
Proceedings of the 19th Workshop on Innovative Use of NLP for Building Educational Applications, pages 17–33
June 20, 2024 ©2024 Association for Computational Linguistics

Pillars of Grammatical Error Correction: Comprehensive Inspection Of
Contemporary Approaches In The Era of Large Language Models

Kostiantyn Omelianchuk∗

Grammarly
Andrii Liubonko
EPAM Systems†

Oleksandr Skurzhanskyi
Grammarly

Artem Chernodub
Grammarly

Oleksandr Korniienko
Grammarly

Igor Samokhin
Independent Researcher†

Abstract

In this paper, we carry out experimental re-
search on Grammatical Error Correction, delv-
ing into the nuances of single-model systems,
comparing the efficiency of ensembling and
ranking methods, and exploring the application
of large language models to GEC as single-
model systems, as parts of ensembles, and
as ranking methods. We set new state-of-the-
art performance1 with F0.5 scores of 72.8 on
CoNLL-2014-test and 81.4 on BEA-test, re-
spectively. To support further advancements
in GEC and ensure the reproducibility of our
research, we make our code, trained models,
and systems’ outputs publicly available.2

1 Introduction

Grammatical Error Correction (GEC) is the task of
correcting human text for spelling and grammatical
errors. There is a wide variety of GEC approaches
and model architectures. In recent years, most sys-
tems have used Transformer-based architectures
(Bryant et al., 2023). A current trend involves writ-
ing prompts for Large Language Models (LLMs)
such as GPT-4 (OpenAI, 2023) that would gener-
ate grammatical corrections (Loem et al., 2023),
(Coyne et al., 2023), (Wu et al., 2023), (Fang et al.,
2023).

The varied approaches within GEC each pos-
sess unique strengths and limitations. Combining
several single-model GEC systems through ensem-
bling or ranking may smooth out their weaknesses
and lead to better overall performance (Susanto
et al., 2014). Even quite simple ensembling meth-
ods, such as majority voting (Tarnavskyi et al.,
2022) or logistic regression (Qorib et al., 2022),

∗ Corresponding author:
kostiantyn.omelianchuk@grammarly.com.

† The work was carried out while working at Grammarly.
1https://nlpprogress.com/english/grammatical_

error_correction.html (Accessed 10 March 2024).
2https://github.com/grammarly/pillars-of-gec

may work surprisingly well. Combining single-
model systems is also often straightforward from
an implementation perspective. Because only the
outputs of the models are required for many ensem-
bling algorithms, there is no need to retrain models
or perform inference passes iteratively. A further
review of related work is presented in the end and
near the descriptions of considered methods.

Our contributions are the following:
1. Comprehensive comparison of GEC meth-

ods. We reproduce, evaluate, and compare the most
promising existing methods in GEC, both single-
model systems and ensembles. We show that usage
of ensembling methods is crucial to obtain state-of-
the-art performance in GEC.

2. Establishing new state-of-the-art baselines.
We show that simple ensembling by majority vote
outperforms more complex approaches and signifi-
cantly boosts performance. We push the boundaries
of GEC quality and achieve new state-of-the-art re-
sults on the two most common GEC evaluation
datasets: F0.5 = 72.8 on CoNLL-2014-test and
F0.5 = 81.4 on BEA-test.

3. Exploring the application of LLMs for
GEC. We thoroughly investigate different scenar-
ios for leveraging large language models (LLMs)
for GEC: 1) as single-model systems in a zero-shot
setting, 2) as fine-tuned single-model systems, 3)
as single-model systems within ensembles, and 4)
as a combining algorithm for ensembles. To the
best of our knowledge, we are the first to explore
using GPT-4 to rank GEC edits, which contributes
to a notable improvement in the Recall of ensemble
systems.

4. Commitment to open science. In a move
toward fostering transparency and encouraging fur-
ther research, we open-source all our models, their
outputs on evaluation datasets, and the accompany-
ing code.2 This ensures the reproducibility of our
work and provides a foundation for future advance-
ments in the field.

17

mailto:kostiantyn.omelianchuk@grammarly.com
https://nlpprogress.com/english/grammatical_error_correction.html
https://nlpprogress.com/english/grammatical_error_correction.html
https://github.com/grammarly/pillars-of-gec

2 Data for Training and Evaluation

We use the following GEC datasets for training
models (Table 1):

1. Lang-8, an annotated dataset from the Lang-8
Corpus of Learner English (Tajiri et al., 2012);

2. NUCLE, the National University of Singa-
pore Corpus of Learner English (Dahlmeier et al.,
2013);

3. FCE, the First Certificate in English dataset
(Yannakoudakis et al., 2011);

4. W&I, the Write & Improve Corpus (Bryant
et al., 2019) (also known as BEA-Train). We also
use a larger synthetic version of Lang-8 with target
sentences produced by the T5 model (Raffel et al.,
2020);

5. cLang-8 (Rothe et al., 2021), and synthetic
data based on two monolingual datasets;

6. Troy-1BW (Tarnavskyi et al., 2022), pro-
duced from the One Billion Word Benchmark
(Chelba et al., 2014);

7. Troy-Blogs (Tarnavskyi et al., 2022), pro-
duced from the Blog Authorship Corpus (Schler
et al., 2006).

Dataset Part # sent. # tokens % edits
1 Lang-8 Train 1.04M 11.86M 42
2 NUCLE Train 57.0k 1.16M 62

Test 1.3k 30k 90
3 FCE Train 28.0k 455k 62

Train 34.3k 628.7k 67

4 W&I +
LOCNESS Dev 4.4k 85k 64

Test 4.5k 62.5k N/A
5 cLang-8 Train 2.37M 28.0M 58
6 Troy-1BW Train 1.2M 30.88M 100
7 Troy-Blogs Train 1.2M 21.49M 100

Table 1: Statistics of GEC datasets used in this work for
training and evaluation.

For evaluation, we use current standard evalua-
tion sets for the GEC domain: the test set from
the CoNLL-2014 GEC Shared Task (Ng et al.,
2014), and the dev and test components of the W&I
+ LOCNESS Corpus from the BEA-2019 GEC
Shared Task (BEA-dev and BEA-test) (Bryant
et al., 2019). For BEA-test, submissions were made
through the current competition website.3 For
each dataset, we report Precision, Recall, and F0.5

scores. To ensure an apples-to-apples comparison
with previously reported GEC results, we evaluate
CONLL-2014-test with M2scorer (Dahlmeier and

3https://codalab.lisn.upsaclay.fr/
competitions/4057

Ng, 2012), and BEA-dev with ERRANT (Bryant
et al., 2017).

3 Single-Model Systems

3.1 Large Language Models
We investigate the performance of open-source
models from the LLaMa-2 family (Touvron et al.,
2023), as well as two proprietary models: GPT-
3.5 (Chat-GPT) and GPT-4 (OpenAI, 2023). For
LLaMa, we work with four models: LLaMa-2-
7B, LLaMa-2-13B, Chat-LLaMa-2-7B, and Chat-
LLaMa-2-7B. We use two LLaMa-2 model sizes:
7B and 13B. If the model is pre-trained for instruc-
tion following (Ouyang et al., 2022), it is denoted
as "Chat-" in the model’s name.

Chat-GPT and GPT-4 are accessed through the
Microsoft Azure API. We use versions gpt-3.5-
turbo-0613 and gpt-4-0613, respectively.

We explore two scenarios for performing GEC
using LLMs: zero-shot prompting (denoted as
"ZS") and fine-tuning (denoted as "FT").

3.1.1 Zero-Shot Prompting
In recent studies dedicated to prompting LLMs
for GEC, it was shown that LLM models tend to
produce more fluent rewrites (Coyne et al., 2023).
At the same time, performance measured by au-
tomated metrics such as MaxMatch (Dahlmeier
and Ng, 2012) or ERRANT has been identified as
inferior. We frequently observed that these auto-
mated metrics do not always correlate well with
human scores. This makes LLMs used in zero-shot
prompting mode potentially attractive, especially
in conjunction with other systems in an ensemble.

