@inproceedings{you-etal-2024-uiuc,
title = "{UIUC}{\_}{B}io{NLP} at {B}io{L}ay{S}umm: An Extract-then-Summarize Approach Augmented with {W}ikipedia Knowledge for Biomedical Lay Summarization",
author = "You, Zhiwen and
Radhakrishna, Shruthan and
Ming, Shufan and
Kilicoglu, Halil",
editor = "Demner-Fushman, Dina and
Ananiadou, Sophia and
Miwa, Makoto and
Roberts, Kirk and
Tsujii, Junichi",
booktitle = "Proceedings of the 23rd Workshop on Biomedical Natural Language Processing",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.bionlp-1.11",
doi = "10.18653/v1/2024.bionlp-1.11",
pages = "132--143",
abstract = "As the number of scientific publications is growing at a rapid pace, it is difficult for laypeople to keep track of and understand the latest scientific advances, especially in the biomedical domain. While the summarization of scientific publications has been widely studied, research on summarization targeting laypeople has remained scarce. In this study, considering the lengthy input of biomedical articles, we have developed a lay summarization system through an extract-then-summarize framework with large language models (LLMs) to summarize biomedical articles for laypeople. Using a fine-tuned GPT-3.5 model, our approach achieves the highest overall ranking and demonstrates the best relevance performance in the BioLaySumm 2024 shared task.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="you-etal-2024-uiuc">
<titleInfo>
<title>UIUC_BioNLP at BioLaySumm: An Extract-then-Summarize Approach Augmented with Wikipedia Knowledge for Biomedical Lay Summarization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhiwen</namePart>
<namePart type="family">You</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shruthan</namePart>
<namePart type="family">Radhakrishna</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shufan</namePart>
<namePart type="family">Ming</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Halil</namePart>
<namePart type="family">Kilicoglu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 23rd Workshop on Biomedical Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-Fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Makoto</namePart>
<namePart type="family">Miwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kirk</namePart>
<namePart type="family">Roberts</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>As the number of scientific publications is growing at a rapid pace, it is difficult for laypeople to keep track of and understand the latest scientific advances, especially in the biomedical domain. While the summarization of scientific publications has been widely studied, research on summarization targeting laypeople has remained scarce. In this study, considering the lengthy input of biomedical articles, we have developed a lay summarization system through an extract-then-summarize framework with large language models (LLMs) to summarize biomedical articles for laypeople. Using a fine-tuned GPT-3.5 model, our approach achieves the highest overall ranking and demonstrates the best relevance performance in the BioLaySumm 2024 shared task.</abstract>
<identifier type="citekey">you-etal-2024-uiuc</identifier>
<identifier type="doi">10.18653/v1/2024.bionlp-1.11</identifier>
<location>
<url>https://aclanthology.org/2024.bionlp-1.11</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>132</start>
<end>143</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T UIUC_BioNLP at BioLaySumm: An Extract-then-Summarize Approach Augmented with Wikipedia Knowledge for Biomedical Lay Summarization
%A You, Zhiwen
%A Radhakrishna, Shruthan
%A Ming, Shufan
%A Kilicoglu, Halil
%Y Demner-Fushman, Dina
%Y Ananiadou, Sophia
%Y Miwa, Makoto
%Y Roberts, Kirk
%Y Tsujii, Junichi
%S Proceedings of the 23rd Workshop on Biomedical Natural Language Processing
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F you-etal-2024-uiuc
%X As the number of scientific publications is growing at a rapid pace, it is difficult for laypeople to keep track of and understand the latest scientific advances, especially in the biomedical domain. While the summarization of scientific publications has been widely studied, research on summarization targeting laypeople has remained scarce. In this study, considering the lengthy input of biomedical articles, we have developed a lay summarization system through an extract-then-summarize framework with large language models (LLMs) to summarize biomedical articles for laypeople. Using a fine-tuned GPT-3.5 model, our approach achieves the highest overall ranking and demonstrates the best relevance performance in the BioLaySumm 2024 shared task.
%R 10.18653/v1/2024.bionlp-1.11
%U https://aclanthology.org/2024.bionlp-1.11
%U https://doi.org/10.18653/v1/2024.bionlp-1.11
%P 132-143
Markdown (Informal)
[UIUC_BioNLP at BioLaySumm: An Extract-then-Summarize Approach Augmented with Wikipedia Knowledge for Biomedical Lay Summarization](https://aclanthology.org/2024.bionlp-1.11) (You et al., BioNLP-WS 2024)
ACL