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Abstract
We describe the second-best run for the shared
task on predicting the difficulty of Multi-
Choice Questions (MCQs) in the medical do-
main. Our approach leverages prompting
Large Language Models (LLMs). Rather than
straightforwardly querying difficulty, we simu-
late medical candidate’s responses to questions
across various scenarios. For this, more than
10,000 prompts were required for the 467 train-
ing questions and the 200 test questions. From
the answers to these prompts, we extracted a set
of features which we combined with a Ridge
Regression to which we only adjusted the regu-
larization parameter using the training set. Our
motivation stems from the belief that MCQ dif-
ficulty is influenced more by the respondent
population than by item-specific content fea-
tures. We conclude that the approach is promis-
ing and has the potential to improve other item-
based systems on this task, which turned out to
be extremely challenging and has ample room
for future improvement.

1 Introduction

The item difficulty is a core problem in the con-
struction of exams. The exam items should en-
compass a broad spectrum of difficulty levels to
efficiently ascertain the competencies of the test
takers being assessed. Traditionally, item diffi-
culty has been a manual task done by human ex-
perts (Lorge and Diamond, 1954; Haladyna et al.,
2002) despite its inherent disadvantages compared
to other approaches based on data (Wauters et al.,
2012; Choi and Moon, 2020). Nevertheless, recent
progress in Natural Language Processing (NLP)
has facilitated the automated prediction of item dif-
ficulty from textual content (Dueñas et al., 2015;
Benedetto, 2023), serving as an alternative to tradi-
tional pretesting and manual task (AlKhuzaey et al.,
2023; Benedetto et al., 2023).

These recent studies underscore the growing im-
portance and interest in the topic of item difficulty

prediction. In response, BEA has launched the
Shared Task “Automated Prediction of Item Dif-
ficulty and Item Response Time” (Yaneva et al.,
2024). This initiative represents an effort to push
the boundaries of current research in item param-
eter prediction. The data provided for this task
includes multiple-choice questions from Steps 1, 2
CK, and 3 of the USMLE, which is a sequence of
examinations used to facilitate medical licensing in
the United States.

Recent studies have leveraged NLP and Machine
Learning techniques to address these challenges,
providing insight into the factors that contribute to
difficulty of Multiple-Choice Questions (MCQs).
Four seminal studies are reviewed below that, to-
gether, show the approaches and advances that have
been made in the automated prediction of USMLE
item difficulty.

Ha et al. (2019) laid foundational work by de-
veloping a method to estimate the difficulty of
USMLE MCQs based on a diverse array of lin-
guistic features and embedding types (ELMo and
Word2Vec), including measures quantifying the
difficulty for an automated question-answering sys-
tem. Their approach surpassed various baselines
significantly (ZeroR, Word Count, Average Sen-
tence Length, Average Word Length in Syllables,
and the Flesch Reading Ease formula). The study
emphasized that information from all levels of lin-
guistic processing contributes to item difficulty,
with semantic ambiguity and psycholinguistic prop-
erties of words being particularly influential.

In an study by Yaneva et al. (2020), they provide
an approach towards predicting item survival us-
ing linguistic features, two types of embeddings
(Word2Vec and ELMo), and Information Retrieval
(IR) features in a high-stakes medical exam context.
They implemented these features within a Random
Forests algorithm framework and validated their
approach using a dataset of 5,918 pretested MCQs
from USMLE. Their findings indicated that the
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combination of all feature types outperformed the
baselines, with ELMo being the strongest individ-
ual predictor, followed by Word2Vec, linguistic
features, and IR features.

Xue et al. (2020) explored the application of
transfer learning to predict the item difficulty and
response time for approximately 18,000 MCQs
from USMLE. They used three types of item text
configurations as input: i) item stem, ii) item op-
tions, and iii) a combination of the stem and options.
They were used to train three different ELMo mod-
els. This research demonstrated that while transfer
learning significantly enhances predictions for re-
sponse time, when item difficulty is used as an
auxiliary task, the converse is not true. Difficulty
prediction was most effective using signals from
the item stem, while response time was best pre-
dicted using information from the entire item.

