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Abstract

This paper summarizes our methodology and
results for the BEA 2024 Shared Task. This
competition focused on predicting item diffi-
culty and response time for retired multiple-
choice items from the United States Medical
Licensing Examination® (USMLE®). We ex-
tracted linguistic features from the item stem
and response options using multiple methods,
including the BiomedBERT model, FastText
embeddings, and Coh-Metrix. The extracted
features were combined with additional fea-
tures available in item metadata (e.g., item type)
to predict item difficulty and average response
time. The results showed that the BiomedBERT
model was the most effective in predicting item
difficulty, while the fine-tuned model based on
FastText word embeddings was the best model
for predicting response time.

1 Introduction

In standardized exams, the examination of item
characteristics is highly crucial for ensuring the
fairness and validity of test results. For example,
the difficulty of items pertains to the likelihood of
an examinee answering the items correctly. Incor-
porating a broad range of item difficulty levels in a
standardized exam can help reduce measurement
error and thereby improve the accuracy of the mea-
surement process (Kubiszyn and Borich, 2024). In
addition, while response time is often linked to item
difficulty (i.e., more difficult items require more
time to answer) (Yang et al., 2002), this variable it-
self can also offer new insights into examinees’ test
completion processes, such as their testing engage-
ment and cognitive processes, thereby supporting
the validity of test results. Furthermore, understand-
ing item characteristics can also be advantageous
for modern test administration methods, including
applications in automated item assembly, computer-
ized adaptive testing, and personalized assessments
(Baylari and Montazer, 2009; Wauters et al., 2012).

The difficulty of items and the average response
time required to answer them are typically esti-
mated based on empirical data collected during
test pretesting. However, pretesting and obtain-
ing robust results often require a large sample of
examinees, which can incur substantial test admin-
istration costs. As a result, researchers have ex-
plored various methods to predict item character-
istics without an actual test administration. For
instance, researchers have sought estimates of item
difficulty from domain experts and test develop-
ment professionals. However, this approach has not
consistently produced satisfactory or reliable esti-
mations (Bejar, 1983; Attali et al., 2014; Wauters
et al., 2012; Impara and Plake, 1998). Another line
of research seeks to predict item characteristics
based on only item texts, such as the passages in
source-based items, item stem, and response op-
tions (Yaneva et al., 2019; Hsu et al., 2018). This
approach employs text-mining techniques to ex-
tract surface features (e.g., the number of words
in the texts) and complex features (e.g., semantic
similarities of sentences) from item texts, to make
predictions using advanced statistical models.

Building on the second line of research in pre-
dicting item characteristics based on item texts, the
National Board of Medical Examiners (NBME)
initiated the BEA 2024 Shared Task (https://
sig-edu.org/sharedtask/2024) for automated
prediction of item difficulty and item response time.
The released dataset contained 667 previously used
and now retired items from the United States Med-
ical Licensing Examination® (USMLE®). The
USMLE is a series of high-stakes examinations
(also known as Steps; https://www.usmle.org/
step-exams) to support medical licensure deci-
sions in the United States. The items from USMLE
Steps 1, 2 Clinical Knowledge (CK), and 3 focus
on a wide range of topics relevant to the practice of
medicine.

In the BEA 2024 Shared Task, research teams
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were invited to utilize natural language processing
(NLP) methods for extracting linguistic features of
the items and using them to predict the difficulty
and response time of the items. Our team employed
state-of-the-art large language models (LLMs) to
extract the features and build predictive models
for item difficulty and response time. This paper
documents the methods and results of our best-
performing models for predicting item difficulty
and response time separately.

2 Related work

The interest and effort in predicting item difficulty
based on item texts dates back decades in the mea-
surement literature. Early work in item difficulty
prediction primarily focused on identifying how
item difficulty is influenced by a set of readily avail-
able, easily extracted, or manually coded item-level
features. For example, Drum et al. (1981) predicted
the difficulty of 210 reading comprehension items
using various surface structure variables and word
frequency measures for the text, such as the num-
ber of words, content words, or content-function
words. Freedle and Kostin (1993) predicted the dif-
ficulty of 213 reading comprehension items using
12 categories of sentential and discourse variables,
such as vocabulary, length of texts, and syntactic
structures (e.g., the number of negations). Perkins
et al. (1995) employed artificial neural networks
to predict the item difficulty of 29 items in a read-
ing comprehension test. They coded the items to
extract three types of features: text structure (e.g.,
the number of words, lines, paragraphs, sentences,
and content words), propositional analysis of pas-
sages and stems (e.g., the number of arguments,
modifiers, and predicates), and cognitive process
(e.g., identify, recognize, verify, infer, generalize,
or problem-solving).

