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Abstract

Prior knowledge of item characteristics, such
as difficulty and response time, without pretest-
ing items can substantially save time and cost
in high-standard test development. Using a va-
riety of machine learning (ML) algorithms, the
present study explored several (non-)linguistic
features (such as Coh-Metrix indices) along
with MPNet word embeddings to predict the
difficulty and response time of a sample of med-
ical test items. In both prediction tasks, the
contribution of embeddings to models already
containing other features was found to be ex-
tremely limited. Moreover, a comparison of
feature importance scores across the two predic-
tion tasks revealed that cohesion-based features
were the strongest predictors of difficulty, while
the prediction of response time was primarily
dependent on length-related features.

keywords: item difficulty, response time, ma-
chine learning, Coh-Metrix, MPNet embed-
dings

1 Introduction

Item difficulty and response time are among the im-
portant requirements in high-standard test develop-
ment. For instance, in large-scale assessment, there
is often a need to develop equivalent versions of the
same test to be administered to different groups of
people (DePascale and Gong, 2020). When decid-
ing on the inclusion of items in each version, it is
necessary to know the difficulty level of each item
and an estimate of the time needed to answer that
item. Such information is traditionally gained only
through pretesting (Martinková and Hladká, 2023).
Pretesting, however, is not a very efficient method,
as it is expensive (Antal, 2013) and raises security
concerns (Settles et al., 2020). Therefore, it would
be highly advantageous to devise a method to as-
certain item difficulty and response time without
resorting to the pretesting of items.

With this motivation, a shared task was orga-
nized as part of the Building Educational Appli-
cations (BEA) workshop at the 2024 Annual Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics (NAACL)
2024. The shared task invited people to develop
ML models for the prediction of item difficulty
and response time of a sample of 466 items from
the United States Medical Licensing Examination
(USMLE). The present study was conducted in re-
lation to this shared task. For a review of the com-
plete set of submissions to the shared task, please
see Yaneva et al. (2024).

2 Related Work

In the last decade, educational assessment has wit-
nessed a surge of interest in predicting item diffi-
culty. Having reviewed 38 papers on item difficulty
prediction, AlKhuzaey et al. (2021) provided a sum-
mary of the most frequent prediction models used,
most studied domains and item types, and features
with highest prediction power. ML algorithms such
as neural networks and support vector machines
(SVM) are commonly employed along with a va-
riety of natural language processing (NLP) tech-
niques used for feature extraction from text data.
Language assessment was found to be the most in-
vestigated domain, and multiple-choice items were
most frequently studied. A greater contribution of
AlKhuzaey et al. (2021) lies in its review of the
most influential features in item difficulty predic-
tion. While most features can be categorized as ei-
ther syntactic or semantic, a few studies have used
psycholinguistic features (e.g., Pandarova et al.,
2019), taking into account the processing of lin-
guistic elements in the brain. The Age of Acquisi-
tion (AOA), as one of such “cognitively-motivated”
features, offers an index of lexical difficulty based
on how early/late in life certain words are acquired
(Ha et al., 2019, p. 15). Word concreteness is
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another psycholinguistic feature. Concrete words
are assumed to be processed faster in the brain
and thus would expectedly be easier than abstract
words (Brysbaert et al., 2014). The use of psy-
cholinguistic features is not a novel approach, how-
ever. AOA and word concreteness, among similar
features such as word imaginability, have long been
on the list of the indices calculated by Coh-Metrix
(Bruss et al., 2004). A more recent trend is the
use of semantic similarity as a feature, which is
discussed further in the following.

Most recently, Štěpánek et al. (2023) compared
the performance of several ML algorithms in pre-
dicting the item difficulty of reading comprehen-
sion tests using features extracted from item texts.
Their extracted features include word counts, word
frequencies, readability indices, and lexical similar-
ity. For lexical similarity, using Euclidean distance
and cosine similarity, they calculated the textual
similarity between the question and the correct op-
tion as well as between the correct option and the
distractors. It was assumed that a higher similarity
in the former comparison can make the question
easier, while a larger similarity in the latter is asso-
ciated with higher difficulty (Alsubait et al., 2014).
Their results indicated that regularization-based
models in general, and the elastic net (RMSE =
0.666) in particular, outperformed other models.

