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Abstract

This paper presents the results of our participa-
tion in the BEA 2024 shared task on the auto-
mated prediction of item difficulty and item re-
sponse time (APIDIRT), hosted by the NBME
(National Board of Medical Examiners). Dur-
ing this task, practice multiple-choice questions
from the United States Medical Licensing Ex-
amination® (USMLE®) were shared, and re-
search teams were tasked with devising systems
capable of predicting the difficulty and average
response time for new exam questions.

Our team, part of the interdisciplinary itec re-
search group, participated in the task. We ex-
tracted linguistic features and clinical embed-
dings from question items and tested various
modeling techniques, including statistical re-
gression, machine learning, language models,
and ensemble methods. Surprisingly, simpler
models such as Lasso and random forest re-
gression, utilizing principal component features
from linguistic and clinical embeddings, outper-
formed more complex models. In the competi-
tion, our random forest model ranked 4th out of
43 submissions for difficulty prediction, while
the Lasso model secured the 2nd position out
of 34 submissions for response time prediction.
Further analysis suggests that had we submit-
ted the Lasso model for difficulty prediction,
we would have achieved an even higher rank-
ing. We also observed that predicting response
time is easier than predicting difficulty, with
features such as item length, type, exam step,
and analytical thinking influencing response
time prediction more significantly.

1 Introduction

In the medical domain, standardized tests act as
crucial gatekeepers, allowing only the best health-
care professionals into the field. An example is
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Innovation & Entrepreneurship (VLAIO)

the United States Medical Licensing Examination®
(USMLE®), a high-stakes exam administered by
the National Board of Medical Examiners (NBME)
to assess a medical student’s ability to provide safe
and effective patient care. However, for these ex-
ams to accurately gauge the competency of medi-
cal students, organizations like the NBME metic-
ulously design their assessments, with a specific
focus on balancing the difficulty and response time
of exam questions. This is essential for ensuring
the fairness and validity of the exams, as test items
should cover a wide range of difficulty levels, and
each question should be allocated an appropriate
amount of time.

Prior studies by NBME researchers have shown
that predicting the difficulty and response time
of medical exam questions is a challenging task
(Ha et al., 2019a; Xue et al., 2020; Yaneva et al.,
2020, 2021). As a result, the NBME launched
an international challenge where they provided re-
searchers with a set of retired exam questions from
the USMLE®. Research teams were tasked with
developing a system or model that takes as input
a multiple-choice question and produces as out-
put two estimates: (a) how challenging it is for
test-takers and (b) how long it would take them
to respond (see Figure 1 for an illustration). The
comprehensive details and results of this shared
task are outlined in the overview paper authored by
Yaneva et al. (2024).

We participated in the competition with the
ITEC1 team, an interdisciplinary research group
affiliated with KU Leuven and imec. Our collab-
orative efforts span various fields, including arti-
ficial intelligence, educational sciences, language
technology, machine learning, psychometrics, and
statistical modeling. Our strategy involved a fu-
sion of statistical models, machine learning mod-
els, and language models. We integrated traditional

1https://itec.kuleuven-kulak.be
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A 65-year-old woman comes to the physician for a
follow-up examination after blood pressure
measurements were 175/105 mm Hg and 185/110
mm Hg 1 and 3 weeks ago, respectively. She has
well-controlled type 2 diabetes mellitus. Her blood
pressure now is 175/110 mm Hg. Physical
examination shows no other abnormalities.
Antihypertensive therapy is started, but her blood
pressure remains elevated at her next visit 3 weeks
later. Laboratory studies show increased plasma
renin activity; the erythrocyte sedimentation rate and
serum electrolytes are within the reference ranges.
Angiography shows a high-grade stenosis of the
proximal right renal artery; the left renal artery
appears normal.

Which of the following is the most likely
diagnosis?

ITEM DIFFICULTY  
is measured as the

proportion of examinees
who answered the item
correctly, with a linear
transformation: lower
values indicate lower

difficulty, higher values
indicate higher difficulty.

