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Abstract

Domain adaptation is crucial in the clinical
domain since the performance of a model
trained on one domain (source) degrades se-
riously when applied to another domain (tar-
get). However, conventional domain adaptation
methods often cannot be applied due to data
sharing restrictions on source data. Source-
Free Domain Adaptation (SFDA) addresses
this issue by only utilizing a source model
and unlabeled target data to adapt to the tar-
get domain. In SFDA, self-training is the most
widely applied method involving retraining
models with target data using predictions from
the source model as pseudo-labels. Neverthe-
less, this approach is prone to contain substan-
tial numbers of errors in pseudo-labeling and
might limit model performance in the target
domain. In this paper, we propose a Source-
Free Prototype-based Self-training (SFPS) aim-
ing to improve the performance of self-training.
SFPS generates prototypes without accessing
source data and utilizes them for prototypi-
cal learning, namely prototype-based pseudo-
labeling and contrastive learning. Also, we
compare entropy-based, centroid-based, and
class-weights-based prototype generation meth-
ods to identify the most effective formulation
of the proposed method. Experimental re-
sults across various datasets demonstrate the
effectiveness of the proposed method, consis-
tently outperforming vanilla self-training. The
comparison of various prototype-generation
methods identifies the most reliable genera-
tion method that improves the source model
persistently. Additionally, our analysis illus-
trates SFPS can successfully alleviate errors in
pseudo-labeling.

1 Introduction

Domain adaptation is crucial in Clinical Natural
Language Processing (Clinical NLP) since it is
known that the performance of the model trained on
one domain (source) degrades seriously on another

Figure 1: Illustration of SFPS. ⋆ denotes prototypes,
and dotted lines denote the model’s decision bound-
aries. First, we generate prototypes with either the
entropy-based (ENT), centroid-based (CEN), or class-
weights-based (WGT) method (a). CEN is chosen in
this example. Then, we utilize these prototypes for
prototypical learning (b), consisting of prototype-based
pseudo-labeling and contrastive learning to update the
source model and obtain distinct representations of tar-
get data.

domain (target) in the face of domain shifts such as
different specialty or institution’s formatting (Wu
et al., 2014; Bethard et al., 2017; Miller et al., 2017).
Despite the significant advancements in research on
domain adaptation, most existing methods assume
access to the labeled source data (Kouw and Loog,
2019; Ramponi and Plank, 2020). This assumption
is frequently violated in the clinical domain, where
data sharing is restricted due to patients’ privacy
concerns (Laparra et al., 2020). Source-Free Do-
main Adaptation (SFDA) addresses this issue by
only utilizing a source model and unlabeled target



2

data to adapt to the target domain (Liang et al.,
2020; Chidlovskii et al., 2016).

Self-training (Kumar et al., 2010; Li and Zhang,
2019) has been shown to be a versatile and ef-
fective method for SFDA in computer vision (Yu
et al., 2023). In Clinical NLP, a shared task was
newly introduced in SemEval 2021 Task 10 (La-
parra et al., 2021), prompting the development of
SFDA methods on clinical text. Active learning
and self-training combined with data augmenta-
tion emerged as widely applied methods (Su et al.,
2021). The systematic comparison of the proposed
methods indicates that active learning can reliably
improve the source model’s performance, while
self-training is unreliable, failing to consistently
outperform the source model (Su et al., 2022).
However, active learning requires additional an-
notation on the target data, which can be difficult
due to the expertise required for the annotation (Su
et al., 2021). This necessitates improvement of
the existing self-training method that does not rely
on either additional annotation or source data for
adapting the source model in Clinical NLP.

Prototypical learning (Snell et al., 2017; Wang
et al., 2022) can potentially improve self-training,
yet existing methods are not applicable in the SFDA
setting. In general, self-training involves retrain-
ing the source model with target data by assigning
the predictions from the source model as pseudo-
labels. Nevertheless, pseudo-labels assigned in
this manner contain a substantial number of errors
and might limit the model’s performance. Proto-
typical learning, such as prototype-based pseudo-
labeling (Gu, 2020), and contrastive learning (Li
et al., 2021) are proven to be effective for improv-
ing self-training (Yang et al., 2023; Mou et al.,
2023; Zhou et al., 2023). However, existing meth-
ods assume access to labeled source data to gener-
ate reliable prototypes, making them inapplicable
in source-free settings. How to generate reliable
prototypes without accessing source data remains
unanswered.

In this paper, we aim to provide answers to the
following questions:

Q1: Can prototypical learning improve self-
training in SFDA?

