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Abstract

Estimating item parameters (e.g., the difficulty
of a question) is an important part of modern
high-stakes tests. Conventional methods re-
quire lengthy pilots to collect response data
from a representative population of test-takers.
The need for these pilots limit item bank size
and how often those item banks can be re-
freshed, impacting test security, while increas-
ing costs needed to support the test and taking
up the test-taker’s valuable time. Our paper
presents a novel explanatory item response the-
ory (IRT) model, BERT-IRT, that has been used
on the Duolingo English Test (DET), a high-
stakes test of English, to reduce the length of
pilots by a factor of 10. Our evaluation shows
how the model uses BERT embeddings and
engineered NLP features to accelerate item pi-
loting without sacrificing criterion validity or
reliability.

1 Introduction

The Duolingo English Test (DET) is a test of En-
glish language proficiency that is used for admis-
sions decisions in English medium universities. It
measures the four skills of speaking, writing, read-
ing, and listening. It is delivered remotely to test-
takers’ computers via a desktop application, and it
can be taken any time and at any appropriate loca-
tion with a strong enough internet connection. The
DET’s value proposition to test-takers is that it is
affordable, short in duration, and has a short score
reporting turn-around time.

The DET accomplishes this, in part, by using
computer adaptive test (CAT) administration to
more quickly and accurately estimate test-takers’
language proficiency (Cardwell et al., 2022). A
computer adaptive test (CAT) uses item parame-
ter estimates to adapt to each test-taker by finding
items that will yield maximal information about
their proficiency based on how well they’ve done
so far. Item banks for CATs must be very large to

ensure that test-takers do not have preknowledge
of items (LaFlair et al., 2022; Way, 1998), and they
also require high-quality item parameter estimates
to ensure that items are selected for administration
accurately.

Typically, item parameters are estimated from
hundreds of responses for each item collected via
pilots. However, these pilots take up the test-taker’s
valuable time and increase the costs for the assess-
ment, thus limiting the rate at which new items
can be added to the bank. Explanatory frameworks
that estimate item parameters from item features
have been around for a long time, starting with
Fischer (1973)’s Log Linear Traits Model (LLTM),
and have a rich literature (De Boeck, 2004). These
frameworks can be used to help reduce or eliminate
the need for item piloting by leveraging item fea-
tures to estimate item parameters more accurately
with less response data. This can have positive
downstream effects on test security and on test-
takers. For security, it allows for test developers
to add to, or replace, their item banks at very high
rates, which helps to ensure unique administrations
of tests and reduce the effects of item preknowl-
edge. For test-takers, it reduces the amount of time
they spend responding to unscored test items dur-
ing pilots and reduces the costs of test development.
These cost savings can be passed on to test-takers
and even help lower barriers for less economically
advantaged test-takers.

It is well known in the NLP literature (Ten-
ney et al., 2019; Jawahar et al., 2019) that pre-
trained language models such as BERT (Devlin
et al., 2019) learn text representations that repre-
sent highly general linguistic properties of words
that are useful for a wide range of tasks, includ-
ing estimating the difficulty of text for L2 learners
(Yancey et al., 2021). More recent work has ex-
plored using these text embeddings in explanatory
IRT models to predict parameters for test items.
For example, Benedetto et al. (2021) finetuned
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BERT to predict difficulty using datasets of ed-
ucational questions and real student responses, and
Byrd and Srivastava (2022) combined contextual
embeddings from BERT with additional manually
curated features to predict difficulty and discrim-
ination for general knowledge questions. Similar
work has used BERT to predict the difficulty of
multiple-choice questions (Reyes et al., 2023) and
programming problems (Zhou and Tao, 2020).

One example of using explanatory models this
way is described in our previous work, McCarthy
et al. (2021), which proposed using BERT embed-
dings in a multi-task explanatory item response the-
ory (IRT) framework, called BERT-LLTM, to esti-
mate the item parameters of c-test tasks, a task typ-
ically used to assess L2 language proficiency. This
work introduces a new model, BERT-IRT, which
makes several improvements to this approach:

• BERT-LLTM estimated passage-level diffi-
culty and discrimination. BERT-IRT estimates
these at the word level, which greatly im-
proves criterion validity and reliability.

