represent two asymmetric sentences within a
shared vector space. Beyond encoder architectures,
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Muennighoff (2022) proposed a method that em-
ploys decoders for sentence embeddings and se-
mantic search.

2.1 Socio-Demographic Features

One goal of the the perspective argument retrieval
shared task is to retrieve a set of diverse with regard
to the socio-demographic features of the argument
providers, such as age and political stances. Most
works that attempt to explicitly extract such fea-
tures require long texts as input. In age and gender
prediction, for example, the majority of studies
work with texts with 250 words or more (Peersman
et al., 2011). By contrast, for the dataset in this
shared task, the average length of each argument
is less than 30 words (25.86 excluding punctuation
tokens). Some studies also work with shorter texts:
Peersman et al. (2011) analyzed chat messages av-
eraging 12.2 tokens each and achieved an accuracy
of 88.8% for age prediction. Zhang and Zhang
(2010) studied blog posts averaging 15 tokens per
segment, achieving an accuracy of 72.10% for gen-
der prediction. When shorter texts are used, these
are often collected from social media, which may
include more personal styles such as abbreviations
or emoticons. This may simplify the task compared
to the dataset of the shared task, which consists of
political arguments from a dedicated platform, less
likely to contain such explicit clues.

3 Dataset Analysis

In the training and development datasets, we ob-
served that the queries and candidates are struc-
tured as follows: the same query is provided in
three languages: German, French, and Italian.
Though as separate query entries, each language
version shares the same list of candidate argu-
ments. Options for addressing this cross-lingual
setting include using or fine-tuning cross-lingual
sentence embedding models or translating different
languages into one.

Additionally, we noted that an argument candi-
date only appears under one query (or the same
query of three language versions). This suggests
that the dataset might have been created from an
existing set of query arguments (in the X-stance
dataset), with arguments randomized and compiled
into a mixed arguments corpus, rather than through
annotations of argument relevance for each query.
This setup could pose challenges for traditional se-
mantic search tasks: if an argument could validly

answer two different queries, it is still tied to only
the query with which it was originally associated,
and appearing under the other query would be con-
sidered a false retrieval, even if it might be correct.

A potential strategy to address this issue is
to evaluate each candidate’s relevance across all
queries, assigning it to only one query. However,
this approach has a drawback: if an argument is
incorrectly assigned to one query, it precludes the
possibility of it being correctly assigned to another
query. Ultimately, we adopted a hybrid strategy.
For queries in the development set, we only consid-
ered candidates that had not appeared under train-
ing queries. Similarly, for each test set, we only
considered candidates that had not appeared in ei-
ther the training or development queries, which
helps narrow down the argument pools and poten-
tially enhance retrieval accuracy. This strategy was
implemented across all test sets and scenarios. Nev-
ertheless, we also provide unfiltered results in this
paper for broader comparison with the baselines.

4 System Design

4.1 Baseline Scenario
As discussed in Section 2, previous work has
shown that bi-encoders generally perform less
well than cross-encoders for asymmetric retrieval
tasks. However, cross-encoders have a disad-
vantage in terms of computing complexity. If
there are M samples in the query set and N
samples in the corpus, the model needs to be
run M × N times, compared to M + N for
bi-encoders. In our system, we employed a
strategy to combine both: we used a bi-encoder
(paraphrase-multilingual-mpnet-base-v2)
to retrieve the top 1000 argument candi-
dates and then used a cross-encoder model
(ms-marco-MiniLM-L-12-v21) to re-rank the
top 50. We compared both multilingual and
monolingual cross-encoders and found that the
monolingual model performs better. Therefore, we
translate2 the top 50 into English before using the
cross-encoder.

4.2 Explicit Scenario
To extract semantically relevant arguments in the
explicit scenario, we applied the same method as

1https://www.sbert.net/docs/pretrained-models/ce-
msmarco.html

2We use Google translate API from the following GitHub
repository to translate all queries and top-50 arguments to
English: https://github.com/ssut/py-googletrans.
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Factor Algorithm Input Accuracy Class num. Prop. bounds
residence MLP sbert embedding 0.93 2 0.094 - 0.906
important issues MLP sbert embedding 0.65 8 multi-label case
gender Ran. Forest bigram POS/STOP 0.67 2 0.377 - 0.622
political spectrum MLP sbert embedding 0.52 9 0.003 - 0.455
civil status MLP sbert embedding 0.44 9 6.8e05 - 0.367
age_bin MLP sbert embedding 0.43 4 0.054 - 0.330
denomination MLP sbert embedding 0.42 10 0.0004 - 0.409
education MLP sbert embedding 0.34 13 0.007- 0.281

Table 1: Overview of the best-performing approaches for the prediction of socio-demographic features (‘Label
num.’ indicates the number of target labels per factor and ‘Prop. bounds’ shows the lower and upper bounds of label
proportions).

in the baseline scenario. However, in this sce-
nario, the retrieved arguments should not only be
semantically relevant but also match the (explic-
itly provided) socio-demographic features of the
query. While integrating these socio-demographic
labels into the query and argument texts and con-
verting the extended texts into sentence embed-
dings could be an option, this approach may intro-
duce additional noise and degrade both relevance
and socio-demographic matching. We instead em-
ployed exact label matching. For instance, if the
query feature is {gender: female}, we filtered
the corpus to select arguments that match this socio-
demographic feature.

4.3 Implicit Scenario

In the implicit scenario, the explicitly provided
socio-demographic features for the arguments
should not be used. This means that, in order to
perform the socio-demographic matching, the fac-
tors have to be extracted from the text. Our ap-
proach is to predict the socio-demographic labels
for arguments and then use these predictions in the
same way as in the explicit scenario. The training
data was collected from the training query doc-
uments. We retrieved socio-demographic labels
from the query requirement and assigned socio-
demographic labels to their corresponding argu-
ment candidate lists, creating a pseudo-corpus for
socio-demographic feature training.

Our preliminary analysis suggests that for cate-
gories like important issues or political spectrum,
semantic information is crucial, hence sentence
embeddings that capture meaning should be used
as input. However, categories such as gender and
age, are influenced more by lexical preferences
as documented in previous research. Thus, apart

from sentence embeddings, we also conducted fea-
ture engineering, focusing on German arguments
(which comprise about 70% of our corpus). We
extracted the following features:

• Token Length Distribution: We used the
NLTK package to tokenize sentences and
words for each argument, then calculated the
token lengths and their distribution.

• POS & Stop Unigram Distribution: We con-
verted all argument texts into part-of-speech
(POS) tags for content words while retaining
stop words in their original form.

• POS & Stop Bigram Distribution: bigrams
from the POS and stop words sequences and
computed their distribution.

We input these statistical features and sentence-
bert embeddings into MLP, SVM, and random for-
est models and compare their performance in pre-
dicting the different socio-demographic factors.3

The best performance for each demographic cat-
egory prediction is displayed in Table 1. While
most categories achieved an accuracy below 0.7,
the residence category showed the highest accuracy
of 0.93. This performance can most likely be ex-
plained by the imbalanced data, with the majority
label comprising 90.6% of the data and the minor-
ity 9.4%, leading the model to (correctly) predomi-
nantly predict the majority label. This issue of im-
balance is also present in other socio-demographic
factors. Poor accuracy in certain categories can also

3Due to time constraints of the shared task, not all combi-
nations of model algorithms, input features, and demographic
features were tested; however, MLP was used for all socio-
demographic feature predictions.
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important issues gender
top-k ndcg precision ndcg precision

4 0.180 0.182 0.170 0.172
8 0.181 0.182 0.171 0.172
16 0.182 0.180 0.172 0.170
20 0.182 0.180 0.171 0.166

Table 2: Prediction results from the development set
when matching socio-demographic labels for ‘important
issues’ and ‘gender’ requirements respectively. We left
the remaining categories uncontrolled as the baseline
method.

potentially be attributed to the large number of tar-
get labels, such as in education (13 labels) and de-
nomination (10 labels). Furthermore, labels within
a demographic category are not mutually exclu-
sive, for example, ‘Rechts und Konservativ-Liberal’
(right and conservative-liberal), ‘Rechts und Kon-
servativ’ (right and conservative), and ‘Rechts und
Liberal’ (right and liberal) are treated as separate
labels, complicating correct assignment despite sta-
tistical indicators from the texts.

The categories ‘important issues’ and ‘gender’
predicted better than others. Moreover, the accu-
racy for ‘important issues’ is underestimated by the
standard accuracy score since it is a multilabel clas-
sification (one argument may correspond to more
than one important issue) with each class having a
binary label as its target. Separate accuracy com-
putations for each class revealed better results, as
shown in Table 3 in the Appendix.

