
Proceedings of the 19th Workshop on Innovative Use of NLP for Building Educational Applications, pages 299–308
June 20, 2024 ©2024 Association for Computational Linguistics

Towards Fine-Grained Pedagogical Control over English Grammar
Complexity in Educational Text Generation

Dominik Glandorf
University of Tübingen

Yale University
dominik.glandorf@student.uni-tuebingen.de

Detmar Meurers
Leibniz-Institut für Wissensmedien (IWM)

detmar.meurers@uni-tuebingen.de

Abstract

Teaching foreign languages and fostering lan-
guage awareness in subject matter teaching
requires a profound knowledge of grammar
structures. Yet, while Large Language Models
can act as tutors, it is unclear how effectively
they can control grammar in generated text and
adapt to learner needs. In this study, we inves-
tigate the ability of these models to exemplify
pedagogically relevant grammar patterns, de-
tect instances of grammar in a given text, and
constrain text generation to grammar charac-
teristic of a proficiency level. Concretely, we
(1) evaluate the ability of GPT3.5 and GPT4 to
generate example sentences for the standard En-
glish Grammar Profile CEFR taxonomy using
few-shot in-context learning, (2) train BERT-
based detectors with these generated examples
of grammatical patterns, and (3) control the
grammatical complexity of text generated by
the open Mistral model by ranking sentence
candidates with these detectors. We show that
the grammar pattern instantiation quality is ac-
curate but too homogeneous, and our classi-
fiers successfully detect these patterns. A GPT-
generated dataset of almost 1 million positive
and negative examples for the English Gram-
mar Profile is released with this work. With our
method, Mistral’s output significantly increases
the number of characteristic grammar construc-
tions on the desired level, outperforming GPT4.
This showcases how language domain knowl-
edge can enhance Large Language Models for
specific education needs, facilitating their ef-
fective use for intelligent tutor development
and AI-generated materials. Code, models, and
data are available at https://github.com/
dominikglandorf/LLM-grammar.

1 Introduction

The arrival and accessibility of well-performing
Large Language Models (LLMs) created a flood
of applications in personalized education for tu-
toring and material creation (Kasneci et al., 2023).

Despite their ability to follow instructions, it is
underexplored to what extent prompting can sys-
tematically affect the linguistic properties of the
generated output to satisfy educational needs. If
LLM-generated text was finely adjustable regard-
ing the grammatical constructs used, personalized
and engaging learning materials could systemati-
cally support learners’ language development by
exposing them to the optimal linguistic complex-
ity (Mart, 2013). This control would enable a
stronger connection to input-oriented theories of
language acquisition.

Due to their data-driven nature, LLMs’ gram-
matical knowledge has to be empirically examined.
On the one hand, they have been successfully used
for text simplification and grammar construction
detection (Jeblick et al., 2023; Weissweiler et al.,
2022). On the other hand, transformer models still
benefit from explicit syntactic information during
training (Hu et al., 2020). Because of missing la-
beled training data and systematic evaluations, it
is uncertain to what extent neural text generation
can be controlled for the presence of a comprehen-
sive set of pedagogically relevant and teachable
grammatical constructions.

This work pursues the questions of how well
LLMs can create valid examples for grammar con-
structs (RQ1), how well BERT sentence embed-
dings represent these grammar constructs (RQ2),
and how well text generation can be controlled for
these constructs (RQ3). We build on an empiri-
cally established and validated taxonomy of En-
glish grammar, the English Grammar Profile (EGP)
(O’Keeffe and Mark, 2017), precisely characteriz-
ing the development of English across the profi-
ciency spectrum with 1,222 grammar patterns. We
first evaluate how well GPT3.5 and GPT4 can gen-
erate positive and negative instances on a subset of
the EGP (RQ1). We then alleviate the lack of exam-
ples by automatically creating 946K labeled exam-
ple sentences for all entries of the EGP, which we
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make available to the public. This unique dataset
serves to fine-tune and evaluate BERT-based clas-
sification models on detecting examples of the
EGP’s grammar patterns in sentences (RQ2). Us-
ing these models, a grammar-controlled text gen-
eration approach to strategically decoding an open
pre-trained LLM, Mistral-7B, provides a proof of
concept with 600 generated texts (RQ3). To gener-
ate them, we sample multiple candidate sentences
at inference time and rank them by the grammar
patterns detected by the classifiers.

