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Abstract

A possible way to save manual grading effort in
short answer scoring is to automatically score
answers for which the classifier is highly con-
fident. We explore the feasibility of this ap-
proach in a high-stakes exam setting, evalu-
ating three different similarity-based scoring
methods, where the similarity score is a direct
proxy for model confidence. The decision on
an appropriate level of confidence should ide-
ally be made before scoring a new prompt. We
thus probe to what extent confidence thresh-
olds are consistent across different datasets and
prompts. We find that high-confidence thresh-
olds vary on a prompt-to-prompt basis, and that
the overall potential of increased performance
at a reasonable cost of additional manual effort
is limited.

1 Introduction

Whenever a (semi-)automatic process is used to
assist humans in scoring free-text answers, there is
a trade-off between the human workload required
and the resulting scoring accuracy. Without any
human input, the accuracy of the automated rating
is usually quite low (Egaña et al., 2023), however,
already little human input might go a long way
in improving the automation quality. Suen et al.
(2023) score answers in a setting that uses refer-
ence answers and operationalize the confidence of
the model as the similarity to the closest reference
answer. This concept is visualized in Figure 1.
They find that setting a threshold on model confi-
dence, deferring to manual evaluation what falls
short of it, leads to reasonable manual effort and
high scoring accuracy.

We test the applicability of this method in a high-
stakes classroom setting, where items are usually
not re-used. This sharply limits the amount of man-
ual scoring effort that can be spent before automa-
tion becomes uneconomical. We thus use a small
volume of reference answers and examine to what

Figure 1: Confidence-based scoring

extent a sensible pre-set confidence threshold can
be established. As we cannot make the high-stakes
student answers publicly available, we additionally
replicate our results on four widely used datasets.

Our study makes the important step of linking
state-of-the-art natural language processing for rat-
ing free-text items with the practical questions of
start-up costs for building the models.

2 Related Work

The idea to automatically score only parts of all
answers or to defer answers with a particularly low
confidence of the algorithm to human scoring has
been explored before (Funayama et al., 2020, 2022).
The approach that is closest to ours is Suen et al.
(2023), where answers to medical exam questions
are scored using a similarity-based scoring method
(Bexte et al., 2022, 2023) and the confidence of the
classifier is operationalized through the similarity
to the closest reference answer. This method could
be taken further to iteratively improve a classifier
through those human-labeled low-confidence an-
swers, i.e. using Active Learning (Settles, 2009), as
in the scoring domain done by Horbach and Palmer
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Answer averages across prompts
Dataset # Prompts # Labels # % Unique Length Language

UniversityExams 7 2 544 34 18 German
ASAP 10 3 or 4 2,227 100 239 English
Beetle 56 2 93 100 49 English
SEB 140 2 42 97 64 English
Powergrading 10 2 678 35 25 English

Table 1: Answer and label statistics of the datasets used in our experiments.

(2016) and Kishaan et al. (2020). Such a procedure
does however have the disadvantage that human an-
notators have to annotate small batches of answers
over a longer period of time.

Other studies rely on the idea that similar an-
swers should receive the same score. Such a group-
ing of answers could be reached through surface-
level normalization (cf. Zehner et al. (2016)), which
reduces orthographic variance, or unsupervised
clustering methods operating on the surface level
(Horbach et al., 2014; Zesch et al., 2015; Horbach
and Pinkal, 2018; Weegar and Idestam-Almquist,
2023), on the semantic level using, e.g. LSA ap-
proaches (Zehner et al., 2016; Andersen et al.,
2023), or a combination of the two (Basu et al.,
2013).

3 Data

We conduct experiments on five datasets (see Ta-
ble 1). Our high-stakes exam dataset consists of
German answers collected from university students
as part of their final exam in a statistics class. We
refer to this dataset as UniversityExams. It con-
tains 7 prompts that each require a short answer.
An exemplary question (translated from German)
is Name the method that is used to estimate the
required sample size before an experiment, where a
satisfactory answer would be a-priori power analy-
sis. Answers are labeled on a binary scale as either
correct or incorrect. Due to the sensitiveness of this
data, we can unfortunately not publish it.