RESPONSE TIME 
is measured as

the arithmetic mean
response time, measured

in seconds, across all
examinees who

attempted a given item in
a live exam. This includes
all time spent on the item

from the moment it is
presented on the screen
until the examinee moves
to the next item, as well

as any revisits.

Atherosclerosis

Congenital renal artery hypoplasia

Fibromuscular dysplasia

Takayasu arteritis

Temporal arteritis

(A)

(B)

(C)

(D)

(E)

0.60

87.78

Figure 1: Example of a multiple-choice question from
the USMLE® Step 1 provided by the NBME during the
shared task’s training phase. Each question had an item
stem and up to ten possible answers and was labeled
with item difficulty and average response time.

feature engineering with contemporary fine-tuning
and transfer learning approaches. The following
sections will delve into our method and results.

2 Method

The shared task unfolded into two phases. Dur-
ing the training phase, spanning from January 15
to February 9, 2024, we received 466 multiple-
choice questions along with additional metadata,
such as the item type and exam step. Our goal in
this phase was to develop models that could predict
two key targets: item difficulty and response time.
Transitioning to the evaluation phase, which took
place from February 10 to February 16, 2024, we
received an additional set of 201 multiple-choice
question items, accompanied by the same supple-
mentary metadata, excluding the two targets. Uti-
lizing our top-performing models from the previous
phase, our focus was on predicting the unknown
targets of difficulty and response time. Each target
allowed up to three final predictions to be submit-
ted, and the submissions were then ranked based on
the Root Mean Squared Error (RMSE). In this sec-
tion, we provide more detailed information about
our methodology.

2.1 Feature Extraction
As an initial step, we began by extracting features
from the multiple-choice questions. Drawing from
prior studies (e.g., Ha et al., 2019b), we employed
various methods to transform the test items and
answer choices into meaningful representations.

First, we used features that we could extract and
compute directly from the data provided by the or-
ganizers. We defined a set of raw features including
the answer key (A, B, C, D, E, F, G, H, I, or J),
item type (Text or PIX), exam (Step 1, 2, or 3), the
number of answer options (4, 5, 6, 7, 8, 9, or 10),
the ordinal position of the correct key within the
sequence of answers options, normalized between
0 and 1 (0.0, 0.11, 0.17, 0.2, 0.25, 0.29, 0.33, 0.4,
0.43, 0.5, 0.57, 0.6, 0.67, 0.75, 0.8, or 1.0).

Apart from the initial set of basic features, we
generated more sophisticated features using vari-
ous natural language processing tools. These tools
encompass Linguistic Inquiry and Word Count
2022 (LIWC-22; Pennebaker et al., 2022), evalua-
tions of lexical sophistication relying on TAALES
2.2 (Kyle and Crossley, 2015), and the extraction
of text embeddings with the Bio_ClinicalBERT
model (Alsentzer et al., 2019).

2.1.1 Linguistic Inquiry and Word Count
LIWC-22, created by Pennebaker et al. (2022), is
a text analysis tool that facilitates the exploration
of diverse linguistic dimensions within textual data.
Its utility extends across various fields, including
psychology and communication.

LIWC-22 offers variables including word count
(total words in a text), words per sentence (average
number of words per sentence), big words (percent-
age of words with seven letters or more), and dic-
tionary words. The 2022 version employed in this
study also evaluates newer summary variables such
as analytical thinking (Pennebaker et al., 2014),
clout, authenticity, and emotional tone. These met-
rics, derived from previous research, are calculated
using standardized scores from extensive compari-
son corpora (Boyd et al., 2022).

In addition to the summary variables, LIWC pro-
vides valuable insights into linguistic dimensions
by examining the relative frequencies of different
word categories such as personal pronouns and
negations, represented as percentages.

For this study, LIWC features were indepen-
dently extracted for (1) the item stem of the
multiple-choice question and (2) the aggregated
answer options.
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2.1.2 Lexical Sophistication
TAALES 2.2, developed by Kyle and Crossley
(2015), is a tool designed for the automated anal-
ysis of lexical sophistication, calculating over 400
measures in this domain. Its indices have found
applications in various fields such as educational
psychology, cognitive science, and artificial intel-
ligence. The tool addresses challenges associated
with both second language (L2) and first language
(L1) writing proficiency, L2 speaking proficiency,
as well as spoken and written lexical proficiency.