We show that the accuracy of generated in-
stances of grammar patterns is 87.1% with GPT3.5
(92.9% with GPT4), and the classifiers distin-
guish the positive from negative examples in our
generated dataset with an average accuracy of
95.1%. The grammar-controlled text generation
approach at least doubles the grammatical con-
structions on each level of the standard Common
European Framework of Reference for Languages
(CEFR)({Council of Europe}, 2020).

Going beyond the specific task, our work high-
lights how explicit domain knowledge relevant to
language learning and broader language-sensitive
educational contexts can be fused with the versatil-
ity of LLMs. It is a step towards better control over
a powerful tool compared to pure prompting. The
approach can readily be extended to other pedagog-
ically desirable attributes of LLM-based tutors and
educational material.

2 Related Work

2.1 Grammatical complexity in education

Krashen’s Input Hypothesis about language learn-
ing features the idea that input is an essential driver
of language development if understandable to a
learner but one step beyond their language level
(Krashen, 1992). Although criticized for the vague-
ness of the theory’s predictions, the role of in-
put is broadly accepted in the literature (Lichtman
and VanPatten, 2021; Loewen, 2021; Ellis, 2002).
Learners benefit from language input adapted to
their proficiency level. This assumption manifests
itself in graded readers, such as simplified litera-
ture for learners. Not only do they adapt lexical
features but also grammatical complexity (Zakaria
et al., 2023). Berendes et al. (2018) systematically
analyzed textbooks and highlighted the need to pay
more attention to language complexity in subject-
matter teaching regarding learner appropriateness.
Indeed, research on language-sensitive education

in science and other subjects stresses that learning
difficulties often arise due to factors such as the syn-
tactic complexity of the language used (Wellington
and Osborne, 2001). The success of graded readers
and these shortcomings underline the importance
of controlling grammar in learning materials for
effective language development and the potential
impact of automated control.

O’Keeffe and Mark (2017) compiled and pub-
lished the English Grammar Profile based on the
systematic analysis of learner data from language
proficiency exams. The EGP includes 1,222 gram-
mar constructs that learners use on different levels,
categorized by the standard CEFR level, from A1
(beginner) to C2 (native). They are organized into
19 categories (e.g., adverbs) and can be of type
FORM, FORM/USE, or USE. FORM means con-
structs that can be described lexically and syntacti-
cally, whereas USE refers to a semantic function of
a linguistic form. The EGP includes a brief descrip-
tion in the form of a can-do statement and one to
five authentic learner examples for each structure,
as illustrated in Figure 1.

Research on fostering adaptive language learn-
ing has started to use developmentally proximal
input, though it typically does so by selecting from
existing materials (Chen et al., 2022). The EGP’s
instance-based characteristics of grammatical de-
velopment allow for fine-grained adaptivity in lan-
guage teaching because each construct is teachable
(and indeed, many are explicitly specified as part of
school curricula), which contrasts with the typical
aggregate measures and ratios used in linguistic
complexity research as part of the Complexity, Ac-
curacy, and Fluency triad (Housen et al., 2012).
Thus, the EGP can be a milestone in measuring
the grammar complexity of learner input, which is
especially valuable when generating material for
learners in earlier stages of development, for which
little authentic language material exists. However,
no large-scale corpus annotated with the EGP con-
structions is publicly available, yielding the need
for our novel dataset.

