Large Language Models for Biomedical Knowledge Graph Construction: Information extraction from EMR notes

Vahan Arsenyan, Spartak Bughdaryan, Fadi Shaya, Kent Wilson Small, Davit Shahnazaryan


Abstract
The automatic construction of knowledge graphs (KGs) is an important research area in medicine, with far-reaching applications spanning drug discovery and clinical trial design. These applications hinge on the accurate identification of interactions among medical and biological entities. In this study, we propose an end-to-end machine learning solution based on large language models (LLMs) that utilize electronic medical record notes to construct KGs. The entities used in the KG construction process are diseases, factors, treatments, as well as manifestations that coexist with the patient while experiencing the disease. Given the critical need for high-quality performance in medical applications, we embark on a comprehensive assessment of 12 LLMs of various architectures, evaluating their performance and safety attributes. To gauge the quantitative efficacy of our approach by assessing both precision and recall, we manually annotate a dataset provided by the Macula and Retina Institute. We also assess the qualitative performance of LLMs, such as the ability to generate structured outputs or the tendency to hallucinate. The results illustrate that in contrast to encoder-only and encoder-decoder, decoder-only LLMs require further investigation. Additionally, we provide guided prompt design to utilize such LLMs. The application of the proposed methodology is demonstrated on age-related macular degeneration.
Anthology ID:
2024.bionlp-1.23
Volume:
Proceedings of the 23rd Workshop on Biomedical Natural Language Processing
Month:
August
Year:
2024
Address:
Bangkok, Thailand
Editors:
Dina Demner-Fushman, Sophia Ananiadou, Makoto Miwa, Kirk Roberts, Junichi Tsujii
Venues:
BioNLP | WS
SIG:
SIGBIOMED
Publisher:
Association for Computational Linguistics
Note:
Pages:
295–317
Language:
URL:
https://aclanthology.org/2024.bionlp-1.23
DOI:
10.18653/v1/2024.bionlp-1.23
Bibkey:
Cite (ACL):
Vahan Arsenyan, Spartak Bughdaryan, Fadi Shaya, Kent Wilson Small, and Davit Shahnazaryan. 2024. Large Language Models for Biomedical Knowledge Graph Construction: Information extraction from EMR notes. In Proceedings of the 23rd Workshop on Biomedical Natural Language Processing, pages 295–317, Bangkok, Thailand. Association for Computational Linguistics.
Cite (Informal):
Large Language Models for Biomedical Knowledge Graph Construction: Information extraction from EMR notes (Arsenyan et al., BioNLP-WS 2024)
Copy Citation:
PDF:
https://aclanthology.org/2024.bionlp-1.23.pdf