The five areas of lexical sophistication covered
by TAALES 2.2 include lexical frequency, range
(indicating how widely a word or word family is
used), n-gram frequency (measuring the frequency
of combinations of n number of words), academic
vocabulary, and psycholinguistic word properties
(e.g., age of acquisition, concreteness, familiarity).

The tool takes a single text as input and produces
a list of features for that text. In our study, we uti-
lized the tool to extract the same set of features for
five distinct input types: (1) for the item stem text,
(2) for the item stem text combined with the correct
answer, (3) for all the answer options combined,
(4) for the correct answer, and (5) for the combined
distractors.

2.1.3 Clinical Embeddings
In addition to the interpretable linguistic features
outlined in Sections 2.1.1 and 2.1.2, we also consid-
ered the feature dimensions of clinical embeddings
extracted from the publicly available pre-trained
Bio_ClinicalBERT model (Alsentzer et al., 2019).
These embeddings consist of 768-dimensional vec-
tors for each token within an input text. We ex-
tracted identical features for four distinct input
types:

1. For the item stem text.

2. For the scenario extracted from the item stem
text (i.e., the clinical case description, exclud-
ing the final sentence; e.g., A 65-year-old
woman comes to the physician for a follow-up
examination (...) the left renal artery appears
normal. in Figure 1).

3. For the question extracted from the item stem
text (i.e., retaining only the final sentence in
the item stem text; e.g., Which of the following
is the most likely diagnosis? in Figure 1).

4. For each of the at most ten different answer
options separately.

For each of these input types, we used Hugging
Face’s feature extractor pipeline to extract token
embeddings and compute the average vector over
all token embeddings in the input.

2.1.4 Features Summary
Utilizing the features outlined in Sections 2.1.1
to 2.1.3, we obtained a total of 4,479 features for
each of the 466 multiple-choice questions in the
training set. These features encompass:

1. 5 raw features

2. 235 LIWC-22 features (118 for the item stem
text, 117 for the answers)

3. 1,166 TAALES 2.2 features (202 for the item
stem text, 241 for the item stem text combined
with the correct answer, 241 for all answer
options combined, 241 for the correct answer,
and 241 for the combined distractors)

4. 3,072 clinical features extracted from the
BERT embeddings (768 for the scenario, 768
for the question, 768 for the correct answer,
768 for the aggregated distractors)

2.2 Model Development

Following the extraction of a comprehensive set
of features, as outlined in the preceding section,
our next step involved the development of various
models. We conducted experiments with both sta-
tistical (see Section 2.2.1) and machine learning
(see Section 2.2.2) models utilizing the set of ex-
tracted features (refer to Section 2.1). Additionally,
we explored the fine-tuning of biomedical and clin-
ical language models (see Section 2.2.3). Further-
more, we constructed an ensemble model (detailed
in Section 2.2.4) by leveraging the strengths of
these diverse models. Finally, we ran some feature
importance analysis (Section 2.4).

2.2.1 Statistical Models
In statistical models, adhering to Occam’s Razor
principle (Ortner and Leitgeb, 2011), the goal was
to find a simple yet effective model through two
steps: filtering features and building models using
the stepwise regression procedures (Venables and
Ripley, 2002). The two steps were conducted on
pre-processed data, where all features were nor-
malized to maintain consistency in their scale. Ad-
ditionally, features with missing values were ex-
cluded from the analyses. Ultimately, 3,952 fea-
tures were utilized for the subsequent analyses
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conducted under 10-fold cross-validation (see Sec-
tion 2.3).