Research focused on the prediction of item char-
acteristics such as difficulty and response time has
been significantly influenced by the availability and
application of emerging techniques in NLP and ma-
chine learning AlKhuzaey et al. (2023). For exam-
ple, Yaneva et al. (2019) employed NLP methods
to extract syntactic features to predict item diffi-
culty, which were identified as crucial predictors.
Another application of NLP methods involves as-
sessing the linguistic complexity or readability of
item texts to predict item difficulty. Benedetto et al.
(2020a), for instance, calculated readability indices
for item texts and combined them with other fea-

tures to predict item difficulty. However, readabil-
ity indices did not perform well as predictors of
item difficulty–a finding consistent with Susanti
et al. (2017) who noted that readability indices
were among the least important predictors of item
difficulty.

NLP methods can also be used to extract Term
Frequency-Inverse Document Frequency (TF-IDF)
features. TF-IDF measures the frequency of words
or word sequences in a document and adjusts this
count based on their frequency across a collection
of documents. This approach emphasizes the im-
portance of specific words to a particular docu-
ment, with higher values indicating greater poten-
tial importance (Salton, 1983). In a relatively re-
cent study predicting item difficulty for newly gen-
erated multiple-choice questions, Benedetto et al.
(2020b) extracted TF-IDF features and achieved a
root mean square error of 0.753.

An important application of NLP techniques is
the extraction of semantic features from item texts.
Word embedding is a technique that converts texts
into numerical values in vector space, capturing
the meanings of words across different dimensions
(Mikolov et al., 2013). Pre-trained NLP models
such as Word2Vec and GLoVe allow researchers to
extract word embedding features from item texts
(e.g., Firoozi et al., 2022). For example, Hsu et al.
(2018) transformed item texts into semantic vectors
and then used cosine similarity to measure the se-
mantic similarity between different pairs of items.
Additionally, (Yaneva et al., 2019) extracted word
embedding features from multiple-choice items in
high-stakes medical exams. Along with other lin-
guistic and psycholinguistic features in predicting
item difficulty, they found that word embedding
features contributed most to the predictive power.

More recently, a significant breakthrough in the
NLP field has been the development of LLMs such
as BERT (Devlin et al., 2018) and its variants,
which were trained using different mechanisms
or training datasets. For example, Zhou and Tao
(2020) utilized a BERT-variant model to predict
the difficulty of programming problems. Their
results showed that compared with BERT, Distil-
BERT, a small version of the BERT base model,
was the best-performing model when the only avail-
able data for fine-turning was the text of the items.
Benedetto et al. (2021) also compared the perfor-
mance of BERT and DistilBERT in predicting the
difficulty of multiple-choice questions and found
that the BERT-based models significantly outper-
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formed the two baseline models.

Unlike the prediction of item difficulty, the pre-
diction of response time has not been widely in-
vestigated in the literature. This is mainly due
to the limited availability of response time data.
However, with the increasing use of digital assess-
ments, such as computer-based and computerized-
adaptive tests, in operational testing, the collection
of response data has become easier, which moti-
vated researchers to employ predictive models to
predict the average response time required to solve
the items (e.g., Baldwin et al., 2021; Hecht et al.,
2017; Yaneva et al., 2019).

3 Methodology

3.1 Dataset

As mentioned earlier, this study utilized an empir-
ical dataset released by NBME, which included
667 multiple-choice items previously administered
in the USMLE series. Due to the requirements
of the BEA 2024 Shared Task, the data was re-
leased in two stages. Initially, 446 multiple-choice
items were provided for extracting linguistic fea-
tures from the items and building predictive models
based on the extracted features. For each item, the
dataset encompasses the source texts (typically a
clinical case followed by a question) and the texts
for each response option. The response options for
the questions vary and can include up to 10 options,
each represented in a separate column. When the
number of response options was less than 10, the
remaining columns were left empty.