Building on Ha et al. (2019) approach, Yaneva
et al. (2021) classified 18,961 MCQs from Step 2 of
the USMLE into two categories in an unsupervised
way: low-complexity items and high-complexity
items, with the purpose of identifying interpretable
relationships between item text and item complex-
ity. They maintain that examining the linguistic
features of the items can assist test developers in
gaining a more detailed understanding of how cog-
nitively more complex items differ from those with
more straightforward solutions. Similar to previous
studies, they provide empirical evidence that lin-
guistic features, both syntactic and semantic, play
a crucial role in determining the complexity associ-
ated with the item response process.

Unlike previous studies, we investigated the hy-
pothesis that item difficulty depends more on the
features of the test-taking population than on the
items themselves. To explore this, we simulated
medical students’ answers to various MCQs across
different examinations by prompting a Large Lan-
guage Model (LLM). This approach allowed us to
understand how certain features influence item dif-
ficulty, providing insights that challenge previous
methods of educational assessment. In this paper
we describe our participating system in the BEA
2024 Shared Task: Automated Prediction of Item
Difficulty, which used a LLM as core approach.

2 System Description

2.1 Data

The data consist of a collection of 667 MCQs from
USMLE Steps 1, 2 CK, and 3, which were used

and now are retired (467 for training and 200 for
test). These items have the traditional information,
which is composed of a case (stem), the correct
answer (key), the incorrect answer options (distrac-
tors), and the answer text, which contains the text
of the correct response for the item. Moreover, each
item comes with supplemental details as follows:
item type, where “Text” indicates items composed
entirely of text without images, while “PIX” repre-
sents items that include images, but these are not
part of the dataset; EXAM specifies the Step of the
USMLE exam the item belongs to (Step 1, Step 2,
or Step 3); item difficulty, where higher values indi-
cate more difficult items, and time intensity, which
is the arithmetic mean response time, measured
in seconds, across all examinees who attempted a
given item in a live exam.

2.2 Features extracted from the items

The task consist of predicting automatically the
item difficulty using approximately the 70% of
items as training and the other part as test bed. Our
approach consists in extracting 4 different sets of
features from answers of ChatGPT-3.5 to different
prompts, and a regression algorithm for predicting
the ground truth labels in the test set.

2.2.1 Features from LLM answering the
questions

This first set of features has been extracted from the
process of asking the LLM to answer MCQs. The
prompt used for this purpose is described below:

PROMPT #1
{Item_Stem_Text}
A: {Answer__A}
B: {Answer__B}
...

First , answer the question by providing
only the letter of the option.
Second , provide a brief explanation
of your choice , but do not discuss
other options or alternative
scenarios.

Here, {Item_Stem_Text} is the text of the item,
encompassing a comprehensive explanation of the
medical case. The last sentence of the explana-
tion is the question to be answered (e.g. “Which
of the following is the most likely nutritional de-
ficiency?”). Moreover, {Answer__X} denotes the
textual content corresponding to each of the alter-
native option (e.g. “Vitamin D”). The context of
the role in the completion chat for GPT-3.5 was:
“Your are a medical doctor”.
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The main motivation for this prompt is to de-
termine whether or not the LLM is capable of an-
swering the questions. In principle, if the LLM is
unable to answer correctly, this is an indication that
the question is of high difficulty, and the opposite is
also true. Additionally, we asked the LLM to pro-
vide a justification for its response to the prompt1,
from which we assume that extensive explanations
are associated with high-difficulty questions and
the opposite. Finally, in this group of features, we
include some basic information about the item such
as the length of distractors, the length of the cor-
rect option, among others, as indicators of the item
difficulty. Below we detail the extracted features:

INCORRECT: Boolean indicating whether or not
the question was answered correctly by the
LLM.

JUSTIFICATION: Number of characters in the
LLM’s answer after removing the text of the
option selected.

DISTRACTORS: Length in characters of the
LLM response minus the length of the cor-
rect option text.

STEM: Length in characters of Item Stem Text.

KEY: Length in characters of the correct option.