Although we have recently seen an increasing
number of attempts to predict item characteristics
such as difficulty, the wide range of test domains
and other differing contextual factors make it rather
difficult to make generalizations across contexts.
Therefore, more studies are still needed before
more valid conclusions can be drawn regarding
the predictability of item characteristics. The pur-
pose of the present study was to contribute to the
line of research on predicting item characteristics
in medical tests (see, for example, Xue et al., 2020,
and Yaneva et al., 2021) by exploring how an assort-
ment of linguistic and non-linguistics features can
be utilized along with word embeddings to predict
the item difficulty and response time of multiple-
choice medical test items.

3 Methods

3.1 Corpus

The corpus of the study is a retired sample of 667
multiple-choice questions from the USMLE. The
USMLE is developed by the National Board of
Medical Examiners (NBME) and the Federation

of State Medical Boards (FSMB) and is adminis-
tered to both US and Canadian medical students. It
consists of three steps, which altogether take nine
hours to write. The items are written by experi-
enced medical experts following a set of standard-
ization guidelines. The guidelines help produce
high-quality items, the difficulty of which is depen-
dent on the difficulty of the medical content rather
than any other extraneous factors.

3.2 Features
A variety of features were extracted mostly from
the item stems to be used in our prediction models.

1. Item Type: The items in our sample of medi-
cal tests can be divided into two groups: text-
only and text-and-picture items. Of the 466
items used in the train set, 10.7% (50 items)
had a picture supporting the stem text. The use
of pictures might help with better and faster
understanding of the question.

2. Exam Part (Step): As mentioned in the Cor-
pus section, the USMLE has three parts or
steps. On average, Step 3 and Step 1 have the
highest and lowest item difficulty, respectively.
The difference between the exam steps is less
considerable in terms of item response time.

3. Stem Length: Stem length was measured by
counting the number of words in each stem.
Longer stems usually take more time to read
and understand, and thus they can be more
difficult. The stem length of the train set items
ranged from 32 to 301 words.

4. Sentence Length Average: A very long text
can be easy to read if it contains short sen-
tences, while a fairly short text with long sen-
tences can be cumbersome. Therefore, we
measured sentence length (as the number of
words in a sentence) along with stem length.

5. Sentence Length Maximum: Sometimes one
single lengthy (or complex) sentence can con-
siderably interfere with comprehension, so we
included Sentence Length Maximum as a sep-
arate feature in addition to Sentence Length
Average.

6. Option Count: The higher number of answer
options means a higher number of distractors,
which is expected to make an item more dif-
ficult and time-consuming. Compared to the
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Figure 1: Models 1-3 used for predicting difficulty and response time

minimum of four options, some items in the
train set have as many as 10 options. The most
common number of options is five.

7. Challenging Topics: Based on our obser-
vations of several highly difficult items, we
formed a short list of potentially more chal-
lenging topics in our sample. The list includes
the following keywords: ‘kidney’, ‘bleeding’,
‘abdominal’, ‘emergency’, ‘fever’, ‘lung’, ‘ab-
normality’, and ‘history’. We counted these
keywords in lemmatized stems and then as-
signed each stem a count number accordingly.
Items with higher count numbers were ex-
pected to be more difficult.

8. Rare Words Sum: Less frequent words are
usually more difficult (Brysbaert et al., 2011).
To calculate the rareness (or difficulty) of the
vocabulary of item stems, we looked up each
word in the BNC/COCA list (version 2.0.0),
a frequency-based list of 25k English words
(Nation, 2016). The BNC/COCA list classi-
fies 25k words into 25 frequency groups based
on their appearance in the two well-known cor-
pora of BNC (British National Corpus) and
COCA (Corpus of Contemporary American
English).