For the Chat-LLaMa-2 models, we use a two-
tiered prompting approach that involves setting the
system prompt "You are a writing assistant. Please
ensure that your responses consist only of corrected
texts." to provide the context to direct the model
focus toward GEC task. Then, we push the follow-
ing instruction prompt to direct the model’s focus
toward the GEC task:
Fix grammatical errors for the following text.

Temperature is set to 1. For Chat-GPT and GPT-
4 models, we employ a function-calling API with
the "required" parameter. This guides the LLM to
more accurately identify and correct any linguistic
errors within the text or replicate the input text if
it was already error-free, thus ensuring consistency
in the models’ responses. The instruction prompt
for GPT models is:

18

https://codalab.lisn.upsaclay.fr/competitions/4057
https://codalab.lisn.upsaclay.fr/competitions/4057

CoNLL-2014-test BEA-dev BEA-test
System Precision Recall F0.5 Precision Recall F0.5 Precision Recall F0.5

1 Chat-LLaMa-2-7B-ZS 42.9 47.3 43.7 19.1 34.1 21.0 - - -
2 Chat-LLaMa-2-13B-ZS 49.1 56.1 50.4 30.6 45.0 32.7 - - -
3 GPT-3.5-ZS 56.2 57.7 56.5 37.4 50.6 39.4 - - -
4 GPT-3.5-CoT-ZS 56.0 58.7 56.5 36.4 50.8 38.5 - - -
5 GPT-4-ZS 59.0 55.4 58.2 42.5 45.0 43.0 - - -
6 Chat-LLaMa-2-7B-FT 75.5 46.8 67.2 58.3 46.0 55.3 72.3 67.4 71.2
7 Chat-LLaMa-2-13B-FT 77.3 45.6 67.9 59.8 46.1 56.4 74.6 67.8 73.1
8 T5-11B 70.9 56.5 67.5 60.9 51.1 58.6 73.2 71.2 72.8
9 UL2-20B 73.8 50.4 67.5 60.5 48.6 57.7 75.2 70.0 74.1

10 GECToR-2024 75.0 44.7 66.0 64.6 37.2 56.3 77.7 59.0 73.1
11 CTC-Copy 72.6 47.0 65.5 58.3 38.0 52.7 71.7 59.9 69.0
12 EditScorer 78.5 39.4 65.5 67.3 36.1 57.4 81.0 56.1 74.4

Table 2: All single-model systems evaluated on CoNLL-2014-test, BEA-dev, and BEA-test datasets.

Fix all mistakes in the text (spelling, punctuation,
grammar, etc). If there are no errors, respond with
the original text.

Additionally, we employ a form of the chain-of-
thought (CoT) prompting (Wei et al., 2022), which
involves requesting reasoning from the model be-
fore it makes corrections by means of function
calling.

3.1.2 Fine-tuning the Large Language Models
Fine-tuning is a mainstream method for knowledge
transfer. Since we have several available annotated
GEC datasets, they may be used to fine-tune LLMs
(Zhang et al., 2023b; Kaneko and Okazaki, 2023).

We use three datasets for fine-tuning — NUCLE,
W&I, and cLang-8 (Table 1) — as they are com-
monly used in recent GEC research (Zhang et al.,
2023b; Kaneko and Okazaki, 2023; Loem et al.,
2023). We varied the datasets and their shares to
find the best combination.

We use the Transformers library4 to conduct
1000–1200 updates with 250 warm-up steps, a
batch size of 8, and a learning rate of 1e− 5. We
fine-tune only LLaMA-2 models on next token pre-
diction task, both autocomplete and instruction-
following pre-trained versions (denoted as "Chat-
"). For the Chat-LLaMA-2 models, we use the
following prompt:
Rewrite the following text to make it grammatically
correct.
[Input text]
Result:
[Output text]

Additionally, we perform an ablation study on
the models’ size and the usefulness of the instruc-
tions (Appendix D, Table 11). Not surprisingly,
our results indicate that instructions work better for
"Chat" versions of models.

4https://github.com/huggingface/transformers

3.2 Sequence-to-Sequence models

In a sequence-to-sequence approach, GEC is con-
sidered a machine translation task, where errorful
sentences correspond to the source language, and
error-free sentences correspond to the target lan-
guage (Grundkiewicz et al., 2019; Kiyono et al.,
2019). In this work, we investigate two power-
ful Transformer-based Seq2Seq models: the open-
sourced "T5-11B" (Rothe et al., 2021), and "UL2-
20B", the instruction-tuned version of FLAN (Tay
et al., 2022).

T5-11B is fine-tuned on W&I + LOCNESS train
data for 500 updates with batch size 256 and a
learning rate of 1e− 4. UL2-20B is fine-tuned on
W&I + LOCNESS train data for 300 updates with
batch size 16 and a learning rate of 5e− 5.

3.3 Edit-based Systems

Edit-based GEC systems produce explicit text
changes, restoring error-free language from the
errorful source text. Usually, such systems are
based on encoder-only architectures and are non-
autoregressive; therefore, they are less resource-
consuming and more attractive for productization.
In this work, we consider three publicly available
open-source edit-based systems for GEC: GECToR,
CTC-Copy, and EditScorer.

GECToR5 (Omelianchuk et al., 2020), (Tar-
navskyi et al., 2022) is a family of non-
autoregressive sequence tagging GEC systems.
The concept revolves around training Transformer-
based, encoder-only models to generate corrective
edits.

CTC-Copy6 (Zhang et al., 2023a) is another non-
autoregressive text editing approach. It uses Con-

5https://github.com/MaksTarnavskyi/
gector-large

6https://github.com/yzhangcs/ctc-copy

19

https://github.com/huggingface/transformers
https://github.com/MaksTarnavskyi/gector-large
https://github.com/MaksTarnavskyi/gector-large
https://github.com/yzhangcs/ctc-copy

CoNLL-2014-test BEA-test
System name Precision Recall F0.5 Precision Recall F0.5

GECToR-RoBERTa(L) (Tarnavskyi et al., 2022) 70.1 42.7 62.2 80.6 52.3 72.7
GECToR-FT-Stage-I 75.2 44.1 65.9 78.1 57.7 72.9

GECToR-FT-Stage-II (GECToR-2024) 75.0 44.7 66.0 77.7 59.0 73.1

Table 3: GECToR fine-tuning experiments. We compare the performance of our fine-tuned model after stage I and
stage II to the initial off-the-shelf model as a baseline.

nectionist Temporal Classification (CTC) (Graves
et al., 2006) initially developed for automatic
speech recognition and introduces a novel text edit-
ing method by modeling the editing process with
latent CTC alignments. This allows more flexible
editing operations to be generated.

EditScorer7 (Sorokin, 2022) splits GEC into two
steps: generating and scoring edits. We consider it
a single-model system approach because all edits
are generated by a single-model system.

We also attempt to reproduce the Seq2Edit ap-
proach (Stahlberg and Kumar, 2020), (Kaneko and
Okazaki, 2023), but fail to achieve meaningful re-
sults. Please find more details in Appendix B.

For GECToR, we use the top-performing model,
GECToR-RoBERTa(L) (Tarnavskyi et al., 2022).
Since this model was not trained on cLang-8 data,
we additionally fine-tune it on a mix of cLang-
8, BEA, Troy-1BW, and Troy-Blogs data. We
leverage a multi-stage fine-tuning approach from
(Omelianchuk et al., 2020). In stage I, a mix of
cLang-8, W&I + LOCNESS train (BEA-train),
Troy-1BW, and Troy-Blogs datasets is used for
fine-tuning; in stage II, the high-quality W&I +
LOCNESS train dataset is used to finish the train-
ing. During stage I, we fine-tune the model for 5
epochs, early-stopping after 3 epochs, with each
epoch equal to 10000 updates and a batch size of
256. During stage II, we further fine-tune the model
for 4 epochs, with each epoch equal to 130 updates.
The full list of hyperparameters for fine-tuning can
be found in Appendix D, Table 7. We refer to this
new, improved GECToR model as GECToR-2024.

For CTC-Copy, we use the official code6 with
the RoBERTa encoder to train the English GEC
model.

For EditScorer, we use the open-sourced code7

for GECToR-XLNet(L) option from (Tarnavskyi
et al., 2022) to sample possible edits and stagewise
decoding with the RoBERTa-Large encoder to re-
score them.