Our approach intends to use our predictions to
filter corpus arguments and then select semanti-
cally relevant arguments from the filtered corpus.
For query requirements where demographic fea-
tures other than ‘important issues’ and ‘gender’, we
do not apply filtering and focus only on semantic
matching. Results on the development set revealed
that filtering based on ‘important issues’ was more
effective than gender filtering. Indeed, gender fil-
tering performed worse than no filtering at all when
tested with the development set. Consequently, we
decided to only apply demographic filtering for
‘important issues’ for the final submission.

5 Results and Discussion

Figure 1 presents the comparison between our sys-
tem and Sentence-BERT. The first row shows the
NDCG scores of three test sets in the baseline sce-
nario. Our system performs similarly well in Test

Figure 1: Relevance results (NDCG scores) for retrieved
argument candidates from the top 4 to top 20 across
three scenarios and three test sets.

1 but shows a significant advantage over Sentence-
BERT in Tests 2 and 3. In test 3, it also reveals that
the high accuracy can largely be attributed to the
filtering procedure and the narrowing down of the
corpus size. For explicit scenarios (the second row
in Figure 1), our system significantly outperforms
Sentence-BERT by using exact demographic label
matches from queries to arguments in the corpus.

For implicit scenarios (the third row in Figure 1),
our system shows no difference from Sentence-
BERT, except in Test 3, which is significantly better
with the filtering procedure but much worse with-
out filtering. The implicit scenario shows that the
benefits of utilizing the ‘important issues’ classifier
to filter first are not evident. The predicted impor-
tant issues’ might also be decoded by Sentence-
BERT, and overall low precision may result from
the mismatch of other demographic factors. De-
spite performing less well in the implicit scenario
than in the other two, our results still achieved first
place among all participated teams in Tests 2 and
3, and second in Test 1.

6 Conclusion

This study demonstrates the advantages of com-
bining bi-encoder and cross-encoder models over
solely using the bi-encoder (Sentence-BERT). We
also found that perspective argument retrieval or
inferring socio-demographic features from short ar-
guments remains challenging, accompanied by the
disadvantage of the number and quality of labels.
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Moreover, longer argument texts may be neces-
sary to decode the socio-demographic features of
argument providers in the future.
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A Appendix

Issue Accuracy
Restriktive Finanzpolitik 0.86
Liberale Wirtschaftspolitik 0.79
Ausgebauter Sozialstaat 0.76
Law & Order 0.75
Restriktive Migrationspolitik 0.73
Liberale Gesellschaft 0.73
Ausgebauter Umweltschutz 0.72
Offene Aussenpolitik 0.66

Table 3: Individual accuracy per class in ‘important
issues’ (a multi-label classification problem).
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Abstract

This paper describes the contribution of team
GESIS-DSM to the Perspective Argument
Retrieval Task, a task on retrieving socio-
culturally relevant and diverse arguments for
different user queries. Our experiments and
analyses aim to explore the nature of the socio-
cultural specialization in argument retrieval:
(how) do the arguments written by different
socio-cultural groups differ? We investigate
the impact of content and style for the task of
identifying arguments relevant to a query and a
certain demographic attribute. In its different
configurations, our system employs sentence
embedding representations, arguments gener-
ated with Large Language Model, as well as
stylistic features.

Our final method places third overall in the
shared task, and, in comparison, does particu-
larly well in the most difficult evaluation sce-
nario, where the socio-cultural background of
the argument author is implicit (i.e. has to be
inferred from the text). This result indicates
that socio-cultural differences in argument pro-
duction may indeed be a matter of style.

1 Introduction

Argument retrieval is a well-established task in
computational argumentation (Wachsmuth et al.,
2017; Stab et al., 2018): given a query or question,
e.g. on “should we have free trade agreements?”,
the task aims to retrieve topically relevant argu-
ments. Topically relevant arguments can be hetero-
geneous, even for arguments with the same stance
(for vs. against) - i.e. someone can focus on qual-
ity of the products as essential to free trade, while
another may focus on international collaboration.
These different perspectives in arguments can be

<♥> Contributions mostly completed during a visit
funded by a GESIS Visiting Junior Researcher grant at GESIS
– Leibniz Institute for the Social Sciences.

relevant for the personalization and diversification
of argument retrieval, and in online debate portals.

The Perspective Argument Retrieval Task (Falk
et al., 2024) argues that the socio-cultural back-
ground (e.g. gender, religion) can be taken into
account when selecting relevant arguments. Socio-
cultural information can determine the dynamics
of argumentation at different levels. For example,
socio-demographics can be used to approximate
the stance of an argument about a specific topic
(e.g., women, pro abortion); additionally, the spe-
cific arguments used to support a stance can be a
correlate of a specific socio-cultural attribute (reli-
gious being against abortion because it is a sin).

Differences between arguments of different
socio-cultural groups have mostly been researched
as differences in argument content, meaning the
semantic differences in the arguments: which
phrases, aspects, and points are mentioned. For
instance, Spliethöver and Wachsmuth (2020) ana-
lyze how social groups differ in the social bias of
their arguments, i.e., male users using terms that
indicate a gender bias. However, previous research
indicated that argument style may be different
between socio-cultural groups as well. With argu-
ment style, we mean how something is said, e.g.
features of form and not content like complexity of
words, length of words and sentences, grammatical
tenses, or pronoun usage. Such stylistic features
have mostly been studied from the perspective of
argument persuasiveness (El Baff et al., 2020) but
also have been used to analyze socio-demographic
differences in deliberation processes, i.e., women
referring more to others than men in their argu-
ments (Klinger and Russmann, 2015).

While the shared task does not address the issue
of persuasiveness of the arguments directly, the in-
tuition that “an argument I would write is one that
is likely to resonate stronger with me”, builds a po-
tential bridge between socio-demographic retrieval
and persuasion research (e.g., consider El Baff et al.
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(2018) on empowering vs. challenging arguments).
Additionally, diversity (providing arguments with
different perspectives on the same query) can be
employed to maximize the reception of a certain
argument. Also, such a diversity of perspectives
in recommendations can be beneficial, for instance
for citizens in democracies (Reuver et al., 2021).

In approaching the task of argument retrieval
for specific socio-cultural profiles, we can also re-
sort to findings from other tasks, such as author
profiling (Koppel et al., 2002). This task aims to
predict author characteristics from user-generated
text, with these characteristics often having a socio-
demographic nature, (i.e., gender or age). Success-
ful approaches use semantic content as well as style
to profile authors of user-generated texts (Rangel
et al., 2021; Bevendorff et al., 2023).

Our approach The perspectivist argument re-
trieval task raises the question of how socio-cultural
groups differ in their arguments for a given query.
These differences can be semantic, i.e., groups
may differ in what they say in their arguments,
or stylistic, i.e., groups may differ in how they for-
mulate them. We first explore this distinction in
the shared task data in Section 3. We then describe
our approaches to ranking arguments according
to socio-cultural specific relevance in Section 4:
One is based on semantic content similarity using
’prototypical’ arguments generated with a Large
Language Model (LLM). The other uses stylistic
features. Our final method places third overall in
the shared task, and, in comparison, does particu-
larly well in the most difficult scenario, the one in
which the socio-cultural background of the argu-
ment author is implicit (i.e. has to be inferred from
the text). It implements a three-step pipeline, using
semantic information in a ranking step and stylistic
information to classify whether arguments are rele-
vant for a given socio-cultural group. Our results
indicate that the stylistic differences in the argu-
ments of different socio-cultural groups are more
relevant to the task of retrieving relevant arguments
than semantic differences in our setup. We publicly
release our code for the experiments and analyses.1

2 Task: Data and Evaluation Scenarios

The question at the core of the task is: Can we
find the arguments that members of a given socio-
cultural target group would write for this query?

1github.com/mmmaurer/perspective_argument_retrieval

Data The task data is a multilingual dataset in
three different cycles of each +/- 30,000 arguments
and +/- 300 related queries (in German, Italian, and
French). The provided socio-cultural information
covers gender, age, place of residence, civil status,
denomination, education, political spectrum, and
political issues that are of importance to the authors
of queries. Additionally, the stance and political
topic of the argument are provided.