9. Medical Terms Sum: We used a publicly
available list of medical terms (under GNU
General Public License v3.0), consisting of
terms from two well-known medical dictio-

naries, namely OpenMedSpel by e-MedTools
and Raj&Co-Med-Spel-Chek by Rajasekha-
ran N. of Raj&Co. We counted the number
of medical terms in each stem and used that
as an indicator of difficulty, assuming that
stems with a higher number of medical terms
are more difficult and time-consuming to pro-
cess. Nevertheless, it should be noted that
terms can be a double-edged sword, as they
can both facilitate the accessibility of informa-
tion (Baleghizadeh and Yousefpoori-Naeim,
2013) and create obstacles in comprehension
(Yousefpoori-Naeim et al., 2018). Moreover,
not all terms in a specific domain are equal;
they can be placed in a wide range of diffi-
culty (Yousefpoori-Naeim and Baleghizadeh,
2018).

10. Coh-Metrix Features: Coh-Metrix is a com-
putational tool that provides 108 indices for
text analysis. These indices represent text
in terms of its coherence (McNamara et al.,
2014). The Coh-Metrix indices used in this
study include CNCCaus, CNCTemp, CR-
FANPa, CRFAO1, CRFCWO1, DESWLlt,
LDTTRc, LDVOCDa, LSAGN, LSASSpd,
PCCNCz, PCCONNz, PCDCz, PCREFz, PC-
SYNz, PCTEMPz, RDFRE, SMCAUSlsa,
WRDADJ, WRDADV, WRDFRQa, WRD-
MEAc, WRDNOUN, and WRDVERB. The
complete names of these features are provided
in Table 2 in the appendix. For more informa-
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tion on what each of these features refers to
and how they are calculated, see Coh-Metrix
version 3.0 indices.

11. Embeddings: We used the MPNet encoder
to obtain embeddings for each stem text. MP-
Net is a pre-trained transformer-based lan-
guage model, which has been shown to outper-
form similar well-known pre-trained models,
such as BERT and RoBERTa, in several tasks
(Song et al., 2020). MPNet encoder generates
embeddings in the form of 768-dimension vec-
tors. The embeddings represent text in various
aspects, including its context, meaning, and
syntactic structure.

3.3 Algorithms

We deployed 15 ML algorithms to achieve the high-
est performance: Linear Regression, Ridge Regres-
sion, Lasso Regression, ElasticNet, Stochastic Gra-
dient Descent (SGD), Support Vector Regression
(SVR), Decision Tree, Random Forest, Gradient
Boosting, Extra Trees, AdaBoost, K-Neighbors,
Multilayer Perceptron (MLP), XGBoost, and Cat-
Boost. These algorithms cover a broad spectrum
of ML techniques, each with its own strengths and
use cases.

3.4 Procedures

Irrespective of the algorithm used, three models
were built for each prediction task incrementally.
First, a selection of features excluding embeddings
was used to train Model 1. Next, embeddings
were added to build Model 2. Finally, an ensemble
method was utilized to find the best combination of
algorithms to be used in Model 3. Figure 1 depicts
the structure of the three models in more detail.

Given the high number of our features, we made
attempts at different stages of the models to filter
out the less relevant features, as feature reduction
can enhance model efficiency and lower the risk
of overfitting (Ying, 2019). Initially, using a heat
map, we detected instances of high correlation in
every possible pair of features to address multi-
collinearity. We marked a correlation coefficient of
0.8 and higher as the presence of multicollinearity
(Hae, 2019) and removed one of the two features
in the pair. The choice of features for removal was
based on theoretical justification and/or literature
insights. In a later stage, after Model 1 was initially
trained, we gradually removed a few more features
based on feature importance results and retrained

the model with the truncated list of features. If
model performance remained relatively stable, we
kept the removed features out of the feature set;
otherwise, we re-inserted the removed features one
by one to reach comparable performance results.
The final lists of selected features used for each pre-
diction task are provided in Table 3 in the appendix.
The feature of embeddings went through a reduc-
tion process as well. Principal component analysis
(PCA) was used to reduce the 768 dimensions of
embeddings to 15 components. This number of
components was chosen after experimenting with
a range of components from 5 to 20, with 15 com-
ponents yielding the best result.

Cross-validation (CV) was utilized to make the
best of the limited data. After randomly leaving
20% of the data out for testing the final models,
we ran a 5-fold cross-validation on the remaining
80% subset. Root mean square error (RMSE) re-
sults were reported on both the test set and the five
folds of the CV subset. A comparison of model
performance in training and test sets helps with the
detection of overfitting (Ying, 2019).