• The accuracy of BERT-LLTM’s parameter es-
timates is limited by how well the features
predict those parameters, even for items that
have enough observed responses that non-
explanatory IRT models could produce more
accurate estimates. BERT-IRT achieves the
best of both worlds by using residual weights,
which allows it to refine the parameter esti-
mates derived from features based on response
data that has been collected for each item in a
manner similar to Bayesian updating.

• BERT-IRT incorporates engineered NLP fea-
tures that substantially increase the accuracy
of the model’s parameter estimates.

In addition to the offline evaluation on historical
data, we present the results of using this model
to shorten pilots by a factor of 10 on a real-world
high-stakes test of English for L2 learners.

2 Background: Language Assessment

First, we will provide a brief overview of the rele-
vant concepts from language assessment research.

2.1 Item Response Theory (IRT)
Item Response Theory (IRT; (Lord, 2012)) is essen-
tial for most modern high-stakes tests, and for Com-
puter Adaptive Tests (CAT; (Weiss, 1982; Van der

Linden and Glas, 2010)) in particular. IRT mod-
els are statistical models that are used to improve
the time-efficiency and accuracy of assessment by
modeling item characteristics (called “parameters”)
that affect the probability of test-takers of differ-
ent proficiency levels responding to that item cor-
rectly. One of the most common IRT models is the
2PL model (Hambleton et al., 1991), which models
both the relative difficulty of an item and how well
an item discriminates between high and low profi-
ciency test-takers. IRT models are used to quantify
how informative an item will be for a given test-
taker (i.e., by computing its Fisher information),
which is used by CAT algorithms to increase the
efficiency of the test. Additionally, IRT models
are used to produce scores from CAT algorithms
by computing the expected-a-posteriori (EAP) or
maximum-a-posteriori (MAP) of the test-taker’s la-
tent proficiency based on the test-taker’s observed
responses to items and the estimated parameters
for those items (Van der Linden and Glas, 2010).

2.2 Validity & Reliability

Validity and reliability are two key concepts in as-
sessing the quality of scores (Furr, 2021), which
are the main product of an assessment. Validity
refers to the degree to which the score measures
its intended “construct” (i.e., what it’s intended to
measure). One common piece of validity evidence
is criterion validity, which is the test score’s cor-
relation with other known measures of the same
or similar construct. Reliability is the consistency
of the score. This is often measured by taking the
correlation between retests by the same test-taker
(i.e., test-retest reliability).

2.3 The C-Test Task Type

This paper focuses on estimating item parameters
of c-test tasks for L2 learners of English. C-tests
are reading tasks that measure test-takers’ general
language ability (Norris, 2018). As shown in Fig-
ure 1, each c-test task is composed of a paragraph
in which some of the words are damaged by re-
moving the second half of the word. Specifically,
the first and last sentences of the passage are left
intact to provide context, but every other word
of the intermediary sentences is damaged. The
test-takers’ task is to complete all of the damaged
words. Research on c-tests has shown that test-
taker performance on these tasks correlates with
overall language proficiency test scores (Daller
et al., 2021), measures of reading ability (Kho-
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dadady, 2014; Klein-Braley, 1997), as well as vo-
cabulary, and grammatical knowledge (Eckes and
Grotjahn, 2006; Karimi, 2011; Khodadady, 2014).

2.4 Testlets
In our IRT model, we treat each damaged word
as a distinct item with its own parameters. This
essentially makes each c-test task a testlet (Wainer
et al., 2007), where multiple items are adminis-
tered together and share a common context (i.e.,
the passage). In our internal evaluation, we found
that treating each damaged word as a distinct item
dramatically increased criterion validity and re-
liability, as the IRT model was able to account
for the differences in difficulty and discrimination
among words within the passage. Specifically, us-
ing the Spearman-Brown prophecy formula (Allen
and Yen, 2001), we found that we would have to
add 25 % more c-test passages to each test session
in order to achieve the same increase in test-retest
reliability without using testlet scoring.

3 Model

In the following sub-sections, we explain the BERT-
IRT model in detail, starting with explaining the
standard 2PL IRT model in Section 3.1 and then
extending it with an explanatory framework in Sec-
tion 3.2. We then discuss the BERT-IRT model’s
features in Section 3.3, before finally explaining
the training process in Section 3.4.

3.1 The Standard 2PL IRT Model
We start by formally defining the standard 2PL
model, which is extended by our BERT-IRT model.
In the 2PL model, the probability that a test-taker
with proficiency θp will get item i correct depends
on two item parameters:

• The intercept, denoted di, that models the
logit-probability that a test-taker with average
ability will answer the item correctly. This
measures how easy or difficult the item is.

