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Abstract

This paper reports findings from the First
Shared Task on Automated Prediction of Diffi-
culty and Response Time for Multiple-Choice
Questions. The task was organized as part
of the 19th Workshop on Innovative Use of
NLP for Building Educational Applications
(BEA’24), held in conjunction with NAACL
2024, and called upon the research community
to contribute solutions to the problem of mod-
eling difficulty and response time for clinical
multiple-choice questions (MCQs). A set of
667 previously used and now retired MCQs
from the United States Medical Licensing Ex-
amination (USMLE®) and their corresponding
difficulties and mean response times were made
available for experimentation. A total of 17
teams submitted solutions and 12 teams sub-
mitted system report papers describing their
approaches. This paper summarizes the find-
ings from the shared task and analyzes the main
approaches proposed by the participants.

1 Introduction

For standardized exams to be fair and defensible,
test items must meet certain criteria. One important
criterion for many exams is that the questions cover
a wide range of difficulty levels to allow informa-
tion about a wide range of examinee proficiencies
to be collected effectively. Additionally, it is of-
ten essential to allocate an appropriate amount of
time for each question: too little time can make
the exam speeded, while too much can make it in-
efficient. Often, item difficulty and response time
data are collected via a process called pretesting,
wherein new items appear on live exams alongside
scored items. While robust, the need for a statisti-
cally sufficient sample of examinees to complete
these items restricts the number of items that can

be pretested, potentially leading to overexposure
and jeopardizing item security (Settles et al., 2020).

The problem of estimating item characteristics
with little to no response data is a decades-old re-
search topic. Early studies used what is sometimes
referred to as auxiliary or collateral information—
including various properties of an item’s text—to
improve parameter estimation within a Bayesian
framework (Mislevy, 1988; Stowe, 2002; Swami-
nathan et al., 2003). Recent advances in NLP have
led to a renewed interest in predicting item char-
acteristics based on item text. As with the ear-
lier research, it is hoped that such predictions may
be used to “jump-start” parameter estimation (Mc-
Carthy et al., 2021) allowing items to be exposed
to fewer test-takers, or improve fairness by making
the time intensiveness of test forms that include
pretest items less variable (Baldwin et al., 2020).

While there is evidence that NLP techniques may
offer a potential solution (see Section 2), the ab-
sence of publicly available datasets has resulted in
fragmented efforts to advance the state-of-the-art
in item parameter prediction, impeding meaningful
comparisons between different approaches, exac-
erbating issues of reproducibility, and stifling col-
laboration. Furthermore, as outlined in Section 2,
the existing literature has concentrated on difficulty
prediction, neglecting other crucial item parameters
such as response time, which also have important
implications for exam fairness and validity.

To address these shortcomings and advance this
area of research, we organized the First Shared
Task on Automated Prediction of Difficulty and
Response Time for Multiple Choice Questions1.
The shared task was organized as part of the 19th

1https://sig-edu.org/sharedtask/2024
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Workshop on Innovative Use of NLP for Build-
ing Educational Applications (BEA’24), collocated
with NAACL 2024, and took place between Jan-
uary 15 and March 10, 2024. An ideal shared
dataset for this task would encompass test items
along with their corresponding difficulties and re-
sponse times based on responses collected from
a sufficiently large and diverse examinee sample
under standardized test conditions. To this end, 667
retired clinical multiple-choice questions (MCQs)
from a high-stakes medical exam2 were released
for the exploration of two topics: predicting item
difficulty (Track 1) and predicting item response
time (Track 2). Overall, 48 teams enrolled as par-
ticipants, of which 17 submitted solutions and 12
submitted system review papers describing their
approaches. This paper summarizes the organiza-
tion and main findings from the competition. The
data are available upon request at https://www.
nbme.org/services/data-sharing.

2 Related Work

This section summarizes the main approaches used
in item difficulty and response time prediction re-
search, with special emphasis on clinical MCQs,
the domain of the shared task. For a systematic
review of the literature, we refer the reader to
AlKhuzaey et al. (2023).

2.1 Predicting Item Difficulty

Most of the early research on modeling item diffi-
culty was in the domain of language learning and
used predictors such as lexical, syntactic, statisti-
cal, and readability features. Freedle and Kostin
(1993) and Perkins et al. (1995) used a mix of lexi-
cal and syntactic features, such as vocabulary, sen-
tence and paragraph length, number of negations
and referentials, and lexical overlap between text
and options to determine the difficulty of MCQs
from English foreign language exams and reading
comprehension tests, respectively. These features
were later expanded to cohesion, discourse, and
psycholinguistic features among others (Beinborn
et al., 2014, 2015; Loukina et al., 2016).