Specifically, within each cross-validation fold,
we initially conducted feature selection based on
Pearson’s correlation coefficients between the tar-
get and all features, setting a minimum threshold
of 0.12 (Lovakov and Agadullina, 2021). This step
aimed to identify the most relevant features, con-
sidering that stepwise regression procedures for
building models could become unstable with an
excessively high number of features. The number
of selected features ranged from 60 to 90 across
folds. Next, the selected features underwent step-
wise regression analysis, which involved develop-
ing a series of simple linear regression models by
iteratively removing or adding features to the base-
line model. These models were then compared
based on the information criteria, Akaike Informa-
tion Criterion (AIC; Akaike, 1974) and Bayesian
Information Criterion (BIC; Schwarz, 1978). The
final selected model in each fold was determined
based on the lowest value of either AIC or BIC.
Since AIC or BIC could recommend different mod-
els for each fold, we calculated the average RMSE
across the 10 folds to compare them. Interestingly,
we found that the models recommended by BIC
yielded a lower RMSE compared to those recom-
mended by AIC. Finally, with the correlation filter-
ing and BIC setting applied, 10 simple regression
models were recommended for item difficulty and
response time tasks respectively. The final chosen
model was the one with the lowest RMSE across
all folds.

2.2.2 Machine Learning Models
The machine learning pipeline consisted of a di-
mensionality reduction step followed by a model
fitting step. As dimensionality reduction, we used
a separate principal component analysis (PCA) for
each extracted feature set (i.e., LIWC, TAALES,
and BERT). The number of principal components
retained for each feature set equaled the number
of components required to explain at least 60%
of the variance in the original features. On these
preprocessed features, we trained 4 different ma-
chine learning models: Lasso (regularized linear
regression), Random Forest (RF), Support Vector
Machine (SVM), and K-Nearest Neighbors (KNN).

The Lasso model was used with regulariza-
tion α = 0.1. RF was used with default hy-
perparameters. The hyperparameters for SVM
and KNN were tuned using a grid search with

nested 5-fold cross-validation. For SVM we con-
sidered an RBF kernel with regularization param-
eter C ∈ {0.1, 1, 10, 100} and kernel width γ ∈
{1, 0.1, 0.01, 0.001}. For KNN we considered the
number of neighbors K ∈ {1, 5, 10, 15, 20, 100}.

2.2.3 Language Models
In addition to traditional statistical and machine-
learning models, we also experimented with fine-
tuning a transformer model to predict response time
and item difficulty as a multi-target prediction task.
Previously, Xue et al. (2020) utilized a pre-trained
model for a similar purpose, demonstrating the ben-
efits of transfer learning in enhancing predictions.
However, our methodology diverged in two impor-
tant ways. On the one hand, we framed this as
a multi-target regression task, contrary to treating
response time and item difficulty as separate regres-
sion tasks, thus capturing their interdependencies.
This approach is particularly meaningful as the re-
lationship between the two variables is not strictly
linear (Yaneva et al., 2021, p. 223).

On the other hand, we deliberately selected
domain-specific pre-trained models tailored for
biomedical or clinical texts, known to outper-
form nonspecific models (Alsentzer et al., 2019).
The domain-specific pre-trained language mod-
els under consideration were trained on datasets
from clinical sources such as MIMIC-III, as
well as biomedical corpora like PubMed and
PMC full-text articles and abstracts. These
models encompassed BERT-ClinicalQA (exaflu-
ence, 2021), Bio_ClinicalBERT (Alsentzer et al.,
2019), Bio_ClinicalBERT_emrqa (aaditya, 2022),
Clinical-BigBird (Li et al., 2022), Clinical-
Longformer (Li et al., 2023), and ClinicalBERT
(Wang et al., 2023).

For model training, we initiated the pre-trained
models sourced from Hugging Face (version 4.36),
employing a PyTorch backend (version 2.1). The
models were fine-tuned on an NVIDIA GeForce
RTX 3090 (CUDA 12.2). We employed a BERT-
ForSequenceClassification architecture equipped
with two regression outputs, tailored for predicting
both item difficulty and response time. We utilized
the RMSE loss function to minimize the predicted
item difficulty and response time over three epochs,
assigning equal weight to both targets within the
loss function. The optimization process employed
the AdamW optimizer with a learning rate of 5e−5,
alongside a linear scheduler and weight decay. To
accommodate the LongFormer and Big-Bird mod-
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els, a batch size of one was used.
It should be noted that, given the substantial

difference in scale between the two targets, we
rescaled response time from seconds to minutes
before training, thereby aiding smoother model
convergence. Subsequently, during the inference
stage, response time was transformed back from
minutes to seconds for accurate interpretation.

