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Abstract

Scoring clinical patient notes (PNs) written by
medical students is a necessary but resource-
intensive task in medical education. This pa-
per describes the organization and key lessons
from a Kaggle competition on automated scor-
ing of such notes. 1,471 teams took part in
the competition and developed an extensive,
publicly available code repository of varying
solutions evaluated over the first public dataset
for this task. The most successful approaches
from this community effort are described and
utilized in the development of a PN scoring sys-
tem. We discuss the choice of models and sys-
tem architecture with a view to operational use
and scalability, and evaluate its performance
on both the public Kaggle data (10 clinical
cases, 43,985 PNs) and an extended internal
dataset (178 clinical cases, 6,940 PNs). The
results show that the system significantly out-
performs a state-of-the-art existing tool for PN
scoring and that task-adaptive pretraining using
masked language modeling can be an effective
approach even for small training samples.

1 Introduction

A core practice in assessing the clinical skills of
medical students is the use of Objective Structured
Clinical Examinations (OSCEs) – a type of exam,
where test-takers interact with standardized pa-
tients, who are trained to portray a set of clini-
cal symptoms. After examining the patients, the
test-takers are asked to describe their findings in a
clinical patient note (PN), similar to those found
in electronic health records (see an example PN in
Appendix A). The PN serves as a documentation
of the encounter and is used to assess examinee
ability to gather information, record physical ex-
aminations, and interpret clinical data. OSCEs are
widely used in medical schools in various coun-
tries, with around 90% of US schools requiring

their students to pass such exams (Barzansky and
Etzel, 2016).

A major bottleneck for scaling OSCE assess-
ment is the time, cost, and effort associated with
the expert grading of large amounts of PNs, es-
pecially given limited faculty time. For exam-
ple, in the former United States Medical Licensing
Examination® (USMLE®) Step 2 Clinical Skills
exam (discontinued in 2020), more than 100 li-
censed physician raters were needed every year
to grade ≈ 330,000 PNs from ≈ 35,000 US and
international test-takers (Sarker et al., 2019).

While there is interest among medical educators
to address the above limitations using automated
grading methods, the exploration of such methods
has been slow and fragmented due to exam secu-
rity concerns, which limit data sharing. This has
resulted in small-scale, predominantly internal ex-
plorations of automated scoring, with no shared
datasets or code to foster collaborative research.

To address this gap, we organized a Kaggle com-
petition on clinical PN scoring1 as a community
effort to move this field forward. We then used the
most successful approaches for the development of
an interpretable and transparent PN scoring system.
The contributions of this paper are as follows:

• Description of the Kaggle competition on clin-
ical PN scoring, for which we released a pub-
lic dataset and which resulted in a large repos-
itory of publicly available code.

• Analysis of the most successful approaches.
• Description of an Amazon Web Services

(AWS) proof-of-concept for PN scoring based
on the successful solutions; Choice of mod-
els and system architecture are discussed with
a view to operational scalability. Models are

1https://www.kaggle.com/c/
nbme-score-clinical-patient-notes/
overview
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Figure 1: Example of rubric features and their annotated expressions within a patient note excerpt

trained in a real-world scenario of limited PNs
for newly developed cases.

• Baseline comparison to an already opera-
tionalized scoring system with a mean F1
score improvement from .76 to .95. Perfor-
mance is evaluated on both the Kaggle data
and an extended internal dataset.

• Evaluation of a scenario when training is per-
formed using limited annotation.

• Discussion of ethical considerations and im-
plications for fairness, reliability, and validity.

2 Context

The data used in this study originated from the
United States Medical Licensing Examination®

(USMLE®) – a series of examinations used to
support medical licensure decisions in the United
States. Until 2020, the USMLE Step 2 Clinical
Skills examination was a part of the USMLE step
sequence and involved interactions with standard-
ized patients portraying different clinical scenarios.
The resulting PNs were graded using rubrics spe-
cific to each clinical case, which contain a set of
features – important concepts, which should ap-
pear in an appropriately documented PN (Figure
1). For example, for a clinical case about a patient
with anxiety, it may be important that the examinee
discovers that the patient has insomnia, in which
case insomnia would be listed as a rubric feature.
PNs that do not mention that symptom or some ex-
pression of it such as difficulty falling asleep would
receive a lower rater score.

Key challenge for automated scoring is the vari-
ety of ways features are expressed (e.g., evaluation
for coronary risk factors expressed as father with
MI at age 50, or denies depressed mood expressed
as (-) anhedonia). There are cases of ambiguous
negation as in denies nausea, vomiting for the fea-
ture no nausea and or vomiting or temporal aspects
such as recent URI for uri one week ago. To be

operationally usable, a PN scoring system needs
to provide interpretable evidence and be highly ac-
curate. These requirements are crucial to ensure
exam fairness and protect the health of the public.