Outside the domain of language learning, these
features showed comparatively weaker predictive
power. El Masri et al. (2017) found that linguistic
features were not good predictors for item diffi-
culty in middle-school science items, “likely due

2The United States Clinical Licensing Examination
(USMLE®)

to the extent to which computational linguistic fa-
cilities are less effective with very short textual
materials”. Likewise, Susanti et al. (2017) and
Benedetto et al. (2020) found that readability met-
rics were relatively poor predictors of item diffi-
culty for computer science and English vocabulary
MCQs, respectively.

Consistent with other NLP use cases, more re-
cent studies on item parameter prediction utilize
neural approaches. Huang et al. (2017) used em-
beddings and an attention-based convolutional neu-
ral network to predict the difficulty of reading
items. Hsu et al. (2018) converted items into
word-embeddings, calculated the cosine similar-
ities between stem, answer, and distractors, and
used them to train a support vector machine (SVM)
to predict item difficulty of MCQs from the do-
main of social studies. Zhou and Tao (2020)’s fine-
tuned BERT model (Devlin et al., 2018) achieved
a higher F1-score for predicting item difficulty of
open-ended programming-related questions com-
pared to a Bidirectional Long Short-Term Mem-
ory (BiLSTM) model. Benedetto et al. (2021)
trained a series of BERT and DistilBERT mod-
els with several pre-training steps, including the
use of masked-language modeling. BERT achieved
the highest performance for predicting item diffi-
culty of math and computer science open-ended
questions and MCQs, having surpassed all other
models—including several word-embedding ap-
proaches. Other notable studies in this area include
Loginova et al. (2021) and He et al. (2021).

Item difficulty prediction has also been applied
in efforts to automatically generate items at de-
sired levels of difficulty (e.g., Gao et al. (2018), Bi
et al. (2021)). Some of these approaches assess
the semantic similarity between a question and its
associated answer choices (Alsubait et al., 2013;
Kurdi et al., 2016), while others focus on items that
assess an examinee’s ability to distinguish between
words and pseudo-words, and thus utilize word and
sub-word level predictors (Settles et al., 2020).

2.2 Predicting Item Response Time

The prediction of response time is a less-researched
area, further motivating its inclusion within this
shared task. Early studies included features such
as the sequential position of the item within an
exam (Parshall et al., 1994), the inclusion of vi-
sual aids (Smith, 2000; Swanson et al., 2001), and
word-count (Halkitis et al., 1996; Smith, 2000).
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A 65-year-old woman comes to the physician for a follow-up examination after blood pressure measurements were
175/105 mm Hg and 185/110 mm Hg 1 and 3 weeks ago, respectively. She has well-controlled type 2 diabetes mellitus.
Her blood pressure now is 175/110 mm Hg. Physical examination shows no other abnormalities. Antihypertensive therapy
is started, but her blood pressure remains elevated at her next visit 3 weeks later. Laboratory studies show increased plasma
renin activity; the erythrocyte sedimentation rate and serum electrolytes are within the reference ranges. Angiography shows
a high-grade stenosis of the proximal right renal artery; the left renal artery appears normal.
Which of the following is the most likely diagnosis?
(A) Atherosclerosis
(B) Congenital renal artery hypoplasia
(C) Fibromuscular dysplasia
(D) Takayasu arteritis
(E) Temporal arteritis

Table 1: An example of a practice item from the USMLE Step 1 Sample Test Questions (usmle.org). © 2024
National Board of Medical Examiners and the Federation of State Medical Boards, used with permission.

Schneiderand et al. (2023) is one of the few stud-
ies that used text-based features to predict student
response time for items on multiple topics, ranging
from everyday life to personality and politics. They
trained models such as stochastic gradient boost-
ing (SGB), SVM, and random forests (RF) on 51
features including question length, lexical diversity,
and readability features, such as number of com-
plex words, with SGB achieving best performance.