Details on the size and train/dev/test splits of the
three cycles is provided in Table 2 in Appendix
B. In the first two cycles, politicians express their
stances regarding different political issues in the
context of the 2019 and 2023 Swiss elections. In
contrast, the third cycle consists of voters’ perspec-
tives. For this, samples of the arguments given by
politicians for the 2023 election were annotated by
amateur annotators. The resulting third cycle data
consists of the arguments that intuitively match
their perspectives. Socio-cultural profiles were col-
lected for both politicians and voters.

Evaluation Scenarios The systems are evaluated
on three scenarios: 1. Argument retrieval without
consideration of socio-cultural differences (base-
line). 2. Argument retrieval for a specified socio-
cultural attribute. Information about any other at-
tribute could be used to diversify the set of retrieved
arguments (explicit scenario). 3. Argument re-
trieval for a specified socio-cultural attribute. In
contrast to explicit, information about other at-
tributes is hidden (implicit scenario). System eval-
uation is based on both relevance and diversity of
the selected arguments (in terms of socio-cultural
attributes) to promote the diversity of opinions.

3 Data Analysis: Content Or Style?

In the development of our pipeline, data analysis
played a crucial role. In the following, we sum-
marize core findings for content and style. These
analyses were conducted on the cycle 1 corpus.

Semantic content differences Firstly, we assess
whether there are arguments that multiple socio-
cultural groups share and find that ∼ 11% of the
arguments appear with the same argument text for
at least two different socio-cultural profiles. The
same argument may, for instance, be produced by
a non-religious man and a roman-catholic woman.
While this is expected in a natural setting, as groups
may share views and thus arguments, this raises the
question of differentiation between socio-cultural
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groups, in particular for the implicit scenario.
Secondly, we cluster Sentence-BERT representa-

tions of arguments using the k-means algorithm
and evaluate the resulting clusters against the
ground-truth socio-cultural groupings, as well as
stance and topic. Per socio-cultural attribute, we
run one clustering with k equaling the number of
groups in the attribute (e.g. for residence k = 2,
as there are the two groups city and countryside).
We find that all of the socio-cultural groups have
an adjusted Rand score (Hubert and Arabie, 1985)
of ≤ 0.1 with the respective clustering, indicat-
ing virtually no overlap of the clusters with the
groups. Only the topic shows a relatively higher
adjusted Rand score (for an overview of the results
of our clustering experiments, see Appendix E).
These analyses indicate that there is little semantic
distinction between arguments of different socio-
cultural groups, at least in the present semantic
representation space.

Stylistic differences To examine stylistic differ-
ences in the arguments, we carried out exploratory
linear regression analysis. We exclusively focused
on the German-language share2, which comprises
about 22k of the in total 32k arguments. The socio-
cultural attributes served as independent variables
and stylistic features of the arguments as dependent
variables. We tested a number of stylistic features,
which can be divided into surface and syntactic
features and are explained in detail in Table 5 in
Appendix F. The seven surface features include
measures of word and sentence length, long and
complex words, the variety of vocabulary used,
and two readability indices. The syntactic features
cover part-of-speech (POS) tags, named entities,
present tense tokens, imperative tense tokens, and
first person writing. Each POS tag forms an extra
feature, giving us a total of 21 syntactic features.

We ran one linear regression per stylistic feature
to estimate the relationship between socio-cultural
information and the particular stylistic feature. In
particular, we looked into interactions between
variables to take a step into the direction of socio-
cultural profiles rather than single attributes. Due to
the space limitations, we cannot discuss all features
in the paper. However, the full set of regression
outputs can be found in the project’s GitHub repos-
itory. All details are outlined in Appendix D.

Our assumption is that if socio-cultural groups
differ in style with respect to specific stylistic fea-

2Details on the language detection are in Appendix A.
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Figure 1: Illustration of our three-step pipeline.

tures, our regression models will be able to account
for a significant amount of that variance (higher
adjusted R2). Models that explain the surface fea-
tures show notably higher adjusted R2 values than
those for the syntactic ones (cf. Table 3 in Ap-
pendix D). We find the highest explanatory power
for long words, words per sentence, and the Gun-
ning Fog Index with adjusted R2 of 0.1557, 0.1422,
and 0.1256, respectively. This suggests that socio-
cultural characteristics can explain the writing style
of the arguments to at least some extent. A closer
look into the individual effects and interactions
within the socio-cultural attributes reveals several
significant effects. For instance, liberals use signifi-
cantly fewer long words than conservatives, which
is even more pronounced in connection with civil
status divorced (compared to conservative and sin-
gle). Liberals in the center or right of the political
spectrum exhibit a higher Gunning Fog Index than
left-wing conservatives, hinting at the number of
years of formal education a person needs to under-
stand a text on the first reading.

While some of these effects certainly also de-
pend on further factors like the context of an ar-
gument (i.e., stance and the topic of discussion),
the findings add to our underlying hypothesis of
different stylistic fingerprints.

4 System Description

As discussed in the introduction, we want to assess
the impact of content and style on the perspective
argument retrieval performance. We thus divide
the problem into two steps covering these aspects,
with an additional filtering step.3

Our resulting pipeline, depicted in Figure 1, con-
sists of three steps: 1) Target Demographic Fil-
tering: If arguments of a specific socio-cultural
group are queried and socio-cultural information
for the arguments is available, only consider the
arguments from the respective socio-cultural tar-

3All hyperparameters and implementation details of our
analyses and models are given in Appendix A.
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Figure 2: Semantic argument ranking step.

get group for the subsequent steps. 2) Semantic
Argument Ranking. Find the top k arguments
that are semantically closest to the query. 3) Fi-
nal Candidates Retrieval. Option (a) Stylistic
Relevance Classification: Select only those from
the pre-selected k arguments with a stylistic finger-
print indicating a relevant argument given the target
socio-cultural group. Option (b) Generated Ar-
gument Re-ranking: Per query and socio-cultural
attribute, generate an argument and find the top
k arguments that are semantically closest to the
generated argument.

For the non-perspectivist baseline scenario, only
step 2), semantic argument ranking, is executed.
For the explicit perspectivism scenario, all three
steps are executed. Finally, for the implicit per-
spectivism scenario, we execute solely steps 2) and
3) as no socio-cultural information is accessible.

In what follows, we detail the operationalization
of these three steps.

4.1 Target Demographic Filtering

To reduce the search space in cases where only
the arguments of a specific socio-cultural group
are queried and the socio-cultural profiles of the
authors of the arguments are known, i.e. in the
explicit perspectivist scenario, we filter out the ar-
guments that do not match the queried attribute.

4.2 Semantic Argument Ranking

A necessary condition for a given argument to be
relevant for a query, both in the perspectivist and
the baseline cases, is that they are semantically re-
lated, or, in other words, that the argument supports
a stance towards the question stated in the query.
The relevant candidate arguments for a given query
should thus be selected such that their semantic
similarity is as high as possible.

To operationalize this, as illustrated in Figure
2, we rely on retrieving sentence embeddings us-
ing Sentence-BERT (Reimers and Gurevych, 2019)
both for the query and the arguments in a corpus
and calculate the cosine similarity between the

query’s representation and each of the arguments’
representations. Finally, the arguments are sorted
according to the cosine similarity and only the top
k arguments are considered.

As a backbone Sentence-BERT model, we use
paraphrase-multilingual-mpnet-base-v2

4, a
multilingual model trained on paraphrases in 50+
languages, among them the three Swiss official
languages present in the dataset.

4.3 Final Candidates Retrieval

4.3.1 Stylistic Relevance Classification
A classification step to differentiate between seman-
tically generally relevant arguments (i.e. arguments
relevant to a query, regardless of socio-cultural in-
formation) and relevant arguments for a specific
socio-cultural group is implemented next.

We implement a semantic selection step before
the classification step and assume that the set of rel-
evant arguments of a specific socio-cultural group
given a query is a real subset of the set of relevant
arguments given a query. Based on this insight,
we construct positive and negative examples from
the training subsets of the provided datasets: For
each unique query text q, we collect the set of the
overall relevant candidates Cq,all. A candidate is
considered a positive example and assigned the la-
bel relevant for the respective socio-cultural group
t if it is in the set of the relevant arguments given
t and q, Cq,t. A candidate is considered a nega-
tive example and assigned the label not relevant
if it is in Cq,all \ Cq,t. To end up with a more bal-
anced training set, we only collect ∣Cq,t∣ negative
examples if ∣Cq,all∣ ≥ ∣Cq,t∣. Per example (i.e. per
argument), we encode a one-hot representation of
the queried socio-cultural attribute and concatenate
it with surface-level stylistic features of the respec-
tive argument as input features. A full overview
of the stylistic features can be found in Table 5
in Appendix F. As the majority of arguments are
in German, the feature extraction assumes the lan-
guage to be German. While this is sub-optimal
(style may differ across languages), this serves as
a first assessment of whether stylistic differences
can help in this task.