7https://github.com/AlexeySorokin/EditScorer

3.4 Single-Model Systems Results

The performance of single-model GEC systems is
presented in Table 2.

We see that all zero-shot approaches considered
have F0.5 scores lower than 60 on the CoNLL-
2014-test dataset, which we assume to be a lower
bound on satisfactory GEC quality. They all suffer
from an overcorrecting issue (Fang et al., 2023),
(Wu et al., 2023) that leads to poor Precision and
inferior F0.5 scores. Notably, GPT models show
consistently better results compared to LLaMa. Im-
plementing the chain-of-thought approach doesn’t
improve the quality.

Among the remaining approaches — LLMs with
fine-tuning, sequence-to-sequence models, and
edit-based systems — we do not see a clear win-
ner. Not surprisingly, we observe that larger mod-
els (T5-11B, UL2-20B, Chat-LLaMA-2-7B-FT,
Chat-LLaMA-2-13B-FT) have slightly higher Re-
call compared to smaller models (GECToR-2024,
CTC-Copy, EditScorer). This is expressed in 1–2%
higher F0.5 scores on CoNLLL-2014-test; however,
the values on BEA-dev and BEA-test don’t show
the same behavior.

Additionally, we observe that simply scaling the
model does not help achieve a breakthrough in
benchmark scores. For example, a relatively small
model such as GECToR-2024 (≈ 300M parame-
ters) still performs well enough compared to much
larger models (≈ 7−20B parameters). We hypoth-
esize that the limiting factor for English GEC is
the amount of high-quality data rather than model
size. We have not been able to realize an F0.5 score
of more than 68% / 59% / 75% on CoNLLL-2014-
test / BEA-dev / BEA-test, respectively, with any
single-model system approach, which is consistent
with previously published results.

For GECToR, after two stages of fine-tuning,
we were able to improve the F0.5 score of the
top-performing single-model model by 3.8% on
CoNLL-2014 and by 0.4% on BEA-test, mostly
due to the increase in Recall (Table 3).

Interestingly, we see a trend where larger models

20

https://github.com/AlexeySorokin/EditScorer

Figure 1: Combining the single-model systems’ outputs. Left: In ensembling, candidates (system outputs) are
aggregated on an edit level. Right: In ranking, candidates (system outputs) are aggregated on a sentence level. We
consider ranking to be a special case of ensembling.

exhibit diminishing returns with multi-staged train-
ing approaches. Our exploration of various training
data setups reveals that a simple and straightfor-
ward approach, focusing exclusively on the W&I
+ LOCNESS train dataset, performs on par with
more complex configurations across both evalua-
tion datasets.

4 Ensembling and Ranking of
Single-Model Systems

Combining the outputs of single-model GEC sys-
tems can improve their quality. In this paper, we
explore two combining methods: ensembling and
ranking (Figure 1).

Ensembling combines outputs of single-model
systems on an edit level. The ensemble method
exploits the strengths of each model, potentially
leading to more robust and accurate corrections
than any single-model system could provide on its
own.

Ranking is a special case of ensembling that
combines individual outputs on a sentence level. In
this approach, the performance of each system’s
candidate is assessed against a set of predefined
criteria, and the most effective candidate is selected.
Ranking maintains the internal coherence of each
model’s output, potentially leading to more natural
and readable corrections.

4.1 Oracle-Ensembling and Oracle-Ranking
as Upper-Bound Baselines

To set the upper-bound baseline for our exper-
iments in combining single models, we intro-
duce two oracle systems: Oracle-Ensembling and
Oracle-Ranking.

Oracle-Ensembling approximates an optimal
combination of edits of available single-model sys-
tems. It is computationally challenging because

the number of possible edit combinations grows
exponentially with the number of edits. We use a
heuristic to mitigate this; it optimizes Precision at
the cost of reducing Recall.

Using golden references from evaluation sets,
Oracle-Ensembling works as follows:

1. Aggregate the edits from all systems into a
single pool.

2. Identify and select edits that are present in
both the edit pool and the available annotation.

3. In the case of multiple annotations, we ob-
tain a set of edits for each annotation separately.
We then select the largest set of edits among the
multiple annotations.

Oracle-Ranking approximates an optimal out-
put selection for available single-model sys-
tems. Again using golden references from
evaluation sets, we use M2scorer8 to obtain
(F0.5, ncorrect, nproposed) for each system’s out-
put candidate against the available annota-
tion. The output candidates are then sorted by
(+F0.5,+ncorrect,−nproposed) and the top one is
selected.

For our explorations into combining models’ out-
puts, we select the seven single-model systems that
show the best performance on CoNLL-2014-test
(Table 2): Chat-LLaMa-2-7B-FT, Chat-LLaMa-2-
13B-FT, T5-11B, UL2-20B, GECToR-2024, CTC-
Copy, and EditScorer. As our selection criteria, we
take i) systems of different types to maximize the
diversity and ii) systems that have an F0.5 score of
at least 65 on CoNLL-2014-test. We refer to this
set of models as "best 7".

8https://github.com/nusnlp/m2scorer

21

https://github.com/nusnlp/m2scorer

4.2 Ensembling by Majority Votes on Edit
Spans (Unsupervised)

To experiment with ensembling different GEC sys-
tems, we needed a method that is tolerant to model
architecture and vocabulary size. Ensembling by
majority votes (Tarnavskyi et al., 2022) on span-
level edits satisfies this requirement, and it’s simple
to implement, so we decided to start with this ap-
proach. We use the same "best 7" set of models in
our experiments.

Our majority-vote ensembling implementation
consists of the following steps:

0. Initialization. a) Select the set of single-model
systems for the ensemble. We denote the number of
selected systems by Nsys. b) Set Nmin, the thresh-
old for the minimum number of edit suggestions to
be accepted, 0 ≤ Nmin ≤ Nsys.

1. Extract all edit suggestions from all single-
model systems of the ensemble.

2. For each edit suggestion i, calculate the num-
ber of single-model systems ni that triggered it.

3. Leave only those edit suggestions that are
triggered more times than the Nmin threshold: ∀i :
ni > Nmin.

4. Iteratively apply the filtered edit suggestions,
beginning with the edit suggestions with the most
agreement across systems (greatest ni) and ending
with the edit suggestions where ni is lowest. Don’t
apply an edit suggestion if it overlaps with one of
the edits applied on a previous iteration.

4.3 Ensembling and Ranking by GRECO
Model (Supervised Quality Estimation)

The quality estimation approach for combining
single-model systems’ outputs achieved two recent
state-of-the-art results: logistic regression-based
ESC (Edit-based System Combination) (Qorib
et al., 2022), and its evolution, DeBERTA-based
GRECO (Grammaticality scorer for re-ranking cor-
rections) (Qorib and Ng, 2023). In this paper,
we experiment with GRECO because it is open
source and demonstrates state-of-the-art perfor-
mance on the GEC task to the best of our knowl-
edge1. GRECO was trained on the W&I + LOC-
NESS training set.

We experiment with applying the publicly avail-
able GRECO model9 to the "best 7" set of models.
We explore three ways of combining systems’ out-
puts:

9https://github.com/nusnlp/greco

GRECO-ens-beam. We reuse beam-search im-
plementation with beam size k = 16 on the edit
span level.

GRECO-rank. We use GRECO to select the best
single-model system’s output by choosing the one
with the highest score.

GRECO-rank-w. We re-weight GRECO scores
for each system’s output j by multiplying it by a
weighting coefficient wj :

∀k : wj =
nj

max(nk)
, (1)

where the numerator nj is the number of systems
that produce this output j, and the denominator
max(nk) is the maximum number of systems for
all systems’ outputs. This way, we reduce the score
of less frequent systems because it’s not the system
that is being scored/popular but rather the system’s
specific output (the edit).

4.4 Ranking by GPT-4 (Zero-Shot)

Besides the direct application of LLMs for GEC in
a zero-shot setting (we consider it in the Section
3.1.1), LLMs may be used as a combining method
for ensembles. We explore GPT-4 as a ranking tool
for single-model GEC systems’ outputs.