• The slope, denoted ai, that defines how much
that logit-probability changes depending on
a test-taker’s proficiency. This measures how
discriminative the item is.

With these two item parameters, the 2PL model
defines the probability of test-taker p getting item i
correct as:

P (Yp,i = 1) = flogistic (di + aiθp)

where Yp,i ∈ {0, 1} is the test-taker’s grade on
the item.

3.2 Explanatory IRT Framework
In the standard 2PL model, each item parameter
would be estimated by finding the values that best
predict the observed responses for that item. As
in other explanatory IRT frameworks, BERT-IRT
extracts features from items and uses those features
to predict item parameters as functions of those
features. This has two key advantages:

1. This can reduce the amount of response data
needed to estimate accurate parameters.

2. This allows one to estimate item parameters
for novel items for which no response data has
been collected.

However, for an item with many observed re-
sponses, explanatory IRT models may produce less
accurate item parameter estimates than what could
be achieved by non-explanatory IRT models, due to
variance in item parameters that are not explained
by the features. To overcome this, BERT-IRT uses
residual weights to adjust the item parameter esti-
mates of each item based on the observations for
that particular item.

BERT-IRT uses a set of K item features to esti-
mate ai and di. Let Xi,k ∈ R denote the value of
the k-th feature for item i where Xi,0 is a constant
such that Xi,0 = 1 for all i.

An item’s intercept parameter, di, is thus mod-
eled as a linear function of the item’s features, Xi,
plus the item-specific residual, denoted εd,i. The
equation for di thus becomes:

di = εd,i +
K∑

k=0

υkXi,k

where υ ∈ RK+1 is a vector consisting of the
bias term, υ0, and the feature weights.

Slope parameters are defined similarly, but use
a log-linear framework. The formula for slope
parameters is thus:

ai = exp

(
εa,i +

K∑

k=0

βkXi,k

)

where β ∈ RK+1 is the vector consisting of the
bias term and feature weights, and εa,i is the resid-
ual weight. The log-linear framework is often
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Figure 1: Example C-Test Item

closer to the true relationship between the slope
parameters and the item features, has nicer conver-
gence properties, and enforces that slope parame-
ters are positive.

3.3 Model Features
Most of the features used by BERT-IRT are ex-
tracted from the pretrained BERT model by feeding
in the undamaged passage (i.e., the passage with-
out letters omitted from the damaged words). Two
embeddings for each item are used as features:

Passage Embedding (n=768) - This is computed
as the average of the embeddings extracted for
each token in the passage from BERT’s 11th
layer.

Contextual Word Embedding (n=3,072) - This
is computed by concatenating the token’s em-
beddings from the first four layers of BERT.
If the damaged word corresponds to multiple
BERT tokens, then the embeddings for the
applicable tokens are averaged.

Various alternative methods for encoding ctest
items were evaluated in preliminary experiments,
and this approach was found to be among the best.
In particular, we found that using the lowest four
layers of BERT to produce contextual word em-
beddings outperformed using higher layers. We
believe this is because lower layers are better able
to encode surface-level information, such as word
frequency (Jawahar et al., 2019; Li et al., 2021),
that are often important to predicting L2 difficulty
(François and Fairon, 2012).

In addition, BERT-IRT uses 15 engineered NLP
features shown to correlate strongly with c-test item
parameters, specifically:

• The log frequency of the damaged word in the
Corpus of Contemporary American English

(COCA) (Davies, 2008)

• The log frequency of the word in COCA
across the 8 sub-corpora (8 features)

• The log document frequency of the damaged
word in the COCA corpus

• The length of the answer key (i.e., the number
of letters the test-taker must fill in)

• The proportion of vowels in the answer key

• The average log frequency in COCA of each
word in the c-test passage

• The position of the damaged word within the
passage, normalized by the passage’s length

• The conditional probability of the correct
word, given the damaged word, derived us-
ing COCA frequencies (e.g. if the damaged
word is "pass___" and the correct word is “pas-
sage”, how frequently does that word occur
versus alternative solutions such as “passing”
vs. “passers” etc.)