For the resulting classification step of our
pipeline, as visualized in Figure 3, we train a ran-
dom forest classifier on the training set portion
(80%) of our dataset constructed from a union of

4https://huggingface.co/sentence-
transformers/paraphrase-multilingual-mpnet-base-v2

172

https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2
https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2


Model
Election 2019 Election 2023 2023, User Study Avg.

Baseline Explicit Implicit Baseline Explicit Implicit Baseline Explicit Implicit Baseline Explicit Implicit

Relevance
SBERT 0.986 0.222 0.202 0.855 0.148 0.136 0.637 0.406 0.409 0.826 0.252 0.249
STY 0.986 0.835 0.202 0.855 0.722 0.139 0.637 0.616 0.471 0.826 0.724 0.271
GEN 0.986 0.645 0.185 0.855 0.597 0.127 0.637 0.493 0.348 0.826 0.578 0.220

Diversity
SBERT 0.916 0.208 0.189 0.793 0.142 0.131 0.593 0.400 0.397 0.767 0.250 0.239
STY 0.916 0.807 0.189 0.793 0.701 0.132 0.593 0.629 0.454 0.767 0.654 0.258
GEN 0.916 0.618 0.173 0.793 0.579 0.121 0.593 0.493 0.331 0.767 0.563 0.208

Table 1: Results for the Sentence-BERT baseline (SBERT), and our pipeline with the final step being stylistic
relevance classification (STY) and a re-ranking step using generated arguments (GEN). We present mean results
across k per test set (election 2019 and 2023, and the 2023 user study), scenario (Baseline, Explicit and Implicit
perspectivism), and evaluation (relevance, measured by nDCG, and diversity, measured by αDCG). The best
result per test set, scenario, and evaluation track is printed in bold.

One-hot
Target 
Group

Encoding

Stylistic 
Features

Relevance
Random Forest 

Classifier

Figure 3: Stylistic relevance classification step.

the training subsets of the three datasets. The clas-
sifier achieves an F1 = 0.60 for both the positive
and negative classes on the held-out test set por-
tion (20%) of our dataset. We provide a feature
importance overview in Figure 6 in Appendix G.

4.3.2 Generated Argument Re-Ranking
Following the hypothesis5 that arguments of dif-
ferent socio-cultural groups are differentiable
by their semantic content, we implement a re-
ranking step using LLM-generated arguments.
We generate arguments for specific groups and
queries using occiglot-7b-eu5-instruct

6, a
Mistral-7B-v0.1 model with continued pre-
training on the five biggest languages in Europe:
English, Spanish, French, German, and Italian. We
generate one argument per query, which is then
used to re-rank the candidates from the second step
in our pipeline. Specifically, per query, we gather
the Sentence-BERT representation of the generated
argument and re-rank the candidates according to
their cosine similarity with the generated argument.
Appendix C provides more details about the gener-
ated arguments (prompts, statistics, examples, and
qualitative analysis).

5Our initial hypothesis was that arguments differ in their se-
mantic content across socio-cultural groups. Our downstream
analysis of the semantic representation space in combination
with the results did however proved our hypothesis wrong.

6https://huggingface.co/occiglot/occiglot-7b-eu5-instruct

5 Discussion of Results

The results of our different systems over the three
test sets are displayed in Table 1. It can be seen
that using stylistic relevance classification as the
final step in our pipeline yields results well over the
Sentence-BERT baseline across explicit scenario
test sets, and for the final implicit scenario test set
(Table 1: 2023, User Study).

Moreover, this approach outperforms the use
of generated argument re-ranking across all per-
spectivist test sets. Overall, our findings show that
content plays a role in pre-selecting arguments to
fit the respective query, as evidenced by the compa-
rably high baseline scenario results. For the same
queries, however, socio-cultural groups appear to
be less different in the content of their arguments
than in their style.

6 Conclusion and Future Work

We present our approach to the Perspective Argu-
ment Retrieval Shared Task 2024. Our proposed
method implements a three-step pipeline, lever-
aging semantic information in a ranking step and
stylistic information to classify whether arguments
are relevant for a given socio-cultural group. The
performance of this approach, in particular for the
implicit scenario, showcases the potential of includ-
ing stylistic information for the task of perspectivist
argument retrieval. This raises several questions
for future research.

Especially with regard to the third test set, in
which the perspectives of politicians and voters
were flipped, we argue that investigating the rea-
sons for differences in production and perception
of arguments of different socio-cultural groups, e.g.
through semantic or stylistic differences, is of inter-
est. Consequently, how to combine this information
in retrieval scenarios should be investigated.
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7 Ethical Considerations and Limitations

Shared tasks have previously focused specifically
on author profiling, e.g. profiling spreaders of hate
speech in English and Spanish (Rangel et al., 2021)
or profiling crypto influencers (Bevendorff et al.,
2023), where one system contribution used LLMs
and bi-encoding (Giglou et al., 2023). We acknowl-
edge the task of authorship profiling and our ap-
proach, using stylistic features, has some estab-
lished ethical harms to individuals and society at
large. These harms are mostly relating to privacy
and giving agency to powerful actors to track or
harm individuals. However, we also found work
that is meant to reduce these specific harms.

7.1 Established harms and limitations

Author profiling and related tasks on detecting user
characteristics based on written content have some
long-established ethical issues. Among these are
concerns about privacy and revealing user identity
when users write about sensitive topics (Brennan
et al., 2012), and also identifying characteristics
that authors may want to keep private, such as their
age, gender, or religion. The perspectivist argu-
ment retrieval task is a use-case which we consider
to benefit users and society: providing diverse per-
spectives on issues and relevant arguments, which
is useful for instance for online deliberation plat-
forms where a diversity of perspectives and interac-
tions between different groups are important. How-
ever, this task can also be used to censor, track,
or harm specific groups and individual users who
write the arguments.

It is also important to be aware of legal frame-
works, such as the European Unions general data
protection regulation (GDPR), on datasets aimed
at detecting author profiles. Rangel and Rosso
(2019) have described how, for 2019 PAN shared
task dataset on author profiling, all legal limita-
tions have been followed. They also state that their
interpretation of GDPR Article 22 means profil-
ing is illegal, though with an exception for non-
commercial purposes and scientific research.

7.2 Approaches to protect users from harm

The ethical and legal issues with author profiling
have triggered several approaches aimed at pre-
venting authorship profiling for harmful contexts.
One such set of tasks is known as adversarial
stylometry (Brennan et al., 2012) (not to be con-
fused with adversarial learning). This set of tasks

is specifically aimed at preventing user profiling
based on style. For instance, in the subtask of
authorship obfuscation the idea is to re-write
the texts to such an extent that stylometric fea-
tures cannot distinguish different authors or author
groups anymore while leaving semantic coherence
of the text intact. Successful and robust approaches
across multiple models and datasets, such as by
Emmery et al. (2021), use an approach of lexical
substitution: changing content words strongly re-
lated to certain labels.

Other works have also looked into ethical ver-
sions of profiling tasks. For instance, Allein et al.
(2023) have looked into fake news detection with-
out author profiling: with the assumption that simi-
lar users may share similar fake news articles, they
use a latent representation of a group of authors
and a fake news article, without ever providing the
model with direct user profile information.
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Appendix

A Hyperparameters and Implementation
Details

Our models were implemented and experiments
conducted using Python 3.11 unless stated other-
wise.

A.1 Data Analysis

Stylistic features Stylistic features
were obtained using the readability
(https://pypi.org/project/readability/) and SpaCy
python packages (https://pypi.org/project/spacy/;
Montani et al. 2023) .

Linear Regression To select German-language
arguments, we used the langdetect Python package
(https://pypi.org/project/langdetect/). The linear
regression was implemented in R 4.4.1. We used
the packages stats, MASS, and car for the step-wise
building of the regression models and inspection of
variance inflation factors.

Content clustering Clustering of our Sentence-
BERT embeddings was done with the scikit-learn
(Pedregosa et al., 2011) Python package implemen-
tation of the K-means clustering algorithm (Lloyd,
1982). We clustered for each socio-cultural vari-
able (e.g. gender, denomination) and then also com-
bined attributes in pairs of two to test for cluster
coherence. For calculating cluster coherence, we
use the Adjusted Rand score as also implemented
in the scikit-learn Python package. Detailed clus-
tering results can be found in Appendix E.