2.3 Focus on Clinical MCQs

The studies most relevant to this shared task are the
ones focused on predicting characteristics of clini-
cal MCQs from the USMLE exam. These include
Ha et al. (2019), who used a 113 linguistic fea-
tures and different embedding types to predict the
difficulty (proportion correct responses) of 12,038
items. This study indicated that predicting item dif-
ficulty for this domain is a challenging task, with
Root Mean Squared Error (RMSE) of .225 for the
best result compared to a dummy regressor base-
line of .237. Baldwin et al. (2020) built upon this
study by applying the same predictors to the prob-
lem of modeling response time, and showed that
exam fairness can be improved through meaningful
reductions in the variability of time intensiveness
across test forms when predicted response times
for pretest items are taken into accounted during
form assembly. Xue et al. (2020) applied trans-
fer learning to the prediction of item parameters
and showed that the prediction of difficulty can be
improved by incorporating response time during
training, but not vice-versa. Yaneva et al. (2020)
aimed to automatically identify items that meet
statistical criteria for live use in terms of both dif-

ficulty and discrimination3. Yaneva et al. (2021)
examined the relationship between the linguistic
characteristics of a test item and the complexity of
the response process required to answer it correctly,
defined as the interaction between difficulty and
response time. The methods used in these studies
are summarized in Yaneva et al. (2023), which was
written for educational measurement professionals
and provides an overview of the applications of
NLP methods to this task.

3 Shared Task Description

The data for the shared task comprises 667 previ-
ously used and now retired MCQs from Steps 1, 2
CK, and 3 of the United States Medical Licensing
Examination (USMLE®). USMLE is a sequence
of examinations (called Steps), developed by the
National Board of Medical Examiners (NBME®)
and Federation of State Medical Boards (FSMB),
that is used to support medical licensure decisions
in the United States. Each step includes 7 to 12
blocks of MCQ items (a block ranges between 45
and 60 minutes), and each item is answered by ap-
proximately 300+ examinees. Item characteristics
used in this shared task were based on examinees
who were medical students from accredited4 US
and Canadian medical schools taking the exam for
the first time.

An example practice item from the dataset is
given in Table 1. The part describing the case is
referred to as stem, the correct answer is referred to
as key, and the incorrect answer options are known
as distractors. All items test medical knowledge

3Item discrimination is a measure of the extent to which an
item differentiates between students of different proficiency.

4Accredited by the Liaison Committee on Medical Educa-
tion (LCME).
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and were written by experienced subject-matter
experts following a set of guidelines. These guide-
lines stipulate adherence to a standard structure, as
well as the avoidance of extraneous material not
needed to answer the item, information misleading
the test-taker, or correct answers that are longer or
more specific than the other options.

Each item is tagged with metadata indicating
whether or not it contains an image, the Step exam
it was presented on, as well as Difficulty and Re-
sponse Time data, as shown in the structure below:

• ItemNum denotes the consecutive number of
the item in the dataset (e.g., 1,2,3,4,5, etc).

• ItemStem_Text: the text of the item stem (the
part of the item describing the clinical case).

• Answer_A: the text for response option A

• Answer_B: the text for response option B

• (. . . )

• Answer_J: the text for response option J. For
items with fewer than J response options, the
remaining columns are left blank. For exam-
ple, if an item contains response options A to
E, the fields for columns F to J are left blank
for that item.

• Answer_Key: the letter of the correct answer.

• Answer_Text: the text of the correct answer.

• ItemType: whether the item contained an im-
age (e.g., an x-ray image, picture of a skin
lesion, etc.) or not. The value “Text” denotes
text-only items and the value “PIX” denotes
items that contain an image. Note that the
images are not part of the dataset.

• EXAM: The USMLE Step (1, 2 or 3) the item
was presented on. For more information on
the Steps of the USMLE see https://www.
usmle.org/step-exams.

• Difficulty: The (linearly-transformed) propor-
tion of correct responses across all examinees
who attempted a given item during a live exam.
After the transformation, higher values indi-
cated more difficult items.

• Response_Time: arithmetic mean response
time, measured in seconds, across all exam-
inees who attempted a given item on a live
exam. This includes all time spent on the item
from the moment it is presented on the screen
until the examinee moves to the next item, as
well as any time spent revisiting the item.

The task was divided in two tracks as follows:

• Track 1: Given the item text and metadata,
predict the item difficulty variable.

• Track 2: Given the item text and metadata,
predict the time intensity variable.

Out of the full sample, 466 items were made
available as a labeled training set and the other 201
items were retained as an evaluation set. Train-
ing data outside of the specified training set were
allowed, provided these data were publicly avail-
able and their license allows use for research pur-
poses. Use of one target variable in the prediction
of another was not permitted, since in most cases,
predicting these variables will be most beneficial
prior to the collection of response data—at which
time neither the difficulty nor the time intensity
parameters can be estimated.