3.4 Model Training

To estimate the model weights,1 we need a train-
ing dataset of graded responses from test-takers.
This consists of a set of test-taker responses repre-
sented as tuples of item, i, test-taker, p, and grade,
g ∈ {0, 1}. We essentially use gradient descent to
perform maximum-a-posteriori (MAP) estimation
of the model weights given the observed response
data. Details are provided in the subsections below.

3.4.1 Model Weights
The model has four vectors of weights that must be
estimated: the intercept bias and feature weights
vector, υ ∈ RK+1, the intercept residuals vector,

1Here, we refer to all of the model’s learnable parameters
as weights to avoid them being conflated item parameters.
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εd ∈ RI , the slope bias and feature weights vector,
β ∈ RK+1, and slope residuals vector, εa ∈ RI ,
where I denotes the number of items in the training
dataset.

3.4.2 Theta Estimates

Since our response data is collected as part of a
high-stakes test of English, we can compute ac-
curate estimates for test-taker proficiency based
on their performance on items whose parameters
are not being estimated (i.e., the section scores for
item types other than c-test). We use these as fixed
estimates for θp during model training. In other pi-
loting designs where this is not possible, we could
treat these proficiencies as weights to be estimated
jointly with the other model weights, but that would
require larger quantities of response data to achieve
comparable performance results.

3.4.3 Regularization

To avoid the model being underidentified, the resid-
ual weights must be regularized. We apply L2
regularization to these parameters. Optimizing the
strength of those L2 penalties is important: if the
L2 penalties are set too low then the model won’t
generalize to new items as well as it could, and if
they are set too high the model will predict item
parameters for items with many observations less
accurately than it could. In this context, these L2
penalties are equivalent to using Gaussian priors
with zero means. The optimal penalty for inter-
cept residuals would be 0.5/σ2

εd
, where σ2

εd
is the

variance in the intercepts that is not explained by
the features. The optimal penalty for slope resid-
uals is likewise. Thus, we treat σ̂2

εd
and σ̂2

εa as
hyperparameters, and set the penalties for inter-
cept residuals and slope residuals to 0.5/σ̂2

εd
and

0.5/σ̂2
εa , respectively.

Since there are many features, we also use L2
regularization on the feature weights. Following
the same convention, we set the coefficients of
these penalties as 0.5/σ̂2

β and 0.5/σ̂2
υ, respectively,

treating σ̂2
β and σ̂2

υ as hyperparameters.

3.4.4 Training Objective

During training, we initialize all weights to zero
and use gradient descent to estimate values for the
model weights that maximize their log posterior-
probability given the test-taker responses in the
training dataset, D. The objective function to be
maximized is thus specified as follows:

∑

(i,p,g)∈D
LL(Φ | Yp,i = g)− 0.5

σ̂2
υ

K∑

k=1

υ2k

− 0.5

σ̂2
β

K∑

k=1

β2
k −

0.5

σ̂2
εa

I∑

i=1

ε2a,i −
0.5

σ̂2
εd

I∑

i=1

ε2d,i

where Φ denotes the set of weight vectors being
estimated (β, υ, εa, and εd) and LL is the log
likelihood function:

LL(Φ | Yp,s) = g · lnP (Yp,i = 1)

+ (g − 1) · ln(1− P (Yp,s = 1))

3.4.5 Tuning Hyperparameters
The large search space resulting from four hyper-
parameters and long training times makes tuning
hyperparameters difficult. For our experiments, we
used a sparse grid search to find acceptable values
for hyperparmeters. Since the optimization of the
residual hyperparameters requires evaluating how
well the model predicts both novel and seen items,
we ensured that the training and evaluation datasets
were split in such a way that the evaluation dataset
included both items that occurred in the training
dataset and items that did not.

We found that even a limited search of the hyper-
parameter space produced good results. However,
there are methods that could be applied to the train-
ing data to estimate σ2

εa and σ2
εd

directly. These
include maximizing the marginal likelihood func-
tion, maximizing an approximation to the marginal
likelihood function, and fully Bayesian methods
implemented via Markov Chain Monte Carlo (Dey
et al., 1997; Lindstrom and Bates, 1990; Pinheiro
and Bates, 1995; Wolfinger, 1993). Future work
could consider the application of these methods.

