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Abstract

One of the key challenges in programming ed-
ucation is being able to provide high-quality
feedback to learners. Such feedback often in-
cludes explanations of the issues in students’
programs coupled with suggestions on how
to fix these issues. Large language models
(LLMs) have recently emerged as valuable
tools that can help in this effort. In this arti-
cle, we explore the relationship between the
program repair ability of LLMs and their profi-
ciency in providing natural language explana-
tions of coding mistakes. We outline a bench-
marking study that evaluates leading LLMs (in-
cluding open-source ones) on program repair
and explanation tasks. Our experiments study
the capabilities of LLMs both on a course level
and on a programming concept level, allowing
us to assess whether the programming concepts
practised in exercises with faulty student pro-
grams relate to the performance of the models.
Our results highlight that LLMs proficient in re-
pairing student programs tend to provide more
complete and accurate natural language expla-
nations of code issues. Overall, these results
enhance our understanding of the role and ca-
pabilities of LLMs in programming education.
Using program repair as a proxy for explana-
tion evaluation opens the door for cost-effective
assessment methods.

1 Introduction

Large Language Models (LLMs) and applications
leveraging them such as ChatGPT have been em-
braced by both the general public and academia.
The adoption is also visible in the domain of
computing and programming education, where re-
searchers have highlighted a variety of learning
tasks that LLMs can tackle (Denny et al., 2023;
Prather et al., 2023), including their performance
in providing help and feedback to students (Hellas
et al., 2023).

Feedback is a crucial part of learning (Hattie and
Timperley, 2007). While various forms of feed-
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Figure 1: Summary benchmarking results. The quality
of LLMs’ Natural Language descriptions of issues in
students’ code (completeness) tends to increase with
LLMs’ ability to fix the student programs (pass@1).

back exist in programming (Keuning et al., 2018),
explaining code issues in natural language can be
particularly useful. Providing students with natural
language explanations of the mistakes in their code
allows them to gain a better understanding of gaps
in their knowledge.

With the increasing number of LLMs proficient
at providing feedback (Koutcheme et al., 2023a)
to some degree, selecting the best one before de-
ploying it in classrooms (Liu et al., 2024) can be
challenging. Human evaluation can take time, as
it requires either manual assessment or annotated
datasets. While research in the automated eval-
uation of LLM generation is on the rise (Zheng
et al., 2023), also in educational areas (Fernan-
dez et al., 2024), the developed methods often rely
on other language models (e.g., utilizing powerful
yet expensive LLMs such as GPT-4), which can
induce computational or financial costs. A more
cost-effective approach is needed.

Before the advent of LLMs, a stream of work
in programming education has focused on educa-
tional program repair (Gulwani et al., 2018; Parihar
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et al., 2017; Yi et al., 2017), where the goal is to
produce fixes for students’ incorrect programs. Al-
though repairs to student programs are not always
directly provided to students, they serve as a funda-
mental step in generating different types of support,
including next-step hints for Intelligent Tutoring
Systems (McBroom et al., 2021). While direct eval-
uation of feedback with natural language explana-
tions can be challenging, evaluating whether LLMs
can fix programs is much more straightforward.

With this in mind, we hypothesize that the stu-
dent program repair capability of an LLM may
relate to its capability to provide natural language
explanations of code issues. If this would hold, pro-
gram repair capability – which is easier to assess
– could serve as a proxy for evaluating feedback
quality. Our intuition is supported by prior work
that has found relationships between LLMs’ abil-
ities in related domains. For instance, LLMs that
are proficient in solving specific problems are effec-
tive judges of the quality of explanations in those
domains (Zheng et al., 2023). Similarly, there is
some evidence that instruction-tuned LLMs trained
on specific tasks can generalize to unseen parallel
or close tasks (Wei et al., 2022a).

In this article, we investigate whether there ef-
fectively exists a relationship between the ability of
LLMs to repair students’ programs and their abil-
ity to explain code issues in natural language. If
our hypothesis holds, researchers could more easily
benchmark LLMs for other educational purposes,
allowing educators to streamline the selection of
LLMs. Our evaluation focuses on several leading
and popular open-source language models, as well
as proprietary models.

The main contributions of this article are (1) the
benchmarking of several leading language models’
abilities for program repair and (2) natural language
explanation of code issues, as well as (3) the anal-
ysis and identification of the relationship between
the two tasks.

2 Related Work

2.1 Program Repair and Feedback

Propagating feedback. Generating natural lan-
guage explanations of the issues in student pro-
grams has been a long-standing challenge, with
much work leveraging part of human annotations
to bootstrap efforts (Piech et al., 2015; Malik et al.,
2021; Koivisto and Hellas, 2022). In that area,
early pretrained code language models have also

shown useful (Wu et al., 2021) in making human
annotations as data efficient as possible. However,
coming up with such annotations remains a time-
consuming endeavour.

Educational Program Repair. Trying to alle-
viate the need for manual annotation, feedback
on programming assignments has often been gen-
erated with the aid of automated program repair
tools (Hu et al., 2019a), attempting to repair syn-
tax and/or semantic errors in students’ programs.
In this area, LLMs have also shown great promise.
Much of this line of work has mainly used early ver-
sions of the OpenAI Codex model, thus obtaining
both syntax fixes (Zhang et al., 2022; Ahmed et al.,
2022; Leinonen et al., 2023) and semantic fixes
for students’ non-working solutions (Zhang et al.,
2022). Such fixes can inform Intelligent Tutoring
Systems, which could then provide next-step hints
to students (Rivers and Koedinger, 2017). However,
while automatically constructed next-step hints can
tell the students what to do next (in templated nat-
ural language sentences), they are not always able
to explain the reasons why the code does not work.

Natural Language Explanations. The rise of
newer and more powerful LLMs (e.g., CHATGPT)
has opened the possibility of directly generating
high-quality code explanations (Sarsa et al., 2022).
In addition to such progress, research in improv-
ing program repair remains useful. In particular,
recent efforts suggest that generated repairs can be
included in the prompt to allow language models
to provide more accurate natural language explana-
tions of a program’s issues (Phung et al., 2023a).
In parallel, prior work has also explored using
program repair to validate the quality of LLM-
generated feedback. In this space, the quality of
LLM-generated repairs (i.e., whether the repairs
pass all unit tests) would indicate whether the as-
sociated LLM-generated feedback would be given
to students. The repairs could be generated by
the LLM providing the feedback (Shubham Sahai,
2023), or by another, less powerful LLM acting as
an artificial student (Phung et al., 2023b).