It is also important to note that we chose to uti-
lize a fixed initialization seed (15012024) for con-
ducting post-hoc predictions after the winner an-
nouncement, aiming to ensure the reproducibility
of the final reported predictions. However, it is im-
portant to acknowledge that the absence of a more
comprehensive hyperparameter search on model
initialization represents a limitation we intend to
address in future work.

We conducted experiments using two different
input formats: (1) solely focusing on the item stem
and (2) concatenating the item stem with the list
of answer options. Initial results suggested that
including the answers led to slightly improved pre-
dictions across all models.

Moreover, we investigated whether integrating
the classification of the exam step as an auxil-
iary task could improve the accuracy of predict-
ing item difficulty and response time. To facilitate
this classification, we introduced three extra out-
put dimensions, indicating the probability of be-
longing to each exam step. This model, denoted
as Bio_ClinicalBERT_FTMT, was initialized with
Bio_ClinicalBERT (Alsentzer et al., 2019) and was
optimized over ten epochs.

2.2.4 Ensemble Model
Motivated by the ‘no free lunch’ theorem (Wolpert
and Macready, 1997), we aimed to leverage the pre-
dictive power of the diverse models introduced in
the previous sections, including statistical, machine
learning, and language models. The goal was to
create an ensemble where individual models, each
with its specific errors, could compensate for one
another. Following the stacking concept, we used
predictions from all individual models on training
instances as features in the ensemble model.

Consistent with our approach in machine learn-
ing models, we applied dimensionality reduction
to the extracted features (i.e., LIWC, TAALES,
and BERT) using PCA. These reduced features
were then incorporated into the ensemble model
as part of its input. As for the choice of ensem-
ble model, we experimented with Lasso, RF, Extra

Trees, multi-layer perception, and gradient boost-
ing regressor.

2.3 Model Selection

During the training phase, we ran a 10-fold cross-
validation experiment on the training data, utilizing
the scikit-learn library. The data was divided into
ten folds, with these identical folds utilized for both
training and evaluating each of the models outlined
in Section 2.2. To maintain consistency, we utilized
a fixed random seed (15012024) for shuffling the
data before the splitting process. Subsequently,
we calculated the average RMSE to assess and
compare the performance of our various models.

2.4 Feature Importances

To better understand how the models used the input
features, we performed some post-hoc interpreta-
tion techniques. One of the model-agnostic tools
that we used is a permutation feature importance
analysis. Such an analysis first randomly shuffles
(i.e., permutes) the values for one of the features in
the dataset. Then, using the models trained before
on the non-shuffled data, cross-validated predic-
tions can be regenerated with the shuffled feature
and performance can be recalculated. In this way,
we can see the impact on the performance of the
model when one of the input features is ‘random-
ized’, and thus get a univariate feature importance
metric. To counter variability, the whole procedure
is repeated 5 times per feature with a different ran-
dom permutation each time, and the average impact
on performance is then reported.

3 Results

3.1 Phase 1: Cross-Validation

Regarding the difficulty, as reported in Figure 2,
the Ensemble and RF methods managed to pro-
vide slightly superior results. However, the dif-
ference in performance was rather subtle, as most
of the models reached RMSE values of approx-
imately 0.30 in most of the cases. Slightly dif-
ferently from that, Bio_ClinicalBERT_emrqa and
Clinical-Longformer performed marginally worse
by achieving an RMSE of 0.31, followed by the
statistical model and Bio_ClinicalBERT_FTMT,
which yielded roughly 0.32 and 0.33 of RMSE,
respectively.

As for the response time, as can be seen in Fig-
ure 3, a more noticeable difference in performance
was observed where Lasso and BERT-ClinicalQA
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Figure 2: Performance of models in predicting diffi-
culty on the training set, evaluated with 10-fold cross-
validation.