3 Related Work

The vast majority of work on automated scoring
has been done in the field of writing evaluation (see
Klebanov and Madnani (2020) for an overview).
Studies on scoring clinical text include Latifi et al.
(2016), who use a feature-based system for scoring
short responses to clinical decision-making ques-
tions, Ha et al. (2020) who predict examinee pro-
ficiency from responses to clinical short-answer
questions, and Suen et al. (2023) who use trans-
former models for scoring short answers to clinical
questions. For PN scoring specifically, Yim et al.
(2019) use features and BERT embeddings for scor-
ing a corpus of 338 PNs and Zhou et al. (2022) use
weakly supervised approaches and transfer learning
for scoring two clinical cases of 30 PNs each.

The work most relevant to ours is the INCITE
system (Sarker et al., 2019; Harik et al., 2023),
which was developed for operational scoring of
PNs from the USMLE Step 2 CS exam and which
we use as a baseline. The system is a modular
pipeline which outputs a binary score of "found"
or "not found" for each rubric feature, utilizing
custom-built lexicons and annotations. The first
two modules perform direct and fuzzy matching be-
tween a feature or a lexicon variant and the PN text
using a fixed or dynamic Levenshtein ratio thresh-
old. Any features whose expressions are found
using this method are removed from the pipeline
to optimize running time. Next, matching is per-
formed against combinations of lexicon variants
and annotations, which "often leads to an explosion
of the number of eventual entries" (Sarker et al.,
2019) as terms in the annotations are replaced with
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variants from the lexicons. To limit this search
space, there is a cap of 10,000 randomly sampled
combinations per feature. Matching is then done us-
ing these phrases as sequences and as bag-of-words
to cope with fragmented entries 2.

Advantages of the INCITE system include its
high performance, ability to be tuned for precision
and recall by varying the thresholds, as well as
its speed – it is capable of processing over 50,000
PNs per day on a desktop computer. However, the
rule-based nature of the system limits improvement
from more training data, especially because more
annotations would greatly increase the search space
for supervised concept detection.

4 Task description and evaluation

The task of developing an interpretable system for
automated scoring of PNs is one where features
from the rubric are mapped to expressions from the
PN. If an expression of the feature is identified in
the PN then the feature is considered "found", else
it is "not found". The more features are found, the
higher the score for that PN. We perform two types
of model evaluation, as described below.

Token-level evaluation: This type of evaluation
answers the question "What phrase spans in the
PN correspond to a given rubric feature?". This
evaluation is identical to the one used in the Kaggle
competition and comparable to its leaderboard.

For each instance, the system predicts a set of
character spans that it considers to correspond to
that feature, where a character span is a pair of
indexes representing a range of characters within a
text. These predicted spans are then compared to
ground-truth spans from the annotation and scored
as: a character is considered true positive if it is
within both a ground-truth and a prediction; false
negative if it is within a ground-truth but not a
prediction; and false positive if it is within a predic-
tion but not a ground truth. An overall F1 score is
computed from the TPs, FNs, and FPs aggregated
across all instances3.

Binary evaluation: This type of evaluation an-
swers the question "Was an expression of a feature

2E.g., "Antibiotics taken in recent times for his symptoms
– negative". As Sarker et al. (2019) note, window-based fuzzy
matching would fail to include the negation and the rest of the
description in one window.

3For specific examples, see https:
//www.kaggle.com/competitions/
nbme-score-clinical-patient-notes/
overview/evaluation

found (1) or not found (0) in the PN?". This eval-
uation corresponds to the way PNs are scored in
practice.4 If at least one span is identified as corre-
sponding to the feature, the feature is considered
"found". For the neural models, binary scores are
obtained by applying a function over the token-
level predictions using a threshold of 0.5.

5 Data

Training and evaluation are performed in two
datasets of PN history portions5 – public and pro-
prietary – from the USMLE Step 2 CS exam.