Q2: Which method can generate reliable proto-
types in the absence of labeled source data?

Q3: Is prototypical learning effective for alleviat-
ing errors in pseudo-labeling?

To answer Q1, we introduce source-free prototype-
based self-training (SFPS). Unlike existing meth-
ods, we generate prototypes without accessing
source data (Fig. 1a) and leverage the generated
prototypes for prototypical learning (Fig. 1b) con-
sisting of prototype-based pseudo-labeling (Gu,
2020) and contrastive learning (Li et al., 2021) to
alleviate errors in pseudo-labeling. To answer Q2,
we explore three source-free prototype generation
methods, namely entropy-based, centroid-based,
and class-weights-based methods, inspired by the
works in computer vision (Kim et al., 2021; Liang
et al., 2020; Ding et al., 2024). To answer Q3,
we compare the pseudo-label quality of SFPS and
vanilla self-training.

We conduct experiments on negation detection
and time expression recognition tasks from Se-
mEval2021 Task10 with the source models trained
on clinical texts. Our experimental results show
the effectiveness of SFPS, outperforming vanilla
self-training methods in most datasets. A com-
parison of various prototype-generation methods
reveals that the centroid-based generation method
can reliably improve the source model performance
among other generation methods. We evaluate the
pseudo-label quality of the proposed method and
demonstrate the proposed method could success-
fully alleviate the errors in pseudo-labeling.

To summarize, we provide answers to the above
questions as follows:

A1: Prototypical learning can improve self-
training in SFDA and consistently outperform
vanilla self-training.

A2: Centroid-based prototype generation can re-
liably improve model performance without ac-
cessing the source data.

A3: Prototypical learning effectively alleviates the
errors in pseudo-labels.

2 Related Work

2.1 Source-Free Domain Adaptation
Source-free domain adaptation (SFDA) only uses a
source model and unlabeled target data to adapt the
model to the target domain. In recent years, SFDA
has gained significant traction in computer vision.
Various methods have been proposed, such as vir-
tual domain generation (Tian et al., 2022), image
style translation (Luan et al., 2017), and neighbor-
hood clustering (Yang et al., 2021). Among them,
self-training (Kumar et al., 2010; Li and Zhang,
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2019) has been proven to be versatile and effec-
tive (Yu et al., 2023).

In contrast, SFDA methods in NLP are compar-
atively limited. Yin et al. (2022) introduced the
SFDA method in question answering. They uti-
lized an additional masking module during source
model training and froze some weights of the mask-
ing module during self-training to maintain domain
invariant knowledge. Zhang et al. (2021) aligned
joint distributions between a trained source model
and target domain samples using joint maximum
mean discrepancy during knowledge distillation.
In Clinical NLP, SemEval-2021 Task10 (Laparra
et al., 2021) introduced a shared task for SFDA
consisting of negation detection and time expres-
sion recognition. Only source model and unlabeled
target data were provided to the participants. Self-
training, active learning, and data augmentation
methods were proposed. Although active learning
can reliably improve the source model (Su et al.,
2022), this method requires additional annotation
on target data, which can be difficult due to data
sharing restriction and expertise required for the
annotation (Su et al., 2021). Hence, we extend
the self-training method by developing the SFDA
method, which is feasible in a wider range of situa-
tions.

2.2 Prototypical Learning
Prototypical learning, which aims to summarize a
class by representative prototypes, has been widely
used in semi-supervised and unsupervised learn-
ing (Wang et al., 2022; Snell et al., 2017). In
self-training, pseudo-labeling based on the source
model predictions suffers from errors. To im-
prove self-training, prototype-based pseudo label-
ing (Gu, 2020) combined with contrastive learning
(Li et al., 2021) are employed in semi-supervised
learning (SSL) and unsupervised domain adapta-
tion. Prototype-based pseudo-labeling assigns la-
bels based on the similarities/distances between
prototypes and target data representations instead
of relying on model prediction. Contrastive learn-
ing enhances representations of target data by facil-
itating the formation of clusters of prototypes and
text representations.

Yang et al. (2023) applied prototype-based
pseudo-labeling and contrastive learning for text
classification in SSL setting. They defined a cen-
troid of the labeled data as a class-specific pro-
totype and assigned pseudo-labels to unlabeled
samples based on their distances from prototypes.