STEM/KEY: The ratio between STEM and KEY
features.

GPT_RESPONSE_TIME: Time in milliseconds
reported by the LLM to answer the question.

COMPLETION_TOKENS: Number of tokens
in the response reported by the LLM.

PROMPT_TOKENS: Number of tokens in the
prompt reported by the LLM.

EXAM: Metadata of the item obtained from the
dataset denoting the Step of the USMLE exam
the item belongs to (Step 1, Step 2, or Step 3).

2.2.2 Features from splitting the items into
yes/no questions

Given that the set of features from the previous
subsection provides in the feature INCORRECT
only a Boolean indication of the item difficulty, we

1In our experiments, the LLM did not refuse to answer any
questions, and thus it never stated that it is unable to provide
information as an AI language model.

employ the strategy of generating for each item
a YES/NO sub-item for each option available in
the item. In this way, the correctness of the LLM
responses to these extracted sub-items provides
more detailed indications of the difficulty of the
original item. In this scenario, only one of the sub-
items has the answer YES, and NO for the others.
For this, we use the following prompt:

PROMPT #2:
{Item_Stem_Text}

First , answer clearly YES or NOT if
Answer X is the correct answer to
the question. Second , provide a
brief explanation of your answer ,
but do not discuss other options.

Thus, if a question has n answer options, we gen-
erate n prompts for the LLM, from whose answers
we extract the following features for each item:

YN_INCORRECT: Number of sub-items an-
swered correctly for the item.

YN_INCORRECT_KEY: Boolean indicating
whether the sub-item corresponding to the
correct option was answered correctly or not
by the LLM.

YN_OPTION_COUNT: Total number n of an-
swer sub-items (options) for the item.

YN_YES_ANSWERS: Number of sub-items to
which the LLM responded affirmatively.

YN_RESPONSE_TIME: Sum of the answer
times for all sub-items reported by the LLM.

YN_JUSTIFICATION_CHAR: Sum of the
lengths of the justifications (in characters) for
the answers provided by the LLM to each
sub-item.

YN_JUSTIFICATION_CORRECT: Sum of
the lengths of the justifications for the answers
to the sub-items that the LLM answered
correctly.

YN_JUSTIFICATION_INCORRECT: Sum of
the lengths of the justifications for the answers
to the sub-items that the LLM answered incor-
rectly.

YN_JUSTIFICATION_YES: Sum of the
lengths of the justifications for the answers
to the sub-items that the LLM answered
affirmatively.
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YN_JUSTIFICATION_NOT: Sum of the
lengths of the justifications for the answers
to the sub-items that the LLM answered
negatively.

YN_JUSTIFICATION_KEY: Length of the jus-
tification for the sub-item corresponding to
the correct option of the item.

YN_JUSTIFICATION_OPTIONS: Sum of the
lengths of the justifications for the sub-items
whose answer is NO.

YN_YES_OPTIONS Total number of affirmative
answers given by the LLM to the sub-items.

YN_NOT_OPTIONS: Total number of negative
answers given by the LLM to the sub-items.

YN_ALL_YES: Boolean indicating whether all
answers to the sub-items were affirmative.

YN_ALL_NOT: Boolean indicating whether all
answers to the sub-items were negative.

2.2.3 Features from using “mutilated” stems
In the features described in the previous subsec-
tions, the LLM has played a role equivalent to a
test taker who has read all the texts of the questions
and the options in detail. However, in real-life situa-
tions this is not always the case, and test takers have
time pressures or personal preferences in reading
with different “skimming” or “scanning” processes,
which lead them to voluntarily or involuntarily omit
some words while reading.

Our assumption is that highly-difficult items
should be read in detail so that they can be an-
swered correctly. On the contrary, in low-difficulty
items, some words of their content can be omitted
without this affecting their difficulty. To simulate
this situation, we generate different modified ver-
sions of each item by incrementally “mutilating”
the stem, randomly removing a percentage of its
content words.