Submissions were requested as separate .csv files
for each track. Each file had to contain the item
number (Item_Num) and corresponding predicted
value for each item. Teams were allowed to sub-
mit up to three attempts per track, differentiated by
adding run1, run2, or run3 to the name of their up-
loaded .csv file; however, such teams were required
to explain how each attempt differed within their
system report paper—i.e., changes in methodology,
parameters, models used, prediction strategy, etc.

In both tracks, the evaluation was based on
RMSE, and teams that achieved the lowest RMSE
value were considered winners. There were two
separate leaderboards for Track 1 and Track 2. In
both, submissions were ranked according to the
RMSE metric from Python’s scikit-learn library
(Pedregosa et al., 2011).

4 Results

A total of 17 teams submitted up to 3 solutions
for item difficulty prediction and 15 teams sub-
mitted up to 3 solutions for response time pre-
diction. Table 2 presents ranked results for the
top 15 solutions in both tracks. The full leader-
board is available at https://sig-edu.org/
sharedtask/2024#results.

In Track 1, Predicting Item Difficulty, there are
minor differences between the RMSE of the top
15 solutions; however, even the best solution out-
performed the baseline by only a small margin (#1,
EduTec = 0.299, #16, DummyRegressor = 0.311).
These results are consistent with the prior literature
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Difficulty Response Time

Rank Team Name Run RMSE Rank Team Name Run RMSE

1 EduTec electra 0.299 1 UNED run2 23.927
2 UPN-ICC run1 0.303 2 ITEC Lasso 24.116
3 EduTec roberta 0.304 3 UNED run1 24.777
4 ITEC RandomForest 0.305 4 UNED run3 25.365
5 BC ENSEMBLE 0.305 5 EduTec roberta 25.64
6 Scalar Predictions 0.305 6 EduTec electra 25.875
7 BC FEAT 0.305 7 UnibucLLM run3 26.073
8 BC ROBERTA 0.306 8 ED run1 26.57
9 UnibucLLM run1 0.308 9 Rishikesh 1 26.651

10 EDU Run3 0.308 10 UnibucLLM run2 26.768
11 EDU Run1 0.308 11 UnibucLLM run1 26.846
12 ITEC Ensemble 0.308 12 SCaLARlab run3 26.945
13 UNED run3 0.308 13 Scalar predictions 26.982
14 Rishikesh 1 0.31 14 EduTec deberta 27.302
15 Iran-Canada run2 0.311 15 EDU Run1 27.474

16 Dummy Regressor Baseline 0.311 25 Dummy Regressor Baseline 31.68

Table 2: Top 15 leaderboard results for Track 1: Difficulty and Track 2: Response Time

on clinical MCQs presented in Section 2.3, under-
scoring the challenging nature of the task. In Track
2, Response Time, the solutions are relatively more
successful compared to the DummyRegressor base-
line (#25 DummyRegressor, RMSE = 31.68), with
the #1 solution obtaining RMSE of 23.927.

Of the 17 teams who submitted solutions, 12
submitted system report papers, which are summa-
rized below (10 papers for both Track 1 and Track
2, and 2 papers only for Track 1).

5 Main Approaches

The solutions submitted by the participants encom-
passed several approaches that had not been previ-
ously applied to the problem of modeling item char-
acteristics. Some of these were comparatively sim-
pler models that performed unexpectedly well, such
as the case of the submission that ranked #1 in pre-
dicting response time (Rodrigo et al., 2024). In the
case of modeling item difficulty, several approaches
used classical methods such as linguistic features
combined with embeddings but expanded the set
of features to include novel predictors. These tra-
ditional solutions were not as successful for item
difficulty prediction, which favored more novel ap-
proaches. These novel approaches can be broadly
categorized as transformer model modifications,
question answering using LLMs, and data augmen-
tation techniques. These categories are not neces-
sarily mutually exclusive (e.g., some approaches
use both data augmentation and linguistic features);
however, we found this broad classification scheme
useful in describing the submitted solutions, as

shown below. The main techniques used in the
studies are further summarized in Section 5.6.