In contrast to efforts using program repair as a
means for validating single generations, our work
aims to assess whether the overall ability of a single
language model to provide repair across a larger set
of programs is indicative of the language model’s
overall ability to generate natural language expla-
nations.
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2.2 Evaluating Language Models

Benchmarking code language models. When
new language models are released, their perfor-
mance is often assessed through multiple code
generation benchmarks such as HumanEval (Chen
et al., 2021), APPS (Hendrycks et al., 2021),
MBPP (Austin et al., 2021), or DS-1000 (Lai et al.,
2022). In parallel, prior work has also evaluated
LLMs’ ability to fix buggy programs in bench-
marks such as HumanEval+ (Muennighoff et al.,
2023), CodeXGlue (Lu et al., 2021), or QuixBugs
(Lin et al., 2017). However, while such benchmarks
contain multiple tasks that could potentially inform
us of LLMs’ performance in educational contexts,
it is important to note that students’ submitted in-
correct programs can contain issues/defects that go
beyond mere simple bugs (e.g. implementation of
the wrong algorithm). Hence, educational bench-
marks are needed.

Benchmarking in education. In the educational
context, much work has looked into the perfor-
mance of proprietary models (Codex, and Chat-
GPT) on private datasets and educational datasets
(Finnie-Ansley et al., 2022; Hellas et al., 2023)
both for program synthesis (Finnie-Ansley et al.,
2022; Savelka et al., 2023b) and feedback (Hellas
et al., 2023).

Open-source language models. While there
exist few efforts looking at the performance
of open-language models for generating repairs
(Koutcheme et al., 2023a; Koutcheme, 2023), or
answering student programming questions (Hicke
et al., 2023), only the work of (Koutcheme et al.,
2024) look into the performance of open-source
models for generating educational programming
feedback. Still, none of these works studies the
relationship between program repair abilities and
the quality of LLM-generated natural language ex-
planations.

3 Methodology

We (1) evaluate how LLMs perform in generat-
ing repairs to incorrect programs, (2) evaluate how
LLMs perform in explaining the issues in programs,
and (3) study the potential relationship between
the ability to generate repairs and the ability to
generate natural language explanations. To en-
sure a comprehensive assessment, our study en-
compasses zero-shot evaluations (Yogatama et al.,
2019; Linzen, 2020) of proprietary and state-of-the-

art open-source LLMs having less than 7 billion
(7B) parameters. Our experiments leverage a pub-
licly available dataset comprising real-life students’
submissions to Python programming problems.

Next, we describe the programming dataset, out-
line our evaluation methodology, and list the lan-
guage models included in this evaluation. We re-
lease the code used to perform our experiments as
an additional contribution 1.

3.1 Dataset

We use a subset of the FalconCode (de Freitas et al.,
2023) dataset, a large-scale dataset containing thou-
sands of first-year students’ solutions (over three
semesters) to hundreds of Python programming as-
signments. It is the largest and most comprehensive
publicly available dataset of student programs at
the time of writing this manuscript. Beyond its sub-
stantial scale, this dataset distinguishes free-form
assignments (i.e., not scoped to function writing),
and exercise-level programming with concept an-
notations, enabling a broader evaluation of LLM
feedback.

Dataset processing. Due to the financial and
computational costs of running LLM evaluations,
for our experiments, we curate a smaller subset of
submissions. The dataset contains three semesters
worth of submissions (fall 2021, spring 2021, and
fall 2022). We start by selecting submissions from
the last semester (fall 2022). Each exercise in the
dataset can be categorized based on a type (practice,
or exam) and a level of difficulty (“skill”, “lab”, or
“project”, i.e., easy, medium, hard). We omit exam
exercises and focus on practice exercises (as these
are the ones students require help with). Addition-
ally, we exclude more complex “project” assign-
ments, requiring extensive code writing across mul-
tiple files, and those requiring external files. Fol-
lowing Hu et al. (2019b), we select only the final
incorrect submissions for each student for each as-
signment. Although this selection may not capture
the full range of student difficulties, it aligns with
the idea that a student’s last attempt often reflects
their final understanding. Finally, we remove sub-
missions with identical abstract syntax tree struc-
tures after variable normalization (Koutcheme et al.,
2023a,c). The final dataset contains 370 programs
from 44 assignments.

1https://github.com/KoutchemeCharles/bea2024
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3.2 Repairing Student Programs

Given a student’s incorrect program in our test set,
the first task is for an LLM to produce a repair to
that incorrect program that passes all unit tests. Be-
cause of the wide range of issues found in students’
programs, in contrast to classical program repair
benchmarks (Lin et al., 2017; Muennighoff et al.,
2023), in most educational scenarios, we do not as-
sume the existence of a single unique ground truth
repair to an incorrect program. However, while
such unique ground truth does not exist, repairs that
align with the original incorrect programs are often
preferred. The general assumption is that closely
aligned programs can generate (Phung et al., 2023a)
or are associated with feedback (Koutcheme et al.,
2023a) (e.g. natural language explanations or hints)
that are more understandable to students, as this
feedback would require a lower cognitive load to
understand the issues in the program and the modi-
fications that need to be operated to reach a solution
(Shubham Sahai, 2023). Moreover, we aim to in-
vestigate whether the language model’s ability to
produce repairs that closely resemble the original
incorrect programs correlates with its proficiency in
generating complete and accurate natural language
explanations of the issues in the programs. The
constraints on functional correctness and closeness
are reflected in our evaluation procedure, which we
adapt from the work of Koutcheme et al. (2023a).

Evaluation procedure. To evaluate functional
correctness, for each incorrect program in our test
set, we generate a single repair using greedy decod-
ing (Rozière et al., 2023). To measure the ability
of the language model to generate close repairs, we
compute the ROUGE-L (Lin, 2004) score between
the incorrect program and the candidate repair ex-
tracted from the single greedy generation. While
other distance measures exist and have been used to
measure closeness between programs (e.g., BLEU
(Papineni et al., 2002) and CodeBERT score (Zhou
et al., 2023b)), the ROUGE-L score has been shown
to correlate well with human judgement of high-
quality repairs (Koutcheme et al., 2023b) while
remaining fast to compute, as it does not rely on a
language model.

We report the average repair success rate as the
pass rate (’pass@1’ (Chen et al., 2021)) and the
average ROUGE-L score, abbreviated as ’rouge’,
over the programs in our test set.