For this, we first tokenize sentences and iden-
tify which words or tokens in the stem are content
words, marking the stopwords2, which we exclude
from the “mutilation” process. Likewise, we leave
the last sentence of the stem intact, which contains
the specific question of the item. Then, we set a
percentage p, say p = 0.20, and randomly remove

2We use sentence tokenizer and the list of stopwords for
English in the Natural Language Toolkit https://www.nltk.
org/search.html?q=stopwords

20% of the content tokens from the stem (i.e. no
stopwords). In this way, an item that remains an-
swerable after a certain degree of mutilation of the
stem would be an indicator of its level of difficulty.
For this, we use a prompt similar to Prompt 1, but
we mutilate the stem of each item at different per-
centages:

PROMPT #3:
{Item_Stem_Mutilated(P)}
A: {Answer__A}
B: {Answer__B}
...

First , answer the question providing
only the letter of the option.
Second , provide a brief explanation
of your choice , but do not discuss
other alternative options or
scenarios.

Here P represents the percentage of mutilation
of the stem. For each ítem, we used eight percent-
ages ranging from 10%, 20%, 30%, until 80%. The
following set of features is motivated by the as-
sumption described above. Below we detail the
extracted features:

MUT_10_INCORRECT: Boolean indicating if
the LLM answered correctly the question in
spite of the stem being mutilated at 10% of its
content words.

MUT_20_INCORRECT: Idem Boolean indicat-
ing if the LLM answered correctly the ques-
tion in spite of the stem being mutilated at
20% of its content words (other six features
for 30%, 40%, 50%, 60%, 70%, and 80%.

MUT_INCORRECT: Number of incorrect an-
swers out of the 8 levels of percentage of mu-
tilation.

FIRST_MUT_INCORRECT: The lowest per-
centage of mutilation in which the LLM failed
to answer the question correctly. If feature IN-
CORRECT value is true, then this feature is
zero.

LAST_MUT_INCORRECT: The highest per-
centage of mutilation where the LLM failed
to answer the question correctly. If feature
INCORRECT value is true, then this feature
is zero.

FIRST_MUT_CORRECT: The lowest percent-
age of mutilation where the LLM failed to
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answer the question correctly. If feature IN-
CORRECT value is false, then this feature is
zero.

LAST_MUT_CORRECT: The highest percent-
age of mutilation where the LLM failed to
answer the question correctly. If feature IN-
CORRECT value is false, then this feature is
zero.

2.2.4 Features from modified “temperatures”
“Temperature” is a parameter in ChatGPT that con-
trols the level of randomness or “creativity” in the
answers of this LLM. In the features described in
the previous subsections, this parameter was set at
t = 1.0, which is its default value that indicates an
intermediate value between the extremes p = 2.0
(maximum randomness) and p = 0.0 (fully deter-
ministic). By varying this parameter, it is possible
to simulate different test takers with a single LLM.

In principle, we assume that test takers with low
temperature are capable of objectively answering
questions of all levels of difficulty. As the temper-
ature gradually increases, the simulated test taker
begins to reduce their objectivity and begins to be
unable to correctly answer high-difficulty questions.
In this way, if an item is only answered correctly
by test takers with low temperature, then this is an
indication of high difficulty in the item. Similarly,
items that are answered correctly despite the high
temperature of the test takers should indicate a low
level of difficulty.

To extract features using this idea, we use
Prompt #1 by varying the parameter t in the Chat-
GPT API call. We use 11 values of t, starting at
t = 0.0 and increasing in increments of 0.2 up
to t = 2.0. The following is the set of features
obtained with this strategy:

TEMP_0.0_INCORRECT: Boolean indicating
whether the LLM answered incorrectly the
item using t = 0.

TEMP_0.2_INCORRECT: Boolean indicating
whether the LLM answered incorrectly the
item using t = 0.2.

TEMP_0.4_INCORRECT: Boolean indicating
whether the LLM answered incorrectly the
item using t = 0.4 and six other features that
range from t to 2.0 (t = 1.0 was omitted
because is identical to the feature INCOR-
RECT).

TEMP_INCORRECT: Number of incorrect an-
swers for the ítem out of the 11 values of t
used.