Additionally, the dataset contained metadata
with four additional variables: Item type (text-only
items versus items containing pictures), exam steps
(Steps 1, 2, or 3 in the USMLE series), item dif-
ficulty, and average response time. Subsequently,
the predictive models trained in the first stage were
applied to make predictions for the remaining 201
items in the second stage, serving as the testing
set for evaluating the performance of the predictive
models for item difficulty and response time. The
structure of the second dataset mirrors that of the
first, with the exception that the item difficulty and
response time variables were not immediately avail-
able. These variables were released after the sub-
mission deadline for the BEA 2024 Shared Task, al-
lowing for the identification of the best-performing
trials among the participating teams.

3.2 Our Best Model for Difficulty Prediction
Here, we describe the details of our best-
performing model for predicting item difficulty
(RMSE = .318), which performed slightly worse
than a baseline dummy regressor (RMSE = .311)
and ranked at the 20th place out of 43 submissions
in the difficulty prediction leaderboard.

3.2.1 Feature Extraction
We extracted linguistic features from item stems
and response alternatives (i.e., the answer key and
the incorrect response options) by leveraging both
pre-trained large-language models and more inter-
pretable text representations such as connectivity,
cohesion, and text length. We started the feature ex-
traction process by concatenating the stem, key, and
alternatives of each item in a single data frame col-
umn and separated each item into individual data
files to extract Coh-Metrix features (McNamara
et al., 2014; Graesser et al., 2011). Concatenating
item stems and alternatives served two purposes:
(1) Adequately represent item length in terms of
stem and alternatives and (2) control for the dif-
ferential number of alternatives that each item in-
cludes. Coh-Metrix includes 108 features and ana-
lyzes a text on multiple measures of language and
discourse (Graesser et al., 2011).

Coh-Metrix focuses on six theoretical levels of
text representation: words, syntax, the explicit
textbase, the referential situation model, the dis-
course genre and rhetorical structure, and the prag-
matic communication level (Graesser et al., 2014).
It generates indices of text, including paragraph
count, sentence count, word count, narrativity, syn-
tactic simplicity, referential cohesion, deep cohe-
sion, noun overlap, stem overlap, latent seman-
tic analysis, lexical diversity, syntactic complex-
ity, syntactic pattern density, and readability. We
removed four features from Coh-Metrix indices
due to no variability, including paragraph count
(i.e., the number of paragraphs), the standard devia-
tion of paragraph length, the mean Latent Semantic
Analysis (LSA) overlap in adjacent paragraphs, and
the standard deviation of LSA overlap in adjacent
paragraphs.

In the next step, we utilized the BiomedBERT
model (Gu et al., 2020) to extract new features.
This model, which was previously named PubMed-
BERT, is a pretrained LLM based on abstracts from
PubMed and full-text articles from PubMedCen-
tral. We chose this particular model because it is
known to achieve state-of-the-art performance on
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many biomedical NLP tasks. By using Biomed-
BERT, we obtained sentence embeddings for the
item stems and alternatives and then computed the
cosine similarity between item sentence embed-
dings and alternative stem embeddings. Cosine
similarity, which is commonly used to quantify the
degree of similarity between two sets of informa-
tion, was computed as the cosine angle between
the embedding vectors of item stem and alterna-
tives. As cosine similarity, ranging between 0 and
1, gets closer to 1, it indicates more resemblance
between the embedding vectors obtained using the
item stem and alternatives.

In the final step, we also extracted word embed-
dings for the concatenated text using stems and al-
ternatives by tokenizing the text using the Biomed-
BERT model (Gu et al., 2020). BiomedBERT has
768 dimensions with a maximum length of 512
words. We extracted the last hidden layer of em-
beddings. We created a new data frame composed
of three sets of features extracted (i.e., Coh-Metrix
features using the stem, key, and alternatives of
each item, the cosine similarity between the stem
and alternatives, and word embeddings using the
stem, key, and alternatives) and the ground truth of
item difficulty. The final data frame is composed
of 882 features and the target variable of item diffi-
culty.

3.2.2 Model Training

To identify the best model with the lowest RMSE
value, we used 85% of the data as our training set
and 15% as our holdout test set. Because the sam-
ple size was too small (N = 466 of items shared in
total) and we had a very large set of features (N =
882), we first applied a dimension reduction tech-
nique, Principal Component Analysis (PCA) (Wold
et al., 1987). A PCA model with 30 components
explained 99% of variability in the dataset, and
thus, the final feature set included 30 components
extracted through the PCA analysis. We used lasso
regression (Tibshirani, 1996) with repeated 5-fold
cross-validation to select the best hyperparameter
(i.e., alpha). Alpha in lasso regression is the model
penalty that determines the amount of shrinkage
in the model. An advantage of lasso regression is
the application of a regularization algorithm that
controls for the irrelevant features in the model by
shrinking the contribution of irrelevant features to
zero. An alpha value of .01 yielded the best model
during the cross-validation stage.