5.1 Efficient solutions that performed well

Well-performing solutions include the ones pro-
posed by UNED (Rodrigo et al., 2024), who fo-
cused on feeding combinations of the full item,
stem and correct answer, or stem only into a BERT
base model (Devlin et al., 2018). The three submis-
sions differed only by these input configurations
and were the same for both tracks (with different
target variables). There was no special preprocess-
ing and the tokenzier was the one provided by the
BERT model. The target variables were both scaled
[0-1]. Perhaps somewhat surprisingly given its sim-
plicity, this system ranked #1 for response time
prediction (RMSE of 23.927 with text and correct
answer as input) and #13 for difficulty prediction
(RMSE of 0.308, stem only).

Scalar (DataWizards) concatenated BERT em-
beddings with TF-IDF encodings for item diffi-
culty prediction and Word2Vec embeddings with
TF-IDF encodings for response time prediction.
These representations of different item components
(e.g., stem only or stem + answer options) were
used as predictors in various models, of which RF
performed best. This solution ranked #6 for pre-
dicting item difficulty (RMSE = 0.305) and #13 for
response time (RMSE = 26.982).

These solutions serve as an important benchmark
for the added value provided by the linguistic fea-
tures, question-answering techniques, and model
optimization approaches presented next.
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5.2 Transformer model modifications

The solution that ranked #1 for predicting difficulty
was from the category of novel model optimiza-
tion techniques. EduTec (Gombert et al., 2024)
proposed optimizing pre-trained transformer en-
coder language models using three modifications.
The first modification was the use of scalar mix-
ing, which is a procedure that calculates a weighted
mean of all hidden layers of the transformer (the
weights are fit during training). Scalar mixing is hy-
pothesized to be helpful because, as different layers
within transformer models learn representations for
different linguistic phenomena, it allows the use of
representations from all these different layers (as
opposed to the final layer alone), while simultane-
ously learning their importance for the final output.
The second modification was a two-layer setup for
the classification heads, where the input from the
intermediate layer was run through a rational ac-
tivation: a form of learnable activation function
whose shape is optimized during training. This
type of activation function was shown to outper-
form non-learnable activation functions. Third, the
authors used multi-task learning to learn shared rep-
resentations for both difficulty and response time,
motivated by the observed correlation between the
two variables within the training set. The architec-
ture described so far was evaluated with different
transformer encoder models, of which ELECTRA
achieved #1 in the shared task leaderboard for dif-
ficulty prediction with an RMSE of 0.299 and #6
on the leaderboard for response time prediction
(RMSE = 25.875). RoBERTa achieved #5 for re-
sponse time prediction with an RMSE of 25.64.

5.3 Question answering using LLMs

Two teams used responses from LLMs to extract
predictive features or perform data augmentation.

UPN-ICC (Dueñas et al., 2024) investigated the
hypothesis that item difficulty depends more on
the features of the test-taking population than on
the items themselves. They simulated medical stu-
dents’ answers to the MCQs by prompting chat-
GPT 3.5 in four different settings: i) answering
each question and providing a brief justification
for the response, ii) providing a yes/no response
for each answer option on whether it is the correct
answer, iii) randomly removing 20% of the content
tokens from the stem to simulate examinees who
did not read the item carefully, and iv) all of the

above but with a varying temperature parameter5.
The justification behind iv) is the hypothesis that
items that are only answered correctly under a low
temperature condition can be considered difficult,
while items answered correctly under any temper-
ature can be considered easier. Next, the authors
extracted more than 40 features from the gener-
ated output of the question-answering experiments.
Examples of such features include “A Boolean in-
dicating whether or not the question was answered
correctly by the LLM” and “Time in milliseconds
reported by the LLM to answer the question” for
condition i), “Number of sub-items answered cor-
rectly for the item” for condition ii), “Boolean indi-
cating if the LLM answered correctly the question
in spite of the stem being mutilated at 20% of its
content words (other six features for 30%, 40%,
50%, 60%, 70%, and 80%” for condition iii), and
“Number of incorrect answers for the item out of
the 11 values of t [temperature] used” for condition
iv). These features were used as input for a Ridge
regression model, which ranked #2 in difficulty
prediction (RMSE = 0.303). While the indicator
of whether the question was answered correctly
emerged as the most significant feature, all four
strategies produced meaningful predictors.