3.3 Explaining Issues in Students Programs

The second task is for our language models to ex-
plain all the issues in a given student’s incorrect
program. For each incorrect program, we prompt
our language model to explain the issues using
the prompt shown in Figure 5 (Appendix A.1), a
variant of the prompt used in (Hellas et al., 2023).
Following prior work, we generate a single output
using greedy decoding (Hellas et al., 2023; Savelka
et al., 2023a; Leinonen et al., 2023).

Evaluation criteria. For each natural language
explanation, we focus on two particular quantitative
aspects of quality: (1) ensuring that the feedback is
complete, i.e., it identifies and mentions all issues
in the code, and (2) ensuring that it avoids hal-
lucinations, i.e., it does not mention non-existent
issues (Phung et al., 2023b; Hicke et al., 2023;
Hellas et al., 2023). We highlight that our explana-
tion task is a specific form of feedback that differs
from hints. In the explanation task, the answer
is meant to be given to students, while for hints
(Roest et al., 2024), the feedback helps the students
find the answer themselves. While prior work in
hint generation has investigated other qualitative
aspects, such as the “right level of detail”((Phung
et al., 2023a; Scarlatos et al., 2024)), we believe
these are less likely to be correlated with an LLM
repair ability.

Automated Evaluation. Given the scale of our
dataset and the multitude of language models to
assess, conducting human evaluation would be im-
practical. Therefore, we rely on automated evalu-
ation using language models (Zheng et al., 2023).
Powerful language models like ChatGPT have ex-
hibited near-human performance across various
tasks, sparking interest in their application for eval-
uating other LLMs (Zhou et al., 2023a; Cui et al.,
2023; Tunstall et al., 2023), including in educa-
tional contexts (McNichols et al., 2024; Hicke et al.,
2023). Notably, GPT-4 has demonstrated good
performance in evaluating programming feedback
quality (Koutcheme et al., 2024). In our work, we
ask GPT-4 to grade the quality of the natural lan-
guage explanations for each incorrect program. We
ask the model to provide a binary label of whether
each criterion (completeness, and avoiding high-
lighting non-existent issues) holds for the feedback
generated by each language model. Figure 6 (ap-
pendix A.1) shows our prompt. For each criterion,
we report the average over the test set.
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3.4 Models

We focus our evaluation on instruction-tuned and
chat models. While pretrained language models
can also be useful for multiple tasks, as prior stud-
ies using Codex (Phung et al., 2023a) have shown,
instruction-tuned models alleviate the need for com-
plex queries and allow easier interactions which
benefit educators and researchers.

Closed-source models. We evaluate GPT-
3.5 (gpt-3.5-turbo) and GPT-4-turbo
(gpt-4-1106-preview) on our two tasks.
Due to the financial costs of running GPT-4, we
use the Turbo version for feedback generation, but
we keep the standard GPT-4 for evaluating the
quality of the natural language generations.

Open-source models. While prior work in pro-
gramming feedback using LLMs has focused
mainly on ChatGPT models (i.e., GPT-3.5 and GPT-
4), we aim to cover the wider range of available op-
tions and include a selected number of instruction-
tuned open-source/permissive models. We report
the performance of the following family of models:

• TinyLLama (Zhang et al., 2024), a 1.1B pa-
rameter model following the Llama (Touvron
et al., 2023) architecture.

• CodeLLAMA (Rozière et al., 2023), series of
Llama (Touvron et al., 2023) models special-
ized for code. We report the performance of
the 7B parameters model.

• Mistral 7B (Jiang et al., 2023), a 7B parame-
ters language model released by the MistralAI
team.

• Zephyr (Tunstall et al., 2023) are 7B param-
eters language models fine-tuned by Hug-
gingFace using Direct Preference Optimiza-
tion (Rafailov et al., 2023) on top of Mistral
7B model. We evaluate the performance of
Zephyr 7B β.

• Gemma (Google, 2024), open source model
released by Google DeepMind. We evaluate
the performance of the 2B and 7B parameters
models.

We chose these families of models because they
are fully open-source and well-documented, they
perform competitively on various code benchmarks
(for models of their size), and they are widely

Table 1: Summary of the performance of the models in
program repair and code issue explanation. For the met-
rics pass@1, rouge, and completeness, a higher score
indicates better performance. Conversely, for the hallu-
cination rate metric, a lower score is preferable. Legend:
compl. (completeness), hall. rate (hallucination rate).

model
repair explanation

pass@1 rouge compl. hall. rate (↓)

TinyLlama 0.070 0.062 0.068 0.335
Gemma-2b 0.224 0.175 0.165 0.400

CodeLlama 0.292 0.251 0.343 0.841
Zephyr-beta 0.295 0.236 0.624 0.716
Mistral 0.324 0.241 0.738 0.397
Gemma-7b 0.327 0.298 0.905 0.005

gpt-3.5-turbo 0.530 0.470 0.838 0.368
gpt-4-turbo 0.665 0.536 0.992 0.024

adopted in the community. Additionally, within
these families, we choose language models having
7 billion parameters or less, as such models can
generally fit within one large GPU (without quan-
tization). This choice is reflected by the potential
need for educators to run models on custom hard-
ware, who are unlikely to have the computational
and financial resources to access more than a single
GPU.

Technical details. We query ChatGPT models
using OpenAI’s Python API. We run the selected
open-source language models using the Hugging-
Face Transformers library (Wolf et al., 2020), each
model is run on a single NVIDIA A100 using our
institution research cluster. We run all models us-
ing their recommended precision. The details of
each model (the names) can be found in Table 3
(appendix A.2).

4 Results

First, we describe our general results, then, we out-
line an ablation analysis detailing the performance
of the selected models over a set of programming
concepts.

4.1 Main Results

Table 1 summarizes the performance of the LLMs
in program repair and in explaining issues in code.
We can make the following observations:

LLMs proficient in program repair generate
repairs closer to the original incorrect program.
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Figure 2 highlights the scaling relationship between
the pass rate and the rouge score. We see that as
language models become more and more proficient
in generating repairs, these repairs become closer
to students’ original programs and thus more useful.
One could expect that LLMs which produce more
fixes could generate generic solutions (which are
far away from the student code) (Koutcheme et al.,
2023c) – however, this is not the case.
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Figure 2: Relationship between pass rate and rouge
score.