These prototypes were then utilized as anchors to
create high-density clusters of text representations
via contrastive learning. In zero-shot cross-lingual
named entity recognition, Zhou et al. (2023) de-
fined the moving average of labeled data as a class
prototype and used them for pseudo-labeling and
contrastive learning. Mou et al. (2023) introduced
prototype-based pseudo-labeling and contrastive
learning in out-of-distribution intent classification.
They defined randomly initialized embeddings as
prototypes and updated them using embedded text
representations of samples belonging to the same
class. While prototype-based pseudo-labeling and
contrastive learning have shown effectiveness in
sentence and token classification, existing meth-
ods assume access to source data, making them
inapplicable in the SFDA setting.

2.3 Source-free Prototype Generation

In the field of computer vision, various source-free
prototype-generation methods have been proposed.
Kim et al. (2021) defined samples with low en-
tropy as prototypes and leveraged them for unsu-
pervised learning by assigning pseudo-labels based
on the distance between target image representa-
tions and prototypes. Liang et al. (2020) obtained
the centroid of each class based on source model
outputs. Pseudo-labels are assigned to unlabeled
target data based on the distance between the class
centroid and target samples. They further employ
information maximization between target image
representation and classifier output to update the
model encoder. Ding et al. (2024) used the weights
of the source classifier as class prototypes, con-
structing a class-balanced proxy source domain.
The proxy source domain is then used for an inter-
domain mixup that aligns the proxy domain and the
target domain. While these works have indepen-
dently combined source-free prototype generation
with various SFDA techniques, we systematically
compare the effectiveness of different prototype
generation methods. Specifically, we combine vari-
ous prototype generation methods with prototype-
based pseudo-labeling and contrastive learning.

3 Problem Definition

Unlike conventional domain adaptation, we only
have access to the source model and unlabeled tar-
get data in SFDA. Let c ∈ C be a class from the set
of all classes of interest, M the source model, and
X = {x0, ..., xn} the target data where n is the
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number of target samples. In general, source-free
self-training aims to improve the performance of
M using pseudo-labels ŷi ∈ C assigned to xi. How
ŷi is assigned and leveraged for the improvement
depends on an individual method. However, only
M and X are available for the adaptation.

For the generalizability of our study, the only
assumption we make on the source model M is
that it can be decomposed into an encoder (denoted
by F ) and classifier (denoted by G), i.e., M :=
G(F (·)).

Strictly speaking, the definition of xi differs be-
tween sentence classification and token classifica-
tion. For sentence classification, one sample is
equivalent to one input, i.e., xi = seqi where seq
is a sentence. For token classification, one sample
contains a series of inputs, i.e., xi = [wi

0, ..., w
i
m]

where w is a token and m is a sentence length. For
convenience, we use xi to denote both a sentence
and a token input.

4 Methodology

This section presents the proposed source-free
prototype-based self-training (SFPS). The concep-
tual workflow is shown in Figure 2. First, we
generate class prototypes from unlabeled target
data with a source model (composed of F and G)
using prototype generation (Section 4.1). Then,
we utilize generated prototypes for prototypical
learning, consisting of prototype-based pseudo-
labeling and contrastive learning. Prototype-based
pseudo-labeling assigns pseudo-labels based on the
similarity between prototypes and text representa-
tions (Section 4.2). Contrastive learning improves
the representation of target data by increasing/de-
creasing similarity between prototypes and target
representations belonging to the same/a different
class(Section 4.3). We describe the overall algo-
rithm (Section 4.4) with the variants of SFPS.

4.1 Prototype generation

We generate a set of prototypes for a class c ∈ C
using only M and X . We experiment with three
different source-free prototype generation meth-
ods, namely entropy-based (ENT), centroid-based
(CEN), and class-weights-based (WGT) methods.
In each method, we construct a set of prototypes for
c, which is denoted by Φc = {ϕc

0, ..., ϕ
c
K} where

K is the number of prototypes.
ENT: The entropy-based method chooses the

representations of samples with high entropy as

prototypes. Following Kim et al. (2021), we first
calculate the lowest entropy for each class and set
the largest value among them as a threshold (de-
noted by η), which is calculated by:

η = max{min(Hc)|c ∈ C},
Hc = {H(xi)|xi ∈ Xc} (1)

where H(xi) denotes the entropy of xi given by
M , and Xc denotes the set of samples predicted as
c by M .

Then, a set of prototypes is generated by:

Φc = {F (xi)|xi ∈ X,H(xi) ≤ η} (2)

CEN: The centroid-based method chooses the
centroid for each class as a prototype generated by:

Φc =
1

|Xc|
∑

xi∈Xc

F (xi) (3)

WGT: The class-weights-based method chooses
the weights of G corresponding to c as a prototype.
Inspired by Ding et al. (2024), we also include the
top K − 1 most similar text representations F (xi)
(denoted by Xc) with the class-specific weights as
prototypes. A set of prototypes is generated by:

Φc = Xc ∪ {wc}
Xc = {F (xi)|xi ∈ max

xi;K−1
(sim(F (xi), wc))} (4)

where wc denotes the corresponding weights and
max

xi;K−1
(sim(·)) denotes choosing top K − 1 sam-

ples with maximum similarity for each class. In
this work, we use cosine similarity as a similarity
measure (denoted by sim).