Public dataset: This dataset was used in the
Kaggle competition (so henceforth referred to as
"the Kaggle dataset") and contains the history por-
tions of 43,985 PNs from 10 clinical cases and the
corresponding features for each case. Data were
collected between 2017 and 2020 from 35,156 US
or international test-takers who took the exam un-
der standardized conditions in one of five testing
locations in the US. The average number of PNs
per case is 4,398 (min = 992, max = 9,936), to-
tal number of tokens is 5,958,464, and the aver-
age length of each history portion is 135.47 tokens
(SD = 24.27). The average number of features per
history portion is 14.3 (SD = 3.34). Of these, a
total of 2,840 PNs (284 per case) were annotated
by 10 experienced US medical practitioners who
were asked to identify the spans of each phrase
that is an expression of a rubric feature and link
it to that feature. The annotators were divided in
pairs of two and 20% of the PNs from each case
were double-rated (see detailed annotation guide-
lines and procedure in Appendix B). F1 agreement
scores were computed using the token-level evalua-
tion procedure described above and showed a sub-
stantial agreement across all cases (F1 = .84 (SD
= 0.075); Cohen’s κ of 0.89 (SD = 0.057)). Binary
F1 denoting whether an expression of a given fea-
ture was found in a PN was F1 = 0.97 (SD = 0.014).
Detailed information about the corpus can be found
in Yaneva et al. (2022). The data is available via a
data sharing agreement at https://www.nbme.
org/services/data-sharing.

Proprietary dataset: This dataset consists of a
much larger number of clinical cases – 178 – with

4Raters are not typically required to mark the exact expres-
sions that correspond to a feature. As a result, human scores
are not explicitly traceable to specific evidence in the PN, un-
less this is specifically required (e.g., if a score is contested).

5The history portion is where all relevant clinical informa-
tion obtained from an interview with the patient is described.
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fewer PN history portions per case (µ = 39; min
= 32; max = 43). Total number of PNs in the set
is 6,940, and total number of tokens is 1,121,236.
Average document length is 161.56 tokens (SD =
29.42), and the average number of features is 13.92
(SD = 4.84). All PNs were annotated following
the same procedure as above, resulting in binary
inter-annotator agreement of F1 = .95 (SD = 0.09),
computed over 10% double-rated notes per case.

6 Kaggle competition: Key lessons

The Kaggle competition on scoring clinical PNs
resulted in a total of 28,049 code entries from
1,471 participating teams. After the end of the
competition, many teams posted their notebooks in
the competition’s code repository, making them
publicly available. In this section, we analyze
the top 15 publicly shared solutions 6 (the teams
ranking from 1st to 11th place, and those that
ranked #13, #14, #18, #19, and #20), as well as in-
sights from other notebooks and key forum discus-
sions. The final leaderboard rankings can be seen at
https://tinyurl.com/p9mwfu8c and cor-
responding code contributions can be accessed at
https://tinyurl.com/3h8p5a67.

Results Many of the top-performing teams
reached a token-level F1 score of .89, with mi-
nor differences between solutions (e.g., #1 F1 =
.89456, #2 F1 = .89432, and #3 F1 = .89384), in-
dicating that there are different, equally success-
ful ways of addressing this task. This result also
suggests potential ceiling effects arising from anno-
tation inconsistencies such as not capturing every
instance of a phrase that can be mapped to a fea-
ture7 or not identifying the correct character span
of a phrase (average inter-annotator agreement F1
= .84). Such inconsistencies resulting from human
error are inevitable in spite of rigorous training and
data cleaning efforts, further showcasing the need
for improved reliability in scoring.

Key approaches Most high-performing solu-
tions used some version of DeBERTa (He et al.,
2021) as the backbone and performed task-
adaptive pretraining (Gururangan et al., 2020) by
using masked language modeling (MLM) over the

6Detailed solution descriptions for first place: https:
//tinyurl.com/2p8afa94, second place: https://
tinyurl.com/yc77s4rk, and third place https://
tinyurl.com/3yf4u6hr.

7The 2nd place winner hypothesised that annotators were
more likely to miss repeated annotations than first occurrence
and noted that the use of recursive neural networks (RNNs)
could be useful to capture such sequence dependencies.

unannotated portion of the data. One solution (#2)
additionally pretrained on the SQuAD 2.0 question
answering dataset (Rajpurkar et al., 2018), drawing
a parallel between the two tasks: the feature text
in PN scoring corresponds to the question in the
SQuAD data, the patient history is the context, and
the annotations are all answers to the question.

Another approach shared by almost all of the
analyzed solutions was the use of pseudo labeling
(Arazo et al., 2020) to create more training data
from the unannotated notes. One team (ranking #3)
also utilized meta pseudo labeling (Pham et al.,
2021). Some teams reported that hard labels work
better than soft labels [solutions ranking #8, #70],
while others reported the opposite [#1].

While these techniques were used in most high-
performing solutions, one approach that distin-
guished the Top 3 winners was the use use of multi-
task learning. In this case, the main task of token
classification is combined with an auxiliary task
of predicting annotation span boundaries, putting
more weight on tokens that are the beginning or
end of a phrase. In the model architecture, this
is expressed as a primary head for token classifi-
cation and two auxiliary heads for span boundary
detection (one for starts and one for ends).