Hallucination conditionally decreases as a func-
tion of completeness. Figure 3 highlights the
relationship between the ability of a model to iden-
tify all issues in a program (completeness), and
the model’s tendency to hallucinate (hallucination
rate). If we omit language models with less than
2B parameters (i.e., TinyLlama and Gemma-2B),
we observe that the hallucination rate decreases as
completeness increases. This relationship seems
to hold only for large enough language models.
Our interpretation is supported by prior work that
has shown that many emerging behaviours in lan-
guage models appear when sufficiently large sizes
are reached (Wei et al., 2022b) (e.g. their ability
to solve new tasks via chain-of-thought prompting
(Wei et al., 2023)).

The ability to explain moderately scales with the
ability to repair. Figure 1 highlights the relation-
ship between repair performance and explanation
performance (in terms of completeness). Generally,
a language model that is better at program repair
tends to also produce more complete descriptions.
In the set of our LLMs, only Gemma-7B and GPT-
3.5 disrupt this relationship: although Gemma-7B
has a lower pass rate than GPT-3.5 (only slightly
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Figure 3: Relationship between completeness and hallu-
cination rate.

better than Mistral), it produces very complete ex-
planations (and with fewer hallucinations). Interest-
ingly, the performance gap between models’ ability
to repair does not reflect the gap between their abil-
ity to explain in natural language. For instance, the
difference between CodeLLama and Zephyr-7B in
pass@1 (0.003) is almost 10 × smaller than the
performance gap between the models’ abilities to
generate complete explanations (0.281).

Reparing student programs is harder than ex-
plaining issues in natural language. When look-
ing at the maximum value that the pass@1 metric
assumes (0.665), we see that it is smaller than the
one of the completeness (0.992). We believe repair-
ing programs is more challenging than providing
explanations, as the latter requires understanding
the issues while the former requires both compre-
hension and expertise on how to implement the
fixes.

On base models and fine-tuning. We hypothe-
size that pass@1 and completeness are reflective
of the capabilities of the underlying base model,
while the hallucination rate seems to depend more
on the fine-tuning procedure. Our intuition is jus-
tified by the following observations: (1) Mistral
and Zephyr share the same base model (but only
different fine-tuning) and have comparable pass@1
and completeness, but very different hallucination
rates. OpenAI and Google invest significant ef-
forts into curating datasets for fine-tuning to avoid
hallucinations. On the other hand, small language
models (TinyLLama and Gemma-2b) are probably
too inaccurate (i.e., not powerful enough) to even
hallucinate.
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4.2 Concept Level Performance Analysis

The FalconCode dataset contains information about
20 programming concepts or "skills" (e.g., function
definition, assignment, conditionals). The authors
of the dataset manually annotated each exercise
with information on whether each of these skills is
practised (or needs to be mastered) in each exercise.
We refer the reader to the original paper for details
about the concepts (de Freitas et al., 2023).

In the same way that some students exhibit vary-
ing struggles with understanding and practising
specific programming concepts (Liu et al., 2023),
we suspect that language models might face a sim-
ilar challenge. By examining the performance of
language models on a per-concept basis, we aim
to provide insights into their strengths and weak-
nesses in addressing specific programming chal-
lenges, thus informing educators and developers on
their suitable application scenarios.

We thus conduct an ablation study looking at the
per-concept performance of our language models
for repair and natural language explanation genera-
tion.

Methodology. For each of the 20 concepts, we
obtain the list of exercises practising the concept
and subsequently retrieve the incorrect programs in
our test set submitted to these exercises. For each
concept, we then report and compare the perfor-
mance of the language models for program repair
and natural language generation (using the same
evaluation metrics) based on the retrieved subset of
incorrect programs.

It is important to note that because all exercises
practice multiple concepts, knowing which individ-
ual concept is responsible for the language model
failing to fix (or explain) the issues in a program
is impossible. As such, the following results will
give us an overview of the likelihood that an LLM
would struggle to support students if an exercise
involves such a concept. Table 4 (Appendix A.3)
shows the number of exercises and programs that
practice each specific concept. We limit our analy-
sis to concepts practised in more than 3 exercises.

Results. Due to space limitations, we focus our
analysis on the concepts with which language mod-
els struggle the most. Table 2 shows these con-
cepts for all performance metrics, which are de-
rived from Table 6 in Appendix B.2 showing the
detailed scores of all models. We can make the
following observations:

Table 2: Programming concepts performance summary.
We show the programming concept for which each lan-
guage model struggles the most. Legend: IS (input
string), IC (input casting), C (conditionals), FC (func-
tion call), FD (function definition), L (list), LU (loop
until), L2D (list 2D), hall. rate (hallucination rate).

pass@1 rouge completeness hall. rate

TinyLlama IC IC LU IS
Gemma-2b LU IS LU L2D

CodeLlama IC IC L2D L
Zephyr-beta IS IS FD C
Mistral IS IS FD L
Gemma-7b IS IS FC LU

gpt-3.5-turbo IC IC LU FC
gpt-4-turbo IS IS LU L2D

When looking into the worst-practised concepts
for repairing student programs, almost all of them
are related to input manipulation (input string, or
input casting), similar to what has been observed
in LLMs capability to provide suggestions to pro-
gramming help requests (Hellas et al., 2023). More-
over, LLMs that perform poorly at fixing a given
concept are also likely to perform poorly at gener-
ating close solutions for these concepts.

When looking at the worst concepts for natu-
ral language explanations, these concern a wider
range (looping, data structure, functions, basic op-
erations). For completeness, there is not much
variation in the performance in explaining issues
for different concepts, but rather the overall perfor-
mance is correlated with the pass@1 of the corre-
sponding model. For hallucination rate, each model
has its own “base performance”, which doesn’t cor-
relate with pass@1 and it’s roughly constant across
concepts, with the exceptions of Zephyr and gpt-
3.5-turbo, which respectively over- and underper-
form on function-related concepts concerning other
concepts. There is no clear association between the
concepts where LLMs are accurate and those where
they hallucinate. Both small language models (less
than 7B parameters) and proprietary models strug-
gle most to be accurate with the ‘looping until’
concept, while language models of 7B parameters
struggle more with function-related assignments.