4.2 Prototype-based Pseudo-labeling
For prototype-based pseudo labeling, we find the
most similar Φc to xi and assign c as a label. Since
relying on a single prototype can be unstable due to
the unsupervised nature of the prototype generation
method, we assign the label based on the prototype
set Φc. To do so, we first calculate the similarity
score sc between Φc and xi:

sc(xi) =
1

|Φc|
∑
k

sim(ϕc
k, F (xi)) (5)

and assign a pseudo-label by:

ŷi = argmax
c

sc(xi), ∀c ∈ C (6)
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Figure 2: The workflow of SFPS. Prototypes are generated based on unlabeled target data and the source model
(Section 4.1) and utilized for prototypical learning, consisting of prototype-based pseudo-labeling (Section 4.2)
and contrastive learning (Section 4.3). This flow is illustrated by orange arrows. Three learning objectives are used
for fine-tuning. Lp is an unsupervised loss between the pseudo-labels and the model predictions (Eq. 7). Lc is a
contrastive loss based on the distance between prototypes and text representations (Eq. 9). Ls is a regularization
loss based on an un-updated source model predictions (denoted by Ls) and the model predictions (Eq. 11).

Based on ŷi, the learning objective for fine-
tuning M is given by:

Lp = − 1

n

n∑
i

1(ŷi = c) log
exp(pci )∑
c∈C exp(pci )

(7)

where 1(·) is a indicator function and pci is the
predicted probability for the class c given by M
with respect to xi.

4.3 Contrastive Learning

Contrastive learning aims to obtain a distinct repre-
sentation of xi by increasing the similarity between
F (xi) and prototypes of the same class while de-
creasing the similarity for the prototypes of the
different classes. Inspired by Zhou et al. (2023),
we employ the moving average of Φc per batch to
update the representation of xi, which is calculated
by:

µc = α
1

|Φc|
∑
k

ϕc
k + (1− α)

1

|B|
∑
i

F (xi),

∀i ∈ {i|ŷi = c}, (8)

where α denotes the hyperparameter controlling
the degree of updates and |B| denotes the number
of inputs per batch. In this way, we can ensure
further stability of updates since µc is dynamically
changing in accordance with F (xi) throughout the
fine-tuning. Based on µc, we update F (xi) by the
contrastive learning objective given by:

Lc=−
∑

i,c log 1(ŷi=c)
exp(sim(F (xi),µc)/β)∑
C exp(sim(F (xi),µc)/β)

(9)

where β is a temperature coefficient.

4.4 Overall Algorithm
Algorithm 1 describes the whole process of SFPS.
In line 14, we construct a set of pseudo-labels based
on confidence scores. For sentence classification,
we use the similarity score (Eq. 5) as a confidence
score, i.e., confidence = sc(xi). For token classifi-
cation, xi is a single token in a sentence. We take
the average similarity scores of tokens for each
sentence and use it as a confidence score. The
confidence score for token classification is given
by:

confidence =
1

m

m∑
i

sc(xi) (10)

Following Kim et al. (2021), we use pseudo-
labels ŷ0i given by the un-updated source model
M0(xi) as a regularizer so that the model does not
diverge too much from the original source model
(in line 15). The regularizer learning objective is
given by:

Ls = − 1

n

n∑
i

1(ŷ0i = c) log
exp(pci )∑
c∈C exp(pci )

(11)

The overall objective L is the sum of Eq. 7, 9
and 11, namely:

L = Lp + Ls + Lc (12)

Su et al. (2022) compared various formulations
of self-training by changing the maximum number
of iterations, the data construction strategy, and the
model training strategy as parameters. Following
this, we change the parameters of Algorithm 1 be-
low to investigate which combination of prototype
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generation, data construction strategy, and model
training strategy is most effective.

T the maximum number of iterations.

SD the data construction strategy: KD to keep the
training data from the previous iteration, or
RD to reset.

SM the model training strategy: KM to keep the
model from the previous iteration, or RM to
reset.

SG the prototype generation methods: ENT, CEN
or WGT to use entropy-based, centroid-based
or class-weights-based method.