4 Experiments

Here we present a series of four experiments to
evaluate BERT-IRT using data from the Duolingo
English Test, a high-stakes test of English for L2
learners. In the first experiment, we use offline eval-
uation to analyze the model’s performance when
piloting a new item bank from scratch (i.e., what
we refer to as a “fast-start” scenario). In the second
experiment, we analyze BERT-IRT’s ability to gen-
eralize item parameter predictions to unseen items
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under various conditions. In the third experiment,
we investigate how much each feature contributes
to the estimation of item parameters. Finally, in
the forth experiment, we analyze BERT-IRT’s abil-
ity to leverage response data from an existing item
bank to make predictions for new items with lim-
ited piloting data available (i.e., what we refer to as
a “jump-start” scenario). As part of this, we discuss
the results of using BERT-IRT to add new items to
the test’s item bank with only a tenth of the normal
amount of pilot data.

4.1 Experiment 1. Offline Evaluation in a
Fast-Start Scenario

In this experiment, we do an ablation study to eval-
uate how the model performs when only a limited
amount of response data is available for each item.
Traditionally, a new item bank would be piloted
until 200 observations per item are collected (the
minimum needed for reasonably accurate item pa-
rameters in an unregularized 2PL model). However,
these pilots can be costly and time-consuming, so
with BERT-IRT we hope to be able to achieve simi-
lar or better performance with much shorter pilots.

For this experiment, we retrieved around a year’s
worth of historical response data from the test. The
dataset included around 3,000 c-test passages with
around 50,000 unique items. The unablated dataset
had around 600 observations per item, which were
split into train and evaluation datasets. The training
dataset was sampled to produce ablated training
datasets with observation counts of 5, 10, 20, 40,
80, 160, and 200 observations per item.

We compared BERT-IRT to two baselines:

Post-Pilot Operational 2PL - A non-explanatory
2PL model trained on 200 responses per item
(i.e., the minimal number of responses per
item collected during a standard pilot). This
simulates the performance of using the test’s
operational 2PL model on items that have only
recently been created and piloted.

Regularized 2PL - A non-explanatory 2PL model
trained on the same ablated datasets as BERT-
IRT, where the item parameters are estimated
via maximum-a-posteriori (MAP) estimation
using a Gaussian prior on each parameter.
This regularization is used because unregular-
ized 2PL models will yield very poor results
when trained on fewer than 200 responses per
item.

We then used those trained models to produce
probabilities and scores on the evaluation dataset,
which we evaluated using the following metrics:

Cross-Entropy - The cross-entropy between ob-
served binary grades and their probability as
predicted by the IRT model. This measures
how well the model predicts the probability of
the test-taker responding to an item correctly.

Item Mean Grade R - The Pearson correlation be-
tween each item’s observed mean grade in the
response dataset and it’s predicted mean-grade
according to the IRT model. This mainly mea-
sures the IRT model’s ability to predict the
relative difficulty of each item.

Test-Retest Correlation - The Pearson correla-
tion between c-test scores produced by the
IRT model for any two test sessions taken by
the same test-taker within 30 days of each-
other. This is a well established measure of
score reliability in the assessment research
literature (Furr, 2021).

Internal Validity Coefficient - The Pearson corre-
lation between the c-test score produced by
the IRT model, and the score aggregated from
other sections of the test (using their original
scoring methods). This is a common measure
that is used in the assessment research litera-
ture (Furr, 2021) to measure criterion validity.

The results are shown in Figure 2. These plots
show that the BERT-IRT model always outper-
formed the regularized 2PL model regardless of
the number of responses available for training. Fur-
thermore, these results show that the BERT-IRT
model can achieve similar or better performance
than the operational 2PL model with as few as
50 responses per item, representing a 4X increase
in piloting efficiency. The only metric on which
BERT-IRT did not outperform the Post-Pilot Oper-
ational 2PL baseline was the Internal Validity Co-
efficient. However, given that this is the case even
when BERT-IRT’s test-retest reliability is higher,
this could indicate the BERT-IRT is finding param-
eters that better represent aspects of the construct
that are specific to c-test items. This could increase
test-retest reliability by more accurately measur-
ing the skills needed to answer c-test items, but
lower internal validity because the skills measured
by c-tests are slightly different than those measured
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Figure 2: Experiment 1. Evaluation in a Fast-Start Scenario

by other task types. In any case, the difference in
internal validity is very small (0.78 vs 0.79).