It is important to note that “struggling” here is
relative to the model’s performance with other con-
cepts. GPT-4 “struggling” more on completeness
with looping is still accurate 90% of the time.
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5 Discussion

Repair as a proxy for feedback. Our results sug-
gest that language models’ relative ability to fix stu-
dents’ programs (which is easy to evaluate) tells us
how these language models will compare in finding
all issues in students’ code while avoiding halluci-
nation (for big enough language models). Based on
our discovery, one can devise more efficient LLM
selection pipelines. For instance, a simple strategy
consists of filtering out language models for which
repair performance does not reach a certain thresh-
old, a threshold set based on a few evaluations of
LLM natural language generation performance. As
an illustrative scenario, only evaluating the Mistral
model on our dataset allows us to reasonably as-
sume that language models performing worse than
0.32 in pass rate (pass@1) are unlikely to generate
complete explanations for more than 73.8 % of pro-
grams. Using this pass rate value can thus act as
a selection lower bound. As LLMs are becoming
more widely adopted in education (Prather et al.,
2023; Denny et al., 2024), and as the number of
available models is increasing, these insights can
help in the adoption process as institutions evaluat-
ing LLMs for their context can potentially reduce
the number of LLMs to consider or limit the num-
ber of tasks conducted during the evaluation.

Open-source language models strike back. An-
other important finding emerging from our results
is that while high-performance program repair must
rely on proprietary models, recent 7B parameters
models such as Gemma-7B can generate high-
quality feedback competitive with SOTA models
(Koutcheme et al., 2024). This has positive impli-
cations for educators interested primarily in giving
students feedback rather than repairing solutions,
as such feedback can also be generated via privacy-
preserving open-source models.

However, it’s important to acknowledge that run-
ning such models requires custom computational
resources. In the literature, 7B parameter models
are sometimes termed “small” due to their relative
size compared to many large language models (e.g.
Falcon-180B model (Almazrouei et al., 2023)). Yet,
a 7B parameter is not small in terms of computa-
tional resources as it requires a large GPU to fit
entirely into memory (without quantization). There
is currently a trend in developing small language
models (less than 3B parameters) such as TinyL-
lama and Gemma which can run on more modest

hardware (e.g., consumer laptop GPU, or acceler-
ated hardware). However, the performance of such
LLMs, as our results suggest is still lagging behind
their 7B parameters counterparts.

Identifying specific knowledge gaps. Unfortu-
nately, our results do not yet allow us to identify
which programming concepts LLMs will struggle
to explain in natural language from their program
repair performance. While individual repair perfor-
mance depends on the concept being practised, a
language model’s performance in explaining issues
does not (i.e., the performance is constant across all
concepts). We hypothesize that the per-concept per-
formance gap is only revealed for the harder task
of fixing students’ programs. Uncovering LLM
knowledge gaps with automated measures might
require us to rely on harder automatically evaluable
tasks (e.g. QLCs (Lehtinen et al., 2024)).

Interplay of programming feedback types. Our
primary research objective is to deepen our under-
standing of LLMs’ feedback capabilities in educa-
tional contexts. Specifically, we seek to explore the
relationship between different forms of feedback
and program repair. While we treated feedback
(identifying and explaining issues in programs) and
program repair as distinct tasks in this study, we
acknowledge their inherent interdependence. Pre-
vious research suggests that high-quality repairs
can induce high-quality feedback when provided
in context (Phung et al., 2023b,a). However, gen-
erating high-quality repairs is inherently challeng-
ing, as our results suggest, requiring the language
model to comprehend what is wrong in a program
and how to address the issues. In contrast, we be-
lieve explanations of issues in students’ programs
could serve as reasoning steps (Wei et al., 2023), en-
hancing the subsequent generation of repairs (Chen
et al., 2023). These refined repairs, in turn, could
facilitate the generation of high-quality next-step
hints (Roest et al., 2024). Research investigating
the interplay between different types of feedback
is thus pivotal in unlocking the full potential of lan-
guage models to support programming education.
By studying the performance of generating repairs
without conditioning on feedback, nor generating
feedback based on repairs, our work establishes
a foundational understanding that will allow the
research community to assess the extent to which
various prompting techniques enhance feedback
performance.
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6 Conclusions

In this article, we have uncovered an intriguing
relationship between LLM performance in pro-
gram repair and the capability to explain issues
in code. Our evaluations encompassed both open-
source and proprietary models, examining their
generic performance as well as concept-specific
proficiency.

While selecting and deploying a specific lan-
guage model may not be challenging, identifying
the most suitable one for a particular purpose can
be complex, particularly when considering finan-
cial, hardware, or other limitations. At a time
when there are calls to rethink how programming
is taught (Denny et al., 2024), the insights gleaned
from our work can provide valuable guidance for
educators in choosing LLMs that align with their
instructional contexts.

Future work. Our future work will involve two
specific directions. First, we’ll continue our inves-
tigation of the relationships between various types
of programming feedback and program repair. all
these efforts remain an attempt to streamline the
selection process of language models based on au-
tomated evaluation measures.

Besides studying LLM performance, our second
objective is to leverage our computational resources
to improve these LLMs’ ability to provide feedback.
In particular, small language models’ poor explain-
ing performance suggests that these models will
benefit from alignment procedures designed specif-
ically to improve feedback abilities (Scarlatos et al.,
2024).

Limitations

Our work is not free of limitations. We evalu-
ated the LLMs on a subset of solutions from a
single dataset (from one institution with one pro-
gramming language). Moreover, our evaluation
of natural language explanations relied on GPT-4,
which, although a state-of-the-art language model,
is not a perfect evaluator. Human evaluation is
necessary to strengthen our results. Furthermore,
refinement would benefit the evaluation prompt
(e.g., allowing GPT-4 to reason (Wei et al., 2023)
before providing its final answers). Additionally,
the results of our evaluation also depend on the
specific prompts used to interact with each lan-
guage model. Similarly, our benchmarking exper-
iment was not exhaustive – although we included

many popular state-of-the-art open-source and pro-
prietary models, many more exist. Including more
models would be necessary to strengthen the claim
of the relationship between repair and natural lan-
guage explanations. Beyond this, the concept anal-
ysis is only indicative, as many assignments feature
multiple concepts. Finally, we only considered
single-turn zero-shot repair, which does not take
advantage of LLMs’ ability to reason with few-shot
examples (Brown et al., 2020), or LLMs’ ability to
correct their own mistakes (Chen et al., 2023; Xia
and Zhang, 2023).

Ethics Statement

The work in the present article has been conducted
following national and institutional ethics guide-
lines. We recognize the increasing importance of
ethical considerations in artificial intelligence re-
search, particularly concerning data usage and po-
tential societal impacts.