Algorithm 1: SFPS
Input :
M : the source-domain model
X: the target domain data
T : the maximum number of iterations
Lp: the pseudo-labels assigned via Eq. 6
Ls: the pseudo-labels assigned by the un-updated
source model
SD: the data construction strategy
SM : the model training strategy
SP : the prototype generation strategy

1 M0 ← Copy(M)
2 X0 ← Copy(X)
3 Lp ← ∅
4 for t← 0 to T do
5 if X = ∅ then
6 Stop training
7 end
8 if SD = RD then
9 Lp = ∅

10 X = X0

11 end
12 Get Φc by Eq. 2, 3 or 4 based on SP

13 Get sc and ŷ by Eq. 5 and 6
14 Lp ← {(xi, ŷi) for xi ∈ X if confidence > τ}
15 Ls ← {(xi, ŷ

0
i ) for (xi, ŷi) ∈ Lp}

16 if Lpt = ∅ or Lpt = Lpt−1 then
17 Stop training
18 end
19 if SD = KD then
20 X ← X − {xi for (xi, ŷi) ∈ Lpt}
21 end
22 if SM = RM then
23 M ←M0

24 end
25 Fine-tune M given Φc, Lp, and Ls, using Eq. 12
26 end

5 Experiments

We conduct experiments with negation detection
and time expression recognition datasets and com-
pare a fully fine-tuned model (Oracle), an un-
adapted source model (Source), all vanilla self-
training variants in Su et al. (2022) (Vanilla), and

variants of SFPS. Vanilla and SFPS do not utilize
labeled target data because our target problem
setting is SFDA. However, datasets used in the
experiments are fully annotated and used to train
Oracle models.

We note that we do not expect SFPS to outper-
form Oracle. We consider Oracle as a upper bound
for the performance in each dataset.

5.1 Datasets
We use the target data and source models from Se-
mEval2021 Task10: negation detection and time
expression recognition (Laparra et al., 2021). The
provided source models were fine-tuned using En-
glish RoBERTa-base (Liu et al., 2019) as base mod-
els.

As described in Su et al. (2022), these two tasks
are suitable for SFDA because (1) source data is
difficult to share, (2) target data can not be easily
annotated due to the complexity of the annotation
task, and (3) models suffer a large performance loss
in the face of domain shift in these tasks.

The negation detection task involves the classifi-
cation of an event within a context span (indicated
by special tokens “<e>” and “</e>”) as in below.

She did not complain of <e> any fever </e>

This task aims to correctly predict whether “any
fever” is negated or not. The source model for
this task was trained using Mayo Clinic clinical
notes. Two target data for this task are clinical
notes from Partners HealthCare’s participation in
the i2b2 2010 Challenge (i2b2) and ICU progress
notes from Beth Israel in the MIMIC-III corpus
(MIMIC).

The time expression recognition task involves
sequence tagging, aiming to identify time entities in
a document and assign them SCATE types (Bethard
and Parker, 2016). An example sentence is given
below.

the patient underwent surgery for gallstones
on July 14, 2019

The goal of this task is to predict “July” as Month-
Of-Year, “14” as Day-Of-Month and “2019” as Year.
The source model for this task was trained using
clinical notes from Mayo Clinic as a part of Se-
mEval 2018 Task 6 (Laparra et al., 2018). Two tar-
get datasets for this task are news articles from Se-
mEval 2018 Task 6 (News) and reports from food
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security warning systems, including the UN World
Food Programme and the Famine Early Warning
Systems Network (Food).

We used the same development-test split as in
Su et al. (2022) for all datasets as shown in Table 1.
Note that the unit of numbers is a sentence for nega-
tion detection and a document for time expression
recognition. Each document is preprocessed into
sentences in time expression recognition.

MIMIC i2b2 News Food

Dev 1916 1109 20 4
Test 7664 4436 79 13

Table 1: The number of development and test data. The
unit is a sentence for negation detection (MIMIC and
i2b2) and a document for time expression recognition
(News and Food). Development sets are used for the
adaptation.

5.2 Implementation Details

We used PyTorch1 for the implementation of
SFPS. For the preprocessing and implementation of
vanilla self-training methods, we used the provided
scripts from Su et al. (2022)2. We set the hyperpa-
rameters for SFPS, K, α, β, and τ to be 10, 0.9
and 0.5 respectively. We set the maximum number
of iterations T to be 1 or 30. For a fair comparison,
all the hyperparameters for fine-tuning except for
learning rate are the same as in source model train-
ing and used for both SFPS and vanilla self-training.
Since the proposed method has more learning ob-
jectives, we set the learning rate to 1.0 × 10−5

for SFPS and kept the original learning rate of
5.0× 10−5 for vanilla self-training models. Other
hyperparameters used for both SFPS and vanilla
self-training are summarized in the Appendix A.1.

