@inproceedings{dutilleul-etal-2024-isep,
title = "{ISEP}{\_}{P}residency{\_}{U}niversity at {MLSP} 2024 Shared Task: Using {GPT}-3.5 to Generate Substitutes for Lexical Simplification",
author = "Dutilleul, Benjamin and
Debaillon, Mathis and
Mathias, Sandeep",
editor = {Kochmar, Ekaterina and
Bexte, Marie and
Burstein, Jill and
Horbach, Andrea and
Laarmann-Quante, Ronja and
Tack, Ana{\"i}s and
Yaneva, Victoria and
Yuan, Zheng},
booktitle = "Proceedings of the 19th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2024)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.bea-1.54/",
pages = "605--609",
abstract = "Lexical substitute generation is a task where we generate substitutes for a given word to fit in the required context. It is one of the main steps for automatic lexical simplifcation. In this paper, we introduce an automatic lexical simplification system using the GPT-3 large language model. The system generates simplified candidate substitutions for complex words to aid readability and comprehension for the reader. The paper describes the system that we submitted for the Multilingual Lexical Simplification Pipeline Shared Task at the 2024 BEA Workshop. During the shared task, we experimented with Catalan, English, French, Italian, Portuguese, and German for the Lexical Simplification Shared Task. We achieved the best results in Catalan and Portuguese, and were runners-up in English, French and Italian. To further research in this domain, we also release our code upon acceptance of the paper."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dutilleul-etal-2024-isep">
<titleInfo>
<title>ISEP_Presidency_University at MLSP 2024 Shared Task: Using GPT-3.5 to Generate Substitutes for Lexical Simplification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Benjamin</namePart>
<namePart type="family">Dutilleul</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mathis</namePart>
<namePart type="family">Debaillon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sandeep</namePart>
<namePart type="family">Mathias</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Kochmar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie</namePart>
<namePart type="family">Bexte</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrea</namePart>
<namePart type="family">Horbach</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ronja</namePart>
<namePart type="family">Laarmann-Quante</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anaïs</namePart>
<namePart type="family">Tack</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Victoria</namePart>
<namePart type="family">Yaneva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zheng</namePart>
<namePart type="family">Yuan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Lexical substitute generation is a task where we generate substitutes for a given word to fit in the required context. It is one of the main steps for automatic lexical simplifcation. In this paper, we introduce an automatic lexical simplification system using the GPT-3 large language model. The system generates simplified candidate substitutions for complex words to aid readability and comprehension for the reader. The paper describes the system that we submitted for the Multilingual Lexical Simplification Pipeline Shared Task at the 2024 BEA Workshop. During the shared task, we experimented with Catalan, English, French, Italian, Portuguese, and German for the Lexical Simplification Shared Task. We achieved the best results in Catalan and Portuguese, and were runners-up in English, French and Italian. To further research in this domain, we also release our code upon acceptance of the paper.</abstract>
<identifier type="citekey">dutilleul-etal-2024-isep</identifier>
<location>
<url>https://aclanthology.org/2024.bea-1.54/</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>605</start>
<end>609</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ISEP_Presidency_University at MLSP 2024 Shared Task: Using GPT-3.5 to Generate Substitutes for Lexical Simplification
%A Dutilleul, Benjamin
%A Debaillon, Mathis
%A Mathias, Sandeep
%Y Kochmar, Ekaterina
%Y Bexte, Marie
%Y Burstein, Jill
%Y Horbach, Andrea
%Y Laarmann-Quante, Ronja
%Y Tack, Anaïs
%Y Yaneva, Victoria
%Y Yuan, Zheng
%S Proceedings of the 19th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2024)
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F dutilleul-etal-2024-isep
%X Lexical substitute generation is a task where we generate substitutes for a given word to fit in the required context. It is one of the main steps for automatic lexical simplifcation. In this paper, we introduce an automatic lexical simplification system using the GPT-3 large language model. The system generates simplified candidate substitutions for complex words to aid readability and comprehension for the reader. The paper describes the system that we submitted for the Multilingual Lexical Simplification Pipeline Shared Task at the 2024 BEA Workshop. During the shared task, we experimented with Catalan, English, French, Italian, Portuguese, and German for the Lexical Simplification Shared Task. We achieved the best results in Catalan and Portuguese, and were runners-up in English, French and Italian. To further research in this domain, we also release our code upon acceptance of the paper.
%U https://aclanthology.org/2024.bea-1.54/
%P 605-609
Markdown (Informal)
[ISEP_Presidency_University at MLSP 2024 Shared Task: Using GPT-3.5 to Generate Substitutes for Lexical Simplification](https://aclanthology.org/2024.bea-1.54/) (Dutilleul et al., BEA 2024)
ACL