3.2.3 Results
With our pseudo-test set held out from the shared
training set, we obtained a Mean Squared Error
(MSE) value of .064, a Root Mean Squared Error
(RMSE) value of .253, and a Mean Absolute Error
(MAE) value of .190, and a Pearson’s correlation
coefficient of .555.

3.3 Our Best Model for Response Time
Prediction

Our solution that achieved the best performance in
predicting response time differed from the one that
was best at predicting item difficulty. This solution
is briefly documented below.

3.3.1 Feature Extraction
First, FastText word embeddings were gener-
ated for each item stem and response option.
We employed the pre-trained FastText embed-
dings (wiki-news-300d-1m.vec.zip; obtained from
https://fasttext.cc/docs/en/english-vectors.html) to
map each word in the text to its corresponding 300-
dimensional vector representation. FastText is a
modified version of word2vec; the difference is that
it treats each word as composed of n-grams rather
than the original word in Word2Vec (Mikolov et al.,
2017). For each text option, the embeddings of the
first 60 words were concatenated to form a fea-
ture vector, resulting in a dimension of 18,000 (60
words × 300 dimensions) for each option. If the
text had fewer than 60 words, the corresponding
vector was padded with zeros.

Similar to the approach taken for item difficulty
predictions, cosine similarity scores between each
pair of alternatives (i.e., response options) were
calculated using the embeddings from the Biomed-
BERT model. For each pair, the cosine similarity
between their embeddings was computed to cap-
ture the semantic differences between different re-
sponse options. The extracted features were then
combined with the dummy-coded item develop-
ment information (e.g., text-based items only vs.
items including pictures; administration step in the
USMLE series) to form the final feature set. Unlike
in the item difficulty prediction, we did not extract
any other linguistic features in response time pre-
diction.

3.3.2 Model Training
Considering the extremely high dimensionality of
the features, we performed feature selection and
dimension reduction techniques. First, using the
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available information on response time in the train-
ing set (N = 466), we eliminated the feature
columns that had an absolute correlation coeffi-
cient smaller than 0.1. Then, we performed PCA
to extract principal components until they could
capture 95% of the information presented in the
original feature set. To this end, we obtained a final
feature set with 339 features to train an algorithm.

As before, the model training involved the use
of lasso regression due to its ability to perform
feature selection and handle multicollinearity in
high-dimensional data. The training process was
performed using 10-fold cross-validation to opti-
mize the hyperparameter (i.e., alpha) and evaluate
the model’s performance. In terms of the hyperpa-
rameter search space, the regularization strength
(alpha) was tuned using a randomized search over
a logarithmic scale from 1e-4 to 1e-0.05, with 1000
candidate values. An alpha value of .44 yielded
the best model during the cross-validation stage.
Additionally, the fit intercept parameter was tested
with both True and False values, while the selection
parameter was tested with ’cyclic’ and ’random’
options1.

3.3.3 Results
Upon comparing our predicted response time and
the released response time from the BEA 2024
Shared Task, we found this solution (RMSE =
31.48; MSE = 990.98; MAE = 23.54, r =
0.209) was slightly better than the baseline dummy
regressor (RMSE = 31.68), which ranked 24th

among the 34 submissions.

4 Discussion and Conclusion

The competition results for the BEA 2024 Shared
Task indicated that it is difficult to predict item
characteristics such as difficulty using linguistic
features (Yaneva et al., 2024). Only 15 teams out
of 43 managed to perform better than a baseline
dummy regressor when it comes to predicting item
difficulty using textual features extracted from the
items. These results suggest that linguistic features
may not be sufficient to capture the complex inter-
play between item features and item difficulty.

Unlike predicting item difficulty, predicting the
average response time using linguistic features ap-
pears to be a more promising task. Out of 34 sub-
missions, 24 teams performed better than a base-
line dummy regressor in predicting the average

1Our codes for predicting item difficulty and response time
are available at https://osf.io/dwe4n/.

response time. This finding is not necessarily sur-
prising because the average reading time required
for the items is likely to be correlated with the
linguistic features extracted from the items.

Overall, the results for the BEA 2024 Shared
Task indicate that predicting item characteristics
such as difficulty remains challenging and requires
factors beyond linguistic or textual features.
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