The dataset employed in this research is openly
available to researchers. Our overarching goal
is to contribute to the development and evalua-
tion of open-source language models for providing
feedback in programming education. By focus-
ing on open-source models, we aim to promote
transparency, accessibility, and accountability in
AI research and development, thereby addressing
concerns regarding the privacy implications of us-
ing proprietary language models.

We further acknowledge the broader ethical im-
plications of our work, including issues related to
fairness and accessibility of LLM feedback, how
LLMs might favour certain styles of interaction,
and how LLMs might contribute to inequalities in
the quality of provided education worldwide.
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Christopher Brooks, José Cambronero, Sumit Gul-
wani, Adish Singla, and Gustavo Soares. 2023b. Au-
tomating human tutor-style programming feedback:
Leveraging gpt-4 tutor model for hint generation and
gpt-3.5 student model for hint validation.

Chris Piech, Jonathan Huang, Andy Nguyen, Mike Phul-
suksombati, Mehran Sahami, and Leonidas Guibas.
2015. Learning program embeddings to propagate
feedback on student code.

James Prather, Paul Denny, Juho Leinonen, Brett A
Becker, Ibrahim Albluwi, Michelle Craig, Hieke Ke-
uning, Natalie Kiesler, Tobias Kohn, Andrew Luxton-
Reilly, et al. 2023. The robots are here: Navigating
the generative ai revolution in computing education.
In Proceedings of the 2023 Working Group Reports
on Innovation and Technology in Computer Science
Education, pages 108–159.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano
Ermon, Christopher D. Manning, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model.

Kelly Rivers and Kenneth R. Koedinger. 2017. Data-
Driven Hint Generation in Vast Solution Spaces: a
Self-Improving Python Programming Tutor. Interna-
tional Journal of Artificial Intelligence in Education,
27(1):37–64.

Lianne Roest, Hieke Keuning, and Johan Jeuring. 2024.
Next-step hint generation for introductory program-
ming using large language models. In Proceedings of
the 26th Australasian Computing Education Confer-
ence, ACE ’24, page 144–153, New York, NY, USA.
Association for Computing Machinery.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle,
Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish
Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wen-
han Xiong, Alexandre Défossez, Jade Copet, Faisal
Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. 2023. Code
llama: Open foundation models for code.

Sami Sarsa, Paul Denny, Arto Hellas, and Juho
Leinonen. 2022. Automatic generation of program-
ming exercises and code explanations using large
language models. In Proceedings of the 2022 ACM
Conference on International Computing Education
Research-Volume 1, pages 27–43.

Jaromir Savelka, Arav Agarwal, Marshall An, Chris
Bogart, and Majd Sakr. 2023a. Thrilled by your
progress! large language models (gpt-4) no longer
struggle to pass assessments in higher education pro-
gramming courses. In Proceedings of the 2023 ACM
Conference on International Computing Education
Research - Volume 1, ICER ’23, page 78–92, New
York, NY, USA. Association for Computing Machin-
ery.

Jaromir Savelka, Arav Agarwal, Christopher Bogart, Yi-
fan Song, and Majd Sakr. 2023b. Can generative pre-
trained transformers (gpt) pass assessments in higher
education programming courses? arXiv preprint.

Alexander Scarlatos, Digory Smith, Simon Woodhead,
and Andrew Lan. 2024. Improving the validity of
automatically generated feedback via reinforcement
learning.

176

http://arxiv.org/abs/2102.04664
http://arxiv.org/abs/2102.04664
https://educationaldatamining.org/EDM2021/virtual/poster_paper94.html
https://educationaldatamining.org/EDM2021/virtual/poster_paper94.html
https://educationaldatamining.org/EDM2021/virtual/poster_paper94.html
http://arxiv.org/abs/2308.03234
http://arxiv.org/abs/2308.03234
http://arxiv.org/abs/2308.03234
http://arxiv.org/abs/2308.07124
http://arxiv.org/abs/2308.07124
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://arxiv.org/abs/2302.04662
http://arxiv.org/abs/2302.04662
http://arxiv.org/abs/2302.04662
http://arxiv.org/abs/2310.03780
http://arxiv.org/abs/2310.03780
http://arxiv.org/abs/2310.03780
http://arxiv.org/abs/2310.03780
http://arxiv.org/abs/1505.05969
http://arxiv.org/abs/1505.05969
http://arxiv.org/abs/2305.18290
http://arxiv.org/abs/2305.18290
https://doi.org/10.1007/s40593-015-0070-z
https://doi.org/10.1007/s40593-015-0070-z
https://doi.org/10.1007/s40593-015-0070-z
https://doi.org/10.1145/3636243.3636259
https://doi.org/10.1145/3636243.3636259
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950
https://doi.org/10.1145/3568813.3600142
https://doi.org/10.1145/3568813.3600142
https://doi.org/10.1145/3568813.3600142
https://doi.org/10.1145/3568813.3600142
https://doi.org/10.48550/arXiv.2303.09325
https://doi.org/10.48550/arXiv.2303.09325
https://doi.org/10.48550/arXiv.2303.09325
http://arxiv.org/abs/2403.01304
http://arxiv.org/abs/2403.01304
http://arxiv.org/abs/2403.01304


Ben Leong Shubham Sahai, Umair Z. Ahmed. 2023.
Improving the coverage of gpt for automated feed-
back on high school programming assignments. In
NeurIPS’23 Workshop on Generative AI for Educa-
tion (GAIED). NeurIPS.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models.

Lewis Tunstall, Edward Beeching, Nathan Lambert,
Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro von Werra, Clémentine
Fourrier, Nathan Habib, Nathan Sarrazin, Omar San-
seviero, Alexander M. Rush, and Thomas Wolf. 2023.
Zephyr: Direct distillation of lm alignment.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2022a. Finetuned
language models are zero-shot learners.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy
Liang, Jeff Dean, and William Fedus. 2022b. Emer-
gent abilities of large language models.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020. Hug-
gingface’s transformers: State-of-the-art natural lan-
guage processing.

Mike Wu, Noah D. Goodman, Chris Piech, and Chelsea
Finn. 2021. Prototransformer: A meta-learning
approach to providing student feedback. CoRR,
abs/2107.14035.

Chunqiu Steven Xia and Lingming Zhang. 2023. Con-
versational automated program repair.