RMSE was used as the main evaluation metric
in the study. It is calculated based on the following
formula:

RMSE =

√∑N
i=1(yi − ŷi)2

N
(1)

where yi is the actual outcome value and ŷi is the
predicted one for the i-th data, with N denoting the
total number of data. RMSE is thus an indicator
of the prediction error, i.e., the difference between
predicted and actual outcome values. Lower RMSE
values indicate lower prediction error.

4 Results

Table 1 presents the RMSE results of all three mod-
els in the test and CV subsets for both prediction
tasks. In both tasks, Model 2 has a marginally bet-
ter performance (i.e., lower RMSE) than Model
1, indicating that the addition of embeddings only
slightly enhances model performance. Addition-
ally, using the ensemble method (Model 3) did not
lead to any performance improvement in either of
the tasks.

Unlike the RMSE results, the feature importance
results were relatively different in the two predic-
tion tasks. In particular, Coh-Metrix features had
a stronger presence in the top features for the dif-
ficulty task. In predicting difficulty, PCTEMPz,
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Table 1: Model comparisons for predicting difficulty and response time

Models Difficulty Response Time

Method Test RMSE CV RMSE Method Test RMSE CV RMSE

Model 1 CatBoost 0.277 0.314 K-Neighbors 23.743 25.586

Model 2 AdaBoost 0.269 0.315 K-Neighbors 23.271 24.898

Model 3 Ensemble∗ 0.269 0.315 Ensemble∗∗ 23.271 24.898
∗{AdaBoost} ∗∗{K-Neighbors}

Figure 2: Feature importance scores for predicting difficulty using the CatBoost method

LSASSpd, and Rare Words Sum are the top three
features (Figure 2), while Sentence Length Max,
Stem Length, and Medical Terms Sum stand out
as the top three features predicting response time
(Figure 3). Moreover, unlike the prediction task of
difficulty, a few Coh-Metrix features were found
to have a weak negative relationship with response
time.

5 Discussion

A comparison of the RMSE results across the three
models in both prediction tasks indicates that the
addition of embeddings (i.e., Model 2) had a very
small contribution to model performance. While
this finding was against our initial expectation, it
does bear credence when taking into account the
large number of features already fed into Model 1.
The selected Coh-Metrix indices coupled with our

extracted features (such as Rare Words Sum and
Medical Terms Sum) captured most of the variance,
leaving not much else to be explained by embed-
dings. A similar scenario has been present in some
other studies. In (Ha et al., 2019), for example,
adding either Word2vec or ELMo embeddings to a
list of various linguistic features improved RMSE
results by minimal margins.

As for Model 3 in both prediction tasks, the en-
semble method was ineffective in reducing RMSE
values because there was no possible combination
of algorithms that would result in a better model
performance. In both tasks, the difference between
the top-performing algorithm and the rest of the
algorithms was wide; therefore, combining the top
algorithm with any other one would only harm the
performance. Another reason could be that the al-
gorithms are making similar predictions, meaning
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Figure 3: Feature importance scores for predicting response time using the K-Neighbors method

that there is a high correlation between their pre-
dictions. The ensemble method usually works best
when models trained by different algorithms have
different strengths and weaknesses, so combining
models could lead to one model compensating for
deficiencies in another.

The feature importance scores exhibited dissim-
ilar patterns in the two prediction tasks. Features
measuring the cohesion of the stem text played a
major role in predicting difficulty: The vast major-
ity of the top predictors of difficulty are cohesion-
based Coh-Metrix features. On the other hand,
non-Coh-Metrix features, especially length-related
ones, constituted the main group of predictors of
item response. Length, measured as either the max-
imum number of words in a sentence (i.e., Sen-
tence Length Max) or the total number of words
in the stem text (i.e., Stem Length), is the predom-
inant predictor of item response. Compared to
difficulty, response time can be considered less
complicated to explain, as it is highly dependent
on simple length-related features.