UnibucLLM (Rogoz and Ionescu, 2024) hypoth-
esized that the number of LLMs that answer an
item correctly can be an indicator of its difficulty.
In a zero-shot setup, they obtained responses from
three LLMs (Falcon-7B, (Almazrouei et al., 2023),
Meditron-7B (Chen et al., 2023), and Mistral-7B
(Jiang et al., 2023)). They then created variations of
the input that included the item text only or the item
text together with the LLM responses. This input
was used to finetune a pretrained BERT model and
a pretrained GPT-2 model (Radford et al., 2019).
The best solution for difficulty prediction was the
BERT model finetuned over the item text + the
answer text + the LLM-generated answers, which
placed #9 with an RMSE of 0.308, showing a posi-
tive effect from the LLMs. For predicting response
time, GPT-2 + original item text reached #7 with
an RMSE of 26.073.

5.4 Data Augmentation
EDU (EduNLP) (Veeramani et al., 2024) incorpo-
rated additional data from the “Test of Narrative
Language” assessment (TNL) (Fisher et al., 2019)

5A parameter that controls the level of randomness of the
LLM output, ranging between p= 2.0 (maximum randomness)
and p = 0.0 (fully deterministic).
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to use in an auxiliary task. For both the shared task
data and the TNL data, the authors first prompted
three LLMs to annotate named entities within the
data. Then, they passed each sentence with its an-
notated named entities as input to the LLMs, this
time for the task of semantic role labeling6. Next,
the LLMs were provided with the item, named en-
tities, semantic roles, and the correct answer, and
prompted to summarize the association between
these and each answer option. The models then
were instructed as follows: “Depending on the dif-
ficulty level of the linkages between input context
and [answer options], assign the input context a
score in the range of 0 to 1.4”. The best run from
this approach ranked #10 for difficulty prediction
(RMSE = 0.308). For modeling response time, the
authors added numeric and syntactic features from
LingFeat (Shaikh et al., 2022), resulting in #15
rank and an RMSE of 27.474.

SCaLARlab (Ram et al., 2024) performed data
augmentation by utilizing LLMs to generate ad-
ditional items with difficulty values above 0.7, to
balance the training set. Three models were trained
on the augmented dataset: i) BioBERT + Linguis-
tic features as input to two different neural net-
work architectures, ii) Word2Vec embeddings as
input to various regressor models (e.g., RF, KNN,
SVM), and iii) combinations of BioBERT + Lin-
guistic features as input to the regressor models.
The best run resulted in a rank of #19 for difficulty
(RMSE = 0.315) and #12 for response time (RMSE
= 26.945).

5.5 Linguistic features + embeddings
A number of teams experimented with combining
various linguistic features with embeddings and
performing model ensembling.

ITEC (Tack et al., 2024) extracted features from
the Linguistic Inquiry and Word Count tool (LIWC-
22) (Pennebaker et al., 2022) and TAALES 2.2
(Kyle and Crossley, 2015), which include classic
linguistic features, as well as features that were not
previously applied to this domain such as authen-
ticity, clout, emotional tone, and academic vocab-
ulary, among others. To these, the authors added
Bio_ClinicalBERT embeddings (Alsentzer et al.,
2019) for different combinations of item compo-
nents (e.g., stem only, answer option only, etc.).
These features were used as input to various re-

6The authors also use Longformer (Beltagy et al., 2020)
for named entity recognition and AllenNLP SRL (Gardner
et al., 2018) for semantic role labeling.

gression models following feature selection and
dimensionality reduction procedures. The authors
also experimented with finetuning clinically pre-
trained BERT variations in a multi-target regression
setting, as well as combining the output from all
of these models into an ensemble. Best results for
difficulty prediction were from RF, ranking #4 with
an RMSE of 0.305, while a lasso model ranked
#2 for response time prediction (RMSE = 24.116).
The LWIC feature indicating the degree of “ana-
lytical thinking” for the answer options emerged
as particularly noteworthy for predicting response
time and, to a slightly lesser extent, difficulty.

Iran-Canada (Yousefpoori-Naeim et al., 2024)
experimented with various features (including Coh-
Metrix (Graesser et al., 2004) and number of med-
ical terms) and MPNet embeddings (Song et al.,
2020) as input to 15 regression models. After per-
forming feature selection, they found that “the ad-
dition of embeddings only slightly enhances model
performance”, and that ensembling did not lead to
major improvement. Notable features for difficulty
prediction were related to cohesion, while for re-
sponse time were related to length and presence
of medical terms. The best run resulted in a rank
of #15 for difficulty (RMSE = 0.311) and #18 for
response time (RMSE = 28.714).