2.2 Grammar-related tasks in natural
language processing

Recent LLMs are performant on high-level
grammar-related tasks such as essay complexity
scoring (Yancey et al., 2023) and text simplification
(Jeblick et al., 2023), suggesting a general grasp
of grammatical structures. Low-level tasks include
grammar annotation, for example with a pre-trained
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Figure 1: An English Grammar Profile construct at level B2 with two examples

BERT model (Devlin et al., 2019). Weissweiler
et al. (2022) successfully detected the presence
of the comparative correlative in English with lo-
gistic regressions on BERT sentence representa-
tions. Yu et al. (2023) also argue for the potential
of LLMs for linguistic annotation compared to tra-
ditional natural language processing techniques,
especially for semantic features without a map-
ping to lexical forms. Their results for annotat-
ing acts of apologizing hint that LLMs can distin-
guish complex grammatical functions of words and
can potentially solve tasks demanding grammati-
cal knowledge. The only work that classified an
EGP-alike set of constructions from SCoRE (Chujo
et al., 2015) used BERT models to detect three con-
structions and was successful in increasing their
likelihood in generated dialog responses via rein-
forcement learning (Okano et al., 2023). Unfor-
tunately, the construction-wise reinforced models
cannot be combined, making the approach chal-
lenging to scale.

Controlled text generation has developed from
decoding strategies and supervised fine-tuning
(Xiao et al., 2023) to prompt engineering (Koraishi,
2023) and preference optimization approaches
(Rafailov et al., 2023). Apart from Okano et al.
(2023), past work on syntactic constraints usually
worked on parse trees or part-of-speech sequences,
which are not directly mappable to curricular gram-
mar patterns (Sun et al., 2023). Especially EGP
patterns of the type USE are semantic and impossi-
ble to represent in this form. Advanced controlled
text generation approaches are out of the scope of
this work, but the resulting classifiers of this work
can be incorporated into all of these approaches.

3 Method

Our approach comprises validating the EGP instan-
tiation capabilities of state-of-the-art LLMs, train-
ing neural rule detectors on a generated large-scale
grammar dataset, and using these rule detectors
to rank candidates when sampling from an open
text generation model. The analysis was conducted

with standard Python libraries for natural language
processing and deep learning on up to 16 Nvidia
GeForce RTX 2080 Ti GPUs provided by the com-
puting cluster of the University of Tübingen. The
code and data are available on GitHub1. Seeds are
provided for reproducibility.

3.1 Instantiating the English Grammar
Profile

This step evaluates the possibility of automatically
sourcing a high-quality labeled dataset of single
grammar constructions. The English Grammar
Profile is obtained from its official website2. Its
structure is characterized in Section 2.1. The in-
formation about the learner and the uncorrected
examples are removed. We prompt the OpenAI
Chat Completion API3 to generate more examples,
namely positive instances of the rule and nega-
tives that ought to have the same meaning with-
out using the construct (i.e., a minimal pair). We
evaluate two model checkpoints for comparison,
gpt-3.5-turbo-1106 and gpt-4-0125-preview,
using in-context learning with a prompt template
to describe the grammar rule and append the one to
five available examples. If present, the numerical
value for the lexical range is translated into low,
medium, and high. After the list of positive exam-
ples is returned, a second prompt asks to rewrite
every example as a minimal pair without using the
construction. These are the exact prompts:

1 . Learn t h e grammar r u l e "{ Can−
do s t a t e m e n t }" ( { Super
C a t e g o r y } , {Sub C a t e g o r y } , {
Guideword } ) . I t i s CEFR l e v e l
{ Leve l } . { L e x i c a l Range }

Examples :
{ Examples }

1https://github.com/dominikglandorf/
LLM-grammar

2https://www.englishprofile.org/
english-grammar-profile/egp-online

3https://platform.openai.com/docs/models/
overview
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C r e a t e { Batch S i z e } more examples
u s i n g t h a t r u l e .

2 . { P r e v i o u s Prompt and Response }
R e w r i t e each c r e a t e d example as a

minimal p a i r t h a t does n o t
show t h e usage o f t h e g i v e n
r u l e .