We thus also run experiments on four existing,
publicly available English datasets, that we use
to put results on the exam data into context: The
ASAP1 dataset consists of answers to ten prompts
from the domains of Biology, Science, and English
Language Arts. Powergrading (Basu et al., 2013)
has answers to ten United States Citizenship Exam
questions that were collected from Amazon Me-
chanical Turk. The Student Response Analysis
(SRA) dataset (Dzikovska et al., 2013) is split into

1https://www.kaggle.com/c/asap-sas/overview

two subsets: Beetle and SciEntsBank (SEB). Bee-
tle has answers to 56 questions about electricity
and electronics, while SciEntsBank contains an-
swers to 1502 prompts that are from a mix of 15
different science domains. We use the two-way
labeled version of the SRA dataset, where answers
are classified as correct or incorrect.

4 Experimental Setup

Data Split We split the answers to each prompt
into reference and test answers. Our reference an-
swers aim to simulate a teacher manually providing
exemplary answers for the different outcome labels.
In practice, this would mean a rather small volume
of unique examples per label. For each prompt, we
thus randomly sample 5 answers per label as refer-
ences, ensuring that there are no duplicates in this
sample. Whenever a similarity metric is fine-tuned
on the reference answers, we split them into four
answers per label to train and one answer per label
to validate.

Classifiers We compare three methods of
similarity-based classification that differ with re-
spect to the employed similarity metric. All use a
set of reference answers to label the test answers:
Based on the respective similarity metric, we pre-
dict the label of the most similar reference answer.
We compare the following metrics: (i) Edit dis-
tance3 and two variants of cosine similarity based
on (ii) pretrained or (iii) fine-tuned SBERT embed-
dings (Reimers and Gurevych, 2019).4 For the En-
glish datasets, we use the all-MiniLM-L6-v2 base
model, and for the German data the paraphrase-
multilingual-MiniLM-L12-v2 one, both taken from
HuggingFace.

2We combine answers from training and unseen questions.
Since our experiments require at least five answers for each
label, we can only use 140 prompts.

3Determined using the python Levenshtein module: https:
//github.com/rapidfuzz/Levenshtein

4We transform edit distance into a noralized similarity for
better comparability by computing 1-edit distance and scaling
by length of the longest answer to the respective prompt.
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Dataset Edit SBERT target
pretrained finetuned

UniversityExams .86 .86 .91 .95
ASAP .46 .43 .50 .60
Beetle .65 .65 .68 .80
SEB .68 .65 .71 .80
Powergrading .87 .92 .93 1.00

Table 2: Weighted F1 results when all test answers are
scored fully automated.

To fine-tune SBERT, we follow the approach by
Bexte et al. (2022): We train with pairs of answers
that are labeled with a similarity label of 1 if both
answers have the same score and 0 otherwise. To
form these training examples, we pair each training
answer with each other training answer. To validate,
we pair each validation answer with each training
answer. At inference, each test answer is compared
to each training and each validation answer, i.e. all
reference answers. We train for 30 epochs with a
batch size of 8, using an OnlineContrastiveLoss
and an EmbeddingSimilarityEvaluator.

Evaluation We evaluate using weighted F1, re-
porting averages across all prompts of a dataset.

5 Experiments

First, we report results of a fully automatic base-
line. In this approach, all test answers are scored au-
tomatically, i.e. assigned the label of the most simi-
lar reference answer. We then explore confidence-
based scoring, only scoring instances where simi-
larity exceeds a given threshold automatically. The
remaining answers are referred to a human for man-
ual scoring. The fully automatic baseline can be
seen as an extreme case of this threshold-based
scoring, where the confidence threshold is set so
that all classifier decisions are accepted. We speak
of a baseline, as introducing a confidence threshold
should discard misclassifications and thus increase
scoring performance.

5.1 Fully-automated Baseline

Table 2 shows performance of our three scoring
methods on the fully-automated baseline, i.e. when
all test answers are labeled automatically. It is ap-
parent that some datasets are easier to score than
others, with a rather consistent pattern across scor-
ing methods. Particularly the UniversityExams and
Powergrading answers are easier to score, which
is in part due to the lower percentage of unique

answers in these datasets. Overall, there is a slight
advantage of the fine-tuned SBERT over the other
methods.