BC (Felice and Duran Karaoz, 2024) experi-
mented with three approaches: i) a linear regression
model using linguistic features similar to those in
Ha et al. (2019), ii) several transformer models,
of which RoBERTa (Liu et al., 2019) performed
best, and iii) a linear regression ensemble built on
the predictions of the previous two models. These
systems ranked #7, #8, and #5, respectively, with
an RMSE of 0.305 for the ensemble model for dif-
ficulty prediction. The BC team did not participate
the response time track.

Rishikesh (Fulari and Rusert, 2024) combined
embeddings from PubMedBERT-MS-MARCO
(Deka et al., 2022) with linguistic features as input
for a number of neural and non-neural models. The
best run ranked #14 for difficulty (RMSE = 0.31)
and #9 for response time (RMSE = 26.651).

BRG (Bulut et al., 2024) used Coh-Metrix fea-
tures and BiomedBERT embeddings (Gu et al.,
2021) within a lasso model following dimension-
ality reduction through PCA (Wold et al., 1987).
This approach ranked #20 for predicting item diffi-
culty (RMSE = 0.318) and #24 for response time
(RMSE = 31.48).
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5.6 Summary of techniques

Overall, the teams explored a wide variety of ap-
proaches, many of which performed similarly de-
spite using different models and predictors.

Most teams experimented with all parts of the
items (i.e. stem, options, correct answer), but
some found different parts to be more appropri-
ate for different tasks. The teams that used scaling
were more successful, although their success can-
not be solely attributed to this procedure. A variety
of linguistic feature sets were explored: LWIC-
22, TAALES 2.2, Coh-Metrix, SMOG, Lengths,
LingFeat, as well as linguistic features from Ha
et al. (2019) and Yaneva et al. (2020). The em-
bedding types that were explored include TF-IDF,
BERT, Word2Vec, Bio_ClinicalBERT, Clinical-
Longformer, BERT-clinical_qa, BiomedBERT, Fas-
text, Bio-BERT, RoBERTa, DeBERTa, ELECTRA,
MPNet, and PubMedBert-MS-MARCO. For fea-
ture engineering, the teams utilized correlation
studies, multicolinearity reduction, AIC, BIC, and
PCA to reduce the number of features. The model-
ing was performed using both traditional machine
learning models (e.g., linear regression, Ridge,
Lasso, ElasticNet, SGD, SVM, DT, RF, KNN,
etc.) and finetuning neural models (BERT, GPT2,
RoBERTa, bioBERT, XLNet, DeBERTa, Distil-
BERT). Customization techniques included scalar
mixing, Rational Activation, multi-task learning,
and a custom ANN. There was a variety of cross
validation techniques: two teams used 5-folds, an-
other two used 10-folds, and one used 5x5-fold;
one team split training data into 80% and 20% train-
ing and development portions, and another split it
90% and 10% 30 times.

6 Discussion

The presented Shared Task is the first effort to
benchmark the success of different methodologies
on a common dataset of MCQs with known dif-
ficulties and response times. Several innovative
approaches, previously unexplored in this context,
were formulated. The findings are consistent with
prior work, which showed that, for clinical MCQs,
the prediction of item difficulty is more challenging
than the prediction of response time.

6.1 Model Performance

For difficulty prediction, the models surpassed the
baseline by a slight margin, with minimal variance
among the solutions despite their distinct method-

ologies. One reason for the challenging nature of
this task could be the homogeneity of the test-taker
sample: the majority of questions were answered
correctly by most examinees, who were highly able
and motivated medical students taking the exams
under high-stakes conditions as a requirement for
obtaining a professional license. The models may
perform differently when applied to exams target-
ing, for instance, K-12 students, where test-taker
ability has higher variance, and difficulty distribu-
tions are more variable and less skewed. In addi-
tion, the comparable results achieved by different
approaches imply multiple avenues for extracting
predictive signal. An important question is whether
these approaches would complement each other
resulting in improved predictions.

When predicting response time, a wider vari-
ance in performance was observed, both among
different models and in comparison to the baseline.
A somewhat unexpected finding was the superior
performance of a model solely utilizing a BERT
Base model, surpassing other solutions. Another
observation was the relative success of models uti-
lizing linguistic features for predicting response
time compared to their performance with predict-
ing difficulty. Since the literature on predicting
item response time is rather limited, it is not yet
possible to draw inferences on how these findings
compare to other exam domains.

6.2 Limitations

In formulating the shared task, we made several
design choices, each contributing distinct strengths
and limitations to this study.