A focal point for most successful solutions
was the prevention of overfitting. This was done
through careful ensembling and detailed experi-
mentation with various dropout rates, as well as
extensive use of cross validation.

7 Models

Two key differences between real-world applica-
tions and the competition are that: i) newly de-
veloped cases do not come with large amounts of
unannotated PNs (which makes pseudo-labeling
not suitable), and ii) the trade-off between per-
formance gain and resource requirements such as
speed and compute power is an important aspect of
model selection (making the ensembling of a large
number of models impractical). With these pre-
requisites in mind, the following approaches were
trained and evaluated.

INCITE baseline: The INCITE system is an op-
erationally used benchmark. The case-specific data
in its lexicons is from the training set for each case.

DeBERTa baseline: The pretrained DeBERTa
v3 (He et al., 2021) was used as the backbone
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Token-level results for the public (Kaggle) dataset
Public test set Private test set

P R F1 P R F1
DB .846 .882 .864 .85 .885 .867
DB + MTL .844 .882 .862 .849 .887 .868
DB + MLM .845 .889 .866 .849 .89 .869

Token-level results for the proprietary data (178 cases)
Training set (80%) Test set (20%)

P R F1 P R F1
DB .836 .782 .808 .681 .768 .722
DB + MTL .845 .808 .826 .773 .7 .745
DB + MLM .94 .95 .945 .856 .834 .845

Table 1: Token-level results. DB = DeBERTa; MTL =
multi-task learning; MLM = masked language model-
ing; P = precision, R = recall. Note that INCITE does
not output token-level information.

model8, where each token was assigned a label
of 1 if inside the annotation span and 0 otherwise.
The output of the model was the probability of each
token being inside the annotation span. After ex-
perimentation with various probability thresholds
in both datasets, a threshold of 0.5 was determined
sufficient (i.e., a token with a probability greater
than 0.5 was considered to be inside the span). The
model was trained with cross-entropy loss.

DeBERTa + Masked Language Modeling
(MLM): 15% of the tokens in the input sentences
were randomly masked and ran through the model,
where the model’s objective was to predict the
masked tokens. For the Kaggle dataset, the pretrain-
ing was performed on the unlabeled data. For the
proprietary dataset, there were no unlabeled data,
so the pretraining was performed on the labeled
data from the training set. The MLM model was
pretrained for one epoch. The pretrained model was
then trained the same way as the baseline model.

DeBERTa + Multi-task Learning (MTL): Two
auxiliary tasks were trained jointly with the model,
predicting whether the token was at the beginning
(Task 1) or the end (Task 2) of the annotation span.

8 Results

Token-level results: Table 1 presents the results
from the token-level evaluation. For the Kaggle
data, we kept the exact training, private test, and

8Learning rate: 1e-4; Optimizer: AdamW; Weight decay:
0.01; Learning rate scheduler: Linear (warmup for 10% of the
training steps); Training epochs: 5; Training batch size: 4 per
device x 2 GPUs = 8; Gradient accumulation steps: 4.

public test sets,9 so the results are directly compa-
rable to the competition leaderboard. As shown in
the table, the best-performing model is DeBERTa +
MLM, with a private test set F1 score of .869 (P =
.849, R = .89). This compares to F1 = .89456 for
the #1 Kaggle solution. A drop in performance of
only .03 points shows that the exclusion of pseudo-
labeling and the use of a single model instead of
an ensemble of multiple models did not lead to a
loss that has a practical significance (although such
difference is important in a competition context).

For the internal dataset the results are consistent
with Kaggle – the best model is again DeBERTa +
MLM (F1 = .845, P = .856, R = .834). The model
generalizes over a much larger set of cases and is
robust when trained on fewer notes (as a reminder,
the internal dataset contains 32 to 49 annotated
notes per case (80% used for training), compared
to 100 training notes per case in Kaggle). Impor-
tantly, this result shows that MLM pretraining can
be fruitfully applied to small training sets, leading
to an increase over the DeBERTa baseline (.845
vs. .722). The DeBERTa and DeBERTa + MTL
results did not generalize as well, exemplifying the
importance of task-adaptive pretraining.

Note that token-level evaluation was only per-
formed with the neural models. INCITE cannot
output specific phrases if the matching was done
by some of its more advanced modules (e.g., bag
of words from lexicon variants + fuzzy matching).
This is an important distinction between INCITE
and the neural approaches that has implications
for both interpretability and intended use (e.g., in
providing feedback to learners).