5.2 Confidence-based Scoring
Using a similarity-based approach to score answers
brings about the benefit of being able to take the
similarity on which the classification hinges as a
confidence estimate. Suen et al. (2023) were able to
increase performance by deferring answers where
the model is not confident enough to manual la-
beling. This requires a predefined threshold that
dictates whether to take the predicted label or seek
manual labeling. In a practical setting, there should
not be a requirement of having to determine this
threshold for each new prompt, as this would re-
quire substantial amounts of labeled data for the
new prompt, thereby diminishing the advantage of
automatic evaluation. To assess whether there is
such a threshold that is reasonable to assume for
new prompts, we analyze how much well-suited
thresholds vary between datasets and prompts.

Data-driven Threshold Selection To decide on
a suitable threshold for each prompt, we define
a target performance for each dataset. These val-
ues are listed in Table 2 (under column ‘target’)
and were chosen to push performance around .10
weighted F1 above the fully-automated baseline.
Figure 4 in the Appendix shows that performance
of the individual prompts in a dataset varies: For
some prompts, the target performance was already
reached (or surpassed), while others lie beneath it,
at times substantially. For these, we calculate the
lowest possible threshold value that reaches the tar-
get performance5. Weighted F1 is then calculated
on all answers for which the model’s confidence
exceeds this threshold, i.e. calculated only on those
answers for which the machine-predicted label is
taken. Answers that are deferred to manual label-
ing are excluded from the performance calculation,
as they are by definition assumed to be scored cor-
rectly.

Figure 2 (blue bars) shows the determined opti-
mal thresholds, with each bar corresponding to a
prompt of the respective dataset. The only dataset
where thresholds are somewhat close together is
edit distance-based scoring of Powergrading, where
they range from .92 to .99. Otherwise, thresholds
vary widely, indicating that it is difficult to prede-
fine a threshold to apply to a new prompt. On top

5Prompts already at target level have a threshold of 0.
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Figure 2: Prompt-wise depiction of thresholds that would have to be set in order to achieve the target performance
level (see Table 2). Red bars indicate how much test data falls below the threshold, i.e. has to be scored manually.
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Figure 3: Weighted F1 and amount of answers that
requires manual scoring averaged over all prompts of
the respective dataset.

of the rather wide span of optimal thresholds, the
red bars depict how much of the test data would
be deferred to manual labeling. We see that for
many of the threshold values, this would make up
a substantial amount of answers, often over half
of them. Thus, even if there is a threshold found,
reaching the target performance level comes at the
cost of a large volume of manual annotation effort.

Predefining Threshold Values Instead of a data-
driven search for an optimal threshold value, one
could also make a top-down decision on a reason-
ably seeming threshold. Our next analysis inspects
how threshold values are related to performance
and manual correction effort. Figure 3 shows the
relation between threshold value, performance and
manual effort averaged over all prompts of a dataset.
In general, performance tends to be stable for a
rather wide range of thresholds, and only starts to
increase when substantial manual effort is required.
There is thus no general potential of increasing per-
formance at a reasonable cost of additional manual
labeling.

6 Conclusion

While previous work showed that confidence-based
scoring can be successful (Suen et al., 2023), we
do not find this to hold in our experiments. This
may in part be due to the lower volume of reference
answers and the higher overall scoring difficulty
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of some of the datasets we use. On some prompts,
there may be thresholds that lead to a desirable
tradeoff between manual effort and performance
increase, but we did not find a general range of
threshold values that would be promising to apply
to unseen prompts.

Limitations

Due to the sensitive nature of the exam data, we
can unfortunately not publish it. This limits the
reproducibility of our results.

When we set thresholds on the similarity, we cal-
culate performance based on only those examples
that exceed the confidence threshold. One could
also argue to include the answers that are deferred
to manual labeling as correctly classified examples.
This would increase performance, but it would also
mean that a certain volume of answers might be
scored with substantially inferior performance, as
it would enable for manually labeled answers to
even out misclassifications by a model. In practice
we want to guarantee a certain level of performance
for all students, and hence calculate performance
solely on those answers that are classified by a
model.

Ethical Considerations

The motivation for this work was to assess the use-
fulness of automated confidence-based scoring in a
high-stakes setting. The performance levels on the
SRA and ASAP datasets are however a long way
off from being reliable enough for employment in
an actual classroom. Even on the better-performing
Powergrading and UniversityExams data, the local
legal situation is likely to put significant conditions
on the use of automated decisions, or even prohibit
this entirely.
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Figure 4: Prompt-wise results for the fully automated
baseline and target performance for the respective
datasets.
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