FIRST_TEMP_INCORRECT: The lowest
value of t where the LLM answered the
question incorrectly.

LAST_TEMP_INCORRECT: The highest
value of t where the LLM answered the
question incorrectly.

AVG_TEMP_INCORRECT: Feature
TEMP_INCORRECT divided by 11
(i.e. the number of used values for t).

FIRST_TEMP_CORRECT: The lowest value
of t where the LLM answered the question
correctly.

LAST_TEMP_CORRECT: The highest value
of t where the LLM answered the question
correctly.

AVG_TEMP_CORRECT: Number of correct
answers for the item of the 11 values of t used
divided by 11.

2.3 Experimental Setup
The official performance metric for the shared task
is the Root-Mean Squared Error (RMSE) between
the known difficulty levels of the items and the
predictions made by the automatic system being
evaluated. To use this metric in the evaluation of
individual features, we fit a simple linear regressor,
taking the feature as the independent variable and
the known difficulty levels as the dependent vari-
able. Since in this specific task the RMSE metric
shows little variance between the different features,
we propose the Spearman’s rank correlation coeffi-
cient as an alternative measure.

Unlike RMSE, Spearman’s correlation not only
indicates whether the feature is positively or neg-
atively correlated, but also provides the level of
statistical significance (p-value). Therefore, under
these two measures, a desirable feature will show
low values of RMSE and high absolute values in
Spearman’s correlation. The predictive model used
to combine the features with the training data was
a Ridge regression, in which the regularization pa-
rameter α was adjusted with the aim of selecting
a reduced the number of relevant features in the
model. To evaluate this model, the training data
was divided into 30 random partitions, assigning
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90% of the data for training and 10% for testing in
each partition. Subsequently, the RMSE measure
was calculated for each of the 30 test partitions and
the average of these results was reported.

3 Results

3.1 Feature performance

Table 1 shows the RMSE rates and Spearman’s
correlation for the features derived from the use of
Prompt #1. In this group, only the INCORRECT,
STEM, and KEY features produced significant cor-
relations. Among them, KEY was the only feature
that produced a negative correlation.

Feature RMSE Spearman
INCORRECT 0.298 0.259††
STEM 0.304 0.118†
DISTRACTORS 0.305 -0.085
KEY 0.306 -0.108†
EXAM 0.306 0.089
PROMPT_TOKENS 0.306 0.082
STEM/KEY 0.307 0.163††
JUSTIFICATION 0.308 0.028
GPT_RESPONSE_TIME 0.308 0.023
COMPLETION_TOKENS 0.308 0.019

††: p < 0.01; †: p < 0.05

Table 1: Performance of the features extracted from
Prompt #1

Table 2 shows the same types of results for the
features extracted from the use of Prompt #2. Un-
like the results presented in Table 1, RMSE and
Spearman measures show high agreement.

Table 3 shows the RMSE rates and correla-
tions obtained from the prompts that incremen-
tally mutilated the words in the items’ stem. All
of these features produced highly significant re-
sults. As anticipated based on our motivations, the
FIRST_MUT_INCORRECT feature exhibited a
strong negative correlation. This correlation sug-
gests that if the LLM can still answer effectively to
a highly distorted question, it serves as evidence of
the low-difficulty item.

Figure 1 presents the relationship between the
percentage of correct answers of the LLM and the
variation of the percentage of stem multilation. The
bars indicate a trend where the percentage of cor-
rect answers declines as the level of stem mutilation
increases.