Jooyong Yi, Umair Z Ahmed, Amey Karkare,
Shin Hwei Tan, and Abhik Roychoudhury. 2017. A
feasibility study of using automated program repair
for introductory programming assignments. In Pro-
ceedings of the 2017 11th Joint Meeting on Founda-
tions of Software Engineering, pages 740–751.

Dani Yogatama, Cyprien de Masson d’Autume, Jerome
Connor, Tomas Kocisky, Mike Chrzanowski, Ling-
peng Kong, Angeliki Lazaridou, Wang Ling, Lei Yu,
Chris Dyer, and Phil Blunsom. 2019. Learning and
evaluating general linguistic intelligence.

Jialu Zhang, José Cambronero, Sumit Gulwani, Vu Le,
Ruzica Piskac, Gustavo Soares, and Gust Verbruggen.
2022. Repairing bugs in python assignments using
language models.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and
Wei Lu. 2024. Tinyllama: An open-source small
language model.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
llm-as-a-judge with mt-bench and chatbot arena.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis,
Luke Zettlemoyer, and Omer Levy. 2023a. Lima:
Less is more for alignment.

Shuyan Zhou, Uri Alon, Sumit Agarwal, and Graham
Neubig. 2023b. CodeBERTScore: Evaluating code
generation with pretrained models of code. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pages 13921–
13937, Singapore. Association for Computational
Linguistics.

A Experiment details

A.1 Prompts used

Figure 4 (resp. Figure 5) shows our prompts to
obtain repairs (resp. feedback) from the language
models. Figure 6 shows the prompt used to grade
the feedback generated by the language models us-
ing GPT-4 as our automatic evaluator (we adapt
the prompt from (Koutcheme et al., 2024)). The
reported value for "completeness" corresponds to
the proportion of "yes" responses across our test
dataset to the first criterion, while the reported
value for the hallucination rate corresponds to the
proportion of "no" responses to the second crite-
rion. We note that regarding the issues present
in the students’ incorrect program, we assumed
them to be identified by GPT-4 during evaluation
(without a separate prompt). We acknowledge the
limitations of this prompting strategy (i.e., no space
for reasoning) which we’ll refine in future work.

A.2 Official model names

Table 3 translates each model name into their Hug-
ginface id 2.

2https://huggingface.co/models
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Repair generation
You are a computer science professor teaching introduc-
tory programming using Python. 1

Bellow is a problem description and an incorrect program
submitted by a student. Repair the student program with
as few changes as possible such that the corrected program
fulfils the requirements of the problem description. The
corrected Python code must be between “‘python and “‘."

2

**Problem:**
<handout>

**Incorect code:**
<submitted_code>

3

Figure 4: Our template for prompting the LLMs to
provide feedback. (1) A system prompt specifying the
behaviour of the model. (2) A description of the grading
task. (3) Information necessary to grade the feedback.

Feedback generation
You are a computer science professor teaching introduc-
tory programming using Python. 1

Below is a problem statement and an incorrect program
submitted by a student. List and explain all the issues
in the student program that prevent it from solving the
associated problem and fulfilling all the requirements in
the problem description. 2

**Problem:**
<handout>

**Incorect code:**
<submitted_code>

3

Figure 5: Our template for prompting the LLMs to
provide feedback. (1) A system prompt specifying the
behaviour of the model. (2) A description of the grading
task. (3) Information necessary to grade the feedback.

Table 3: Official model names for HuggingFace models.

name HuggingFace/OpenAI id

TinyLlama TinyLlama/TinyLlama-1.1B-Chat-v1.0
CodeLlama codellama/CodeLlama-7b-hf
Llama meta-llama/Llama-2-7b-chat-hf
Mistral mistralai/Mistral-7B-v0.1
Zephyr HuggingFaceH4/zephyr-7b-beta
Gemma google/gemma-7b-it

Judging
You are a computer science professor teaching introduc-
tory programming using Python. 1

Below is a problem description, and an incorrect program
written by a student. You are also provided with the
feedback generated by a language model. Your task is to
evaluate the quality of the feedback (by saying yes or no)
to ensure it adheres to the multiple criteria outlined below.
For each criterion, provide your answer in a separate line
with the format '(CRITERIA_NUMBER): Yes/No'. Do
not provide comments, but be attentive to the problem
description requirements. 2

## Problem description:
<handout>

## Student Code:
<submitted_code>

## Feedback:
<feedback>

## Criteria:

(1) Identifies and mentions all actual issues
(2) Does not mention any non-existent issue

3

Figure 6: Judging prompt template. We provide (1)
a system prompt specifying GPT-4’s behaviour, (2) a
description of the grading task, and (3) contextual infor-
mation.

A.3 Concept analysis

Table 4 shows the number of exercises which prac-
tice each concept. Additionally, figure 7 shows an
upset plot of the number of incorrect programs for
which each combination of programming concepts
is practised.

B Results details

B.1 Additional performance scores

Some work in program synthesis has evaluated the
ability of language models to generate programs
using another method to estimate pass@1. This
method, originally proposed in the work of Chen
et al. (Chen et al., 2021), is based on generating
multiple samples, and is particularly adapted to
non-instruction tuned models. We report the results
of the program repair performance evaluation based
on this multi-sample strategy.

Multi-sample performance evaluation. For
each incorrect program, we generate n = 20 sam-
ples using top_p nucleus sampling and a tempera-
ture of 0.2 (Chen et al., 2021; Li et al., 2023). We
evaluate functional correctness using the pass@1
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Figure 7: Programming concepts upset plot.

Table 4: Number of exercises and incorrect programs
practised for each concept.

concept # exercises # programs

input string 4 18
input casting 27 257
output 28 249
assignment 26 217
conditional 22 257
function calling 8 63
function definition 9 65
function return 6 43
loop counting 9 105
loop until 5 38
loop elements 1 30
loop nested 1 3
stat calculation 10 38
list 3 38
list 2D 3 17

estimator, which tells us the probability that a lan-
guage model will fix an incorrect program in a
single attempt (Muennighoff et al., 2023).

To evaluate the ability of a language model to
generate a solution close to the student program,
we average the ROUGE-L score between each of
the k(k ≤ n) candidate repairs that pass all unit
tests and the incorrect program.

Results. Table 5 shows the performance results
with the adapted pass@1 and rouge scores for a
subset of the models (those with more than 7B
parameters).