Binary evaluation results and comparison to
INCITE: The binary evaluation results are pre-
sented in Table 2. For Kaggle, the neural models
outperform INCITE (F1 of .958 for DeBERTa +
MLM; .888 for INCITE on the public test set). This
difference is more pronounced for the proprietary
dataset, where DeBERTa + MLM’s robust F1 of
.952 compares to an F1 of .761 for INCITE and
.946 for inter-annotator agreement. As shown, the
main difference with INCITE is that DeBERTa +
MLM has a much higher recall (e.g., R = .954 vs.
R = .642 for INCITE). Precision is high for both
DeBERTa + MLM (.95) and INCITE (.953).

The binary evaluation results on the internal
9In Kaggle, the public test set serves as a validation set

for the development of the approaches. The final leaderboard
is determined after the end of the competition by the perfor-
mance of the submitted models on the private test set.
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Binary evaluation for the public (Kaggle) dataset
Public test set Private test set

P R F1 P R F1
INCITE .962 .818 .883 .961 .828 .888
DB .95 .962 .956 .951 .963 .957
DB + MTL .947 .961 .954 .953 .963 .958
DB + MLM .952 .961 .957 .961 .956 .958

Binary evaluation for the proprietary data (178 cases)
Training set (80%) Test set (20%)

P R F1 P R F1
INCITE .966 0.85 .902 .953 .642 .761
DB .927 .933 .93 .896 .862 .879
DB + MTL .933 .947 .94 .898 .877 .888
DB + MLM .979 .979 .979 .95 .954 .952

Table 2: Binary evaluation results. DB = DeBERTa;
MTL = multi-task learning; MLM = masked language
modeling, P =precision, R = recall.

dataset for DeBERTa + MLM (F1 = .952) are com-
parable to human-rater performance as computed
on the set of double-rated PNs per case (inter-rater
agreement F1 = .946).

Out of the total of 19,465 instances, INCITE
and DeBERTa + MLM agreed in 14,532 or 75%
of the instances (κ = 0.51, indicating moderate
agreement); INCITE vs Annotation agreement was
κ = 0.52; Finally, DeBERTa + MLM vs Annotation
agreement was κ = 0.89.

Limited annotation setting: For the internal
dataset we also experiment with a limited annota-
tion setting, since the question of how much an-
notation is required before a model can be trained
has strong practical implications. For a limited an-
notation scenario where we train on 30% of the
data (i.e., ≈ 12 PNs per case) and evaluate on 70%
held-out data, the F1 score for DeBERTa + MLM
is .836 (binary F1 = .94) compared to .69 (binary
F1 = .83) for DeBERTa + MTL and .64 (binary
F1 = .86 ) for DeBERTa baseline. These results
show that task-adaptive pretraining leads to robust
models even in a limited annotation scenario.

9 Error Analysis

For DeBERTa + MLM, there were 990 errors (594
FNs and 396 FPs), distributed across all 178 clin-
ical cases10. However, the errors were only dis-
tributed across 36% of the 1815 features. We hy-

10The average number of errors per case was 10.5 (SD =
9.15), with 4 cases scored without any errors, 16 cases with
one, and 22 cases with two errors; highest number of errors
in a case was 18 (1 case), followed by 17 (1 case), and 15 (3
cases). The number of errors per case (µ = 10.5 (SD = 9.15))
was best explained by the number of features in a case, where
cases with higher number of features had more errors.

pothesize that this may be due to differences in
annotation length for different features. Indeed, the
mean annotation length differs between the correct
predictions and the errors: it is µ = 19.6 (SD =
20.7) for correct and µ = 13.2 (SD = 17.2) for the
errors (Mann-Whitney U = 7183226, p < 0.001).
This is somewhat counter-intuitive, as it suggests
that the shorter features and shorter annotations are
more difficult to detect. Further content-specific
analysis is needed to illuminate the potential causes
for this phenomenon. Annotation length affected
INCITE inversely and to a much greater extent,
where the annotations for the correct class (µ =
15.9, SD = 19.8) are on average twice as short as
the errors (µ = 29.12, SD = 19.9), (U = 19231079.5,
p = 0.0), potentially due to limitations from its
window-based approach. Spearman correlation be-
tween annotation length and correct/incorrect pre-
dictions further supports this finding: r = 0.08 for
DeBERTa + MLM model and r = -0.36 for IN-
CITE. A likely explanation for this result is that
INCITE’s window-based approach is challenged
by long phrases, while DeBERTa’s multi-head self-
attention layers, where the encoder reads the entire
sequence bidirectionally, enables it to cope well
with these. In addition, since the objective of the
neural models was to decide whether a given char-
acter belongs to a relevant phrase, the higher char-
acter count of longer phrases increases the avail-
able information for making a prediction. Further
analysis of the differences between correct and er-
roneous predictions did not reveal a specific pattern.
This extended analysis is presented in Appendix D
together with examples of specific features.