We use version gpt-4-0613 for GPT-4 with tem-
perature 1. We implement two prompts, "prompt-
a", and "prompt-b", with slightly different goals:
prompt-a aims to select the top single-model
system’s output among the systems’ candidates,
whereas prompt-b aims to perform the full ranking
of the systems’ candidates. They both have the
same task description. For the following example
of ranking three systems, it is:
ORIGINAL:
I likes turtles very much.
EDITED:
A: I like turtles very much.
B: I likes turtles very much.
C: I like turtles very much.

But they require a different output format:
prompt-a (top cand.): prompt-b (ranking):
OUTPUT: OUTPUT:
C C A B

To eliminate potential positional bias, we run
each prompt four times with a randomly shuffled
order of single-model systems’ outputs and average
the performance scores. To investigate the impact
of the number of systems to be ranked, we evaluate
the performance of GPT-4 on two sets of single
models: "best 7" and "clust 3".

22

https://github.com/nusnlp/greco

CoNLL-2014-test BEA-dev BEA-test
System Precision Recall F0.5 Precision Recall F0.5 Precision Recall F0.5

ESC (Qorib et al., 2022) 81.5 43.8 69.5 72.9 40.4 62.8 86.6 60.9 79.9
GRECO (Qorib and Ng, 2023), var0* 79.40 48.70 70.48 - - 63.4 86.5 63.1 80.5
GRECO (Qorib and Ng, 2023), var1* 79.60 49.90 71.12 - - - - - -
GRECO (Qorib and Ng, 2023), var2* - - - - - - 86.7 63.7 80.8

Chat-LLaMa-2-13B-FT (single-model system) 77.3 45.6 67.9 59.8 46.1 56.4 74.6 67.8 73.1
UL2-20B (single-model system) 73.8 50.4 67.5 60.5 48.6 57.7 75.2 70.0 74.1

Oracle-Ensembling(best 7), baseline 100.0 57.7 87.2 100.0 58.2 87.4 - - -
Oracle-Ranking(best 7), baseline 91.4 64.2 84.2 79.6 60.2 74.7 - - -

majority-voting(best 7) 83.7 45.7 71.8 71.7 42.2 62.9 87.3 64.1 81.4
majority-voting(best 3) 82.8 44.1 70.4 70.4 43.1 62.5 85.1 64.5 80.0

GRECO-ens-beam(best 7) 77.3 51.6 70.3 65.5 47.6 60.9 - - -
GRECO-rank(best 7) 74.4 54.2 69.2 63.2 50.0 60.0 - - -

GRECO-rank-w(best 7) 81.6 49.3 72.1 68.1 45.8 62.0 82.0 67.5 78.6
GPT-4-rank-prompt-a**(clust 3)** 72.4 58.3 69.1 59.7 52.3 58.1 - - -

MAJORITY-VOTING ✚[majority-voting(best 7),
GRECO-rank-w(best 7)] 83.0 48.1 72.5 70.2 43.9 62.7 85.6 65.8 80.7

MAJORITY-VOTING ✚[majority-voting(best 7),
GRECO-rank-w(best 7), GPT-4-rank-a(clust 3)] 83.9 47.5 72.8 70.6 43.5 62.8 86.1 65.6 81.1
"best 7" (best 7 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT + EditScorer + T5-11B + CTC-Copy + GECToR-2024.
"best 3" (best 3 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT.
"clust 3" (clustered 3 single-model systems): Chat-LLaMa-2-13B-FT + T5-11B + Edit-Scorer.
*In the paper (Qorib and Ng, 2023), authors prepared different variants of GRECO, each of which is optimized for one test dataset.
**We show mean values across four GPT-4 runs with randomly shuffled single-model systems’ outputs.
✚ We denote 2nd order ensembling (ensembles of ensembles) by capital letters.

Table 4: All ensembles evaluated on CoNLL-2014-test, BEA-dev, and BEA-test datasets.

CoNLL-2014-test BEA-dev

Precision Recall F0.5 Precision Recall F0.5

GPT-4-rank-prompt-a(best 7) 70.9 ± 0.5 59.7 ± 0.6 68.4 ± 0.5 56.8 ± 0.3 53.4 ± 0.8 56.1 ± 0.3
GPT-4-rank-prompt-b(best 7) 69.6 ± 0.8 59.5 ± 0.2 67.3 ± 0.7 56.3 ± 0.5 53.9 ± 0.6 55.8 ± 0.4
GPT-4-rank-prompt-a(clust 3) 72.4 ± 0.3 58.3 ± 0.6 69.1 ± 0.1 59.7 ± 0.1 52.3 ± 0.4 58.1 ± 0.1
GPT-4-rank-prompt-b(clust 3) 71.9 ± 0.4 58.1 ± 0.5 68.7 ± 0.5 58.7 ± 0.3 52.0 ± 0.5 57.2 ± 0.3

"best 7" (best 7 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT + EditScorer + T5-11B + CTC-Copy + GECToR-2024.
"clust 3" (clustered 3 single-model systems): Chat-LLaMa-2-13B-FT + T5-11B + Edit-Scorer.

Table 5: LLM ranking results. We run each prompt four times with randomly shuffled outputs of single-model
systems’ candidates and report mean ± 2std.

"clust 3" refers to 3 of the 7 best single-model
systems: Chat-LLaMa-2-13B-FT + T5-11B + Edit-
Scorer. This is the subset of single-model systems
from the "best 7" ensemble that provides the most
distinct corrections. To select this set, we perform
hierarchical clustering on TF-IDF vectors extracted
from the BEA-dev dataset using a cosine similar-
ity. The cosine similarity scores are averaged to
produce a single matrix that reflects the collective
performance of the single-model systems. The den-
drogram illustrating the relationships between the
systems based on distance is shown in Appendix D,
Fig. 2. Based on the threshold t = 0.11, we select
the three clusters and choose Chat-LLaMa-2-13B-
FT, T5-11B, Edit-Scorer to represent each.

4.5 Ensembles of Ensembles

Ensembles may themselves be combined via en-
sembling or ranking methods to potentially im-
prove performance, and this is an approach we
explore as well. We experiment with combining
the outputs of three ensemble systems: majority-

voting(best 7), GRECO-rank(best 7), and GPT-4-
rank(clust 3). Here, majority-voting(best 7) was
selected because it achieves the highest F0.5 score;
GRECO-rank(best 7) and GPT-4-rank(clust 3) have
higher Recall and, therefore, potential to add value
in an ensemble.

The MAJORITY-VOTING algorithm (we de-
note second-order ensembling by capital letters) is
identical to that described in 4.2.

4.6 Ensembles Results

Oracle ensembling & ranking. Oracle-
Ensembling shows F0.5 scores of 87.2/87.4 on
CoNLL-2014-test/BEA-dev, while Oracle-Ranking
performs notably worse with F0.5 scores of
84.2/74.7 and Precision of 91.4/79.6 (Table 4).
This highlights the high potential for improvements
on existing candidate generation and ensembling
approaches, whereas ranking is more limited.

Majority-voting ensembling. The only hyper-
parameter for the method (the Nmin threshold) di-
rectly impacts the Precision/Recall balance: the

23

higher it is set, the greater the Precision. We find
that the best Nmin values for maximizing F0.5

score are Nmin ≈ Nsys/2. With Nmin = 3, we
achieve 71.8 on CoNLL-2014-test, outperform-
ing the previous state-of-the-art result by 0.7,
and 81.4 on BEA-test, setting a new state-of-the-
art result. (Table 4, "best 7" systems ensemble).

We perform an ablation study to measure the
impact of each system in the ensemble (Appendix
D, Table 12), where we remove systems one by
one in the decreasing direction of F0.5 score on
the BEA-dev dataset. Our experiments show that
even an ensemble combined from just the "best 3"
systems (Chat-LLaMa-2-13B-FT, UL2-20B, and
Chat-LLaMa-2-7B-FT) significantly improves the
F0.5 score over the UL2-20B single-model system
(by 2.9% on CoNLLL-2014-test, 4.8% on BEA-
dev, and 5.9% on BEA-test). These results rein-
force the significance of ensembling in achieving
state-of-the-art performance on the GEC task. We
hypothesize that majority-voting ensembling helps
in mitigating the influence of noise within the data.
By consolidating edits that are consistent across
multiple systems (the true signal), and concurrently
downplaying less prevalent and potentially inac-
curate edits (the noise), the ensembling approach
effectively enhances the overall quality and relia-
bility of the output. Our experiments on BEA-dev
can be found in Appendix D, Table 8.