The first decision involved utilizing proportion
correct responses (known in the measurement liter-
ature as p-values) as the measure of item difficulty.
P-values describe the interaction between an item
and a sample of examinees. This sample depen-
dency means that difficulty will only be comparable
across items to the extent that the examinee sam-
ples used to calculate them are equivalent across
items. (For this reason, difficulty parameters ob-
tained using Item Response Theory (IRT) are often
preferable to p-values, since they are sample inde-
pendent.) A similar dependency exists for mean
response time. For the data used in this shared task,
examinees were randomly assigned to test forms
within cohort and cohorts were reasonably stable
over time making the p-values and mean response
times sufficiently comparable for many expected
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applications.

The second design consideration was whether
(and, if so, how) to rescale the target variables. Be-
cause normal distributions have many useful prop-
erties and most parametric tests make a normality
assumption of one kind or another, it is not uncom-
mon to transform data such that they approximate a
normal distribution. For proportion correct, a logit
transformation often accomplishes this; and for re-
sponse times, a log transformation is typical. Such
transformations will be familiar to researchers ac-
customed to working with these kinds of data and
for many applications transformations like this are
justified and sensible. Nevertheless, because there
are other occasions when it may be preferable to
keep values on their original scale, it is necessary
to carefully consider an intended application for a
dataset before deciding how it should be rescaled.

For example, when RMSE is used to evaluate
predicted values—as it was for this shared task—
nonlinear transformations have the effect of weight-
ing errors differently depending on the values of
the predictions and the target variables. Under
these conditions, applying a logit transformation to
proportion correct values would have the effect of
weighting errors for values nearer to 1 or nearer to
0 more than the errors for values nearer to .5. While
this may be desirable for certain applications, here
we choose to leave the question of application open
and weight all errors equally. To this end, only a
linear transformation was applied to the proportion
correct values and mean response times were left
untransformed. Participants were, of course, free
to transform the data in any manner they deemed
helpful provided their predictions were submitted
on the scale of the original values.

Third, the data for this task was limited to clini-
cal MCQs, limiting the inferences that can be made
about the generalizability of these methodologies
to other domains. How the approaches generalize is
an empirical question, however, one can speculate
that they might be less effective in a math exami-
nation where items often contain minimal text, and
more beneficial in reading-comprehension exami-
nations where the text’s complexity may be delib-
erately varied to manipulate difficulty. In an ideal
world, future shared tasks on this topic should span
multiple content domains and examinee popula-
tions with different characteristics, while remaining
equally rigorous in terms of the conditions under
which the examinee responses were collected.

6.3 Ethical Considerations

The data used in the Shared Task were obtained
with the explicit permission of the data and copy-
right owners for the purposes of the Shared Task.
Beyond this competition, the data are available
upon request, following a data use agreement in-
tended to ensure, to the extent possible, its ethical
use in research. Test taker responses were used
in aggregate, such that it is not possible to trace
responses to individual examinees.

6.4 Impact

While benchmarking and fostering novel method-
ologies is a key contribution of this Shared Task,
its impact reaches further. The competition spurred
the development of a body of research on modeling
item response time, a considerably less explored
area. Moreover, many solutions were not narrowly
tailored to the clinical realm and are potentially
applicable to diverse domains and datasets. Fur-
ther still, it is notable that the significance of these
studies is not limited to the field of education—
difficulty assessment beyond mere readability is
an exciting frontier with implications for cognition
and machine comprehension.

7 Conclusion

The First Shared Task on Automated Prediction of
Difficulty and Response Time featured a set of 667
MCQs from a high-stakes clinical exam. Seven-
teen teams submitted solutions and twelve teams
submitted system report papers. For Track 1, Item
Difficulty Prediction, the best-performing solution
achieved an RMSE of 0.299 compared to the Dum-
myRegressor baseline of 0.311. For Track 2, Re-
sponse Time Prediction, the best solution achieved
an RMSE of 23.927 compared to 31.68 for the
baseline. The paper summarized the methodolo-
gies proposed by the participants and discussed the
contributions and limitations of the competition.

Despite the progress made, the challenge of pre-
dicting item characteristics remains formidable.
Meeting this challenge necessitates not only the
continued development of innovative methodolo-
gies but also the establishment of shared resources,
such as public datasets containing reliable parame-
ter estimates across various domains. Such efforts
will facilitate cross-domain evaluation, fostering
a more comprehensive understanding of the un-
derlying mechanisms driving item difficulty and
response time prediction.
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