Using regular expressions, the model responses are
parsed based on the enumeration, cleaned from pre-
fixes and explanations in parenthesis, and cleared
from repetitions of the positive examples in the case
of negative instances. The presence_penalty pa-
rameter that penalizes repetitions of tokens during
sampling from the model was increased to 0.5 for
the initial prompt to diversify the vocabulary within
one response. The model temperature that makes
the output more random for higher values was de-
creased to 0.5 for the negative prompt to favor cor-
rectness over diversity. This assumes that there
is only a small number of possible modifications
to make a positive example negative and therefore
the sampling should favor the most likely tokens.
The EGP may or may not be part of the training
set of OpenAI’s models. Even if this is the case,
it remains unclear how well they can transfer the
patterns to a wider range of topics and sentence
meanings than the few included examples.

For a small-scale quality assessment (before gen-
erating the large dataset in the next step), 36 EGP
patterns are randomly drawn, stratified by CEFR
level and type, and the two models generate each
20 (in two batches of 10) positive and 20 negative
examples each, resulting in 2,880 examples. The
set of sentences is hand-coded on whether they
include the intended grammar pattern or not in a
blinded manner, i.e., without knowing the model or
intended label. These labels serve to calculate the
models’ accuracy. An automatic evaluation based
on the ROUGE and BLEU scores assesses how
close the negative examples are to the most similar
positive example. The ROUGE-1 score (ranging
from 0 to 1) reflects the number of common uni-
grams between a text and the set of reference texts,
measuring lexical similarity. The BLEU score is in
the same range but focusses more on precision in-
stead of recall and also takes longer subsequences
into account. Furthermore, the average cosine sim-
ilarity of embeddings with the recent ember-v1
model4 between all positive example sentences and

4https://huggingface.co/llmrails/ember-v1

between all negative sentences is calculated per
EGP pattern and compared to the baseline of the
renowned Brown corpus (Kučera et al., 1967). To
improve the diversity of negative examples, posi-
tive examples from other EGP entries are mixed in,
assuming that these do not contain the pattern.

3.2 Detecting instances of grammar patterns
This step poses the challenge of learning a binary
classifier that detects the presence of a single EGP
construct in a given sentence. The bidirectional
transformer architecture led to a breakthrough in
natural language understanding and was also used
by prior work on grammar detection (Okano et al.,
2023; Weissweiler et al., 2022). Due to the large
number of EGP constructs, we use multi-task train-
ing. We choose BERT instead of non-neural tools
due to the much lower cost of development, only
requiring accurate training data. We fine-tune a pre-
trained instance of bert-base-uncased (Devlin
et al., 2019) with model dimensionality 768 and
12 attention layers (110M parameters) as a shared
embedding model for each of the six CEFR levels.
We train for each single construction a two-layer
feedforward network with a hidden dimensionality
of 16 on the mean-pooled output from the shared
model (12,320 extra parameters per construction).
This is a compromise between optimal performance
by fine-tuning an entire BERT for each construction
and saving the vast amount of GPU memory that
this would entail. We did not explore other model
architectures because preliminary results have been
satisfying.

We use gpt-3.5-turbo-1106 to create 500
unique positive and 250 unique negative examples
for each EGP construct in batches of 25 because
the model often refused to create larger batches.
This results in the large-scale dataset of 946,246
sentences we release with this work. During train-
ing, we add 250 random positive examples from
other constructs labeled as negative to increase the
diversity of the dataset, assuming these do not con-
tain the rule. This leads to a total of 109K (CEFR
A1) to 338K (CEFR B1) sentences to train and
evaluate each of the six models. Gradients were
accumulated across batches of all constructs before
taking an optimizer step to balance the influence
of a single construct. The batch size was 8, the
learning rate for the AdamW optimizer was 0.0001,
and training was stopped as soon as the validation
loss increased or after a maximum of 5 epochs. We
release the trained models with data.
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We use 5-fold cross-validation for evaluation
and do not pursue systematic hyperparameter tun-
ing due to satisfying initial experimentation results.
Because of the balanced classes, accuracy is the
primary evaluation metric besides precision and
recall.