A.2 Base Model
Our sentence embeddings model was paraphrase-
multilingual-mpnet-base-v2 (Reimers and
Gurevych, 2019), implemented through the
huggingface transformers (Wolf et al., 2020) and
sentence_transformers (Reimers and Gurevych,
2019) Python packages. For ranking the top
documents to a query, we selected k=200 using
cosine similarity.

A.3 Argument Generation Model
Our generated arguments were obtained
with the occiglot-7b-eu5-instruct model
(https://huggingface.co/occiglot), a fine-tuned
Mistral-7B (Jiang et al., 2023) model, called with
Huggingface’s transformers (Wolf et al., 2020)
package. The model was run on an NVIDIA A100
GPU. Prompt template details, and a short analysis
of these generated arguments, are provided in
Appendix C.

We memory-optimize our prompting by
loading an int8-quantized version of the model.
For quantization, we use the quanto library
(https://github.com/huggingface/optimum-
quanto).

A.4 Stylistic Relevance Classification
Random Forest classifier The random forest
classifier for detecting socio-cultural background
based on the stylistic features was implemented
with the scikit-learn (Pedregosa et al., 2011) pack-
age, using its default implementation and parame-
ters: 100 trees, splitting on gini impurity, and no
max depth.

B Details of the Dataset

Queries

Cycle Corpus Baseline Perspective

train dev test train dev test
Election 2019 32,387 104 134 44 5,577 1,611 2,358
Election 2023 39,093 104 134 39 5,577 1,611 1,782
2023, User Study 28,684 104 134 26 4,737 1,371 729

Table 2: Dataset sizes for the retrieval argument corpus
and for the queries, divided into train/dev/test set for the
baseline and the perspective scenario. The task ran for
three evaluation cycles with different evaluation data.

C Prompt Formulation & Generated
Arguments

We generated arguments based on queries in the
corpus with the prompt in Figure 5 and the occiglot-
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QUERY

Text:
Should protection against dismissal for older employees be 
expanded?

Sociocultural Property:
{gender:'female'} 

ARGUMENT

Text: 
Expanding protection against dismissal alone could be 
counterproductive; what is crucial is that society recognizes how 
valuable the experience of older employees is!

Sociocultural Profile:
{"gender":"female", "age":"35-49", "residence":"rural",...}

Figure 4: Example for a pair of a query and a relevant argument. Original in German, automatically translated using
Google translate.

Given the question {query}, use your knowledge
of the Swiss political landscape to provide a pro
argument a person whose {attribute} is {group}
would produce.

Figure 5: Prompt formulation.

7b-eu5-instruct model (implementation details in
Appendix A). Below we provide a short description
and analysis of the arguments generated with this
method.

C.1 Statistics on Generated Arguments

Across the three test sets, the model produced an
argument over 90% of the time. No argument was
generated for 6.2%/1.2%/1.6% of prompts, respec-
tively). While across the three test sets, 95% of the
generated arguments are truncated, i.e. they end
mid-sentence, the generated arguments are on aver-
age longer than the arguments in the corpus (mean
raw text length of 190 characters for the corpus
vs. 267/429/297 characters generated per test set,
respectively).

C.2 Qualitative Analysis of Generated
Arguments

Based on a qualitative inspection, we have gathered
the following observations regarding the generated
arguments. In Section C.3, we provide some ex-
amples of the generated arguments (German, trans-
lated into English with DeepL) to illustrate our
analysis.

First of all, we notice an (unsurprising) tendency
to repeat the demographics from the prompts, and
additionally to generate intersectional types. Con-
sider for example query 20191712, where the au-
thor of the (generated) argument identifies himself
as young, man, and a student. Query 20191712
illustrates also another property, shared with query
201911545: the tendency of the generated argu-

ments to be accompanied by fully fledged, un-
prompted, personas, e.g. descriptions of argu-
ment ’authors’ (e.g. professions and other socio-
demographics).

The arguments also vary greatly in complex-
ity and overall quality. Some arguments, i.e.,
201911569 (test 2), exhibit a very low degree of
justification and/or resort to very abstract princi-
ples (“The federal government should invest more
in education and research because it would advance
us socially”), or essentially just rephrase the stance
(201911545). Others, instead, display a very artic-
ulated structure with multiple supporting premises
(e.g., four, explicitly listed in 201911652 (test 2)).

In addition to the degree of justification, argu-
ments also vary greatly in terms of the type of
evidence they use to support their stance. The
speaker in 201911630 (test 2), for example, resorts
to reporting personal experiences. The speaker in
201911777 (test 2), instead, mentions his profes-
sion “As an entrepreneur for many years” to estab-
lish himself as an authoritative source on the topic
at issue.

C.3 Selected generated arguments

Query: “Should the federal government spend
more or less on development cooperation?”

201911777-test 2 (Prompt: attribute: political
spectrum; value: center and conservative/liberal),
“As an entrepreneur for many years, I have seen
how important it is to promote international rela-
tions and engage in global cooperation. Especially
in times when job creation is a major challenge, it
is crucial to place a strong focus on development
cooperation. This is because we can help to im-
prove economic conditions in certain regions and
thus give more people access to a livelihood.”

201911781-test 2 (Prompt: attribute: political
spectrum; value: right and liberal) “It is not the
task of the federal government to invest financial
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resources in the area of development cooperation.
The responsibility for development cooperation
lies with the countries and economies affected by
poverty and underdevelopment. The federal gov-
ernment has no responsibility to become active
in these areas, and by increasing funding it could
interfere with the sovereignty of these countries.
Therefore, the federal government should invest
less and not more money in development coopera-
tion.”

20191712-test 3 (Prompt: attribute: civil status;
value: single) “Hello, my name is John and I’m
22 years old. I’m from Switzerland, where I’m
currently studying in Zurich, and as a young man
and a student at that, I firmly believe and think it’s
important that the federal government spends more
on development cooperation, especially as we can’t
deny that”

Query: Should the federal government spend
more or less on public transport?

201911630-test 2 (Prompt: attribute: civil status;
value: married), “As a Swiss citizen who has been
working for many years, I believe that the federal
government needs to spend more on public trans-
port. I am married myself and I have seen how
difficult it can be to get to a meeting within a few
minutes by bus. I’ve also seen how people can’t
use the train because there are too many connec-
tions that don’t go to where they live. So we should
spend more money and improve public transport.”

201911651-test 2 (Prompt: attribute: political
spectrum; value: center and conservative/liberal)
“The federal government should spend more on pub-
lic transport. This would improve the population’s
mobility options and at the same time create a more
environmentally friendly way of travelling.”

201911652-test 2 (Prompt: attribute: political
spectrum; value: center and liberal), “I am in favour
of the federal government investing more in public
transport because the advantages outweigh the dis-
advantages. Firstly, clean air and improved quality
of life are essential for citizens, and secondly, in-
vestment in public transport improves the efficiency
and profitability of the transport system. Thirdly,
public transport can help to unite and motivate
the population towards common goals. Fourthly,
investment in public transport contributes to eco-
nomic development”

Query: Should the federal government spend
more or less on education and research?

201911569-test 2 (Prompt: attribute: political

spectrum; value: left and liberal) “Better more than
less on education and research. In today’s glob-
alised society, the expansion of knowledge will
not only advance us technologically, but also so-
cially. That is why the promotion of education and
research is essential.”

201911571-test 2 (Prompt: attribute: political
spectrum; value: center and conservative/liberal),
“We should invest more money in education and re-
search. This is the only way we can ensure that our
children and grandchildren have a brilliant future.
They will be the ones who have to live and work
in an increasingly complex world and they need to
be ready to meet these challenges, and we should
also think about how we can encourage people in
our communities to invest in these areas. This can
be done through incentives such as tax breaks and
other incentives.”

201911545-test2 (Prompt: attribute: civil sta-
tus; value: single), “More education and research
are crucial for the progress of our society. The
federal government should therefore provide more
financial support in this area. We need qualified
specialists and innovations to secure our prosper-
ity.Julia, 25, ZurichJulia (25) is a young woman
from Zurich with an affinity for technology and an
interest in science. As a high school graduate, she
dreams of doing something "meaningful" one day.”

D Regression analysis

In the linear regression analysis, we include the
socio-cultural attributes gender, age, residence,
civil status, denomination, and political spectrum.
The additionally given information about important
political issues is not taken into account for now,
given the large number of different profiles in this
attribute.