4.2 Experiment 2. Generalization
Experiments

To better understand how the model generalizes
parameter estimates across items, we experiment
with different splits of the same dataset used in Ex-
periment 1. The splits we used are defined below:

Test-Taker - Response data is split such that all
responses for an individual test-taker are as-
signed to either the training or evaluation
datasets. This simulates a fast-start scenario,
as in Experiment 1. Since all items occur in
training, this is essentially a baseline indicat-
ing the ceiling of what should be possible.

Testlet - Response data is split such that all re-
sponses to a given c-test passage (i.e., testlet)
are assigned to either the training or evalu-
ation datasets. This simulates a jump-start
scenario, whereby responses for an existing
item bank are used to estimate parameters for
new items that have little or no pilot data.

Item - Response data is split such that all responses
to a given item are assigned to either training
or evaluation datasets. This investigates how
well the model can predict item parameters
for words in a passage, when there is signifi-
cant response data for other words in the same

Item Mean
Split Cross-Entropy Grade R
Test-Taker 0.38 0.98
Testlet 0.43 0.88
Item 0.42 0.89
Stem 0.52 0.76

Table 1: Comparison of BERT-IRT item parameter esti-
mates when trained on 20 vs 200 responses.

passage. This might be useful if one wanted
to change which words in a passage are dam-
aged based on its predicted item parameters in
order to adjust the c-test passage’s difficulty
or increase is informativeness.

Stem - Responses data is split such that all re-
sponses for items that share a word stem
are assigned to either training or evaluation
datasets. For example, items for “work”,
“worked”, and “works” would all be put on
the same side of the split. For this purpose,
we used the Snowball Stemmer from NLTK
(Porter, 1980; Bird et al., 2009). This evalu-
ates how well the model generalizes to items
assessing previously untested words.

In all cases, we use roughly 80 % of the data
for training and 20 % for evaluation. Since under
these data splits, individual sessions are split across
training and evaluation datasets, its not possible
to compute scores for sessions using just evalua-
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tion data. Hence, for this experiment we use only
metrics that can be computed for individual item
responses: Cross-Entropy and Item Mean Grade R.

The results are shown in Table 1. In the baseline
split, the model almost perfectly predicts the mean
grade of each item over the evaluation dataset, with
a correlation of 0.98. The testlet and item splits
shows that BERT-IRT generalizes very well to un-
seen items, predicting the mean grades of unseen
items with a correlation of 0.88.

Notably, as shown by the stem split, the model’s
ability to predict mean grades for a item degrades
significantly when that item has a novel stem that
the model did not see in training. This shows that
the item’s word stem explains a significant amount
of the variance in the item’s parameters. This is
a very useful property when jump-starting item
parameters using BERT-IRT, because, due to Zipf’s
law, if the existing item bank is sizeable, most items
of newly-created c-test passages will likely share a
word-stem with an existing item from the existing
bank. However, this means items with novel word
stems will likely have less accurate item parameter
estimates until sufficient response data for them
can be collected.

4.3 Experiment 3. Feature Contributions
To better understand the contributions of various
features, we evaluated the importance of each fea-
ture using SHAP values (Lundberg and Lee, 2017).
In the BERT-IRT model, the features only affect the
item parameter estimates through a linear combina-
tion defined by the weight vectors υ and β. As such,
we compute the SHAP values using the same meth-
ods as would be used for linear models using those
weight vectors. To account for correlations among
features, we compute observational SHAP values.
From these we compute the feature importance for
each feature as the mean absolute SHAP value over
all items, and then normalize the resulting feature
importances to sum to 1. Since embeddings consist
of hundreds of features that would be impractical to
list individually, we summarize their importances
by summing the embedding feature SHAP values
for a given item before taking the absolute value
and averaging across items. We also summarize
the 8 genre-specific word-frequency features the
same way.

The results are shown in Figure 3. The features
are presented in the same order as in Section 3.3.
For predicting both intercept parameters and log
slope parameters, the word embedding is very im-

Item Mean
Features Cross-Entropy Grade R
All Features 0.43 0.88
Embeddings 0.44 0.84
Engineered 0.48 0.69

Table 2: Comparison of BERT-IRT performance on the
Testlet split when using different feature sets.

portant, contributing 28 % and 40 % of the predic-
tion, respectively. By comparison, passage embed-
dings are a relatively weak predictor, contributing
only 3 % and 8 % of the prediction, respectively.
The word frequency features are also a very im-
portant predictor, contributing even more than the
word embedding does for predicting intercepts.