Table 4 shows the results of Prompt #1 varying
the parameter t (temperature) of the LLM. This set

Feature RMSE Spearman
YN_JUSTIFICATION_CHAR 0.304 0.134††
YN_JUSTIFICATION_OPTIONS 0.304 0.122††
YN_JUSTIFICATION_INCORRECT 0.305 0.152††
YN_INCORRECT_KEY 0.305 0.145††
YN_RESPONSE_TIME 0.305 0.118†
YN_INCORRECT 0.306 0.131††
YN_JUSTIFICATION_NOT 0.306 0.087
YN_JUSTIFICATION_KEY 0.307 0.100†
YN_OPTION_COUNT 0.307 0.100†
YN_ALL_NOT 0.307 0.074
YN_YES_OPTIONS 0.307 0.065
YN_JUSTIFICATION_YES 0.308 0.022
YN_JUSTIFICATION_CORRECT 0.308 0.010
YN_YES_ANSWERS 0.308 -0.008
YN_NOT_OPTIONS 0.308 -0.007
YN_ALL_YES 0.308 0.022

††: p < 0.01; †: p < 0.05

Table 2: Performance of the features extracted from
Prompt #2 by using the strategy of dividing the item
into yes/no sub items.

Feature RMSE Spearman
FIRST_MUT_INCORRECT 0.300 -0.260††
MUT_INCORRECT 0.301 0.234††
LAST_MUT_INCORRECT 0.302 0.269††
LAST_MUT_CORRECT 0.303 -0.247††
INCORRECT_MUT_40 0.303 0.207††
INCORRECT_MUT_10 0.303 0.198††
INCORRECT_MUT_20 0.303 0.195††
FIRST_MUT_CORRECT 0.304 0.247††
INCORRECT_MUT_70 0.304 0.183††
INCORRECT_MUT_50 0.305 0.148††
INCORRECT_MUT_80 0.305 0.147††
INCORRECT_MUT_60 0.306 0.142††
INCORRECT_MUT_30 0.307 0.108†

††: p < 0.01; †: p < 0.05

Table 3: Performance of the features extracted from the
usage of the strategy of randomly mutilating words from
stems

of features produced the best results for both per-
formance measures. In particular, the best feature
is FIRST_TEMP_INCORRECT, which obtained
a negative correlation as expected by our motiva-
tions.

Figure 2 presents that increasing the tempera-
ture t reduces the LLM’s ability to answer items
correctly. Therefore, if the LLM set to a high tem-
perature can still answer an item correctly, this
reveals a low-difficulty item.
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Figure 1: Percentage of correct answers in training data
as stem mutilation varies.

Feature RMSE Spearman
FIRST_TEMP_INCORRECT 0.296 -0.293††
TEMP_INCORRECT 0.296 0.287††
TEMP_0.4_INCORRECT 0.297 0.261††
TEMP_0.2_INCORRECT 0.297 0.267††
TEMP_0.0_INCORRECT 0.298 0.254††
FIRST_TEMP_CORRECT 0.300 0.254††
TEMP_1.2_INCORRECT 0.300 0.236††
TEMP_1.6_INCORRECT 0.300 0.244††
TEMP_0.6_INCORRECT 0.301 0.232††
TEMP_0.8_INCORRECT 0.301 0.221††
LAST_TEMP_CORRECT 0.302 -0.181††
TEMP_1.4_INCORRECT 0.303 0.191††
LAST_TEMP_INCORRECT 0.303 0.17††
TEMP_1.8_INCORRECT 0.305 0.165††
TEMP_2.0_INCORRECT 0.305 0.131††

††: p < 0.01; †: p < 0.05

Table 4: Performance of the features extracted from
varying temperature parameter in LLM.

Finally, Figure 3 shows the results of the pre-
dictive system, which combines all the features
based on the regularization parameter α of the
Ridge Regression. As α increases, the RMSE
rate decreases rapidly until it reaches the interval
500 < α < 1000, where a minimum is reached
at α = 756, which was the value of the parameter
used for the final predictive model.

3.2 Submitted Run Results

This system generated predictions by extracting
the previously described features from all items
in the dataset. Next, a Ridge regression model
was trained using the designated dataset, as this re-
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Figure 2: Percentage of correct answers in training data
as the LLM temperature parameter varies.
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Figure 3: Performance in the training dataset of the
item-difficulty prediction system as the regularization
parameter α varies.

gression provided the best balance between perfor-
mance and interpretability. This model produced
the predictions for the test part of the dataset.