To counter sparsity of the results, in a pre-
processing step all groups in the attributes that
appeared rarely (< 50) were removed. This
includes “Aufgelöste Partnerschaft” and “Ge-
trennt” in civil status, as well as “Andere
Kirchen/Religionsgemeinschaften”, “Christlich-
orthodox”, “Jüdische Gemeinschaften”, and “Is-
lamische Gemeinschaften” in denomination. Fur-
thermore, missing value groups (“Nicht bekannt”)
in civil status, denomination, and education were
removed. For better interpretability of levels of
education, we summarized “Höhere Fachschule”,
“Handelsschule”, and “Höhere Berufsausbildung”
as “Höhere Berufsausbildung”, and “Berufs-
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DV Adjusted R2 DV Adjusted R2

Characters per word 0.0613 NOUN 0.0285
Words per sentence 0.1422 NUM 0.0155
Type-token ratio 0.0596 PART 0.0077
Long words 0.1557 PRON 0.0355
Complex words 0.1068 PROPN 0.0150
Flesch Reading Ease 0.0880 PUNCT 0.0412
Gunning Fog Index 0.1256 SCONJ 0.0129
ADJ 0.0165 SYM -
ADP 0.0041 VERB 0.0232
ADV 0.0187 X 0.0022
AUX 0.0157 Named entities 0.0110
CCONJ 0.0104 Present tense 0.0123
DET 0.0121 Imperative 0.0022
INTJ - First person 0.0272

Table 3: Adjusted R2 scores of the linear regression models. INTJ and SYM did not occur in the arguments and
because of this, no model was built in these cases.

matura” and “Diplommittelschule” as “Berufs-
matura/Diplommittelschule”. Likewise, for the
sake of interpretability, the given socio-cultural
attribute political spectrum was divided into quasi-
RILE (Laver and Budge, 1992) (an ideological
scale measuring general left-to-right position; left,
center, and right) and quasi-GALTAN (Bakker and
Hobolt, 2013) scores (an ideological scale mea-
suring the policy position on social issues; con-
servative, conservative-liberal, and liberal). The
resulting dataset contains 11289 arguments.

We ran one linear regression per stylistic feature
(see Table 5 for more information on the stylistic
features) to estimate the relationship between socio-
cultural information and the particular stylistic fea-
ture. The models were built step-wise (“forward”)
using the Akaike information criterion (Akaike,
1998). In particular, we looked into interactions be-
tween variables to take a step into the direction of
socio-cultural profiles rather than single attributes.
The formula used was DV ~ (gender + age + resi-
dence + civil_status + denomination + education +
rile + galtan)^2 where DV is a placeholder for any
one of the dependent variables (implementation de-
tails can be found in Appendix A). Due to the large
number of variables in the resulting models, it is
not possible to present them in their entirety in the
paper. We selected highlighted results in the paper
and make the R code available in the corresponding
GitHub repository.

Table 3 illustrates the explained variance of the
best model selected by StepAIC for each of the
21 stylistic features. Overall, we find small ad-

justed R2 scores, signaling that the socio-cultural
variables we selected as predictors can explain a
limited amount of the variance in our stylistic fea-
tures. The fit of the models is however still highly
significant and in our discussion we focus on sig-
nificant effects. Looking more into detail into the
models (the full set of regression outputs can be
found on GitHub), we see significant effects across
the different socio-cultural attributes and groups.
While such effects may also be triggered by the
large scale of the dataset, our findings inspire us
to incorporate stylistic features into the retrieval
models discussed in Section 4.

E Clustering Results

Attribute Adjusted Rand Score
Gender 0.0009
Age -0.0011
Denomination 0.0004
Residence 0.0007
Political Spectrum -0.0011
Stance 0.0005
Topic 0.1947

Table 4: K-means clustering result per socio-cultural
attribute, plus stance and topic.

F Stylistic Features

Table 5 describes the different stylistic features
used in the linear regression analysis and the ran-
dom forest classifier.
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Feature Description
Su

rf
ac

e
Fe

at
ur

es
Characters per
word

Average number of characters per word, calculated by dividing the total number
of characters in a text by the total number of words. Functions as a measure of
text complexity as longer words can be harder to process.

Words per sen-
tence

Average number of words per sentence, calculated by dividing the total number
of words by the total number of sentences in a text. Functions as a measure of
text complexity as longer sentences can be harder to process.

Type-token ra-
tio (TTR)

Indication of the diversity of vocabulary usage in a text, calculated by dividing
the total number of unique words by the total number of words.

Long words Number of words that consist of 7 or more characters. Functions as a measure
of text complexity as longer words can be harder to process.

Complex words Number of words that consist of 3 or more syllables. Functions as a measure of
text complexity as longer words can be harder to process.

Flesch Reading
Ease

Assesses the approximate reading grade level of a text, based on average
sentence length and word complexity. A higher score indicates easier readability,
while lower scores indicate more difficult readability.

Flesch Reading Ease = 206.835 − 84.6 ⋅
# syllables

# words − 1.015 ⋅
# words

# sentences

Gunning Fog
Index

Estimates the years of formal education required to understand a particular text
on first reading.

Gunning Fog Index = 0.4 ( # words
# sentences + 100 ⋅

# complex words
# words

)

Sy
nt

ac
tic

Fe
at

ur
es

Part-of-speech
tags

Proportion of tokens tagged as a specific part-of-speech category in the text.
We make use of the universal part-of-speech tagging schema and calculate a
distinct score for ADJ (adjectives), ADP (adpositions), ADV (adverbs), AUX
(auxiliaries), CCONJ (coordinating conjunctions), DET (determines), INTJ
(interjections), NOUN (nouns), NUM (numerals), PART (particles), PRON
(pronouns), PROPN (proper nouns), PUNCT (punctuations), SCONJ (subordi-
nating conjunctions), SYM (symbols), VERB (verbs), and X (words that do not
fit into the other part-of-speech categories).

Named entities Proportion of named entities in a text, calculated by dividing the number of
named entity tokens by the total number of tokens. Functions as a measure of
writing style.

Present tense Number of present tense verbs in a text, normalized by text length. Functions
as a measure of writing style.

Imperative Number of imperative verb forms in a text, normalized by text length. Functions
as a measure of writing style.

First person Number of first-person verb forms in a text, normalized by text length. Func-
tions as a measure of writing style.

Table 5: Stylistic features and their descriptions.

G Random Forest Feature Importance

Figure 6 provides an overview of the importance of
different features (stylistic, stance) in the random
forest classifier.
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Figure 6: Random forest feature importance measured by the mean decrease impurity.
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Abstract

This paper reports on the argument mining
system submitted to the ArgMining workshop
2024 for The Perspective Argument Retrieval
Shared Task (Falk et al., 2024). We com-
bine the strengths of a smaller Sentence BERT
model and a Large Language Model: the for-
mer is fine-tuned for a contrastive embedding
objective and a classification objective whereas
the latter is invoked to augment the query and
populate the latent space with diverse relevant
arguments. We conduct an ablation study on
these components to find that each contributes
substantially to the diversity and relevance cri-
teria for the top-k retrieval of arguments from
the given corpus.

1 Introduction

Argument retrieval remains a challenging problem
in the natural language processing domain, when
considered jointly with perspectives and diversity.
The problem is defined as the collection of claims
carrying a stance towards a query. A query may
be of various topical widths ranging from an entire
issue or a single statement. Arguments are a widely
utilized discursive tools, and performant systems
of argument recognition will prove useful in further
advancing bias analyses, slant measurement (Deva-
tine et al., 2022), content recommendation, and text
generation tasks (El Baff et al., 2019). Perspectives
can prove a useful clue in the argument retrieval
problem but at the same time bring about an ad-
ditional challenge. Especially with shorter texts,
such as the ones handled in this shared task, the
demographic profile of the argument author may
be of use in trying to extract opinions grounded in
various populations.

In this paper, we present the work conducted by
our team, “XFACT team0331”, for the ArgMining
2024 shared task of perspective argument retrieval.
Our findings indicate feasibility of the system de-
sign across the three scenarios, helping us better

understand the complexities of taking perspectives
into consideration when retrieving arguments.

This shared task involves a unique challenge in
terms of perspectives and socio-cultural variables.
Not only are the systems required to pursue rele-
vance to a given query, but they are also assessed in
terms of the demographic profile of the argument
authors.

2 Related Work

Recent years have seen rapid progress of argument
retrieval along several lines of research.