BE
RT

-C
lin

ica
lQ

A

Bi
o_

Cl
in

ica
lB

ER
T

Bi
o_

Cl
in

ica
lB

ER
T_

em
rq

a

Bi
o_

Cl
in

ica
lB

ER
T_

FT
M

T

Cl
in

ica
l-B

ig
Bi

rd

Cl
in

ica
l-L

on
gf

or
m

er

Cl
in

ica
lB

ER
T

kN
N

SV
M

La
ss

o

Ra
nd

om
 F

or
es

t

St
at

ist
ica

l M
od

el

En
se

m
bl

e

17.5

20.0

22.5

25.0

27.5

30.0

32.5

35.0

RM
SE

Response_Time

Figure 3: Performance of models in predicting response
time on the training set, evaluated with 10-fold cross-
validation.

had the upper hand since both of them achieved
an RMSE score of approximately 21. As opposed
to that, Bio_ClinicalBERT_FTM, KNN, and SVM
performed relatively poorly, reaching RMSE val-
ues above 27.5. All the other compared methods
provided rather overlapping results.

Submission Strategy At the end of the training
phase, we devised a submission strategy. This
plan entailed submitting our top two models for
each track, with the final submission reserved for a
model distinct from the leading two. This approach
was particularly crucial for the difficulty predic-
tion, given its inherent complexity and the difficulty
in discerning superior models during the training.
With all models demonstrating performance close
to an average baseline (which we calculated our-
selves), uncertainty arose regarding which models
would outperform on the test set. Therefore, maxi-

mizing the diversity in our model selection became
paramount.

For the difficulty prediction, our Ensemble and
RF models achieved the lowest RMSE values.
Consequently, these two models were chosen for
submission during the test phase. To introduce
diversity into our approach, we included BERT-
ClinicalQA in the final run submission because
its predictions were different from the previous
runs and it was one of the top models for pre-
dicting response time. In terms of the response
time prediction, our Lasso and BERT-ClinicalQA
models achieved the highest scores, exhibiting
the lowest RMSE values, and were thus submit-
ted during the test phase. Additionally, to fur-
ther diversify our strategy, we utilized the final
run to submit a completely different model, i.e.,
Bio_ClinicalBERT_emrqa.

3.2 Phase 2: Leaderboard
Tables 1 and 2 present the final evaluation results
for all teams based on the test datasets released by
the leaderboard. For the difficulty prediction (See
Table 1), the baseline model achieved an RMSE
of 0.311. Our team’s RF model reached 0.305,
which was better than the baseline. Compared to
the RMSE results of other teams, the RF model
was in the 4th place out of 43 teams, and its RMSE
was slightly higher than the best (0.299). Apart
from our best model, our team’s ensemble model
also had a good performance, with an RMSE of
0.308 (slightly better than the baseline), ranking
12th out of 43 teams. For the response time pre-
diction (See Table 2), most teams achieved better
results in terms of RMSE compared to the baseline
model (31.68). Our team’s Lasso model performed
impressively better than other models, coming the
2nd out of 34 teams with an RMSE of 24.116, sig-
nificantly better than the baseline and close to the
best RMSE.

Tables 3 and 4 show the performance results of
all our models on the test set. It is evident from
these findings that the Lasso model exhibited su-
perior predictive capability for both difficulty and
response time. Despite our knowing of the Lasso
model’s effectiveness during the cross-validation
experiment (Figure 3) and subsequent winner an-
nouncement (Table 2), its unexpected success in
predicting difficulty on the test set was surprising.
Throughout the training phase, we encountered
challenges in distinguishing between models for
predicting difficulty, as all models performed simi-
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# Team Run RMSE

1 EduTec electra 0.299
2 UPN-ICC run1 0.303
3 EduTec roberta 0.304
4 ITEC RandomForest 0.305
5 BC ENSEMBLE 0.305

12 ITEC Ensemble 0.308

16 Baseline DummyRegressor 0.311

43 ITEC BERT-ClinicalQA 0.393

Table 1: Our three submissions to the leaderboard on
difficulty prediction. The top 5 submissions are given
as well as the shared task baseline.