10 Deployment

A system based on the DeBERTa + MLM model
was deployed on the Amazon Web Services (AWS)
platform. A graph depicting the AWS architecture
can be seen in Appendix C. Figure 2 provides a
visualization of the system output. Speed, resource
efficiency, and scalability are ensured by the use of
SageMaker and eliminating the need for human in-
terference via event triggers: placing incoming data
in an initial S3 bucket triggers a series of Lambda
functions, which initiate preprocessing, training,
and scoring.

11 Discussion

The results presented above showed that the best
model, DeBERTa + MLM, led to significant im-
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Figure 2: System output for an example PN

provements over INCITE for a diverse set of 178
clinical cases (binary F1 = .95 for DeBERTa +
MLM compared to .76 for INCITE), as well as
the Kaggle data (.96 vs .89). INCITE was signifi-
cantly more challenged by lengthy phrases and the
smaller number of training instances in the propri-
etary dataset. By contrast, as shown when evaluat-
ing in the limited annotation scenario, DeBERTa
+ MLM continues to yield meaningful gains when
trained on as few as 12 PNs. These experiments
add evidence that task-adaptive pretraining can be
beneficial even for small training samples, making
the approach applicable to a wide range of practical
scenarios.

While the INCITE system struggled to identify
lengthy expressions (i.e., the annotations of the er-
rors were twice as long as those of the correctly
identified instances), the DeBERTa + MLM model
coped well with long sequences. This is likely due
to the multi-head self attention layers of DeBERTa,
where the encoder reads the entire sequence in a
bidirectional manner. In addition, since the task
was to decide whether a given character belongs
to a relevant phrase or not, the higher character
count of longer phrases increases the available in-
formation for making a prediction. At the same

time, INCITE’s window-based approach limits the
length of the text spans being considered at a time,
making the capturing of long dependencies less
feasible.

The ability of the neural approaches to output
the relevant PN phrases that correspond to each
feature greatly improves the interpretability of the
scoring process by making explicit the relation-
ship between the assigned score and its supporting
evidence. Importantly, this is an improvement not
only upon INCITE but also upon human scoring, as
raters rarely have the time capacity to mark specific
expressions. As each human rater scores hundreds
of patient notes, it is not practically feasible for
them to link specific phrases to rubric features for
a large volume of data. In addition to improving
interpretability, outputting the phrases enables ap-
plications of these tools that go beyond summative
assessment. Such information can serve to pro-
vide pointed learner feedback in OSCE assessment,
especially in cases where students are still learn-
ing how to document their clinical findings in an
appropriately detailed and organized manner.

When discussing the development of this system,
it is important to mention community competitions
as an important source of innovation. The benefits

93



from sharing data for such purposes are not limited
to the organization or the data science community,
but extend to improving transparency – a crucial
prerequisite for building stakeholder trust. When
applying these creative approaches to a real-world
scenario, important considerations such as speed
and scalability limit the use of large model ensem-
bles that are typically widely used in competitions.
Other practical considerations include data avail-
ability for training (e.g., newly developed cases
rarely have large numbers of PNs associated with
them) and the need for weak supervision.

12 Limitations and ethical considerations

Some of the limitations of this research relate to
the small within-case sample size of the annotated
notes (which is somewhat mitigated by the large
number of clinical cases) and the fact that not all
notes could be double-rated due to resource con-
straints. While the scoring method is interpretable
in that it can be traced to specific phrases within the
PNs, the neural algorithms that identify the phrase
boundaries are black-box models which needs to be
carefully scrutinized for bias. In addition, it is still
not fully apparent why certain features are easier
to detect than others. Future work includes devel-
opment of scoring approaches for other segments
from the PNs such as the Physical Examination and
Data Interpretation sections, deeper exploration of
challenges related to specific features, experimen-
tation with adversarial training, as well as further
investigation of the operational use of the system.

Like many other products, automated scoring
tools are socio-technical systems, whose impact is
determined not solely by their technical capabili-
ties but also by their use and output interpretation.
Misuse and incorrect interpretation of the model
outputs can lead to unethical practices of serious
consequence. In a summative setting, the models
described here are intended to be used as hybrid
systems, where borderline cases and the notes from
examinees below the passing standard are always
reviewed by human raters. In a formative setting, it
is paramount to carefully examine the relationship
between use of the system and learning outcomes
as necessary validity evidence.