5.3 Results

We evaluated all models using the same evaluation
metrics (F1, precision, and recall) as in Su et al.
(2022). The results are the average of five differ-
ent seeds. Due to limited space, we only present
F1 scores (in percentage points) in Table 2. We
provide the full results in Appendix A.2.

Several formulations of SFPS are shown to
be effective. The best-performing SFPS formu-
lations outperformed the best-performing vanilla

1https://pytorch.org/
2https://github.com/xinsu626/

SourceFreeDomainAdaptation

Strategy MIMIC i2b2 News Food

Oracle 88.9 92.3 85.1 87.6
Source 63.5 84.6 79.1 78.5

Vanilla
Single 67.4 87.1 79.1 77.4

KD+KM 66.5 87.6 79.3 77.7
KD+RM 68.7 87.6 79.2 78.2
RD+KM 55.4 87.8⋆ 79.0 77.9
RD+RM 67.9 87.3 79.2 77.8

SFPSENT
Single 71.3 85.5 79.3 78.9

KD+KM 68.4 86.3 77.1 78.2
KD+RM 66.1 86.0 77.2 78.2
RD+KM 66.6 86.6 80.1⋆ 78.7
RD+RM 53.6 86.7 79.9 78.9

SFPSCEN
Single 70.3 84.8 79.4 79.2⋆

KD+KM 66.8 85.1 76.8 79.2⋆
KD+RM 67.8 85.8 79.0 78.8
RD+KM 63.6 86.8 79.9 77.2
RD+RM 67.6 87.5 79.8 78.5

SFPSWGT
Single 71.8⋆ 85.2 78.5 78.3

KD+KM 66.6 85.9 78.5 78.1
KD+RM 66.6 86.0 78.5 74.9
RD+KM 65.7 86.8 78.5 78.2
RD+RM 64.7 86.3 78.5 75.7

Table 2: The results of the experiment in F1 scores.
Oracle, Source, and Vanilla denote the fully fine-tuned
model, the un-updated source model, and vanilla self-
training variants, respectively. KD, RD, KM, and RM
are the variations due to the choice of the training strate-
gies (see Section 4.4). T = 1 for Single and T = 30
for the others. The strategies that outperformed the
source model are underlined. The scores above the best-
performing vanilla method are in bold. Scores with a
star are the best among all the self-training methods.

self-training methods in most datasets (3 out of
4). In MIMIC, the best-performing formulation
for SFPS was WGT with Single with 3.1 points
higher F1 score than the best vanilla self-training
method. In i2b2, no prototype-based method out-
performed the best-performing vanilla self-training
method. CEN with RD+RM has the highest F1
score among other SFPS formulations and scored
0.3 points below the best-performing vanilla self-
training method. Given that the F1 score achieved
by the best-performing vanilla self-training method
is already high and relatively close to the Oracle,
achieving further improvement may be challeng-
ing without the availability of labeled target data.

https://pytorch.org/
https://github.com/xinsu626/SourceFreeDomainAdaptation
https://github.com/xinsu626/SourceFreeDomainAdaptation
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In News, the best-performing SFPS formulation
was ENT with RD+KM improving 0.8 points in
F1 score from the best vanilla method. In Food,
the best combination was CEN with Single and
KD+KM, with an F1 score 1.0 point higher than
the best vanilla method.

6 Discussion

Experimental results indicate that CEN with Single
can reliably improve the source model compared
with vanilla self-training. While no vanilla self-
training method could outperform the un-updated
source models in all datasets, CEN with Sin-
gle outperformed the un-updated source model in
all datasets and the best-performing vanilla self-
training model in 3 out of 4 datasets. Since labeled
target data is not available (or difficult to obtain)
in SFDA, hyperparameter tuning is not realistic.
Hence, it is important for an SFDA method to con-
sistently outperform the source model regardless
of task and dataset.

In the following section, we show that SFPS
can properly alleviate the errors in pseudo-labeling
(Section 6.1). We also conducted an ablation study
to show both contrastive learning and regulariza-
tion are effective for improving model performance
(Section 6.2).