Teufel et al. (1999) studied argument extraction
in the scientific text domain. Later works extend the
argument retrieval work to arbitrary domains and
eventually the entire world wide web, such as in
Rahwan et al. (2007) and similar systems discussed
in the seminal text (Manning, 2008). Wachsmuth
et al. (2017) designed an argument search engine
involving an indexing process, which takes can-
didate documents over the web and indexes the
assessed arguments therein into a corpus, and a
retrieval process, which, upon arrival of a query,
ranks and presents relevant indices of arguments.
Stab et al. (2018) put together an offline component
and an online component, which account for the
indexing and retrieval tasks, respectively.

In the closely related problem of stance detec-
tion, Hardalov et al. (2021) proposed methods for
recognizing stance across texts from multiple do-
mains, with their design of label embeddings in
the latent space that adapt to the arbitrary topic at
hand. Arakelyan et al. (2023) presented a similar
approach leveraging a topic-guided sampler for al-
leviating inherent imbalance in the data. Then, a
pre-trained language model is fine-tuned against a
contrastive learning objective for recognizing the
in-favor and the against statements.

In news writing, Baly et al. (2018), Baly et al.
(2020a), and Baly et al. (2020b) profiled media
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sources by measuring their bias in terms of factual-
ity reporting and any conveyed political ideology.
Ko et al. (2023) solved a five-scale political stance
prediction problem by incorporating texts from var-
ious sources beyond news articles, such as Reddit
posts, and employs a multi-granularity hierarchy on
the texts to capture any subtleties carrying stance
information. In a related work by Liu et al. (2022),
a triplet loss was imposed on an anchor article with
two same-story versions – one leftist and the other
rightist – to train a language model to identify and
distinguish ideology-informed representations be-
tween articles.

Argumentative language modeling techniques
have also been studied. For instance, Jo et al.
(2021) proposed counterargument generation meth-
ods assisting language models with knowledge
graphs such that the natural language inference
process can determine the entailment/relevance of
a claim more effectively. Holtermann et al. (2022)
studied a similar problem but with an additional
pursuit for fairness in argument generation. For ev-
ery instance deemed biased, a counter-stereotypical
statement is synthesized and used in training.

3 Task

The ArgMining 2024 Shared Task for Perspective
Argument Retrieval consists of the following three
retrieval scenarios:

• Scenario 1 is dubbed the “baseline” scenario
and is a retrieval of top-k arguments from a
corpus given a query alone and no additional
information on the demographic profile on
either of the query or the argument side.

• Scenario 2 is the explicit perspectives scenario
where a demographic property is provided in
addition to the query. This property may be
used explicitly to filter or process arguments
from the corpus.

• Scenario 3 is the implicit perspectives sce-
nario where a demographic property is still
available on top of the query, but it may not be
used explicitly on the corpus-processing step.
Only latent encoded information may be used
to retrieve relevant arguments.

The dataset is originally from Vamvas and Sen-
nrich (2020), where comments in the French, Ger-
man, and Italian language are organized across var-
ious political issues (queries) for the 2019 Swiss
federal elections.

4 Method

We propose a novel approach to retrieve relevant
and diverse arguments. Major components of our
design are as follows:

• an embedding model fine-tuned for two train-
ing objectives

• a large language model instructed to generate
its own arguments given the query

• a topic sampler to filter the vast majority of
the corpus

The overview of the proposed system is pre-
sented in Fig. 1. An embedding model produces la-
tent vectors of arguments and a given query. These
are then spread out in the latent space, to be clus-
tered according to the nearest generated argument.
More details follow in Section 4.5.

4.1 Embedding Model

We choose the PARAPHRASE-MULTILINGUAL-
MPNET-BASE-V2 sentence transformer (Reimers
and Gurevych, 2019), (Reimers and Gurevych,
2020) as our embedding model, given its state-of-
the-art performance and capability to handle mul-
tiple languages. We further train this embedding
model on a weighted combination of two losses,
with the exact weighting as a hyperparameter: a
contrastive loss and a classification loss. (See Ap-
pendix A)

The training of the embedding model incorpo-
rates two desirable directions of the model en-
hancement: we want the model (i) to produce suf-
ficiently different latent representations for “on-
set”(relevant) and “off-set”(irrelevant) arguments
and (ii) to capture any underlying connections be-
tween the query and its on-set arguments suffi-
ciently such that, when presented with a (query,
irrelevant) pair, it is successfully discarded as an
outlier. For these objectives, we detail the training
process below.

For objective (i), we aim to enhance the em-
bedding model’s ability to widen the gap between
relevant arguments and irrelevant arguments with
respect to a query. For this, the multiple negatives
ranking loss (Henderson et al., 2017) was chosen,
and the given corpus dataset was rearranged in
triplets (q, aip, a

j
n), where the query q is followed

by a randomly selected relevant candidate ap and
then by a randomly selected argument not in the
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RELEVANT CANDIDATES list for that query, for all
i in the RELEVANT CANDIDATES list.

For objective (ii), a linear layer is appended to
the embedding model to from a binary classifier be-
tween FAVOR and AGAINST, labels both available
in the given corpus. The corpus is rearranged in
pairs (q, aip), the query and its relevant candidate
for all candidates i in the query’s RELEVANT CAN-
DIDATES list. The classifier outputs a real value
from 0 to 1, trained on binary cross entropy loss.

For Scenario 2, the query is concatenated with
its demographic property, and each corpus argu-
ment is concatenated with its demographic profile
before passing through the embedding model. For
Scenario 3, only the query is augmented with the
socio-cultural variables information.

4.2 Argument Generator Model
We employ several open-source large language
models to leverage argument generation. PHI-3-
MINI-4K-INSTRUCT and GEMMA-1.1-2B-IT have
each been invoked to produce 20 relevant key ar-
guments with respect to a query in their respective
instruction prompt formats: 10 favoring it and 10
against it. The purpose of these LLM-generated
arguments is twofold. One is that, since the corpus
contains comments from individuals who might
have a rather local view on the topic at hand, the
LLM, as a generic knowledge entity can provide
more diverse and holistic takes on the issue. Where
necessary, we make the distinction between the
natural and synthesized arguments as “corpus ar-
guments” and “LLM-generated arguments” hence-
forth. These two sets are produced to form the
augmented corpus. The other purpose of the LLM-
generated arguments is to filter out corpus argu-
ments that are too far from the LLM-generated ar-
guments in the latent space. The mild assumption
underneath is that, if a corpus argument is relevant
enough, it must be close to at least one of the LLM-
generated arguments. The exact cut-off distance
criterion is described in Section 4.5

4.3 Topic Filter Model
At execution time, as a first measure, we invoke a
KeyBERT (Grootendorst, 2020) instance between
the query and the augmented corpus to discard a
large portion of the augmented corpus as irrelevant.
This is a simple filter based on latent encodings
from BERT (Devlin et al., 2019), which takes a
document and find sub-phrases that most closely
resembles a given topic by cosine similarity. The

filter proceeds to retain only the arguments whose
keyword set contains any of the keywords in the
query’s keyword set. That is, all arguments whose
kq ∩ ka = ∅ are screened away.

4.4 Clusterer

The vector representations produced by the embed-
ding model undergo a simple clustering process
equivalent to running a K-Means for one iteration.
The LLM-generated arguments serve as the initial
centroids, and the corpus arguments are each as-
signed a group it belongs to by nearest centroid. In
other words, if an argument can find a cluster it can
belong in, it is considered relevant. Each cluster’s
member argument count is calculated and used for
diversity sampling as explained in Section 4.5.