Supervised ranking & ensembling. Overall,
leveraging GRECO (all variants) for combining
systems’ outputs leads to increased Recall at the
cost of Precision. It leads to an improvement
in F0.5 score on CoNLLL-2014-test, achieving
72.1% (+0.3% from our best unsupervised ensem-
ble, majority-voting(best 7)). However, results on
BEA-test regressed (-2.8% in F0.5 score). GRECO-
ens-beam did not outperform GRECO-rank-w in
our experiments.

Zero-shot ranking. We observe that LLM-
based ranking works better for three distinct single-
model systems (clust 3) than for all seven best
systems (best 7). We hypothesize that this per-
formance disparity may be due to the increased
complexity of selecting the optimal choice from a
larger set of similar options. We also explain in this
way the better performance of prompt-a (selection
of the top candidate rewrite) than prompt-b (per-
forming full ranking among candidate rewrites).
Similar to GRECO-rank, we notice that GPT-4 fa-
vors Recall-oriented outputs, which leads to the

highest Recall (58.4) on the CoNLLL-2014-test,
but a suboptimal F0.5 score. More results are pre-
sented in Table 5 and in Appendix D, Table 9.

Ensembles of ensembles. Applying second-
order ensembles, more specifically MAJORITY-
VOTING[majority-voting(best 7), GRECO-rank-
w(best 7), GPT-4-rank-a(clust 3)], helps to even fur-
ther push the state-of-the-art record on CoNNL-
2014-test, achieving F0.5 = 72.8 : +1.7 com-
pared to the previously highest reported result
by GRECO, var1 (Qorib and Ng, 2023) and +1.0
compared to our majority-voting(best 7) ensemble.

5 Related work

Large language models have demonstrated effi-
cacy across a variety of natural language process-
ing tasks, including GEC (Bryant et al., 2023).
The comparative analysis conducted by (Wu et al.,
2023) on the effectiveness of different models for
GEC — ChatGPT, Grammarly, and open-sourced
GECToR — reveals that ChatGPT possesses a dis-
tinctive capability to enhance textual content by
not only correcting errors on a one-by-one basis
but also by rephrasing original sentences, changing
their structure to maintain grammatical correctness.
The outcomes of human evaluations underscore
the limitations of exclusively relying on automatic
evaluation metrics for assessing GEC model per-
formance, thereby positioning ChatGPT as a poten-
tially invaluable resource for GEC applications.

Other research (Loem et al., 2023), (Fang et al.,
2023) suggests that although zero-shot and few-
shot chain-of-thought methodologies demonstrate
promise in terms of error detection capabilities and
the production of fluently corrected text, they gen-
erally underperform across the majority of error
categories, thus failing to achieve high-quality out-
comes in GEC. Moreover, (Zhang et al., 2023c)
delved into the customization of open-sourced
foundation LLMs including LLaMA (Touvron
et al., 2023) for writing assistant applications, with
GEC as one of the tasks. The experimental find-
ings indicate that instruction tuning for specific
scenarios such as GEC significantly boosts the
performance of LLMs and can be used to de-
velop smaller models that outperform their larger,
general-purpose counterparts.

Additionally, (Kaneko and Okazaki, 2023) intro-
duced a novel approach for predicting edit spans
within source texts, redefining instruction-based
fine-tuning as local sequence transduction tasks.

24

This method not only reduces the length of target
sequences but also diminishes the computational
demands associated with inference. The study em-
phasizes that even high-performance LLMs such as
ChatGPT struggle to generate accurate edit spans
in zero-shot and few-shot scenarios, particularly
in the correct generation of indexes, making this
approach unstable.

Recent advancements in GEC have largely been
attributed to the ensembling of outputs from in-
dividual models, as highlighted in studies by
(Omelianchuk et al., 2020; Tarnavskyi et al., 2022).
When integrating systems with significant dispari-
ties, a system combination model is preferred over
simple ensembles. This approach allows for effec-
tive integration of the strengths of various GEC
systems, yielding better results than ensembles, as
demonstrated in (Qorib et al., 2022). Model out-
puts can be re-ranked using majority vote, as well
as with the proposed GRECO model (Qorib and
Ng, 2023), a new state-of-the-art quality estimation
model correlating more closely with the F0.5 score
of a corrected sentence, thus leading to a combined
GEC system with a higher F0.5 score. Additionally,
this study proposes three methods for leveraging
GEC quality estimation models in system combina-
tion: model-agnostic, model-agnostic with voting
bias, and model-dependent methods.

Conclusions

We don’t find that any single-model system ap-
proach is dominant across all benchmarks. While
in general, fine-tuning the larger models leads to
higher F0.5 scores, the 10–50x increase in model
size leads to rather small improvements (up to 1–2
F0.5 points). We hypothesize that the main bot-
tleneck in improvement is high-quality data rather
than system’s architecture or model size.

To date, ensembling is crucial to overcome the
limitations of single-model system approaches.
Even a simple heuristic approach such as majority
voting with just three single-model systems sig-
nificantly boosts the quality (by 3–6 F0.5 points).
While more complex approaches (supervised en-
sembling or LLM zero-shot ranking) may lead to
potentially better results (more specifically, show
higher Recall), they usually do not lead to the target
metric: F0.5 improvement on GEC benchmarks.

Recent LLM-powered methods do not outper-
form other available approaches to date. However,
being properly set, they can perform on par with

other methods and lead to more powerful ensem-
bles.

We’ve not yet reached the ceiling on the existing
GEC benchmarks. Our research shows that it’s
possible to improve previous records noticeably,
setting the new state-of-the-art performance on two
principal GEC benchmarks with F0.5 scores of 72.8
on CoNLL-2014-test and 81.4 on BEA-test, which
are improvements of +1.7 and +0.6, respectively.

In future work, we plan to explore the generation
of high-quality synthetic GEC data powered by
a state-of-the-art ensemble. We hypothesize that
this could democratize the field by reducing the
necessity of expensive training of large models to
achieve a superior level of quality.

6 Acknowledgements

We express our gratitude to our colleagues Viach-
eslav Klimkov, Max Gubin, Viktor Zamaruiev for
their valuable advices and support, and to Paige
Schwartz for careful editing. We would like to
thank the reviewers for their thoughtful comments
and efforts towards improving our paper. To our
communities: While we are writing this, our home-
land Ukraine continues to resist the unprovoked
Russian invasion. We are grateful to everyone who
defends Ukraine, declares support to the people of
Ukraine, and is sending aid. Thank you!

Limitations

Firstly, our analysis was confined to the English
language, potentially limiting the generalizability
of our findings to other languages with potentially
different error correction challenges.

Next, our evaluation relied on two specific bench-
marks using automated metrics, without incorpo-
rating human evaluation to assess the quality of the
GEC. While automated metrics provide a scalable
and objective means of evaluation, they may not
fully capture the nuances of language that human
judgment can offer.

Additionally, as we focus on ensembles, our re-
search does not address the speed performance of
the proposed systems. Therefore our findings may
not provide a comprehensive view of the practical-
ity and scalability of the proposed methods.

Lastly, the use of closed-source proprietary
LLMs introduces a layer of uncertainty, as these
models may undergo changes over time that are not
publicly disclosed. Such changes could potentially
affect the reproducibility of our results.

25

References
Christopher Bryant, Mariano Felice, Øistein E. Ander-

sen, and Ted Briscoe. 2019. The BEA-2019 shared
task on grammatical error correction. In Proceedings
of the Fourteenth Workshop on Innovative Use of NLP
for Building Educational Applications, pages 52–75,
Florence, Italy. Association for Computational Lin-
guistics.

Christopher Bryant, Mariano Felice, and Ted Briscoe.
2017. Automatic annotation and evaluation of error
types for grammatical error correction. In Proceed-
ings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 793–805, Vancouver, Canada. Association for
Computational Linguistics.