3.3 Controling text generation for grammar
patterns

This step uses the trained classifiers to control lan-
guage model output for grammar patterns. Caused
by the lack of authentic text annotated with single
EGP entries, the CEFR level is used as a proxy.
Ideally, a text for a certain level exposes the reader
to a high amount of grammar constructions on that
level. Thus, the goal is to generate texts with the
most EGP constructs of a given level, as indicated
by the previous step’s classifiers. A CEFR-labeled
dataset that was compiled from online resources5

serves as the static baseline. It contains 1,494 texts
on all CEFR levels, 37,008 sentences in total.

We generate 600 texts (100 per level) with each
method for comparison. As the LLM baselines,
Mistral-7B-Instruct-v0.2 (Jiang et al., 2023)
and gpt-4-0125-preview are prompted to con-
tinue the first words of given writings with as many
grammar constructs as possible on a specific CEFR
level, explained with its official description ({Coun-
cil of Europe}, 2020). Mistral-7B is a model with
an architecture and training procedure comparable
to the GPT models but with efficiency adjustments.
We relied on Mistral-7B due to its appealing trade-
off between model size and performance and added
GPT4 as the best-performing, closed model at the
time. We ran Mistral in inference mode on our
cluster infrastructure on two of the GPU cores.

In our proposed ranking approach, the model,
prompted in the same way as the baselines, gen-
erates five sentence candidates, and the candidate
with the most grammar constructs on the desired
level is chosen in the remaining generation proce-
dure. This approach is supposed to succeed if the
generated candidates show a significant variance in
grammar constructions. Tyen et al. (2022) chose
a similar ranking approach to generate dialog re-
sponses of a specified CEFR level but was using a
classifier predicting the CEFR level of candidates
instead of explicitly the presence of grammatical
structures. Although possible, we did not use a
smaller set of preferred EGP patterns because of

5https://www.kaggle.com/datasets/amontgomerie/
cefr-levelled-english-texts
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Figure 2: Ratio of correctly generated instances by
model and type of example.

the large number of constructions and the poten-
tial inefficiency of sampling. Past work has also
emphasized that a single grammar rule may not be
sensible in every generated sentence (Okano et al.,
2023). The prompt comprised at least the first 50
characters (adding characters up to the following
space) from randomly drawn texts in the CEFR
dataset to set different topics of the stories:

[ INST ] C o n t i n u e t h e w r i t i n g u s i n g
as many grammar c o n s t r u c t s on
CEFR l e v e l { l e v e l } as

p o s s i b l e ( { l e v e l d e s c r i p t i o n } )
. Do n o t t a l k a b o u t t h e CEFR
l e v e l .

[ / INST ] { s t o r y b e g i n n i n g }

We stop generation when the continuation exceeds
1,024 characters (Mistral) or 256 tokens (GPT4).
The evaluation metric is the average percentage of
detected constructions in the corresponding text
level.

4 Results

4.1 Grammar Pattern Instantiation

4.1.1 Accuracy
Figure 2 summarizes the manually evaluated qual-
ity of the two models on generating instances of 36
sample EGP entries. On average, GPT4 got over-
all 92.9% of the generated instances right, while
GPT3.5 scored 87.1%. This difference holds for
positive and negative examples, while both models
score a few percentage points worse on positive
examples. This indicates that they got some rules
wrong in the first place. Since all four conditions
are accurate far above the random baseline of 50%,
the accuracy of the LLM-generated examples is
satisfying, and the next steps can build on this tech-
nique.
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Table 1: ROUGE and BLEU scores of negative exam-
ples versus positive examples

Model & Parameters ROUGE-1↑ BLEU↑
GPT3.5, temp=1 0.704 0.268
GPT3.5, temp=0.5 0.783 0.368
GPT4, temp=1 0.721 0.283

EGP#288: Can use no article before a limited range of 
singular, plural and uncountable nouns when referring to 
things in general. 