Table 5: We show the pass@1, rouge, completeness,
and hallucination rate (hall. rate).

model pass@1 rouge completeness hall. rate

Gemma-7b 0.267 0.353 0.905 0.005
Zephyr-beta 0.276 0.336 0.624 0.716
Mistral 0.304 0.365 0.738 0.397
gpt-3.5-turbo 0.529 0.561 0.838 0.368
gpt-4-turbo 0.634 0.559 0.992 0.024

In general, we notice an absolute drop in per-
formance from the greedy decoding. Beyond this
absolute difference, the main change is that the
ranking of the model changed. Gemma-7B is now
the least performant of the 7B parameters models.
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The performance of the 7B parameters model are
dependent on these.

B.2 Programming concepts performance
Table 6 shows the detailed per concept performance
results for all models.
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Table 6: Per concept performance results. Legend: IS (input string), IC (input casting), O (output), A (assignment),
C (conditionals), FC (function call), FD (function definition), FR (function read), LC (loop counting), LU (loop
until), SC (stat calculate), L (list), L2D (list 2D).

(a) Pass@1

IS IC O A C FC FD FR LC LU SC L L2D

TinyLlama 0.04 0.03 0.03 0.07 0.05 0.21 0.09 0.14 0.03 0.03 0.04 0.03 0.06
Gemma-2b 0.06 0.13 0.13 0.12 0.19 0.44 0.60 0.77 0.13 0.05 0.10 0.11 0.47
CodeLlama 0.22 0.18 0.24 0.24 0.26 0.54 0.52 0.56 0.19 0.29 0.21 0.24 0.59
Zephyr-beta 0.10 0.17 0.17 0.24 0.25 0.60 0.58 0.86 0.23 0.26 0.26 0.26 0.41
Mistral 0.13 0.23 0.22 0.27 0.28 0.56 0.49 0.67 0.19 0.24 0.24 0.34 0.65
Gemma-7b 0.16 0.22 0.25 0.29 0.25 0.52 0.52 0.53 0.21 0.47 0.21 0.26 0.47
gpt-3.5-turbo 0.44 0.41 0.50 0.52 0.46 0.84 0.86 0.91 0.49 0.50 0.55 0.68 0.76
gpt-4-turbo 0.21 0.58 0.63 0.64 0.63 0.86 0.92 1.00 0.39 0.50 0.48 0.42 0.76

average 0.17 0.24 0.27 0.30 0.30 0.57 0.57 0.68 0.23 0.29 0.26 0.29 0.52

(b) Completeness

IS IC O A C FC FD FR LC LU SC L L2D

TinyLlama 0.04 0.07 0.07 0.04 0.08 0.03 0.08 0.07 0.04 0.00 0.05 0.08 0.18
Gemma-2b 0.15 0.15 0.14 0.17 0.15 0.21 0.20 0.26 0.16 0.05 0.17 0.18 0.06
CodeLlama 0.31 0.33 0.32 0.37 0.35 0.43 0.35 0.35 0.33 0.45 0.42 0.26 0.24
Zephyr-beta 0.54 0.64 0.65 0.59 0.63 0.60 0.51 0.51 0.55 0.71 0.60 0.76 0.59
Mistral 0.81 0.74 0.71 0.77 0.75 0.79 0.69 0.79 0.73 0.76 0.79 0.79 0.82
Gemma-7b 0.94 0.94 0.92 0.91 0.95 0.76 0.86 0.91 0.90 1.00 0.94 0.95 1.00
gpt-3.5-turbo 0.93 0.82 0.82 0.87 0.84 0.84 0.86 0.81 0.83 0.76 0.89 0.97 0.94
gpt-4-turbo 1.00 0.99 0.99 1.00 0.99 0.98 0.98 0.98 0.99 0.97 1.00 1.00 1.00

average 0.59 0.58 0.58 0.59 0.59 0.58 0.57 0.58 0.57 0.59 0.61 0.62 0.60

(c) ROUGE

IS IC O A C FC FD FR LC LU SC L L2D

TinyLlama 0.04 0.03 0.03 0.07 0.05 0.17 0.08 0.13 0.03 0.03 0.04 0.03 0.06
Gemma-2b 0.05 0.11 0.11 0.11 0.15 0.32 0.45 0.57 0.12 0.05 0.10 0.09 0.31
CodeLlama 0.20 0.15 0.20 0.22 0.21 0.46 0.45 0.47 0.17 0.25 0.18 0.21 0.51
Zephyr-beta 0.07 0.13 0.13 0.20 0.19 0.50 0.48 0.71 0.18 0.21 0.21 0.22 0.32
Mistral 0.08 0.15 0.16 0.20 0.20 0.44 0.38 0.52 0.14 0.15 0.16 0.26 0.48
Gemma-7b 0.16 0.20 0.22 0.28 0.23 0.49 0.47 0.49 0.20 0.43 0.21 0.25 0.44
gpt-3.5-turbo 0.41 0.37 0.44 0.47 0.41 0.74 0.76 0.80 0.45 0.45 0.51 0.63 0.72
gpt-4-turbo 0.17 0.46 0.51 0.52 0.50 0.70 0.72 0.77 0.31 0.40 0.38 0.35 0.61

average 0.15 0.20 0.22 0.26 0.24 0.48 0.47 0.56 0.20 0.25 0.22 0.26 0.43

(d) hallucination rate

IS IC O A C FC FD FR LC LU SC L L2D

TinyLlama 0.47 0.30 0.25 0.35 0.31 0.41 0.42 0.40 0.43 0.21 0.40 0.39 0.18
Gemma-2b 0.12 0.37 0.42 0.37 0.35 0.32 0.48 0.40 0.24 0.55 0.28 0.13 0.65
CodeLlama 0.87 0.86 0.87 0.82 0.85 0.75 0.82 0.81 0.82 0.89 0.80 0.97 0.88
Zephyr-beta 0.88 0.79 0.78 0.80 0.78 0.46 0.60 0.49 0.86 0.61 0.89 0.87 0.65
Mistral 0.43 0.42 0.42 0.39 0.41 0.32 0.32 0.35 0.41 0.32 0.37 0.45 0.41
Gemma-7b 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.03 0.02 0.00 0.00
gpt-3.5-turbo 0.28 0.31 0.35 0.36 0.35 0.54 0.49 0.51 0.34 0.21 0.29 0.24 0.24
gpt-4-turbo 0.00 0.02 0.02 0.02 0.02 0.00 0.03 0.05 0.00 0.05 0.01 0.05 0.06

average 0.38 0.38 0.39 0.39 0.38 0.35 0.40 0.38 0.39 0.36 0.38 0.39 0.38
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