Additionally, we did an ablation study by repeat-
ing the Testlet split experiment from Experiment 2,
but using only embedding features or only engi-
neered features (see Table 2). These results show
that while the embedding features perform quite
well on their own, both sets of features complement
each other to yield superior results.

4.4 Experiment 4. Online & Offline
Evaluation in a Jump-Start Scenario

In this experiment, we evaluate how well BERT-
IRT can estimate item parameters for a new pool
of c-test items with only a very short pilot, when
leveraging large amounts of response data from
an existing item bank to learn the relationships
between the item features and item parameters.

To test this scenario, we generated 1,039 new
c-test passages with GPT-3 (Brown et al., 2020),
and piloted them on the test, with each test session
being randomly assigned one unscored pilot c-test
task in addition to its normal 4 scored c-test tasks.
We ran the pilot until we had collected around 20
responses per item. We trained BERT-IRT on both
the response data from the existing bank and the
pilot, and estimated the parameters for all the new
items. In an offline evaluation, we showed that
even if we’d used the existing BERT-IRT parame-
ter estimates to score the pilot c-test tasks instead of
one of the other 4 operational c-test tasks, criterion
validity and reliability would have been negligi-
bly affected. Based on that offline evaluation, we
added the new c-test tasks to the operational bank,
replacing roughly a third of the existing c-test item
bank with only a tenth of the piloting time that
would have otherwise been required. Furthermore,
analyses of the test following the item bank change
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Figure 4: Experiment 4. Evaluation in a Jump-Start Scenario

confirmed that there was no significant impact on
criterion validity or reliability.

Since adding the items to the operational item
bank, we have collected substantial response data
for all the new items, and are able to evaluate the
quality of item parameters that would have been
obtained had they been estimated with more data.
To that end we conducted an ablation experiment
similar to Experiment 1, but in a jump-start sce-
nario (i.e., only the response data for the newly
added items was ablated).

Figure 4 shows the results for Cross-Entropy and
Item Mean Grade R for this ablation study. Simi-
lar to the results in Experiment 1, BERT-IRT out-
performed the operational 2PL model with only a
third of the data. As expected, it also out-performed
the regularized 2PL model when trained on the
same responses data. Importantly, even though a
full third of the c-test item bank was replaced, this
ablation study indicates that the impact on criterion
validity and reliability would be negligible even if
as few as 5 responses per item had been collected
(i.e., the maximum difference between BERT-IRT
and the Post-Pilot Operational IRT was less than
0.001 for both the Internal Validity Coefficient and
Test-Retest Reliability metrics, even when BERT-

IRT was trained on as few as 5 responses for each
of the new items). This finding stands to dramati-
cally boost the rate at which the item bank can be
refreshed.

5 Conclusion & Future Work

In this paper, we demonstrated how an explanatory
IRT model with BERT embeddings and other en-
gineered NLP features can be used to accurately
estimate item parameters for c-test items with lim-
ited piloting data. We showed that the model is
able to use these features to generalize item param-
eter estimates across items, and that both BERT
embeddings and engineered features contribute to
the performance of the model. Furthermore, we
showed how this was used on a high-stakes test of
English to replace a third of its item pool with a
tenth of the data that would normally have been re-
quired. Finally, our ablation study in Experiment 4
showed that we should be able to use BERT-IRT to
reduce the pilot even further with negligible impact
on criterion validity or reliability.

In a future work, we plan to explore similar ap-
plications of NLP and explanatory IRT models to
other item types, and ways to reduce or eliminate
the need for item piloting even further.
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6 Limitations

There are three main limitations to our study:

• As mentioned in Section 3.4.5, this method
could be improved if one were to incorpo-
rate a method to directly estimate the variance
in item parameters that is explained by the
features. However, finding a method that is
tractable for a large number of features is dif-
ficult, and so we leave that to a future work.

• This study only evaluated the model on c-test
tasks. Applications to other task types will
need to be evaluated, and may require differ-
ent features or IRT models to achieve good
results.

• While Experiment 4 showed we successfully
added a large number of c-test items to the
bank with as few as 20 pilot responses per
item, the ablation study that indicates we may
be able to use even fewer pilot responses does
not account for the potential impact that less
accurate item parameters could have on the
efficiency of the CAT algorithm. While we
expect that impact would not significantly
change our results, more study is needed to
ensure that items could safely be added to the
test with fewer than 20 responses per item.
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