6.1 Pseudo-label Quality

Although we did not use any labeled data for adap-
tation, labels of the target data are available for all
the datasets. In order to compare the pseudo-label
qualities of the un-updated source model, vanilla
self-training, and SFPS, we calculate the accuracy
and macro F1 score of the pseudo-labeling by best-
performing models of each method. The results
are shown in Table 3. SFPS have the highest ac-
curacy in all datasets and F1 score in 3 out of 4
datasets, indicating that prototype-based pseudo-
labeling combined with contrastive learning could
successfully alleviate the errors in pseudo-labeling.

6.2 Ablation study

In order to investigate the effectiveness of the con-
trastive learning objective (Lc) and the regular-
ization term (Ls) in Eq.12, we conduct an abla-
tion study. We compared the performance of the
model with (1) all objectives (Full), (2) without
contrastive learning (−Lc), (3) without regulariza-
tion (−Ls), and (4) only unsupervised learning
objective (−Lc−Ls). Table 4 shows the results on

MIMIC i2b2

ACC F1 ACC F1
Source 93.5 77.2 93.2 88.9
Vanilla 93.7 77.9 94.0 90.2
SFPS 94.5 81.9 94.0 90.4

News Food

ACC F1 ACC F1
Source 98.4 50.7 95.9 56.2
Vanilla 98.3 50.0 95.8 56.4
SFPS 98.5 52.1 95.9 56.3

Table 3: Pseudo-labeling accuracy and F1 score on
development data. Source and Vanilla denotes the un-
updated source model and the best-performing vanilla
self-training model. SFPS successfully alleviates the
errors in pseudo-labeling compared with vanilla self-
training.

four datasets in F1 score. In most datasets, the con-
trastive learning objective or regularization term
alone improves the performance compared with
only using unsupervised learning with pseudo la-
bels. With the exception of MIMIC, Full models
have the highest F1 scores, indicating that the con-
trastive learning objective combined with the reg-
ularization term is effective for improving model
performance.

Objectives MIMIC i2b2 News Food

Full 71.8 87.5 80.1 79.2
−Lc 72.3 86.1 79.4 78.2
−Ls 70.8 77.8 78.4 77.7
−Lc − Ls 71.5 46.8 78.4 77.7

Table 4: Results of ablation study in F1 score. Using
both the contrastive-learning objective and the regular-
ization term is effective in most of the datasets.

7 Conclusion

In this paper, we proposed source-free prototype-
based self-training (SFPS) composed of prototype
generation, prototype-based pseudo labeling, and
contrastive learning. We compared entropy-based,
centroid-based, and class-weights-based methods
to identify the most reliable prototype generation
method. We conducted experiments with two nega-
tion detection datasets and two time expression
recognition datasets. Experimental results show
the effectiveness of SFPS, consistently outperform-
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ing vanilla self-training. The comparison of vari-
ous prototype generation methods reveals that the
centroid-based generation method combined with
a single iteration strategy is the most reliable for-
mulation, outperforming the source model in all
datasets and the best vanilla self-training model in
3 out of 4 datasets. Also, our analysis demonstrates
that the proposed method can successfully alleviate
errors in pseudo-labeling.

8 Limitations

We show that the proposed SFPS has an advan-
tage over vanilla self-training methods in negation
detection and time expression recognition tasks.
However, this work has several limitations:(1) Ex-
periments are only conducted on clinical/English
corpora, limiting the generalizability of the results
to other domains.; (2) The conclusions stated in
this paper are based only on empirical evidence.
Hence, they lack a theoretical analysis; (3) The gap
between fully fine-tuned models and the proposed
method is still large. This is expected, considering
that the proposed method does not utilize labeled
data at all for the adaptation. Yet, the model perfor-
mance can be improved via task-specific modules
such as class balancing for time expression recog-
nition; (4) Although we tackled both sentence and
token classification, the tasks employed in this ex-
periment are limited in number. It is desirable to
test the effectiveness of the proposed method in
other tasks in the clinical domain and other do-
mains as well.
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prototype-based self-training. For both negation
detection and time expression recognition tasks, we
set the hyperparameters to the same values as Su
et al. (2022), which are summarized in Table 5 and
6.

Hyperparameter Value

maximum sequence length 128
batch size 8
epochs 10
gradient accumulation steps 4
learning rate warm up steps 0
weight decay 0.0
adam epsilon 1.0× 10−8

maximum gradient norm 1.0

Table 5: Hyperparameters for negation detection

Hyperparameter Value

maximum sequence length 271
batch size 2
epochs 3
gradient accumulation steps 1
learning rate warm up steps 500
weight decay 0.01
adam epsilon 1.0× 10−8

maximum gradient norm 1.0

Table 6: Hyperparameters for time expression recogni-
tion

All models were trained on AdamW (Loshchilov
and Hutter, 2019) and a single NVIDIA Quadro
RTX 8000 GPU. A training process took about 30
minutes per fine-tuning.