# Team Run RMSE

1 UNED run2 23.927
2 ITEC Lasso 24.116
3 UNED run1 24.777
4 UNED run3 25.365
5 EduTec roberta 25.64

25 BaselineDummyRegressor 31.68

32 ITEC BERT-ClinicalQA 53.844
33 ITEC Bio_ClinicalBERT_emrqa 54.719

Table 2: Our three submissions to the leaderboard on
the response time prediction. The top 5 submissions are
given as well as the shared task baseline.

larly close to baseline levels. This initial difficulty
hindered our recognition of the Lasso model as
the optimal choice, despite its strong performance
in predicting response time. Had we submitted
the Lasso model to the difficulty leaderboard, we
would have outperformed the second-best model,
securing the second position on difficulty as well.
As the Lasso model demonstrated superior perfor-
mance in predicting both difficulty and response
time, we will delve deeper into examining the fea-
ture importance of this model in the subsequent
section.

3.3 Feature Importances
The best models based on cross-validated training
RMSE turned out to be the RF for item difficulty
and the Lasso for response time. Therefore, we
conducted a permutation feature importance analy-
sis for these two models. For the item difficulty, the
top features for the RF were the word count from
LIWC (with an average increase in RMSE of 0.034

# Model RMSE

FEATURE-BASED MODELS

4 Lasso ∗ 0.301
7 Random Forest • 0.305
9 kNN 0.307

11 SVM 0.310
12 Statistical Model 0.343

FINE-TUNED LANGUAGE MODELS

1 Clinical-Longformer ◦∗ 0.294
2 ClinicalBERT ◦∗ 0.299
3 Bio_ClinicalBERT ◦∗ 0.300
5 Bio_ClinicalBERT_emrqa ◦∗ 0.302
6 Clinical-BigBird ◦∗ 0.303
8 BERT-ClinicalQA •◦ 0.306

13 Bio_ClinicalBERT_FTMT 0.350

ENSEMBLE MODEL

10 Ensemble • 0.308

Table 3: Performance and ranking of our models in
predicting difficulty on the test set. Models denoted by
• were submitted to the leaderboard. Models marked
with ◦ are reported with post-hoc predictions. Models
labeled with ∗ surpassed our best leaderboard model.

when this feature is randomly shuffled), one of
the BERT answer embeddings (0.022), one of the
BERT distractor embeddings (0.017), and the ana-
lytical thinking measure from LIWC (0.016). All
other features lead to an RMSE increase of at most
0.010. For the response time, the top features of
the Lasso model were the word count from LIWC
(with an average increase in RMSE of 6.8), the
exam step (1.0), the item type (0.69), the number
of answers (0.60), the analytical thinking measure
from LIWC (0.30), and the position of the correct
answer (0.20). All other features lead to an RMSE
increase of at most 0.03.

Both these models also have built-in feature im-
portance metrics: the RF through the heuristic val-
ues observed during training and the Lasso model
through the magnitude of its coefficients. These
metrics revealed that most of the total feature im-
portance weight for the RF and Lasso models was
given to the principal components (PCs) coming
from the BERT embeddings (78% and 76% respec-
tively). However, these PCs also represent 43 out of
the 58 features (74%) remaining after PCA. For the
RF model, each feature had a similar importance of
on average 2.0% ± 1.0% (mean ± standard devia-
tion). On the other hand, for the Lasso model, there
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# Model RMSE

FEATURE-BASED MODELS

1 Lasso • 24.116
8 Random Forest 26.527

11 Statistical Model 27.020
12 kNN 28.919
13 SVM 31.101

FINE-TUNED LANGUAGE MODELS

2 Clinical-Longformer ◦ 24.829
4 ClinicalBERT ◦ 25.643
5 BERT-ClinicalQA •◦ 26.014
6 Bio_ClinicalBERT ◦ 26.310
7 Bio_ClinicalBERT_FTMT 26.504
9 Clinical-BigBird ◦ 26.555

10 Bio_ClinicalBERT_emrqa •◦ 26.771

ENSEMBLE MODEL

3 Ensemble ◦ 25.298

Table 4: Performance and ranking of our models in
predicting response time on the test set. Models denoted
by • were submitted to the leaderboard. Models marked
with ◦ are reported with post-hoc predictions.

was a clear ranking of feature sets, with the raw
features first (4.7% ± 4.3%) followed by the BERT
PCs (1.8% ± 1.4%) and the LIWC PCs (0.10%
± 0.069%). Interestingly, while the LIWC PCs
seem to have a low importance to the Lasso model
based on their coefficients, they had a big impact on
predictive performance based on the permutation
feature importance test.