Another ethical consideration for this study is
the transparency of the approaches when develop-
ing technology for highly consequential decisions.
As Spadafore and Monrad (2019) write: “decision-
ing software with the potential to profoundly affect

the career of a medical student should be exam-
ined closely. Transparency of implementation is
critical for such a high-stakes application". This is
particularly important in automated scoring, where
the scores only have value if all stakeholders (e.g.,
faculty, students, and residency selection programs,
to name a few) trust that they are fair, reliable, and
valid. Having public datasets and code such as the
ones shared in the Kaggle competition go a long
way in building trust by increasing transparency
and accountability. As per the rules of the Kaggle
competition11, all code shared publicly is licensed
under an Open Source Initiative-approved license.
It is important to note that the benefits of system
transparency go hand-in-hand with risks associated
with using that knowledge to "game" the system.
These include reverse-engineering a strategy that
would result in a higher score, as well as the oc-
currence of negative “washback" (Green, 2013) –
over-focus on developing only those skills that are
currently covered by the scoring tool. Limiting
these negative consequences while also building
trust through transparency requires a delicate bal-
ance. In the case of this study, we foster trans-
parency via organizing the competition, describing
the main approaches, and evaluating our system on
a dataset we made public. At the same time, we
do not publish the code behind the system, limiting
potential efforts reverse-engineer it or "game" it.

The data used in the Kaggle competition was
released following strict adherence to ethical prac-
tice. It contains PNs only from examinees who
explicitly indicated that they agreed to have their
data used in research as part of the official exam
registration process; Use of the anonymized data
was considered “exempt" following an IRB review.
The PNs were assigned a new set of IDs that cannot
be linked to operational IDs used in scoring. None
of the PNs include names, affiliations or personal
descriptions (note that the names and clinical data
associated with the standardized patients do not
belong to real people; they are part of carefully
constructed clinical cases that aim to resemble real-
world clinical practice). In addition, the dataset
does not feature complete PNs (only history por-
tions are included), and no identifying information
is given on which PNs were written by an individ-
ual examinee. According to Kaggle’s terms and
conditions, data can only be accessed for partici-

11https://www.kaggle.com/competitions/nbme-score-
clinical-patient-notes/rules
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pating in the competition. For purposes unrelated
to the competition, access to the data is subject to
an application process and a data use agreement as
a way to ensure ethical use.

A few important aspects remain to be examined
before the system can be used in practice. This
includes analyses related to differential functioning
of the system for users with different backgrounds,
e.g., ensuring that non-native English speakers are
not disproportionally penalized due to differences
in language proficiency, as well as continuous mon-
itoring for issues such as drift or latency.
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A Example of a patient note

See Table 3 below.

B Annotation Guidelines

For each case, two of the notes were annotated
jointly by a pair of annotators as part of an ini-
tial discussion to resolve discrepancies in the ap-
proach, with the next 5 notes annotated indepen-
dently and discussed in a follow-up meeting. After
that each annotator would proceed to independent
work, where a subset of the notes were double-rated
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History: Describe the history you just obtained from this patient. Include only information (pertinent positives
and negatives) relevant to this patient’s problem(s).

Karin Moore is a 45 yo F here for nervousness. She recently noticed that she was feeling more nervous than usual
and that this feeling has been progressively worsening. Nothing seems to help her nervousness. It is exacerbated by
family and work. She feels especially nervous on Sunday night and Monday morning when as she is planning for the
week. Unable to fall asleep and doesn’t have appetite, though she does makes sure to eat. She denies significant
changes in appetite, weight loss, or overall wellbeing. No fevers, chills, nausea, constipation, diarrhea, skin changes,
racing heart, shortness of breath, dizziness, headaches or rashes.
ROS: otherwise negative
PMH: None; PSH: None
Meds: Tylenol for occasional HA
FHX: Father died at 65yo, had an MI
Allergies: NKDA
SH: Lives at home with husband, mother, and youngest son. Teaches literature at a local college.
Has 2 drinks/mo, no tobacco or drug use.
Physical Examination: Describe any positive and negative findings relevant to this patient’s problem(s).
Be careful to include only those parts of examination you performed in this encounter.

VS: Blood Pressure: 130/85 mm Hg
Heart Rate: 96/min
Gen: No acute distress, conversational, thin
Neck: No thyromegaly, no lymphadeopathy
Heart: RRR, no murmurs, rubs or gallops. Radial pulses +2 bilaterally
Lungs: Clear to ascultation bilaterally, no wheezes
Psych: Well-groomed. Non-pressured speech, linear though process.
Data Interpretation: Based on what you have learned from the history and physical examination, list up to
3 diagnoses that might explain this patient’s complaint(s). (...)