Christopher Bryant, Zheng Yuan, Muhammad Reza
Qorib, Hannan Cao, Hwee Tou Ng, and Ted Briscoe.
2023. Grammatical error correction: A survey of
the state of the art. Computational Linguistics, page
1–59.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robinson.
2014. One billion word benchmark for measuring
progress in statistical language modeling.

Steven Coyne, Keisuke Sakaguchi, Diana Galvan-Sosa,
Michael Zock, and Kentaro Inui. 2023. Analyzing
the performance of gpt-3.5 and gpt-4 in grammatical
error correction. ArXiv, abs/2303.14342.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better
evaluation for grammatical error correction. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
568–572, Montréal, Canada. Association for Compu-
tational Linguistics.

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu.
2013. Building a large annotated corpus of learner
English: The NUS corpus of learner English. In Pro-
ceedings of the Eighth Workshop on Innovative Use
of NLP for Building Educational Applications, pages
22–31, Atlanta, Georgia. Association for Computa-
tional Linguistics.

Tao Fang, Shu Yang, Kaixin Lan, Derek F Wong, Jin-
peng Hu, Lidia S Chao, and Yue Zhang. 2023. Is
chatgpt a highly fluent grammatical error correction
system? a comprehensive evaluation. arXiv preprint
arXiv:2304.01746.

Alex Graves, Santiago Fernández, Faustino Gomez, and
Jürgen Schmidhuber. 2006. Connectionist temporal
classification: labelling unsegmented sequence data
with recurrent neural networks. In Proceedings of the
23rd international conference on Machine learning,
pages 369–376.

Roman Grundkiewicz, Marcin Junczys-Dowmunt, and
Kenneth Heafield. 2019. Neural grammatical error
correction systems with unsupervised pre-training

on synthetic data. In Proceedings of the Fourteenth
Workshop on Innovative Use of NLP for Building
Educational Applications, pages 252–263.

Masahiro Kaneko and Naoaki Okazaki. 2023. Reducing
sequence length by predicting edit operations with
large language models. ArXiv, abs/2305.11862.

Shun Kiyono, Jun Suzuki, Masato Mita, Tomoya Mizu-
moto, and Kentaro Inui. 2019. An empirical study of
incorporating pseudo data into grammatical error cor-
rection. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
1236–1242, Hong Kong, China. Association for Com-
putational Linguistics.

Mengsay Loem, Masahiro Kaneko, Sho Takase, and
Naoaki Okazaki. 2023. Exploring effectiveness of
GPT-3 in grammatical error correction: A study
on performance and controllability in prompt-based
methods. In Proceedings of the 18th Workshop on
Innovative Use of NLP for Building Educational
Applications (BEA 2023), pages 205–219, Toronto,
Canada. Association for Computational Linguistics.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The CoNLL-2014 shared task
on grammatical error correction. In Proceedings of
the Eighteenth Conference on Computational Natu-
ral Language Learning: Shared Task, pages 1–14,
Baltimore, Maryland. Association for Computational
Linguistics.

Kostiantyn Omelianchuk, Vitaliy Atrasevych, Artem
Chernodub, and Oleksandr Skurzhanskyi. 2020.
GECToR – grammatical error correction: Tag, not
rewrite. In Proceedings of the Fifteenth Workshop
on Innovative Use of NLP for Building Educational
Applications, pages 163–170, Seattle, WA, USA →
Online. Association for Computational Linguistics.

OpenAI. 2023. Gpt-4 technical report. ArXiv,
abs/2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Muhammad Reza Qorib, Seung-Hoon Na, and
Hwee Tou Ng. 2022. Frustratingly easy system com-
bination for grammatical error correction. In Pro-
ceedings of the 2022 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1964–1974, Seattle, United States. Association for
Computational Linguistics.

Muhammad Reza Qorib and Hwee Tou Ng. 2023. Sys-
tem combination via quality estimation for grammat-
ical error correction. In Proceedings of the 2023

26

https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.1162/coli_a_00478
https://doi.org/10.1162/coli_a_00478
http://arxiv.org/abs/1312.3005
http://arxiv.org/abs/1312.3005
http://arxiv.org/abs/2303.14342
http://arxiv.org/abs/2303.14342
http://arxiv.org/abs/2303.14342
https://aclanthology.org/N12-1067
https://aclanthology.org/N12-1067
https://aclanthology.org/W13-1703
https://aclanthology.org/W13-1703
http://arxiv.org/abs/2305.11862
http://arxiv.org/abs/2305.11862
http://arxiv.org/abs/2305.11862
https://doi.org/10.18653/v1/D19-1119
https://doi.org/10.18653/v1/D19-1119
https://doi.org/10.18653/v1/D19-1119
https://doi.org/10.18653/v1/2023.bea-1.18
https://doi.org/10.18653/v1/2023.bea-1.18
https://doi.org/10.18653/v1/2023.bea-1.18
https://doi.org/10.18653/v1/2023.bea-1.18
https://doi.org/10.3115/v1/W14-1701
https://doi.org/10.3115/v1/W14-1701
https://doi.org/10.18653/v1/2020.bea-1.16
https://doi.org/10.18653/v1/2020.bea-1.16
https://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/2022.naacl-main.143
https://doi.org/10.18653/v1/2022.naacl-main.143
https://doi.org/10.18653/v1/2023.emnlp-main.785
https://doi.org/10.18653/v1/2023.emnlp-main.785
https://doi.org/10.18653/v1/2023.emnlp-main.785

Conference on Empirical Methods in Natural Lan-
guage Processing, pages 12746–12759, Singapore.
Association for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(1).

Sascha Rothe, Jonathan Mallinson, Eric Malmi, Sebas-
tian Krause, and Aliaksei Severyn. 2021. A simple
recipe for multilingual grammatical error correction.
In Proceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 702–707,
Online. Association for Computational Linguistics.

Jonathan Schler, Moshe Koppel, Shlomo Engelson Arg-
amon, and James W. Pennebaker. 2006. Effects of
age and gender on blogging. In AAAI Spring Sym-
posium: Computational Approaches to Analyzing
Weblogs.

Alexey Sorokin. 2022. Improved grammatical error
correction by ranking elementary edits. In Proceed-
ings of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 11416–11429,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Felix Stahlberg and Shankar Kumar. 2020. Seq2Edits:
Sequence transduction using span-level edit opera-
tions. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 5147–5159, Online. Association for
Computational Linguistics.

Raymond Hendy Susanto, Peter Phandi, and Hwee Tou
Ng. 2014. System combination for grammatical error
correction. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 951–962, Doha, Qatar. Association
for Computational Linguistics.

Toshikazu Tajiri, Mamoru Komachi, and Yuji Mat-
sumoto. 2012. Tense and aspect error correction for
ESL learners using global context. In Proceedings
of the 50th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 198–202, Jeju Island, Korea. Association for
Computational Linguistics.

Maksym Tarnavskyi, Artem Chernodub, and Kostiantyn
Omelianchuk. 2022. Ensembling and knowledge dis-
tilling of large sequence taggers for grammatical error
correction. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 3842–3852, Dublin,
Ireland. Association for Computational Linguistics.

Yi Tay, Mostafa Dehghani, Vinh Q Tran, Xavier Gar-
cia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng,

Neil Houlsby, and Donald Metzler. 2022. Unify-
ing language learning paradigms. arXiv preprint
arXiv:2205.05131.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Haoran Wu, Wenxuan Wang, Yuxuan Wan, Wenxiang
Jiao, and Michael Lyu. 2023. Chatgpt or grammarly?
evaluating chatgpt on grammatical error correction
benchmark. ArXiv, abs/2303.13648.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading ESOL texts. In Proceedings of the 49th
Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
180–189, Portland, Oregon, USA. Association for
Computational Linguistics.

Yu Zhang, Yue Zhang, Leyang Cui, and Guohong Fu.
2023a. Non-autoregressive text editing with copy-
aware latent alignments. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 7075–7085, Singapore. As-
sociation for Computational Linguistics.

Yue Zhang, Leyang Cui, Deng Cai, Xinting Huang,
Tao Fang, and Wei Bi. 2023b. Multi-task instruction
tuning of llama for specific scenarios: A preliminary
study on writing assistance.