EGP#777: Can use the past perfect simple to talk about 
situations which changed.

They had expected to win the match, but their 
opponents played exceptionally well.
They expected to win the match, but their opponents 
played exceptionally well.
She had thought she had everything under control, but 
then the unexpected happened.
She thought she had everything under control, but then 
the unexpected happened.
We had believed we had enough time to finish the 
project, but unforeseen complications arose.
We believed we had enough time to finish the project, 
but unforeseen complications arose.

+

-

+

-

+

-

Dogs are my favorite animals.
The dogs in the park are friendly.
Milk is good for your bones.
The milk in the fridge is expired.
I don't like carrots. 
The carrots in the salad are fresh.

+
-
+
-
+
-

Figure 3: Generated positive (+) and negative (-) exam-
ples for an EGP entry with very high average ROUGE
and BLUE scores (top) and one with very low scores
(bottom).

4.1.2 Minimality

Table 1 shows the automatic quality assessment of
the minimality of the negative examples, measured
by their ROUGE and BLEU scores with respect to
the positive examples. Interestingly, the tempera-
ture is more critical than the general performance
of the model. Concretely, GPT3.5 with decreased
temperature performs better than GPT4 with the
default temperature. This hints at the importance
of reducing the randomness when sampling from
the language model output. Figure 3 shows gen-
erated examples for two EGP entries. These in-
stances show that there may be rules for which
minimal negative examples are easier to create. For
construct #288, one could just add the article but
would make the sentences potentially ungrammat-
ical. This shows that the model also takes care of
the correctness of the generated examples.

Table 2: Average cosine similarities between sentences
in authentic text (Brown corpus) and the positive and
negative examples generated by GPT3.5. *Random
others refer to negative examples with random positive
examples from other constructs.

Corpus Similarity Std. Dev.
Brown 0.334 0.002
Positive examples 0.462 0.052
Negative examples 0.451 0.045
Random others* 0.369 0.007

A1 (109) A2 (291) B1 (338) B2 (243) C1 (129) C2 (112)
CEFR level (#constructs)
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ct
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Figure 4: Accuracy distributions of the grammar classi-
fiers across CEFR difficulty levels. Variation between
cross-validation folds is negligible. The baseline is 50%.
The white dash indicates the median and the pronounced
black strip the interquartile range.

4.1.3 Diversity
The diversity of the generated examples, indicated
by the average sentence similarity within the gen-
erated EGP patterns, is represented by Table 2.

To some extent, the similarity between the exam-
ples is expected to be higher due to the presence
of the grammar pattern. Still, we observe a signifi-
cantly increased cosine similarity for both positive
and negative pairs compared to the Brown refer-
ence corpus. Adding positive examples from other
EGP constructs increases the diversity, yielding an
average cosine similarity increased by only 10%
compared to the reference corpus. Overall, the
evaluation confirms the capability of state-of-the-
art LLMs to augment a grammar pattern dataset
from a class description and a few examples with
accurate positive and negative examples, only lack-
ing diversity within the positive examples.

4.2 Grammar Pattern Detection

Figure 4 depicts the accuracies of our BERT-based
models at detecting whether a given grammar con-
struction is present in a sentence.

The average accuracy of all classifiers is 95.1%,
precision is 93.3% and recall is 97.3%. The distri-
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Figure 5: Number of grammatical constructions per
CEFR levels for the static baseline (top) and our pro-
posed approach (bottom). The trained classifiers from
the previous step detected constructions.

butions of precisions and recalls are mean-shifted
but overall very similar and are included in our
GitHub repository. The average recall attains at
least 91% among all CEFR levels. The lower pre-
cision may be explainable by false negatives added
for diversification and the quality differences be-
tween positive and negative examples. The accu-
racy distribution within CEFR level A1 reveals
slight problems detecting some of these construc-
tions. This may be due to the very basic character
of many A1 grammar patterns. This likely also
increases the number of false negatives in the ran-
dom negatives from other constructs. Overall, the
classification quality seems near optimal given the
quality of the augmented data, which sets an upper
performance bound. Due to eliminating duplicates
and having 25% random examples from other con-
structs in the validation set, the accuracy can ex-
ceed the 87.1% example accuracy from the manual
evaluation.