The official result obtained by our system (iden-
tified by the prefix UPN-ICC) is shown in Ta-
ble 5, along with those obtained by other 4 top-
performing systems out of 43 participating systems.
Our single run produced notably competitive re-
sults, ranking 2nd in the task of predicting item dif-
ficulty. However, the best results barely surpassed
the DummyRegressor baseline by a minimal mar-
gin, indicating that this task remains challenging.

4 Discussion

The results presented in Table 1 indicate that the
INCORRECT feature emerges as the most signifi-
cant predictor derived from the answers to Prompt
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Team Name Run RMSE
EduTec electra 0.299
UPN-ICC run1 0.303
EduTec roberta 0.304
ITEC RandomForest 0.305
BC ENSEMBLE 0.305
Baseline DummyRegressor 0.311

Table 5: Results for task. The team name UPN-ICC is
the system described in this document.

1. This feature is not directly derived from the item,
but rather from the result obtained after exposing
said item to a test taker, in this context simulated
by the LLM. This finding supports our initial hy-
pothesis, suggesting that an LLM can adequately
simulate a test taker human behavior when facing
the challenge of responding to MCQ items. How-
ever, contrary to our initial expectations, the lengths
of the explanations provided by the LLM (JUSTI-
FICATION feature) did not prove to be predictive
of the item difficulty.

Regarding the strategy of decomposing the MCQ
item into YES/NO questions, as presented in Table
2, the results suggest that the YN_INCORRECT
feature did not provide any additional significant
information to improve the understanding provided
by the INCORRECT feature, which constituted our
main motivation for exploring this set of features.
Nonetheless, the length of the justifications pro-
vided by the LLM to the YES/NO questions, in the
YN_JUSTIFICATION_CHAR, _OPTIONS, and
_INCORRECT features, resulted in a significant
improvement in the performance of the JUSTIFI-
CATION feature. This suggests that the strategy
of decomposing the item into sub-items is effec-
tive, as it provides detailed justifications for each
option of the MCQs, which are reliable indicators
for predicting of item difficulty.

The results from Table 3 and Figure 1 indicate
that the strategy of mutilating the stem text of the
items to different degrees produces good predictors
of item difficulty. This is an indication that this
strategy allows for the simulation of different test
takers with varying reading strategies using a sin-
gle LLM. Furthermore, the analysis of the results
presented in Table 3 reveals that the performance
measure RMSE does not indicate significant differ-
ences among the features evaluated in this group.
On the other hand, the Spearman correlation coeffi-
cient provides insightful results.

Similarly to the mutilation strategy, variations
applied to the temperature parameter t resulted in
efficient predictors of item difficulty (Table 4). It
is noteworthy that, within the total training set, the
percentage of correct responses ranges between
65% to 43% when varying both mutilation and
temperature. This suggests that these two distinct
strategies effectively simulate various types of test
takers.

Since item difficulty is determined from item
answers by a heterogeneous human population, the
implementation of strategies to simulate this popu-
lation is important in the effort to predict item diffi-
culty. Given that these two strategies produced the
most effective predictors in our system, exploring
combinations of these and other similar strategies
emerges as a promising research perspective for
addressing this challenging task.

Finally, Figure 3 shows that the single regression
system parameter, α, exhibits robust behavior over
a wide range of its values, which likely contributed
to the good performance of our system in the task.

5 Conclusion

We conclude that the strategy of simulating test
takers using LLMs offers a novel and promising
perspective for the prediction of MCQ difficulty.
The strategy of random and incremental mutilation
of the question stem appears to effectively simu-
late humans using different reading strategies of the
questions, such as skimming or scanning. Similarly,
the manipulation of the “temperature” parameter in
ChatGPT LLM appears to simulate human condi-
tions that could be influenced by emotions or other
factors experienced during the taking of an exam.

These strategies allow for the simulation, us-
ing a single LLM, of a heterogeneous population
responding to an exam and obtaining differential
results. This population of simulated humans pro-
duced the necessary input to obtain competitive
item difficulty predictions without using features
extracted from the item content. These results sup-
port the idea that item difficulty lies probably more
in the population answering these questions than
in the content or linguistic or cognitive factors ex-
tracted from the content of the items.
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