4 Discussion

As previous research by the shared task organiz-
ers has shown (Ha et al., 2019a; Xue et al., 2020;
Yaneva et al., 2020, 2021), predicting response
time and difficulty of multiple-choice questions
for medical licensing exams is a challenging task.
In this study, our team tried to solve this challenge
by adopting a multidisciplinary perspective, com-
bining insights from statistical modeling, machine
learning, and natural language processing.

While previous studies have primarily concen-
trated on examining the influence of exam and item
metadata, along with certain linguistic complexity
features (e.g., Ha et al., 2019a; Yaneva et al., 2021),
we explored the integration of several novel, unex-
plored features. While our results validate the im-
portance of specific raw metadata features (such as
the number of answer options), they also highlight

the significance of features derived from LIWC
and TAALES, as well as embeddings from biomed-
ical language models. Notably, the LIWC feature
indicating the degree of “analytical thinking” for
answers emerged as particularly noteworthy for
predicting response time.

Regarding the models, it is noteworthy that the
more sophisticated ones did not surpass the less
intricate models. Simple models proved more ac-
curate in predicting the response time of multiple-
choice questions. This resonates with Occam’s
Razor principle, which favors simpler models as
long as their performance matches or exceeds that
of more complex alternatives (e.g., Ortner and Leit-
geb, 2011). In our study, models utilizing Lasso
or RF with principal component features outper-
formed the fine-tuned language model with em-
beddings. This suggests that, for this specific task,
traditional machine learning methods incorporating
dimensionality reduction were more effective and
robust compared to complex statistical models.

5 Conclusion

Our team’s contribution to the shared task of pre-
dicting the difficulty and response time of medical
exam questions demonstrates that simpler models
like Lasso (l1-regularized) or RF regression, which
utilize principal component features derived from
linguistic features and clinical embeddings, outper-
form more complex, fine-tuned NLP models. In
the winner announcement, the RF model secured
the 4th position out of 43 submissions for difficulty,
while the Lasso model attained the 2nd position
out of 34 for response time. Post-hoc analyses re-
vealed that if we had submitted the predictions of
the Lasso model of difficulty to the leaderboard,
we would have surpassed the second position in
predicting difficulty as well.

Moreover, predicting the response time for med-
ical multiple-choice questions has proven to be a
more straightforward task compared to predicting
the difficulty of such questions. Response time pri-
marily hinges on item length (i.e., word count and
number of answers), item type, exam step, and the
level of analytical thinking required for the answers,
as illustrated by permutation feature importance
analyses. Conversely, predicting item difficulty
poses greater challenges, with all models approach-
ing an average baseline performance. Neverthe-
less, post-hoc analyses suggest that more extensive
experimentation with fine-tuned language models
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could potentially aid in discerning the difficulty of
multiple-choice questions. While response time
can be more accurately predicted from linguistic
features like word count, predicting difficulty may
require more intricate modeling of deep clinical
text representations.

6 Limitations

In the future study, we could deepen our under-
standing of our findings, potentially shedding light
on the circumstances in which simpler models
might be advantageous.

One initial limitation we would have liked to
tackle is the utilization of student responses in-
stead of percentage- and mean-aggregated targets.
This limitation stems from the fact that we only
received aggregated or summarized data for diffi-
culty and response time per item, rather than the
individual-level data. Access to the individual-level
data would have allowed us to explore more ad-
vanced psychometric models that consider interac-
tions between items and students.

Another limitation we aim to address is conduct-
ing a more comprehensive study on fine-tuning
language models. Specifically, we plan to delve
into a more exhaustive grid search, which could
potentially illuminate the most optimal model ini-
tialization and hyperparameters.

Finally, another constraint of our study is the
possibility of overlooked features in the data. This
limitation arises from our focus on a predetermined
set of features, including LIWC, TAALES, and
the BERT clinical model, for feature selection. In
future research, additional methods for feature ex-
traction could be explored.
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