6 Limitations

Two limitations need to be taken into account when
interpreting the results of the study. Firstly, the
quality of extracted features was dependent on the
quality of stem text preprocessing. While prepro-
cessing text data (e.g., tokenization and lemmatiza-
tion) is generally challenging, the text of medical

items can pose additional challenges. The stem
of many medical items typically contains a tabu-
lation of data, e.g., laboratory results and blood
pressure measures. When embedded within the
text, such data can negatively impact the accuracy
of feature calculations. For example, a list of items
and numbers within a syntactically simple sentence
can make it appear as a complex sentence in mea-
sures of sentence complexity. It can also interfere
with coherence measures calculated through the
Coh-Matrix.

The second limitation concerns the results of
feature importance. Different algorithms may pro-
duce relatively different feature importance sets
as they try to reach their highest prediction accu-
racy. Therefore, the top three or five features in
one algorithm can differ from those in another al-
gorithm even with a very close RMSE. To better
understand the contribution of each feature to the
prediction model, experimental studies are recom-
mended, as the direct effect of individual variables
can be more reliably examined through experimen-
tal control and manipulation (Yousefpoori-Naeim
et al., 2023).

7 Conclusion

The present study explored a selection of diverse
features to predict the difficulty and response time
of a sample of multiple-choice medical test items
using a variety of ML algorithms. In either of
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the prediction tasks, the addition of embeddings
to the list of features did not make a considerable
contribution to model performance, and the use of
the ensemble method was not effective either. In
feature importance scores, however, the two tasks
showed dissimilar patterns. Features measuring
cohesion were especially effective in predicting
difficulty, while length-related features were the
main predictors of response time.

While future studies can examine the role of
many other features in predicting item characteris-
tics of medical tests, we would like to draw atten-
tion to collecting data from item writers to be used
as a potential feature. Especially in the case of item
difficulty, medical test writers can be asked to rate
the difficulty of the items they develop. While stu-
dents might perceive items differently from what
test writers would assume, item writers’ ratings
could still correlate highly with actual difficulty
values. This feature enjoys high practicality and
low cost, as item writers can give difficulty ratings
as they write their own items. A more advanced,
but also more expensive approach is to have item
writers rate each others’ items as well.
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A Appendix

Table 2: Coh-Metrix feature labels and their descriptions

Feature Label Description
CNCCaus Causal connectives incidence
CNCTemp Temporal connectives incidence
CRFANPa Anaphor overlap, all sentences
CRFAO1 Argument overlap, adjacent sentences binary, mean
CRFCWO1 Content word overlap, adjacent sentences proportional, mean
DESWLlt Word length, number of letters, mean
LDTTRc Lexical diversity, type-token ratio, content word lemmas
LDVOCDa Lexical diversity, VOCD, all words
LSAGN LSA given/new, sentences, mean
LSASSpd LSA overlap, all sentences in a paragraph, standard deviation
PCCNCz Text Easability, PC Word concreteness, z score
PCCONNz Text Easability, PC Connectivity, z score
PCDCz Text Easability, PC Deep cohesion, z score
PCREFz Text Easability, PC Referential cohesion, z score
PCSYNz Text Easability, PC Syntactic simplicity, z score
PCTEMPz Text Easability, PC Temporality, z score
RDFRE LSA verb overlap
SMCAUSlsa Flesch Reading Ease
WRDADJ Adjective incidence
WRDADV Adverb incidence
WRDFRQa CELEX Log frequency for all words, mean
WRDMEAc Meaningfulness, Colorado norms, content words, mean
WRDNOUN Noun incidence
WRDVERB Verb incidence
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Table 3: List of features used in each prediction task

Features Difficulty Item Response
Item Type • •
Exam Part (Stem) • •
Stem Length • •
Sentence Length Average • •
Sentence Length Maximum • •
Option Count • •
Challenging Topics • •
Rare Words Sum • •
Medical Terms Sum • •
CNCCaus •
CNCTemp •
CRFANPa • •
CRFAO1 • •
CRFCWO1 • •
DESWLlt • •
LDTTRc • •
LDVOCDa • •
LSAGN • •
LSASSpd • •
PCCNCz • •
PCCONNz • •
PCDCz • •
PCREFz • •
PCSYNz • •
PCTEMPz •
RDFRE • •
SMCAUSlsa • •
WRDADJ • •
WRDADV •
WRDFRQa • •
WRDMEAc •
WRDNOUN • •
WRDVERB • •
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