4.3 Grammar-Controlled Text Generation

Table 3 lists the average ratio of detected gram-
mar constructions on the given level across all sen-

tences, as detected by the trained classifiers from
the previous step.

The two LLM baselines, which employ pure
prompting, already show improvements over the
static baseline of CEFR-annotated texts. GPT4
increases the frequency of EGP entries on all re-
quested levels. The Mistral baseline shows less
pronounced improvements and fails to increase the
number of grammar constructs on levels A2 and C2.
Generally, the pre-trained models have difficulties
using more constructs of the levels A2, B1, and B2.
Our approach to ranking sentence candidates dur-
ing text generation has a severe positive impact on
the distribution of grammar constructions across all
six levels. For all levels, the ratio of applied gram-
mar rules has at least doubled, on level C1 it has
even quadrupled versus the baseline. This proves
that the variance within different generated candi-
dates regarding the grammatical constructions is
sufficient, although the prompt included the instruc-
tion to control text complexity. Figure 5 provides a
bigger picture of the generated text characteristics
between the static baseline versus our method.

While the grammatical constructions in the cor-
pus are much more evenly distributed across all
text difficulties, our ranking approach can create
visible spikes on the desired complexity level while
roughly maintaining the frequencies of other levels’
patterns. Only on requested level B2, constructs of
level C1 are also increased which may even help
scaffolding. Overall, the intervention seems to help
control the desired pedagogical properties of gen-
erated text.

5 Discussion and Conclusion

This work showcases how Large Language Mod-
els can be controlled based on the qualitative EGP
augmented to a large-scale dataset to align with
pedagogical use cases, specifically – but not lim-
ited to – language teaching. We first verified the
sufficient quality of LLM-generated instances of an
established grammar repository, the English Gram-
mar Profile. The validation emphasizes the strength
of the most recent closed-source model, GPT4.
Nevertheless, the quality of instances generated
by GPT3.5 could almost keep up with the flagship
model. Because of this positive finding, we gener-
ated 946K labeled grammar construction examples,
which we publicly share for further research. The
binary grammar construction classification on this
data shows satisfying results within the distribution
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Table 3: Ratio of detected constructs by CEFR level of the corresponding texts on the same level.

Method A1↑ A2↑ B1↑ B2↑ C1↑ C2↑
Static Baseline 13.4% 5.0% 5.2% 3.9% 5.1% 5.1%

GPT4 22.2% 5.7% 7.0% 7.3% 14.2% 10.9%
Mistral Prompting 16.1% 4.2% 6.1% 6.5% 9.7% 4.6%

Mistral Candidate Ranking (Ours) 29.6% 10.0% 12.3% 12.2% 20.6% 11.3%

of generated data. The results are close to simi-
lar research that has not used minimal pairs and
shared embedding models and solved a potentially
easier problem (Okano et al., 2023). Controlling
an open LLM such as Mistral on the used grammar
constructions with these classifiers significantly af-
fects the frequency of desired grammar patterns.
It can even beat the baseline of prompting GPT4.
While the prompt-based strategies already improve
over the static baseline for most CEFR levels, our
proposed approach has improved text on every pro-
ficiency level and at least doubled the default fre-
quency of constructs on all levels. It also solves the
shortcoming of Tyen et al. (2022) that had difficul-
ties generating text on the simpler levels A1 and
A2.