Zhihan Zhang, Wenhao Yu, Mengxia Yu, Zhichun Guo,
and Meng Jiang. 2023c. A survey of multi-task learn-
ing in natural language processing: Regarding task
relatedness and training methods. In Proceedings
of the 17th Conference of the European Chapter of
the Association for Computational Linguistics, pages
943–956, Dubrovnik, Croatia. Association for Com-
putational Linguistics.

27

https://doi.org/10.18653/v1/2021.acl-short.89
https://doi.org/10.18653/v1/2021.acl-short.89
https://api.semanticscholar.org/CorpusID:2075411
https://api.semanticscholar.org/CorpusID:2075411
https://doi.org/10.18653/v1/2022.emnlp-main.785
https://doi.org/10.18653/v1/2022.emnlp-main.785
https://doi.org/10.18653/v1/2020.emnlp-main.418
https://doi.org/10.18653/v1/2020.emnlp-main.418
https://doi.org/10.18653/v1/2020.emnlp-main.418
https://doi.org/10.3115/v1/D14-1102
https://doi.org/10.3115/v1/D14-1102
https://aclanthology.org/P12-2039
https://aclanthology.org/P12-2039
https://doi.org/10.18653/v1/2022.acl-long.266
https://doi.org/10.18653/v1/2022.acl-long.266
https://doi.org/10.18653/v1/2022.acl-long.266
http://arxiv.org/abs/2303.13648
http://arxiv.org/abs/2303.13648
http://arxiv.org/abs/2303.13648
https://aclanthology.org/P11-1019
https://aclanthology.org/P11-1019
https://doi.org/10.18653/v1/2023.emnlp-main.437
https://doi.org/10.18653/v1/2023.emnlp-main.437
http://arxiv.org/abs/2305.13225
http://arxiv.org/abs/2305.13225
http://arxiv.org/abs/2305.13225
https://doi.org/10.18653/v1/2023.eacl-main.66
https://doi.org/10.18653/v1/2023.eacl-main.66
https://doi.org/10.18653/v1/2023.eacl-main.66

A Hierarchical clustering analysis for
single-model systems

Figure 2: Dendrogram of hierarchical clustering analy-
sis for single-model systems. The y-axis represents the
distance metric used for clustering, with a red dashed
line indicating the selected threshold for cluster for-
mation (t = 0.11). The x-axis enumerates different
systems that were analyzed. The dendrogram branches
reflect the hierarchical grouping based on the proximity
of distance metrics.

28

B Unsuccessful attempt to reproduce
Seq2Edit approach

The sequence-to-edit approach leverages the fact
that in GEC, the target sentence is usually very
similar to the source one. Instead of rewriting the
entire sentence, it’s possible to generate a list of
required edits, represented as tuples: (start position,
end position, replacement). (Stahlberg and Kumar,
2020). We tried to re-implement the most recent ap-
proach (Kaneko and Okazaki, 2023) that reported
a high score (F0.5 = 71.3%) on the CoNLL-2014-
test. We attempted to fine-tune both T5-11B and
LLaMA-2-7B models using the same set of hy-
perparameters that we used in our other experi-
ments, on pairs of sentences and edits extracted
from the BEA-train dataset. We were unable to get
any meaningful results (our F0.5 on CoNLL-2014-
test was about 30, which is around 40 points lower
than SOTA systems). Our models tended to corrupt
an original sentence more often than correct it. We
believe that our implementation most likely misses
some crucial details required to work properly, and
we encourage other researchers to reproduce and
open-source the sequence-to-edit approach.

C Second-order ensembling of
LLM-containing ensembles by
aggressiveness ranking

AGGR-RANK is a ranking method that takes as
input two ensembles: GPT-4-rank and an alterna-
tive ensemble. It selects GPT-4-rank under two
conditions: 1) it is less "aggressive" than the alter-
native (it suggests fewer edited spans), and 2) it is
non-trivial (edits do exist).

The results are presented in Table 10. The first
system (AGGR-RANK ✚[GPT-4-rank-a(clust 3),
majority-voting(best 7)]) tends to have a higher
Precision across all datasets. The second system
(AGGR-RANK ✚[GPT-4-rank-a(clust 3), GRECO-
rank-w(best 7)]), despite its lower Precision, man-
ages to achieve a slightly higher F0.5 score on the
CoNLL-2014 test dataset, suggesting that its im-
proved Recall adequately compensates in this case.
Overall, the F0.5 score is generally higher for the
first system on CoNLL-2014 test and BEA-test,
indicating that second-order ensembling on top of
the GRECO approach is the most favorable.

D Ablation studies

29

Model Datasets used for training CoNLL-2014-test BEA-dev
NUCLE W&I cLang-8 Precision Recall F0.5 Precision Recall F0.5

LLaMA-2-7B-FT - ALL - 68.66 54.27 65.20 57.90 48.63 55.77
LLaMA-2-7B-FT - - ALL 67.25 50.44 63.05 57.99 42.11 53.93
LLaMA-2-7B-FT ALL ALL - 72.45 46.98 65.37 58.00 45.82 55.07

Chat-LLaMa-2-7B-FT ALL - - 70.39 36.31 59.42 50.72 24.51 41.79
Chat-LLaMa-2-7B-FT - ALL - 70.45 52.59 65.97 59.19 47.81 56.50
Chat-LLaMa-2-7B-FT - ALL 100k 68.94 52.78 64.96 57.94 45.53 54.94

Chat-LLaMa-2-7B-FT ALL ALL 48k 75.40 46.84 67.20 58.26 46.03 55.32
Chat-LLaMa-2-7B-FT TP, 8k TP, 8k TP, 24k 68.01 52.84 64.32 53.94 46.03 52.15

Chat-LLaMa-2-13B-FT ALL ALL 100k 77.34 45.57 67.87 59.79 46.08 56.43

Table 6: A search of the best dataset combination for fine-tuning large language models. For fine-tuned models,
different training dataset combinations were evaluated: Here, "ALL" denotes the usage of all available data for
training, specific numbers (e.g., "100k") define the specific number of samples used for training, and "TP" ("true
positives") denotes when only the dataset’s samples containing corrections are used.

Hyperparameter Values for stage I Values for stage II
train data source cLang8, BEA-train, 20 Troy BEA-train
train data size 2,897,676 33,618
batch_size 8 16
accumulation_size 32 16
n_epoch 5 4
patience 3 3
max_len 50 50
LR 1e-05 1e-05
cold_steps_count 0 0
tp_prob 1 1
tn_prob 1 1
updates_per_epoch 10000 0
special_tokens_fix 1 1
transformer_model Roberta-large Roberta-large
Pretrained model roberta-large_1_pie_1bw_st3 roberta-stage1
Inference tweaks:
minimum error probability 0.65 0.65
Inference tweaks:
confidence 0.1 0.1

Table 7: Hyperparameter values for the fine-tuning of GECToR-2024.

30

BEA-dev
System name Nmin Precision Recall cF0.5

majority-voting(best 7) 3 71.7 42.2 62.9
majority-voting(best 7) w/o GECToR-2024 3 73.8 39.1 62.7

majority-voting(best 7) w/o CTC-copy 3 73.7 39.0 62.6
majority-voting(best 7) w/o EditScorer 3 72.8 39.5 62.3

majority-voting(best 7) w/o T5-11B 3 74.2 35.8 61.1
majority-voting(best 7) w/o UL2-20B 3 74.2 35.9 61.1

majority-voting(best 7) w/o LlaAMA-2-7B 3 74.3 36.2 61.4
majority-voting(best 7) w/o LlaAMA-2-13B 3 74.3 36.2 61.3
majority-voting(best 6) (best 7 w/o GECToR) 3 73.8 39.1 62.7

majority-voting(best 6) w/o CTC-copy 2 69.8 44.5 62.7
majority-voting(best 6) w/o EditScorer 2 69.0 45.3 62.5

majority-voting(best 6) w/o T5-11B 2 70.6 42.4 62.3
majority-voting(best 6) w/o UL2-20B 2 70.6 42.5 62.3

majority-voting(best 6) w/o Llama-2-7B 2 71.5 43.2 63.2
majority-voting(best 6) w/o Llama-2-13B 2 71.1 43.1 63.0