A.2 Full Results
The full results (in percentage points) for negation
detection are presented in Table 7, and the results
for time expression recognition are presented in
Table 8.
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Strategy MIMIC i2b2
F1 P R F1 P R

Oracle 88.9 88.4 89.5 92.3 93.3 91.3
Source 63.5 93.8 48.0 84.6 92.6 77.9

Vanilla
Single 67.4 94.7 52.4 87.1 95.1 80.4

KD+KM 66.5 95.4 51.1 87.6 94.4 81.8
KD+RM 68.7 95.4 53.6 87.6 95.3 81.0
RD+KM 55.4 75.7 43.7 87.8⋆ 94.2 82.3
RD+RM 67.9 95.5 52.6 87.3 94.6 81.2

SFPSENT
Single 71.3 90.4 58.9 85.5 88.9 82.4

KD+KM 68.4 92.7 54.3 86.3 94.1 79.7
KD+RM 66.1 95.0 50.8 86.0 93.0 79.9
RD+KM 66.6 94.5 51.5 86.6 92.9 81.1
RD+RM 53.6 74.8 41.8 86.7 92.1 81.9

SFPSCEN
Single 70.3 89.0 58.3 84.8 89.5 80.7

KD+KM 66.8 95.1 51.6 85.1 91.6 79.6
KD+RM 67.8 92.9 53.5 85.8 93.2 79.5
RD+KM 63.6 96.2 47.7 86.8 93.4 81.1
RD+RM 67.6 92.7 53.5 87.5 94.1 81.8

SFPSWGT
Single 71.8⋆ 88.7 60.3 85.2 88.6 82.0

KD+KM 66.6 94.5 51.7 85.9 93.0 79.9
KD+RM 66.6 93.8 51.8 86.0 93.9 79.4
RD+KM 65.7 95.0 50.3 86.8 93.8 80.8
RD+RM 64.7 93.4 50.4 86.3 90.7 82.3

Table 7: The results in the negation detection task. Oracle, Source, and Vanilla denote the fully fine-tuned model, an
unadapted source model, and vanilla self-training variants, respectively. T = 1 for Single and T = 30 for the others.
The strategies outperformed the source model are underlined. The scores above the best-performing vanilla method
are in bold. Scores with a star are the best among all the self-training methods.
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Strategy News Food
F1 P R F1 P R

Oracle 85.1 85.4 84.8 87.6 85.7 89.7
Source 79.1 79.5 78.7 78.5 82.9 74.6

Vanilla
Single 79.1 79.8 78.5 77.4 80.7 74.5

KD+KM 79.3 78.4 80.2 77.7 79.9 75.7
KD+RM 79.2 78.4 80.0 78.2 80.8 75.7
RD+KM 79.0 78.1 79.9 77.9 80.0 75.8
RD+RM 79.2 78.3 80.1 77.8 80.0 75.8

SFPSENT
Single 79.3 80.9 77.7 78.9 84.8 73.9

KD+KM 77.1 82.4 72.5 78.2 87.5 70.8
KD+RM 77.2 81.7 73.2 78.2 87.3 70.9
RD+KM 80.1⋆ 80.8 79.3 78.7 83.2 74.7
RD+RM 79.9 81.2 78.7 78.9 83.7 74.6

SFPSCEN
Single 79.4 81.2 77.6 79.2⋆ 85.0 74.1

KD+KM 76.8 81.4 72.6 79.2⋆ 86.9 72.9
KD+RM 79.0 81.3 76.9 78.8 85.7 73.0
RD+KM 79.9 79.8 80.0 77.2 78.9 75.7
RD+RM 79.8 80.5 79.1 78.5 82.4 75.0

SFPSWGT
Single 78.5 80.8 76.3 78.3 84.2 73.2

KD+KM 78.5 80.8 76.3 78.1 84.4 72.7
KD+RM 78.5 80.8 76.3 74.9 88.3 65.2
RD+KM 78.5 80.8 76.3 78.2 84.1 73.0
RD+RM 78.5 80.8 76.3 75.7 88.3 66.6

Table 8: The results in time expression recognition task. Oracle, Source, and Vanilla denote the fully fine-tuned
model, an un-adapted source model, and vanilla self-training variants, respectively T = 1 for Single and T = 30 for
the others. The strategies that outperformed the source model are underlined. The scores above the best-performing
vanilla method are in bold. Scores with a star are the best among all the self-training methods.
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