With the advent of performant open LLMs, such
as Llama3 and Mixtral of Experts, educational ap-
plications can be further tailored to align with peda-
gogical expectations than with prompting alone.
Currently, instructors can only use commercial
model interfaces such as ChatGPT or third-party
wrappers around the model endpoints. Our method
advances the possibilities from prompt engineering
approaches to fine adjustment of the model out-
put. We freely release our augmented dataset and
the trained grammar classifiers to provide learning
engineers with a tool to introduce this level of con-
trol to their applications. A possible application
is adjusting the grammatical complexity of an AI
tutor in science to the language proficiency level
of each student. Non-native speakers in the same
classroom can interact with the seemingly "same"
agent that adapts its language to them under the
hood. Language instructors can use models to gen-
erate texts of students’ interests while ensuring the
use of particular grammar that aligns with their
curriculum.

5.1 Ethical considerations
The EGP was created and annotated by experts
to empirically identify the characteristics of the
English used by learners at different levels of pro-
ficiency. While the data stems from official profi-

ciency tests taken by a wide variety of language
learners worldwide, the language used may still
be biased by the test tasks, the opinions expressed
by the learners who took the tests, and the selec-
tion of learner data selected as examples for the
EGP. Instructing the LLM to focus on grammatical
structure instead of content should mitigate such
bias in the generated dataset, though this is not
guaranteed. The grammar classification may thus
work better for topics typically used by a specific
student subgroup in particular language tasks. The
authors also acknowledge the potential critique of
the CEFR classification as eurocentric (O’Keeffe
and Mark, 2017).

Another consideration related to the use of
LLMs is the potential generation of toxic or bi-
ased language, which is especially sensitive when
underage students are working with an LLM-based
language learning tool (Meyer et al., 2023). On the
pedagogical side, the use of artificially generated
text may also limit authenticity and thereby reduce
learner motivation. Finally, interacting with a ma-
chine to foster language acquisition will not offer
the same social benefits and challenges as human
interaction.

5.2 Future Work
Future work should build real applications for the
educational text generation approach. Then, a con-
trolled field experiment should be pursued to as-
sess the impact on students’ language acquisition.
It should survey the perception of the generated
texts by teachers and students and measure learn-
ing gains. This may reveal details about potential
weaknesses and issues for example with lexical
complexity for which our approach does not ex-
plicitly control. With more invasive adaptation
techniques, the approach can be easily extended
to single grammar constructions and adapt gram-
mar not only to the holistic proficiency level of the
learner but to the knowledge of single grammar pat-
terns. The grammar constructions should be further
located within the sentences to increase the detec-
tion quality and enable annotations. This enables
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more precise input enhancement applications.

6 Limitations

The training data for grammar classification has
some drawbacks. Having only many positive and
negative examples is likely insufficient for robust
control over single grammar patterns in educational
text generation. The models usually use the same
sentence structure for creating new instances, es-
pecially given the scarcity of seed examples in the
EGP. Although the classifiers can learn most of
the differences within the generated dataset, it re-
mains unclear how well the classifiers generalize to
other models’ generative distributions or real-world
corpora. More diverse examples must be fostered,
and a manual validation of grammar construction
detection in real corpora would be needed.

In the text generation step, we only maximized
the amount of constructs on the desired CEFR
level. A suitable text likely also requires reduc-
ing the number of overly difficult constructs to not
confuse the learner and better target the zone of
proximal development. One could add a param-
eter that balances how large the penalty for the
presence of more difficult grammar should be. Fur-
thermore, some grammar patterns may occur too
infrequently in sampling from a pre-trained model,
and generating many candidates to obtain at least
one positive instance would be inefficient. This
can only be overcome by adapting the weights of
the pre-trained language model or advanced decod-
ing strategies. Therefore, we tested the approach
only on the six groups of grammar construction, as
given by their CEFR level, which limits the current
approach to less fine-grained control over text gen-
eration. However, we believe this can still serve as
a proof of concept.

We are also aware that the English Grammar Pro-
file is a description of the typical proficiency level
when learners start to use a grammar pattern. This
can only serve as a proxy for reading comprehen-
sion, which is the focus of this work. Fortunately,
our grammar classifiers can serve to analyze ex-
isting materials that are expert-curated to create
a valid mapping to reading comprehension levels
instead of written production.
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