majority-voting(best 5) (best 6 w/o Llama-2-7B) 2 71.5 43.2 63.2
majority-voting(best 5) w/o CTC-copy 2 74.0 38.8 62.6
majority-voting(best 5) w/o EditScorer 2 72.6 39.2 62.0

majority-voting(best 5) w/o T5-11B 2 75.1 33.8 60.3
majority-voting(best 5) w/o UL2-20B 2 74.8 34.0 60.3

majority-voting(best 5) w/o LlaMA-2-13B 2 74.7 34.9 60.8
majority-voting(best 4) (best 5 w/o CTC-copy) 2 74.0 38.8 62.6

majority-voting(best 4) w/o EditScorer 1 66.2 47.9 61.5
majority-voting(best 4) w/o T5-11B 1 70.4 43.1 62.5
majority-voting(best 4) w/o UL2-20B 1 69.9 43.7 62.4

majority-voting(best 4) w/o LlaMA-2-13B 1 68.5 45.2 62.1
majority-voting(best 3) (best 4 w/o T5-11B) 1 70.4 43.1 62.5

majority-voting(best 3) w/o EditScorer 1 72.9 36.4 60.7
majority-voting(best 3) w/o UL2-20B 1 77.0 28.0 57.0

majority-voting(best 3) w/o LlaMA-2-13B 1 77.3 29.2 58.2

Table 8: Ablation study of removing single-model GEC systems from majority-based ensembles on BEA-dev.
"best 7" (best 7 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT + EditScorer + T5-11B + CTC-Copy + GECToR-2024.
"best 6" (best 6 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT + EditScorer + T5-11B + CTC-Copy.
"best 5" (best 5 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT + EditScorer + T5-11B.
"best 4" (best 4 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT + EditScorer.
"best 3" (best 3 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT.

31

CoNLL-2014-test BEA-dev

Precision Recall F0.5 Precision Recall F0.5

Chat-LLaMa-2-13B-FT 77.3 45.6 67.9 59.8 46.1 56.4
T5-11B 70.9 56.5 67.5 60.9 51.1 58.6

GPT-4-rank-a(best 7)

71.2 60.1 68.7 56.9 53.8 56.2
71.0 59.5 68.4 56.9 53.1 56.1
70.7 59.5 68.2 56.6 53.1 55.9
70.7 59.8 68.2 56.8 53.7 56.2

mean ± 2std 70.9 ± 0.5 59.7 ± 0.6 68.4 ± 0.5 56.8 ± 0.3 53.4 ± 0.8 56.1 ± 0.3

GPT-4-rank-b(best 7)

69.2 59.6 67.0 56.2 53.8 55.7
69.6 59.5 67.3 56.0 53.5 55.5
69.5 59.4 67.2 56.6 54.0 56.0
70.2 59.6 67.8 56.3 54.2 55.9

mean ± 2std 69.6 ± 0.8 59.5 ± 0.2 67.3 ± 0.7 56.3 ± 0.5 53.9 ± 0.6 55.8 ± 0.4

GPT-4-rank-a(clust 3)

72.3 58.4 69.0 59.8 52.2 58.1
72.2 58.6 69.0 59.7 52.5 58.1
72.6 57.9 69.1 59.7 52.1 58.0
72.4 58.4 69.1 59.7 52.5 58.1

mean ± 2std 72.4 ± 0.3 58.3 ± 0.6 69.1 ± 0.1 59.7 ± 0.1 52.3 ± 0.4 58.1 ± 0.1

GPT-4-rank-b(clust 3)

71.7 57.8 68.4 58.7 51.7 57.2
71.8 58.2 68.6 58.5 51.8 57.0
72.2 58.4 69.0 58.9 52.1 57.4
71.9 58.1 68.7 58.7 52.2 57.2

mean ± 2std 71.9 ± 0.4 58.1 ± 0.5 68.7 ± 0.5 58.7 ± 0.3 52.0 ± 0.5 57.2 ± 0.3

Table 9: LLM ranking for "best 7" (best 7 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B+ Chat-
LLaMa-2-7B-FT + EditScorer + T5-11B + CTC-Copy + GECToR-2024) and "clust 3" (clustered 3 single-model
systems: Chat-LLaMa-2-13B-FT + T5-11B + Edit-Scorer). We denote "prompt-a" (top candidate) as "GPT-4-rank-
a", and "prompt-b" (ranking candidates) as "GPT-4-rank-b". We run each prompt four times with randomly shuffled
outputs of single-model systems’ candidates.

CoNLL-2014-test BEA-dev BEA-test
System Precision Recall F0.5 Precision Recall F0.5 Precision Recall F0.5

AGGR-RANK ✚[GPT-4-rank-a(clust 3),
majority-voting(best 7)] 84.0 45.4 71.8 71.7 41.7 62.7 87.5 63.8 81.4

AGGR-RANK ✚[GPT-4-rank-a(clust 3),
GRECO-rank-w(best 7)] 81.9 49.0 72.2 68.3 45.1 61.9 82.4 67.0 78.8

"best 7" (best 7 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT + EditScorer + T5-11B + CTC-Copy + GECToR-2024.
"clust 3" (clustered 3 single-model systems): Chat-LLaMa-2-13B-FT + T5-11B + Edit-Scorer.
*In the paper (Qorib and Ng, 2023), authors prepared different variants of GRECO, each of which is optimized for one test dataset.
**We show mean values across four GPT-4 runs with randomly shuffled single-model systems’ outputs.
✚ We denote 2nd order ensembling (ensembles of ensembles) by capital letters.

Table 10: Second-order ensembling by aggressiveness ranking.

Model Instructions CoNLL-2014-test BEA-dev
are used Precision Recall F0.5 Precision Recall F0.5

LLaMA-2-7B-FT No 69.33 50.26 64.44 59.45 46.29 56.25
LLaMA-2-7B-FT Yes 68.66 54.27 65.20 57.9 48.63 55.77

Chat-LLaMa-2-7B-FT No 67.53 53.59 64.19 58.00 47.37 55.51
Chat-LLaMa-2-7B-FT Yes 70.45 52.59 65.97 59.19 47.81 56.50

LLaMA-2-7B-FT Yes 68.66 54.27 65.20 57.9 48.63 55.77
LLaMA-2-13B-FT Yes 71.49 55.67 67.65 60.28 49.26 57.69

Chat-LLaMa-2-7B-FT Yes 70.45 52.59 65.97 59.19 47.81 56.50
Chat-LLaMa-2-13B-FT Yes 72.35 54.48 67.90 59.04 48.73 56.64

Table 11: Ablation study on instructions’ usage in fine-tuned on W&I dataset Large Language Models.

32

CoNLL-2014-test BEA-dev BEA-test
System Precision Recall F0.5 Precision Recall F0.5 Precision Recall F0.5

majority-voting(best 7), Nmin = 3 83.7 45.7 71.8 71.7 42.2 62.9 87.3 64.1 81.4
majority-voting(best 6), Nmin = 3 85.3 41.7 70.5 73.8 39.1 62.7 89.0 60.6 81.4
majority-voting(best 5), Nmin = 2 83.0 46.3 71.7 71.5 43.2 63.2 86.4 64.7 81.0
majority-voting(best 4), Nmin = 2 86.4 40.4 70.3 74.0 38.8 62.6 88.8 59.9 81.0
majority-voting(best 3), Nmin = 1 82.8 44.1 70.4 70.4 43.1 62.5 85.1 64.5 80.0
majority-voting(best 2), Nmin = 1 86.9 36.3 67.9 72.9 36.4 60.7 86.9 57.8 78.9

"best 7" (best 7 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT + EditScorer + T5-11B + CTC-Copy + GECToR-2024.
"best 6" (best 6 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT + EditScorer + T5-11B + CTC-Copy.
"best 5" (best 5 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT + EditScorer + T5-11B.
"best 4" (best 4 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT + EditScorer.
"best 3" (best 3 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B + Chat-LLaMa-2-7B-FT.
"best 2" (best 2 single-model systems): Chat-LLaMa-2-13B-FT + UL2-20B.

Table 12: Ablation study for majority-voting ensembles.

33