General anxiety disorder
Panic disorder
Hyperthyroidism

Table 3: Illustration of a PN. The dataset features only the history portions of the PNs.

for measuring agreement ( 10% for the proprietary
data and 20% for the public data).

The annotators were given the following instruc-
tion:

• Identify all phrases that are expressions of a
feature from the History portion of the PNs
and link them to their corresponding feature.

• Include fragmented annotations by excluding
the text that is not relevant to the feature (e.g.,
if the feature is No relief with Imodium or
Cipro, only the underlined text of the follow-
ing excerpt should be annotated: Has tried
Immodium (aggrevated condition), and Cipro
250mg BID (has taken 9 tablets) from prior
episode of diarrhea in Kenya of lesser severity
(no effect))

• Each feature should be marked up as a sep-
arate annotation, and the annotation should
include all, but not more than, the text that
captures the meaning of the corresponding en-
try in the feature (e.g., if the key essential is
No blood in stool, only the underlined text

of the following excerpt should be annotated:
No blood or mucus in stool).

• Annotations should include quantifiers (e.g.,
twice, four times, some), intensifiers (e.g.,
mild, severe), and temporal modifiers (e.g.,
two weeks, several years) that are specified
in the corresponding entry in the feature, as
well as the object that is being described (e.g.,
pain, cough).

• Annotations should not include articles (e.g.,
a, the) or references to the patient (e.g., her,
he) that occur at the beginning of note entries,
or end punctuation (e.g., periods); however,
it is not necessary to fragment annotations
if words or characters, such as these, occur
within relevant text and do not modify the
meaning of the feature entry.

• Annotations may overlap; that is, they may
share text with other annotations. For exam-
ple, negations (e.g., negative for, no, denies)
frequently will be shared among several anno-
tations. In the phrase Negative for fever, chills,
nausea, vomiting, hematochezia, the negated
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nouns refer to different features and should be
annotated as Negative for fever, Negative for
chills, Negative for nausea, etc.

• Mark up every instance of the feature whether
it is identical to an existing annotation or not.
For example, if the feature is NSAID-use and
the examinee wrote Uses NSAIDs as well as
took ibuprofen, both snippets of text should be
annotated. If the exact snippet Uses NSAIDs
appeared more than once in a note, it should
be annotated every time it appears in the note.

• Gender is a special case of a feature and
should only be annotated once for the first
mention. Subsequent phrases that may be
linked to gender such as she or his should
not be annotated.

C AWS System Architecture

See Figure 3 below for a visualization of the system
architecture.

D Extended Error Analysis

Examples of features that were always correctly
identified include ‘no previous uti’, ‘occasional
morning headaches’, ‘no temperature intolerance
or no weight change or no bowel changes or
no hair changes or no skin changes’, ‘on depo
provera’, and ‘decreased energy or fatigue’. The
top 5 features with most FPs were getting worse (7),
hand stiffness (5), subjective fever (5), chest pain
with cough (5), and overdue for colonoscopy (5).
The top 5 features that were most difficult to detect
automatically with highest numbers of FNs were 1
day urinary frequency (4), radiating down back of
neck (3), constipation x 4 5 months (3), acute onset
(3), nausea (3). There was no apparent pattern as
to what made certain features easy or challenging
to detect, with both groups containing negation,
temporal aspects, and features with varying length
in characters.

The case with the highest number of errors (n =
18) contained 31 features to look for. Out of the
18 errors, 10 were FPs, and out of these, 4 features
looked for negated terms (no change in diet, no
oral contraceptives, no abdominal surgeries and
no radiation). Interestingly, some negated expres-
sions from the PNs were erroneously mapped to
these negated features such as denies eating under
cokked [sic] foods being mapped to no change in
diet, showing that the model is aware that it needs

to look for negation but processing it incorrectly.
The remaining eight FNs did not reveal a pattern.

Of all errors, 594 were false positives (FPs)
across 166 cases and 396 were false negatives (FNs)
across 151 cases. The highest number of FPs per
case was 12 (2 cases), with the majority of cases
containing one or two FPs per case (34 and 35
cases, respectively). For FNs, the highest number
of FNs per case was 9 (1 case), with the majority
of cases also containing one or two FNs (48 and 37
cases, respectively).
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Figure 3: AWS System Architecture. When a new dataset is placed in the S3 bucket, a Lambda function triggers
preprocessing and a subsequent Lambda function triggers the training process. Training is performed via SageMaker
and Huggingface; final predictions are stored in CloudWatch.
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