4.5 Overview

In this section, we describe how the components
tie in together. In Section 4.2, corpus arguments’
proximity to LLM-generated arguments was cho-
sen as a criterion for determining the relevance.
We construct this criterion as a function of the clas-
sifier confidence, as measured in the classifier’s
final layer value. That is, if the learned classifier
from Section 4.1 can barely determine whether an
argument is in favor or against some given query,
then that argument should be allowed to exist in
a generously larger ball from the LLM-generated
arguments in the latent space. The converse also
applies; a confident classifier should indicate the
argument’s high proximity to at least one of the
LLM-generated arguments. In short, the cut-off
criterion is governed by the learned classifier’s de-
cision. The actual cut-off procedure then takes
an indicator function over the respective ball of
rcutoff around each LLM-generated argument em-
bedding ai, that, when evaluated as all off-ball,
considers the corpus argument ac irrelevant:

∏

i

1(dist(ac, ai) > rcutoff) =

{
0, if ac relevant
1, otherwise

(1)
The relevance cut-off criterion above doubles as

a diversity sampling criterion, and we capitalize on
this extension by introducing a per-ai cut-off radius
instead of a uniform radius for all the balls. Each
LLM-generated argument embedding is assigned
its own cut-off radius rcutoff

i that is inversely propor-
tional to its member argument count. In practice,
the base cut-off radius is first calculated with the
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Figure 1: An overview of the proposed stance detector; sections detailing the components are in parentheses

classifier confidence and then is further adjusted by
cluster member count. We re-write Equation 1 with
the generalized cut-off radii. Let Ai denote the set
of corpus arguments belonging to the cluster cen-
tered by the LLM-generated argument embedding
ai:

∏

i

1(dist(ac, ai) > rcutoff
i ) =

{
0, if ac relevant
1, otherwise,

(2)
where rcutoff

i = rcutoff + r
adjustment
i

and r
adjustment
i ∝ 1

|Ai|
Having a cut-off radius may be advantageous

over a ranking method: one that ranks the argu-
ments by the distance from the centroid. First,
ranking takes O(n log n) time whereas cut-off exe-
cutes in linear time. Second, the proposed system
works regardless of whether the k value is known.
That is, it is flexible enough to accommodate an ar-
bitrary downstream ranker of k unknown a priori.

5 Results

Our results are presented in Tables 1 and 2. All
reportings are on the dev sets, averaged across the
three scenarios, due to limited print space.

5.1 Ablation
5.1.1 Effects of Relevance Cut-off
We report the results of applying only the relevance
cut-off radius, as in the uniform criterion in Equa-
tion 1.

Table 3 shows that the absence of the diversity
sampler compromises the diversity scores of the

k ndcg@k precision@k
4 0.694 0.692
8 0.679 0.671
16 0.670 0.660
20 0.677 0.673

Table 1: Relevance scores averaged across the three
scenarios

k alpha_ndcg@k kl_divergence@k
4 0.625 0.151
8 0.618 0.134
16 0.626 0.100
20 0.638 0.091

Table 2: Diversity scores averaged across the three
scenarios

k alpha_ndcg@k kl_divergence@k
4 0.557 0.158
8 0.565 0.140
16 0.579 0.104
20 0.580 0.094

Table 3: System follows Eq. 1. (Diversity component
ablated). Diversity scores averaged across the three
scenarios
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k ndcg@k precision@k
4 0.627 0.617
8 0.625 0.619
16 0.624 0.620
20 0.618 0.613

Table 4: System follows Eq. 2 with rcutoff
i = ∞ (Rele-

vance component removed). Relevance scores averaged
across the three scenarios

system. While KL divergence was measured (om-
mitted for spacing) to be similar as in Table 2,
alpha_ndcg@k values have dropped substantially
and seemingly relies on k value alone for diversity
gains, rather than on the constituent arguments of
the k retrieved passages. Since demographic pro-
file information is latently encoded in the query and
arguments, the decrease in KL divergence scores
indicate that the role of the diversity sampler is
indeed to take into account various demographic
profiles.

5.1.2 Effects of Diversity Sampling
We report the results of applying only the diversity
sampler. This is done by running K-Means on the
augmented corpus for a number of iterations and
then sampling from the resulting clusters inversely
proportionately to each cluster size.

With no relevance cut-off and only clustering
and then sampling for proportionate representation,
Table 4 shows that the ndcg@k and precision@k
values have both fallen by 6-7%p. This supports
that the relevance threshold aids in discarding cer-
tain arguments, however diverse they may be in
constituting their respective cluster.

6 Conclusion

We present an argument retrieval system combin-
ing the strengths of a fine-tuned embedding model
and open-source large language models. The em-
bedding model is trained to tell apart relevant argu-
ments from the irrelevant arguments through triplet
loss signals leveraging hard negatives. At the same
time, the embedding model is also exposed to in-
distribution classification examples, such that it
detects out-of-distribution (irrelevant) arguments
and relays the anomalous finding to the relevance
cut-off criterion. LLMs provide diverse anchors
to which a given corpus argument may be checked
against for membership, and then the member den-
sities are utilized for diverse representation of argu-
ments relevant to a given query.
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Hyperparameter Value
Embedding Model, epochs 10
Embedding Model, ratio 5

(contrastive-to-classification
multi-objective relative weighting)

Embedding Model, batch size 64
Embedding Model, learning rate 2e-05
Embedding Model, warmup steps 10000
Embedding Model, weight decay 0.01
Clusterer, K (full system) 1
Clusterer, K (ablated (Section 5.1.2)) 100

Table 5: Hyperparameters of the system

Henning Wachsmuth, Martin Potthast, Khalid Al Khatib,
Yamen Ajjour, Jana Puschmann, Jiani Qu, Jonas
Dorsch, Viorel Morari, Janek Bevendorff, and Benno
Stein. 2017. Building an argument search engine
for the web. In Proceedings of the 4th Workshop on
Argument Mining, pages 49–59.

A Appendix

A.1 Table of hyperparameters

Table 5 shows our system components and its hy-
perparameters, where relevant.

A.2 Instruction prompt and response
examples

Below is a sample from invoking a PHI-3-MINI-
4K-INSTRUCT.

Prompt Sample:
Can you provide 10 arguments that favor the
following statement and 10 arguments that are
against it?: Faut-il renforcer la protection contre le
licenciement des travailleuses et travailleurs plus
âgé·e·s?

Response Sample:
Arguments in favor of strengthening protection
against the dismissal of older workers:

1. Age discrimination: Strengthening protection
against dismissal helps prevent age discrimination,
ensuring that older workers are not unfairly tar-
geted for layoffs. 2. Experience and knowledge:
Older workers often have valuable experience and
knowledge that can benefit the company, and pro-
tecting them from dismissal helps retain this exper-
tise. 3. Economic stability: Older workers are more
likely to have dependents and financial obligations,
so protecting them from dismissal can help main-
tain economic stability for families. 4. Reduced
turnover costs: Retaining older workers can reduce
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turnover costs, as it is generally more expensive
to hire and train new employees. 5. Diversity and
inclusion: Protecting older workers from dismissal
promotes diversity and inclusion in the workplace,
which can lead to better decision-making and inno-
vation. 6. Social justice: Strengthening protection
against dismissal of older workers can be seen as a
step towards social justice, ensuring that all work-
ers are treated fairly regardless of age. 7. Improved
morale: Protecting older workers from dismissal
can improve morale and job satisfaction, as em-
ployees feel valued and secure in their positions.
8. Reduced unemployment: By protecting older
workers from dismissal, the number of unemployed
individuals may decrease, as they are less likely to
be laid off. 9. Long-term planning: Companies
that protect older workers from dismissal can ben-
efit from long-term planning, as they can rely on
the experience and knowledge of these employees.
10. Legal compliance: Strengthening protection
against dismissal of older workers can help com-
panies comply with existing labor laws and regula-
tions.

Arguments against strengthening protection
against the dismissal of older workers:

1. Merit-based decisions: Some argue that
dismissals should be based on merit and perfor-
mance, rather than age, and that protecting older
workers from dismissal may hinder this process.
2. Job opportunities for younger workers: Critics
argue that protecting older workers from dismissal
may limit job opportunities for younger workers,
potentially leading to higher unemployment rates
among the youth. 3. Innovation and adaptability:
Some believe that companies need to be able
to adapt quickly to changing market conditions,
and protecting older workers from dismissal
may hinder this process. 4. Financial burden:
Strengthening protection against dismissal of
older workers may place a financial burden on
companies, as they may be required to provide
additional benefits or compensation. 5. Workforce
flexibility: Critics argue that protecting older
workers from dismissal may limit a company’s
ability to restructure its workforce and adapt to
changing business needs. 6. Ageism concerns:
Some argue that strengthening protection against
dismissal of older workers may inadvertently
reinforce ageism, as it may be perceived as
favoring older workers over younger ones. 7.
Skill gaps: Critics argue that protecting older
workers from dismissal may lead to skill gaps in

the workforce, as companies may be less willing
to invest in training and development for older
employees. 8. Competitive disadvantage: Com-
panies that protect older workers from dismissal
may be at a competitive disadvantage compared
to those that can more easily restructure their
workforce. 9. Employee motivation: Some argue
that protecting older workers from dismissal may
reduce employee motivation, as younger workers
may feel that their opportunities for advancement
are limited. 10. Economic efficiency: Critics argue
that strengthening protection against dismissal of
older workers may reduce economic efficiency,
as companies may be less able to respond to mar-
ket changes and adjust their workforce accordingly.
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